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Numerical study of the strongly screened vortex-glass model in an external field
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The vortex-glass model for a disordered high-Tc superconductor in an external magnetic field is studied in
the strong screening limit. With exact ground state~i.e., T50) calculations we show that~1! the ground state
of the vortex configuration variesdrastically with infinitesimal variations of the strength of the external field;
~2! the minimum energy of global excitation loops of length scaleL do not depend on the strength of the
external field; however,~3! the excitation loops themself depend sensibly on the field. From~2! we infer the
absence of a true superconducting state at any finite-temperature independent of the external field.
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The gauge or vortex-glass model has become a parad
in studying amorphous high-Tc superconductors or random
Josephson-junction arrays.1 One essential feature of thi
model is the possible appearance of a glassy state at
enough temperatures, without which true superconducti
would cease to exist in these disordered materials.2 From the
theoretical side it is now commonly believed that in the a
sence of screening a true superconducting vortex-glass p
occurs at low enough temperatures.4–6 If screening is presen
the original, unscreened 1/r interaction of the vortex lines is
exponentially shielded beyond a particular length scalel and
the situation seems to change, in particular in the limit
which the screening length is zero~i.e., where vortex lines
interact only on-site! the low-temperature vortex-glass pha
seems to be destroyed.7–9,6 In a typical experimenta
situation3 the amorphous high-Tc superconductor is put into
a homogeneous magnetic field pointing, say, in thez direc-
tion. Due to bulk disorder, i.e., inhomogeneities~vacancies,
defects, etc.!, in the bulk of the sample the vector potenti
acting on the superconducting phase variables attains a
dom component ~most plausible for granula
superconductors10!, however, still there should be a homog
neous background field superposed on the random part.

Therefore, in this paper we study the question of how
the latter scenario, i.e., the absence of a true supercondu
phase in the strongly screened three-dimensional~3D! gauge
or vortex-glass model influenced by the presence of a ho
geneous external field in one particular space direction. T
is done via the investigation of exact ground states of
vortex-glass Hamiltonian and its low-energy excitation. Fi
we analyze the sensibility of the minimum energy config
ration with respect to the addition of a homogeneous exte
field, then we study the low-energy excitations of leng
scale L in the spirit of the usual domain-wa
renormalization-group~DWRG! calculations.5,6,11

The lattice model describing the phase fluctuations i
strongly disordered superconductor close to a normal
superconductor phase transition is the gauge glass mod1,7
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cos~f i2f j2Ai j 2l21ai j !1
1

2 (
h

~¹3a!2,

~1!

where the first sum runs over all nearest-neighbor pairs^ i j &
on a L3 simple cubic lattice and the second over every
ementary plaquetteh, respectively, the phase variablef i
P@0,2p@ andai j the fluctuating vector potentials andl the
screening length.Ai j 5Ai j

rand1Ai j
hom are the quenched vecto

potentials consisting of a random componentAi j
randP@0,2p@

and a homogeneous componentAi j
hom modeling an externa

magnetic field in thez direction. The parameterl is the bare
screening length. A similar Hamiltonian occurs for ceram
~granular! superconductors including the self-inductance
vortex loops.12,13 For simplicity we setJ51. The magnetic
field bi can be constructed from the quenched vector pot
tials Ai j by a lattice curl, in our case with the homogeneo
external field we have

bi5
1

2p
@¹3Arand# i1Bi

ext. ~2!

Obviously the random part fulfills the divergence free co
dition. We specify the boundary conditions~b.c.! for the
vortex-glass Hamiltonian to be periodic in all space dire
tions ~corresponding to fluctuating b.c. in the phase variab
of the original gauge-glass Hamiltonian14,15!. Now we
chooseBi

ext5B ez , i.e., the external field points in thez di-
rection and is also divergenceless due to the periodic b.c

In the pure case (Arand50) the field strengthB simply
plays the role of the usual filling factorf counting the number
of flux units per plaquette giving rise to the uniformly fru
trated XY model ~see, e.g.,~Refs. 15–17! and references
therein! in the unscreened case (l5`). Here, due to the
long-range interaction;1/r , the ground state is indeed non
trivial for irrational filling factors. In the continuum limit the
flux lines would actually form a hexagonal lattice, the we
known Abrikosov flux-line lattice. For the disordered ca
one has an interesting interplay between two sorts of frus
6304 ©1999 The American Physical Society
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tion: one is also present in the pure case and coming from
external field and the other comes from the quenched di
der. To our knowledge, this problem has not been inve
gated systematically so far. Here, as a first step, we con
ourselves to the strongly screened case (l˜0), for which
the vortex Hamiltonian of Eq.~1! simplifies8 to

HV
l˜05(

i
~Ji2bi !

2. ~3!

