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We studyXY and dimerizedXX spin-1/2 chains with random exchange couplings by analytical and numeri-
cal methods and scaling considerations. We extend previous investigations to dynamical properties, to surface
guantities, and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomeno-
logical scaling theory of average quantities based on the scaling properties of rare regions, in which the
distribution of the couplings follows a surviving random-walk character. Using this theory we have obtained
the complete set of critical decay exponents of the rand&hand XX models, both in the volume and at the
surface. The scaling results are confirmed by numerical calculations based on a mapping to free fermions,
which then lead to an exact correspondence with directed walks. The numerically calculated critical operator
profiles on large finite system& £512) are found to follow conformal predictions with the decay exponents
of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmi-
cally slow and their distribution shows multiscaling character. In the Griffiths phase, which is an extended part
of the off-critical region, average autocorrelations have a power-law form with a nonuniversal decay exponent,
which is analytically calculated. We note on extensions of our work to the random antiferromagK&tic
chain and to higher dimensions.

[. INTRODUCTION asymptotically exact at large scales, i.e., close to critical
points, has been applied for a number of random quantum
Quantum spin chains exhibit many interesting physicalsystems. The fixed point distribution of the RG transforma-
properties at low temperatures which are related to the bdion has been obtained analytically for some random quan-
havior of their ground state and low-lying excitations. In thistum spin chains, among others for the transverse Ising spin
context one should mention quasi-long-range of#rRO), chain? the spin-1/2 Heisenberg, and related spin chains with
topological order, and quantum phase transitions, which haveandom antiferromagnetic couplingsOn the other hand,
purely guantum-mechanical origin. Considering isotropic ansome other one-dimensional problens=1/2 Heisenberg
tiferromagnetic chains for integer spins there is a gapgchain with mixed ferromagnetic and antiferromagnetic
whereas half integer spin chains are gaplesewever, al-  couplingst®!! S=1 antiferromagnetic chain with and with-
ternating couplings in spin-1/2 chains vyield a dimerizedout biquadratic exchange! etc), as well as higher dimen-
ground state that has physical properties similar to the spin-$ional random quantum systeffshave been studied by nu-
chain: there is a finite gap, spatial correlations decay expomerical implementation of the RG procedure. Comparing the
nentially, and there is string topological order. RG results with those obtained by direct numerical evalua-
Randomness may have a profound effect on the physicaion of the singular quantitiéd~®and by other exatt'®and
properties of quantum spin chains, as demonstrated by recentimerical methods one has obtained a good agreement in the
analytical and numerical studi@#s an interplay of random-  vicinity of the critical point.
ness and quantum fluctuations there are interesting exotic There are, however, other interesting singular quantities,
phases in disordered quantum spin chains, which are nathich are not accessible by the RG method. We mention,
present in classical random or pure quantum systems. It hasnong others, the dynamical correlatihand the behavior
been noticed that pure gapless systems are generally unstablethe system far away from the critical point in the Griffiths
against weak randomne%$whereas for gapped systems a phase'® which denotes an extended region of the parameter
finite amount of disorder is necessary to destroy thetap space around the critical point. In the Griffiths phase the
(but see also Ref.)8 system is gapless, and thus dynamical correlations decay
Among the theoretical methods developed for disorderedvith a power law, although there is long-range order with
guantum spin chains one very powerful procedure is thexponentially decaying spatial correlations. For the random
renormalization grougRG) approach introduced by Das- quantum Ising chain dynamical correlations, both at the criti-
gupta and M&. This RG method, which is expected to be cal point and in the Griffiths phase, have been exactly
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determine&’~?? using a mapping to the Sinai modélj.e.,  presented in Sec. IV, whereas the Griffiths phase is studied in

random walk in a random environment. Sec. V. We discuss the extensions of our results to random
In this paper we are going to study tBe=1/2 disordered antiferromagneticXXZ chains and to higher dimensions in

XX andXY spin chains by analytical and numerical methodsthe final section, whereas some technical calculations are

and by phenomenological scaling theory. The RG treatmengresented in the appendixes.

of the problem by Fish&mpredicts that the antiferromagnetic

randomXX fixed point controls the critical behavior of the II. THE MODEL AND ITS FREE-FERMION

antiferromagnetic Heisenber@XXX) model, too. Further- REPRESENTATION

more, for random isotropic chains the RG approach predicts

QLRO, and thus the average spatial correlations of different A. XY and XX models

components of the spin decays with a power law. In this We consider an opeKXY chain (i.e., with free boundary

so-called random singl¢RS) phase all spins are paired and conditions with L sites described by the Hamiltonian

form singlets, but the distance between the two spins in a

. . . . L-1
singlet pair can be arbitrarily large. Then these weakly
coupled singlets dominate the average correlation function. H= 241 (IS IS ), (2.9
Therefore all components of the correlation function are pre-
dicted to decay with the same exponent. where theS!* (w=x,y) are spin-1/2 operators and the cou-

