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Numerical study of the strongly screened vortex-glass model in an external field
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The vortex-glass model for a disordered hibhsuperconductor in an external magnetic field is studied in
the strong screening limit. With exact ground stéte., T=0) calculations we show th&t) the ground state
of the vortex configuration variedrastically with infinitesimal variations of the strength of the external field;
(2) the minimum energy of global excitation loops of length sdaldo not depend on the strength of the
external field; however3) the excitation loops themself depend sensibly on the field. R&rwe infer the
absence of a true superconducting state at any finite-temperature independent of the external field.
[S0163-182609)08133-3

The gauge or vortex-glass model has become a paradigm 1
in studying amorphous high; superconductors or random H= —J2, cog i~ ¢~ Ay — N tay) + > > (Vxa)?,
Josephson-junction arraysOne essential feature of this Y - 1)
model is the possible appearance of a glassy state at low
enough temperatures, without which true superconductivityvhere the first sum runs over all nearest-neighbor pajrs
would cease to exist in these disordered matefigkom the  on aL® simple cubic lattice and the second over every el-
theoretical side it is now commonly believed that in the ab-ementary plaquetté], respectively, the phase variabil
sence of screening a true superconducting vortex-glass phasd 0.27 anda;; the fluctudatmg vector potentials andthe
occurs at low enough temperatufeblf screening is present  SCreening lengthA;; = A"+ Aj°™ are the quenched vector
the original, unscreenedrlinteraction of the vortex lines is Potentials consisting of a random compongft™e [0,2a]
exponentially shielded beyond a particular length saadmd ~ and a homogeneous componef™ modeling an external
the situation seems to change, in particular in the limit inmagnetic field in the direction. The parameter is the bare
which the screening length is zefoe., where vortex lines Screening length. A similar Hamiltonian occurs for ceramic
interact only on-sitethe low-temperature vortex-glass phase(granula) Sur;elgcondu_ctors _Includlng the Self-lnductance of
seems to be destroyé®® In a typical experimental \{ortex loopst?*3 For simplicity we set)=1. The magnetic
situatior? the amorphous higfi, superconductor is put into field b; can be constructed from the quenched vector poten-

a homogeneous magnetic field pointing, say, in zftrec- tials A;; by a lattice curl, in our case with the homogeneous

tion. Due to bulk disorder, i.e., inhomogeneiti@gcancies, external field we have
defects, etg, in the bulk of the sample the vector potential 1
acting on the superconducting phase variables attains a ran- bi=2—[V><A’a”°]i+ B, (2
dom component (most plausible for granular .
superconductot§), however, still there should be a homoge- Obviously the random part fulfills the divergence free con-
neous background field superposed on the random part. dition. We specify the boundary conditioris.c) for the
Therefore, in this paper we study the question of how isvortex-glass Hamiltonian to be periodic in all space direc-
the latter scenario, i.e., the absence of a true superconductitigns (corresponding to fluctuating b.c. in the phase variables
phase in the strongly screened three-dimensi8@a) gauge  of the original gauge-glass Hamiltonfdrd. Now we
or vortex-glass model influenced by the presence of a homashooseB™'=Be,, i.e., the external field points in thedi-
geneous external field in one particular space direction. Thigection and is also divergenceless due to the periodic b.c.
is done via the investigation of exact ground states of the In the pure case A™"=0) the field strengttB simply
vortex-glass Hamiltonian and its low-energy excitation. Firstplays the role of the usual filling factécounting the number
we analyze the sensibility of the minimum energy configu-of flux units per plagquette giving rise to the uniformly frus-
ration with respect to the addition of a homogeneous externdfated XY model (see, e.g.(Refs. 15-1Y and references
field, then we study the low-energy excitations of lengththerein in the unscreened case €«). Here, due to the
scale L in the spirit of the usual domain-wall long-range interaction-1/r, the ground state is indeed non-
renormalization-grougDWRG) calculations:®t trivial for irrational filling factors. In the continuum limit the
The lattice model describing the phase fluctuations in dlux lines would actually form a hexagonal lattice, the well-
strongly disordered superconductor close to a normal-toknown Abrikosov flux-line lattice. For the disordered case
superconductor phase transition is the gauge glass mbdel one has an interesting interplay between two sorts of frustra-
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tion: one is also present in the pure case and coming from th¢ 10000

external field and the other comes from the quenched disor Hm ........ - gfg-:n
der. To our knowledge, this problem has not been investi- 1000 b ©--©B=0.001 & i

gated systematically so far. Here, as a first step, we confine ¥ — ¥ B=0.0001
ourselves to the strongly screened cakse-»Q), for which

the vortex Hamiltonian of Eq(1) simplifie to 100 I

Hy0= S (3,-Dy)2 ® & °f

The problem of finding the ground state is actually a
minimum-cost-flow problem m'@i}Eici(Ji) subject to the