The problem of finding the ground state is actually
minimum-cost-flow problem min$Ji %

( ici(Ji) subject to the

constraint (¹•J) i50, whereci(Ji)ª(Ji2bi)
2 are the so-

called ~convex! cost functions. This problem can be solve
exactly in polynomial time via combinatorial optimizatio
techniques, as described in Refs. 18, 9.

First we study the sensibility of the ground state w
respect to small changes in the external fieldB. To this end
we compare the ground-state configurations of samples
the same quenched disorder and slightly different exte
field B. Denoting withJi the zero-field (B50) ground state
and withJi(B) the ground state of the same sample in no
vanishing external fieldB we define the Hamming distanc
of the two configurationJi andJi(B) by

DB~L !5(
i

~Ji~B!2Ji !
2, ~4!

so that a small value ofDB(L) means a strong correlation o
the ground states. In Ref. 9 it has been found that an in
tesimal random perturbation of the vector potentialA i j

rand

leads to a chaotic rearrangement of the ground-state con
ration. There it was demonstrated that, like in spin glasse19

beyond a particular length scale, the so-called overlap len
the two ground states~perturbed and unperturbed! decorre-
late. For the nonrandom magnetic-field perturbation we
study here we take over this concept and demonstrate
existence of an overlap lengthl * scaling with the strength o
the external fieldB like l * }B1/z, wherez is the chaos expo
nent. For this length scale to exist the finite-size scaling fo
DB(L)5d(L/ l * )5d(L/B1/z) should hold, which is indeed
satisfied, as is shown in Fig. 1. We obtain a relatively la
chaos exponentz53.860.2. Remarkably this exponent co
incides~within the error bars! with the chaos exponent for
random perturbation which has been reported to bez rand

53.960.2.9

In this section we study the scaling behavior of lo
energy excitationsDE(L) of length scaleL ~to be defined
below! in the presence of an external field, which provid
the essential evidence about the stability of the ground s
with respect to thermal fluctuations. IfDE(L) decreases with
increasing lengthL it implies that it costs less energy to tur
over larger domains thus indicating the absence of a
ordered~glass! state at anyT5” 0. Usually one studies suc
an excitation of length scaleL by manipulating the b.c. for
the phase variables of the original Hamiltonian~1!, see Refs.
7,6. One induces a so-called domain wall of length scalL
into the system by changing the b.c. of a particular sam
from periodic to antiperiodic~or vice versa! in one space
direction and measures the energy of such an excitation
comparing the energy of these two ground-state config
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tions. This is the common procedure for a DWRG analys
which, however, bears some technical complications7 and
some conceptual ambiguities5,6 in it.

Here we follow the basic idea of DWRG, we will, how
ever, avoid the complications and the ambiguities that app
by manipulating the b.c. and try to induce the low ener
excitation in a different way, as it has first been done by o
of us in9 for the zero-field case. First we clarify what a low
energy excitation of length scaleL is in the model under
consideration here it is certainly a global vortex loop enc
cling the 3D torus~i.e., theL3 lattice with periodic b.c.! once
~or several times! with minimum energy cost. How can w
induce the above-mentioned global vortex loop, if not
manipulating the b.c.? Schematically the solution is the f
lowing numerical procedure:~1! Calculate the exact ground

FIG. 1. Scaling plot of the Hamming distanceDB(L) vs LB1/z

for L<32: 5000 samples forL<16, 2000 forL524 and 500 for
L532. The chosen values forB areB50.0001, 0.0010, 0.0100, an
0.1000. The best data collapse is achieved by a chaos exponz
53.860.2. The error bars are less than the size of the symbols
thus omitted.

FIG. 2. Defect energyDE vs applied magnetic fieldB for one
particular disorder configuration. The field varies between 0 a
0.05 times one flux unit and the system size isL524. The inset
enlarges the region that is studied in Fig. 3 in more detail.
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FIG. 3. The minimum energy global excitation loopperpendicularto the external field in thez direction is shown for one particula
sample (L524) and three different field strengthsB ~note the periodic b.c. in all space directions!. ~a! ~left! BP@0.0065,0.0069# is in a
range, where the defect energyDE varies linear with respect to the field~see inset of Fig. 2!. Note that the loop has also winding numb
nz51 in the direction parallel to the external field. Hence,]DE/]B52L. ~b! ~middle! The same sample as in~a! with B
P@0.0070,0.0075#. In this interval the defect energy is constant, no loop along the direction of the applied field occurs.~c! ~right! The same
sample as in~a! and~b! with BP@0.0076,0.0081#. The system is very sensible to the variation of applied fieldDB. Even for a small change
by DB50.0001 the form of the excitation loop changes drastically.
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state configuration$J0% of the vortex Hamiltonian~3!; ~2!
Determine the resulting global flux along, say, thex axis f x

5(1/L)( iJi
0x ; ~3! Study a minimum-cost-flow problem in

the actual cost for increasing the flow in thex direction
Dci

x5ci(Ji
0x11)2ci(Ji

0x) is smoothly modified letting the
cost of a topologically simple connected loop unchanged
only affecting global loops.~4! Reduce theDci

x until the
optimal flow configuration$J1% for this min-cost-flow prob-
lem has the global flux (f x11), corresponding to the so
called elementarylow-energy excitation on the length sca
L; ~5! Finally, the defect energy isDE5H($J1%)2H($J0%).