By the introduction of either anisotropy or dimerization plings (J{“>0) are independent random variables with dis-
the system becomes noncritical, but, randomness will driveributions 7#(J*). The quantum control parameter is the av-
the system into the Griffiths phase, which is still gapless. Arage anisotropy defined as
shown by an RG analystsapplicable in the vicinity of the
RS fixed point, the Griffiths phase is characterized by the [InJ¥]—[INJY]4
dynamical exponert, defined by the asymptotic relation be- 5a:va|[Ian]+var[ln »’

tween relevant timetf) and length scalest} as
where vark) is the variance of random variabbe and
t~ & (1.9 [...], denotes the average over quenched disorder.sgor
S>0 (<0) there is long-range order in the(y) direction,
ie., lim,_.[C#(r)]a#0, where

(2.2

The dynamical exponent is predicted to be a continuou
function of the quantum control paramet@nisotropy or

dimerization and the singular behavior of different physical P _ e
quantities(specific heat, susceptibility, elcare all expected [C*()Jav= (OIS ([0} Jav: 23
to be related to the value of the dynamical exponent. and for ,=0 the system is in a critical state with quasi-

The RG predictions by Fishtrand others have been long-range order, where correlations decay algebraically, i.e.,
scrutinized by numerical studié4;?® especially in the RS .,
phase of isotropic chains. Some crossover functions of cor- [CA(r)]a~r" 7. (2.4

relations have also been studied in the Griffiths phase. In th[e .
. L . the XX model, where the andy couplings are correlated
RS phase some numerical results are controversial: in earlier

X ; :
studie® a different scenario from the RG picture is pro- asJy=Jy=J;, we introduce alternation such that eves)

posed(in particular with respect to the transverse correlationand odd (0) couplings, connecting the sitei,2i +1 and

function), but later investigations on larger finite systemsZial(;z’ respectiv_elyi are tarlfen fro(rjn ldihstributiom§(.]e)
have found satisfactory agreement with the RG predicfifns, a1dp°(Jo), respectively. For th&Xmodel the quantum con-
although the finite-size effects were still very strong. trol parameter is the average dimerization defined as

In the present paper we extend previous work in several [1nJ,]a—[In ]
directions. Here we consider open chains and study both 4= o-av e (2.5
bulk and surface quantities, as well as end-to-end correla- vafinJo]+vafin Je]

tions. We dgvelop a ph_enomenological theory which is_baseqfhe RS phase is aiy=0, whereass;# 0 corresponds to the
on the scaling properties of rare events and determine thgyndom dimefRD) phase. Throughout the paper we use two
complete set of critical decay exponeffsVe calculate nu- types of random distributions, both for th&f and XX mod-
merically (off-diagona) spin-operator profiles, whose scal- g|s. For theXY model with the binary distribution thg*

ing properties are related tébulk and surface decay  couplings can take two valuas>1 and 1k with probability

exponent%g_ and_ compare the profiles with predictio_ns of p andg=1— p, respectively, while the coupling are con-
conformal invariance. Another feature of our work is the gignt-

study of dynamical correlations, both at the critical point and

in the Griffiths phase. Finally, we perform a detailed analyti- (I =pS(I*—N)+q8(I*—\"1),

cal and numerical study of the Griffiths phase and calculate,

among others, the exact value of the dynamical exponent ()= 8(3Y—Jp). (2.6
Eq. (1.2).

The structure of the paper is the following. The model and”t the critical point —q)In A=In Jj. The uniform distribu-
its free-fermion representation are presented in Sec. II. Aion is defined via
phenomenological theory based on the scaling behavior of 1 for 0=J<1
rare events is developed in Sec. lll. Results in the critical (3¥) = '

- . : S J .
state, where there is quasi-long-range order in the chains is 0, otherwise,
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(IH)~L,  for 0<IV<J} in terms of the fermion creationnq) and annihilation ¢,)

m/(J)= . (2.7 operators. Then the Hamiltonian assumes the diagonal form
0, otherwise