041 | .
constraint ¥ -J);=0, wherec;(J;):=(J;—b;)? are the so- /V/
called (convex cost functions. This problem can be solved Y/ . .
exactly in polynomial time via combinatorial optimization 0.01 5 y 0 100
A . . 1/
techniques, as described in Refs. 18, 9. LB

First we study the sensibility of the ground state with G. 1. Scali lot of th i di u
respect to small changes in the external fildro this end FL'<3; 588‘0'”9 po: 0 :;j%m%%% f'StEEE;E‘l(L) JSSB(? .
we compare the ground-state configurations of samples wit Fo=o- samples fot= 15, orL =24 an or

. . . =32. The chosen values f@8areB=0.0001, 0.0010, 0.0100, and

the same quenched disorder and slightly different extern . X
field B. D fi ithJ. th field B=0 d stat .1000. The best data collapse is achieved by a chaos expdnent
1€ . enoting withJ; the zero-field B=0) groun S A€ _3.8+0.2. The error bars are less than the size of the symbols and
and withJ;(B) the ground state of the same sample in NON+, 1< omitted.
vanishing external field8 we define the Hamming distance

of the two configuration; andJ;(B) by tions. This is the common procedure for a DWRG analysis,

which, however, bears some technical complicafioasd
Dg(L)=2, (Ji(B)—J)2, (4)  some conceptual ambiguitiein it.
i Here we follow the basic idea of DWRG, we will, how-

so that a small value dbg(L) means a strong correlation of ever, avpid th.e complications and the. ambiguities that appear
B .by manipulating the b.c. and try to induce the low energy

the_ground states. In Ref. 9 it has been found thaF arr;nldnﬂméxcitation in a different way, as it has first been done by one
tesimal random perturbauon of the vector potentid _of us ir? for the zero-field case. First we clarify what a low-
leads to a chaotic rearrangement of the ground-state Céo%nﬂgléhergy excitation of length scale is in the model under
ration. There it was demonstrated that, like in spin glasses, ., qjqeration here it is certainly a global vortex loop encir-
beyond a particular length scale, the so-called overlap Iengtt&.

ling the 3D torugi.e., theL® lattice with periodic b.9.once
the two ground stategerturbed and unperturbedecorre- . e
late. For the nonrandom magnetic-field perturbation we (or several timeswith minimum energy cost. How can we

i induce the above-mentioned global vortex loop, if not by
study here we take over this concept and demonstrate tr}%anipulating the b.c.? Schematically the solution is the fol-

existence of an overlap length scaling with the strength of . :
. X : I I 1 Icul h -
the external fieldB like |* «BY%, where( is the chaos expo- owing numerical procedurgl) Calculate the exact ground

nent. For this length scale to exist the finite-size scaling form
Dg(L)=d(L/I*)=d(L/B¥) should hold, which is indeed

satisfied, as is shown in Fig. 1. We obtain a relatively large ' 0.06 T

chaos exponent=3.8+0.2. Remarkably this exponent co-

incides(within the error barswith the chaos exponent for a i 0.04 T

random perturbation which has been reported to f&" "<"

=3.9+0.2° 04| 0.02 -
In this section we study the scaling behavior of low-

energy excitation®AE(L) of length scaleL (to be defined < K 0.00 4

below) in the presence of an external field, which provides
the essential evidence about the stability of the ground statt
with respect to thermal fluctuations.AfE(L) decreases with
increasing length. it implies that it costs less energy to turn
over larger domains thus indicating the absence of a true
ordered(glass state at anyT + 0. Usually one studies such
an excitation of length scale by manipulating the b.c. for 0.0 L L L L
the phase variablesgof the origi¥1a| Har%ilton(gm see Refs. 0.000 0007 O'OQOB ext 0-090 0040 0050