Two remarks~1! In the pure case this procedure wou
not work, since at some point spontaneouslyall links in thez
direction would increase their flow value by one. It is on
for the disordered case with a continuous distribution for
random variablesbi that a unique loop can be expected.~2!
In the presence of a homogeneous external field one ha
discriminate between different excitation loops: those pa
lel and those perpendicular to the external field need no
have the same energy.

As for the zero-field case9 one expects for the disorde
averaged excitation energy~or defect energy!

@DE~B,L !#av;Lu, ~5!

whereB is fixed,@•••#av denotes the disorder average andu
is the stiffness exponent and its sign determines whe
there is a finite-temperature phase transition or not, as
plained above. Ifu,0, i.e., the transition to a true superco
ducting vortex state appears only atT50.8,9,19

For a single configuration we find that a change of
external magnetic fieldB drastically affects the defect energ
DE ~Fig. 2!. DE is a piecewise linear function that behav
in particular intervals@Ba ,Bb# as

]DE/]B52•L•nz , ~6!
d

e

to
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to
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e

which can be understood as follows: the external field va
continuously and the interger valued flow changes only
discrete steps, thus the minimum energy excitation loop m
not change in a whole interval say@Ba ,Bb#. In this interval
DE changes linearly withB sinceH(J1)2H(J0) is simply
proportional to length of the excitation loop in thez direc-
tion, which isnz•L, with nz the integer winding number o
the loop in thez direction. Furthermore, the excitation loop
themselves change their form dramatically, as it is exem
fied in Fig. 3. Only small parts of the loop seem to pers
over a significant range of the field strength, see for insta
in the vicinity of the planez520 in Fig. 3. Now we study the
behavior of the disorder-averaged energy of excitation lo
perpendicularto the applied magnetic field along, say, thez

FIG. 4. Linear plot of the external magnetic field vs the defe
energy@DE#av for L54,6,8,12,16,24~top to bottom!. The elemen-
tary excitation parallelh and perpendicular full diamond to th
external magnetic fieldBz

ext . For each plotted point the number o
samples varied between 20 000 for the smallest sizes to 1000 fo
largest sizes. The error bars of the excitations are less than the
of the symbols and thus omitted.
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direction ~full diamonds in Fig. 4!. Note that it is only nec-
essary to study the situationBP@0,1#, since all physical
properties of the vortex glass Hamiltonian~3! are periodic in
the strength of the external fieldB, i.e., the filling factor. As
can easily be seen in Fig. 4 the defect energy@DE(B,L)#av is
independent of the value ofB. For any fixed value ofB the
finite-size scaling relation~5! is confirmed and givesu
520.9560.04; cf. Ref. 9. This behavior of excitations pe
pendicular to the applied field depends neither on the len
of the system in thez direction nor on the topology in this
direction: we also studied the situation for elementary ex
tation loops~open boxes in Fig. 4! parallel to the external
field and in which the vortex Hamiltonian~3! lives on a
lattice with free instead of periodic b.c. in thez direction. In
the latter case the external field has an appropriate source
sink outside the system. For all cases we find here the s
result: @DE(B,L)#av is independent of the external fieldB.

We have studied the 3D vortex-glass model in the stro
screening limit in the presence of a homogeneous exte
field. The ground state is extremely sensible to small exte
field variations and its configurations at different field valu
B and B1DB decorrelate beyond the overlap correlati
length l * ;DB1/z with a chaos exponentz53.860.2 This
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value agrees within the error bars with the chaos expon
for random perturbations of the quenched disorder.9 For in-
dividual disorder configurations the change of the defect
ergyDEL(B) with respect to the applied fieldB is piecewise
linear, analytic, and accompanied by a drastic deformation
the minimum energy global excitation loop. On the oth
hand, the disorder-averaged value of the defect ene
@DEL(B)#av is independent of the external fieldB in strength
and direction and thus the same for the scaling behavior,
identical to the caseB50 in Ref. 9. Therefore, as in theB
50 case, we infer the absence of a true superconduc
low-temperature phase.

Concluding, we would like to note that it would be inte
esting to perform the same analysis for nonvanishing scre
ing length and for the unscreened case, where due to
long-range repulsion of the vortex lines important new ph
ics might appear, in particular for a homogeneous exter
field.
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