and the critical point is al{=1. - . 1
For the XX model the corresponding distributiop$(J€) H=q§l Eq( Mg M9~ 5+ (211
and p°(J°) follows from the correspondences
r e o % o 1 or 0 where the ordering of the fermionic states is given with in-
J=J% 0 =00 m(J)—p%J°%),  m(F)—p°(J°). creasing energye,. The fermion excitations are non-
(2.9 negative and satisfy the set of equations
Note that the critical points of the two modelg,&0 and
54=0, respectively are not equivalent due to the different €qVq(N=3_1D4(I-1)+J@y(1+1),
disorder correlations. (2.12
e@o(N=J_ W (1-1)+ IV (I +1)
B. XY chain and the directed walk model
] } ) with the boundary conditiond/=JY=0. The vectorsb,’s
Using the Jordan-Wigner transformation, ¢ model and¥,’'s which are related to the coefficients of the canoni-
Hamiltonian in Eq(2.1) can be rewritten as a quadratic form o transformation are normalized. They enter into the ex-
in fermion operators. It is then diagonalized through a Cayessions of correlation functions and thermodynamic quan-
nonical transformation which gives tities.
1 1 Usually one proceea%py eliminating eithet or @ in
S|XS|X+1=ZB|A|+1, S, ,=— ZA'B'“’ (2.9  Egs.(2.12 and the excitations are deduced from the solution
of quadratic equations. This last step can be avoided by in-
with troducing a 2 -dimensional vectol, with components

. Vo (4l —3)=d (21-1), Vy(4l—2)=W,(21—-1),
A= 2 ()75 + 79), ! ! ! T 21
- Vo(4l—1)=W(21),  V4(4l)=dy(2l)

2.10
A ot e ors 0.3 vencoreson
0 W
0 0 X
¥ 0 0 0 I
¥ 0 0 0
¥ o0 0o o ¥
T= Yo o o (2.14
N )
H 0 0 (-1

The matrixT can be interpreted as the transfer matfii) sider this sector. We note that similar correspondence has

of a directed walk(DW) problem on four interpenetrating, been established earlier between the DW and the transverse-

diagonally layered square lattices. Each walker makes steffield Ising model(TIM).%°

with weightsJ;* and J} between next-neighbor sites on one  The eigenvalues of in Eq. (2.14) consist of two classes.

of the four square lattices and the walk is directed in theFor q=2i—1, i=1,2,...L the odd components of the

diagonal direction(see Fig. 1 eigenvectors are zero, i.eV,_1(2j)=0, j=1,2,...L,
According to Egs(2.12, changing®, into —® in V,,  whereas for the other class with=2i the even components

the eigenvector corresponding tee, is obtained. Thus all are zeroV,(2j—1)=0. Consequently] can be expressed

information about the DW and thé€Y model is contained in as a direct product=T,®T,, where the trigonal matrices

that part of the spectrum witg,=0. Later on we shall con- T, ,T, of sizeL XL represent transfer matrices of directed
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cited state is asymptotically degenerate with the ground state
in the thermodynamic limit, thus the sum in EQ.17) is
dominated by the first term. In the large limit
lim,_.. G{(7)=(m)?, thus the local order parameter is
given by the off-diagonal matrix element

mi=(1/50). (2.18

In the free fermion representati@ is expressed 4%

1
S|X:§A1|31A2|32' - AZ1BIAL (2.19

FIG. 1. Sketch of the directed walk problem corresponding toUsing|1)= 7, |0), the matrix element in Eq2.18) is evalu-
the transfer matrix given in Eq2.14. Note that one has two inde- ated by Wick’s theorem. Since fof+] <0|AiAj|0>
pendent walks in the direction of the diagonally layered square =(0|B;B;|0)=0 we obtain for the local order parameter
lattice, corresponding to the independent subspaces for the eigen-

v_alue problem(see text The coupling streng;ﬁi‘f’ are the transi- H, Gy Gi ... Gy
tion rates for the random walker from one site in rovo those in 1H, G G G
[ 2 b2 22 .- 21—
o=t m=s| 0 1 @2
walks. As a result one has to diagonalize these two matrices H G. G G
of sizeL X L. Thus for chains with even number of sités, ! =1z e -1
=2N, the two classes of eigenvectors are given in terms of h
the variablegb and ¥ via where
€10 P 1(2))=Vy1(2j-1)=0, Hj=(0| 7:Aj[0)=D4(j),
. . (2.2
et DPop(2j—1)=Wy(2))=0 (2.19
fori,j=1,... N. Furthermore we assume that the vectors Gji=(0[BiA|0)= _Eq Wo(K)Pg(])-

@, andW¥, are normalized to 1 separately.

For theXX model the even and odd sectors are degenergqr syrface spins the local order parameter is simply given
ate, exc—1= €. Thus it is sufficient to diagonalize only one y,, y— ¢, (1)/2, which can be evaluated in the thermody-
matrix. In this case one has the additional relations namic limit L—os in the phase with long-range order, when

Dy 1(2j—1) =W, (2j — 1), €,=0. Using the normalization conditiap|®,(1)]2=1, we
XX model (2.1 obtain for the surface order parameter