7,6. One induces a so-called domain wall of length stale z

into the system by changing the b.c. of a particular sample F|G. 2. Defect energAE vs applied magnetic fiel® for one
from periodic to antiperiodiqor vice versain one space particular disorder configuration. The field varies between 0 and
direction and measures the energy of such an excitation by.05 times one flux unit and the system size_is 24. The inset
comparing the energy of these two ground-state configuraenlarges the region that is studied in Fig. 3 in more detail.
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FIG. 3. The minimum energy global excitation lopprpendicularto the external field in the direction is shown for one particular
sample [ =24) and three different field strengtBs(note the periodic b.c. in all space directipn&@) (left) B<[0.0065,0.0069is in a
range, where the defect energd¥ varies linear with respect to the fieldee inset of Fig. 2 Note that the loop has also winding number
n,=1 in the direction parallel to the external field. HencegJAE/dB=2L. (b) (middle) The same sample as ifg) with B
€[0.0070,0.007k In this interval the defect energy is constant, no loop along the direction of the applied field gcc(ight) The same
sample as irfa) and(b) with B [0.0076,0.008]L The system is very sensible to the variation of applied fid&] Even for a small change
by AB=0.0001 the form of the excitation loop changes drastically.

state configuratior{JO} of the vortex Hamiltonian(3); (2) which can be understood as follows: the external field varies
Determine the resulting global flux along, say, thaxisf,  continuously and the interger valued flow changes only in
:(]_/L)EiJiOX; (3) Study a minimum-cost-flow problem in discrete steps, thus the minimum energy excitation loop may
the actual cost for increasing the flow in thedirection ~ not change in a whole interval s@,,By]. In this interval
Act=c;(3%+1)—¢;(3%) is smoothly modified letting the AE changes linearly wittB sinceH(J*) —H(J°) is simply
cost of a topologically simple connected loop unchanged an@roportional to length of the excitation loop in tizedirec-
only affecting global loops(4) Reduce theAc’ until the  tion, which isn,-L, with n, the integer winding number of
optimal flow configuratior{J*} for this min-cost-flow prob- the loop in thez d|rect|or). Furthermore., the eXC|t.at.|on Ioops_
lem has the global fluxf(+1), corresponding to the so- them_sel\{es change their form dramatically, as it is exempll—
called elementanylow-energy excitation on the length scale fied in Fig. 3. Only small parts of the loop seem to persist
L; (5) Finally, the defect energy ISE=H({J1})— H({JO}). over a _sgmﬁcant range of the fleld_ strength, see for instance
Two remarks(1) In the pure case this procedure would N the vicinity of the plane =20 in Fig. 3. Now we study the
not work, since at some point spontaneotalylinks in thez behawor. of the d|sorder—.averaged energy of excitation loops
direction would increase their flow value by one. It is only Perpendicularto the applied magnetic field along, say, the
for the disordered case with a continuous distribution for the
random variable®; that a unique loop can be expectéa). ‘ ] - ™
In the presence of a homogeneous external field one has to 0.40 - . P A s
discriminate between different excitation loops: those paral-
lel and those perpendicular to the external field need not to
have the same energy. 0.30 ]
As for the zero-field caSeone expects for the disorder- ]

averaged excitation enerdgr defect energy '-'E 0.20 L R T T |
AE(B,L)]~LY, 5 U e% e es o}
[ ( )]av ( ) 0.10 ® * @ * 0 * @ TR 4

L . "} ® L] ®

whereB is fixed,[ - - - ],y denotes the disorder average ahd

is the stiffness exponent and its sign determines whether 0.00 C o C C .

there is a finite-temperature phase transition or not, as ex- 0  0.0001 o001  0.01 0.1 1.0

plained above. IH<0, i.e., the transition to a true supercon- B,

ducting vortex state appears only Tt 03919

For a single configuration we find that a change of the FIG. 4. Linear plot of the external magnetic field vs the defect
external magnetic field drastically affects the defect energy S"€r9YLAEla, for L=4,6,8,12,16,24top to bottom. The elemen-

AE (Fig. 2). AE is a piecewise linear function that behaves @7 excitation p_ara_lleljemand perpendicular full diamond to the
in particular interval§ B, .B,] as external magnetic field,”. For each plotted point the number of

samples varied between 20 000 for the smallest sizes to 1000 for the
largest sizes. The error bars of the excitations are less than the size
JAE/éB=2-L-n,, (6)  of the symbols and thus omitted.
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direction (full diamonds in Fig. 4 Note that it is only nec- value agrees within the error bars with the chaos exponent
essary to study the situatioB<[0,1], since all physical for random perturbations of the quenched disordeor in-
properties of the vortex glass Hamiltonié8) are periodic in  dividual disorder configurations the change of the defect en-
the strength of the external fiel i.e., the filling factor. As  ergy AE, (B) with respect to the applied fieB is piecewise

can easily be seen in Fig. 4 the defect enélyi(B,L) ].iS  linear, analytic, and accompanied by a drastic deformation of
independent of the value &. For any fixed value oB the  the minimum energy global excitation loop. On the other
finite-size scaling relation(5) is confirmed and givesy  hand, the disorder-averaged value of the defect energy
= —Q.95i 0.04; cf. Ref. 9. Thls behavior of excitations per- AE|(B)]., is independent of the external fieliin strength
pendicular to the applied field depends neither on the lengthg girection and thus the same for the scaling behavior, i.e.,

Of the_ system in the di_rection nor on the topology in this _identical to the cas®=0 in Ref. 9. Therefore, as in thg
direction: we also studied the situation for elementary exci-

) L =0 case, we infer the absence of a true superconductin
tation loops(open boxes in Fig. ¥parallel to the external P 9

. . . I . low-temperature phase.
f'elq anq n Wh!Ch the vortex H.am|ltor.1|a(8) 'I|ves. on a Concluding, we would like to note that it would be inter-
lattice with free instead of periodic b.c. in talirection. In

the latter case the external field has an appropriate source af ting to perform the same analysis for nonvanishing screen-

sink outside the system. For all cases we find here the san% length and for the unscreened case, where due to the
result: [AE(B,L)]., is independent of the external fick ng-range repulsion of the vortex lines important new phys-

We have studied the 3D vortex-glass model in the stron l?:esldmlght appear, in particular for a homogeneous external

screening limit in the presence of a homogeneous external

field. The ground state is extremely sensible to small external

field variations and its configurations at different field values We thank J. Kisker for important help during this work.
B and B+ AB decorrelate beyond the overlap correlation The work of H.R. has been supported by the Deutsche For-
length I* ~ABY¢ with a chaos exponenf=3.8+0.2 This  schungsgemeinschadFG).

1G. Blatteret al, Rev. Mod. Phys66, 1125(1994). BNote, in Ref. 12 the disorder is modeled by random Josephson
2D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev® couplings, not by random vector potentials. Therefore, this
130(1991. model is aXY spin-glass rather than a gauge-glass model.
3R. H. Kochet al, Phys. Rev. Lett63, 1511(1989; T. K. Wor-  *P. Olsson, Phys. Rev. B2, 4511(1995.
thingtonet al, Phys. Rev. B43, 10 538(1991. %p G. Gupta, S. Teitel, and M. J. P. Gingras, Phys. Rev. Béjt.
4M. P. A. Fisher, T. A. Tokuyasu, and A. P. Young, Phys. Rev.  105(1998.
Lett. 66, 2931 (1991). 18M. Franz and S. Teitel, Phys. Rev. LeT8, 480(1994).
5J. M. Kosterlitz and M. V. Simkin, Phys. Rev. Leff9, 1098  7X. Hu, S. Miyashita, and M. Tachiki, Phys. Rev. Let9, 3498
(1997. (1997.
6J. M. Kosterlitz and N. Akino, Phys. Rev. LeB1, 4672(1999.  '®H. Rieger Frustrated Systems: Ground State Properties via Com-
"H. S. Bokil and A. P. Young, Phys. Rev. Left4, 3021(1995. binatorial Optimization Lecture Notes in Physics Vol. 501
8C. Wengel and A. P. Young, Phys. Rev.58, R6869(1996. (Springer-Verlag, Heidelberg, 1998Vl. Alava, P. Duxbury, C.
9J. Kisker and H. Rieger, Phys. Rev.38, R8873(1998. Moukarzel, and H. Rieger, ifPhase Transitions and Critical
105, John and T. C. Lubensky, Phys. Rev38& 4815(1986. Phenomenaedited by C. Domb and J. L. LebowitAcademic,
113, Maucourt and D. R. Grempel, Phys. Rev. L8, 770(1998. New York, in press
12p, Dominguez, E. A. Jagla, and C. A. Balseiro, Phys. Rev. Lett.’°U. Blasum, M. Diehl, H. Rieger, L. Santen, and M.nger, J.
72, 2773(1994; H. Kawamura and M. S. Li, Phys. Rev. B, Phys. A: Math. Gen29, 3939(1996; M. Ney-Nifle and A. P.

619 (1996. Young, ibid. 30, 5311(1997).