D,(2]) =Wor-1(2]).
The matricesT, and T, are in one-to-one correspondence 1 te—1 1 NP 2|2
with the eigenvalue problem of one-dimensional TIM’s. This m)1(=§ 1+ lZ H - XY,
exact mapping for finite open chains is presented in Appen- —b=t 2j
dix A. (2.22
1 L2-1 1 21—-112
2j—1
C. Local order parameters m’{=§ 1+ H 3. ) XX,
=1 j=1 2j

Next we are going to study the long-range order in the
ground state of the system. Having free boundary conditiondj/e note that this formula iexactfor finite chains if we use
as in Eq.(2.1), the expectation value of the local spin opera-fixed spin boundary conditior§; = = 1/2, which amounts to
tor (0|S|0) (and(0[S/|0)) is zero for finite chains. Then the haveJdyY ;=0. In the fermionic description the twofold de-
scaling behavior of the spin operator can be obtained frongeneracy of the energy levels, correspondin@te 1/2 and
the asympt_otic behavior of thémaginary time-time corre- S‘=—1/2, is manifested by a zero energy mode in @gL1)
lation function: and from the corresponding eigenvector one obtaifisin
X/ N X X Eq. (2.22 for any finite chain.
Gi(n=(0IS(nS(0)[0) qFor nonsurfa)ée spins the expression of the local order
(2 parameter in Eq(2.20 can be simplified by using the rela-
:% [(n[S{{0)|*exd — 7(En—Eo)], (21D tions in Eq.(2.19. Then, half of the elements of the deter-
minant in Eqg.(2.20 are zero, the nonzero elements being
where|0) and|n) denote the ground state and théh ex-  arranged in a checkerboard pattern, anfdcan be expressed
cited state ofH in Eq. (2.1), with energiesE; andE,, re-  as a product of two determinants of half size, which reads for
spectively. In the phase with long-range order the first ex!{ =2j as
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H, Gy, Gia4 L Gig-2 D. Autocorrelations
H G G L Gao Next we consider the dynamical correlations of the sys-
1 3 3,2 3,4 3,2-2
my; =3 ' ' ) tem as a function of the imaginary time First, we note that
the correlations betweex components of the surface spins
Hoj-1 Goj—12 Gojo1a -+ Gajo1g-2 can be obtained directly from EQ.17) as
GZ,l G2’3 P GZ,Zj—l 1
Gar Gaz ..o Gag: Gi(n)=7 2 [Pq(1)| expl(— 7eq)
< C (2.23 a
: : . : P
Caia Gaa - CGaiga =7 2 |Paa(DPexp—7e5-0), (228
I

The local order parameten’, related to the off-diagonal
matrix element of the operat& can be obtained from Egs.
(2.20 and(2.22 by exchangingl{«<J} . where we have used the relations in E2,.15.
For theS/ operator the autocorrelation functi@f(r) can For bulk spins the matrix elemefin| |0} in Eq. (2.17)
be expressed in a similar way &(7) in Eq.(2.17 and its  is more complicated to evaluate. One has to go back to the

long time limit, lim, .., Gf(7) =(m?)?, is given by the local first equation of Eq(2.17 and considers the time evolution
order parameter in the Heisenberg picture:

mi=(¢,|S{|0). (2.24
S{(r)=exp(tH)S exp(— 7H)
Here |¢,) denotes the lowest eigenstate téfin Eq. (2.1)

having a nonvanishing matrix element $ffwith the ground =3AU7)B(7) - A_1(T)B_1(DA(7).

state. In the free fermion representati6f can be written

as® (2.29
S=:AB (2.29

and the off-diagonal order parameter is given by The general time and position dependent correlation function

mi=3 [=@y(NW,(1)+ W1 (HP,(1)]. (2.26

(SH(DS ) =2{(AUDIB1(T) - A(T)ABy - Apy),
For the XX model one can obtain simple expressions using (2.30
the relations in Eqs(2.16) as

where the bracket¢. - -) either mean the ground-state ex-
. N _ ) pectation value at zero temperature or the thermal expecta-
myi—1=3z[P2(2I-1)]% tion value at nonvanishing temperature, can then be ex-
XX model (2.27) panded using Wick’s theorem into a sum over products of
two-operator expectation values, which can be expressed in a

mg; =3[ ¥ 1(2i)]°. compact form as a Pfaffian:
[{(AL(T)B1(7)) (A(DAAT)) (AUTB(7)) - (AUDA(7) (ADAY) - (AUDAW)
(Bi(nAy(7)) (By(m)By(7)) --- (Bi(nA(7) (Bi(nAy) -+ (Bi(m)A )
AS(1)S\ )= (A(7)By(7)) -+ (AADAI(7) (AxATA) - (ADAIn)
<Bl+n—1AI+n>
= +[detC;;]¥2 (2.31)

In Eq. (2.3) Cj; is an antisymmetric matric;; = — C;; , with the elements of the Pfaffia2.31) above the diagonal.

At zero temperature the elements of the Pfaffian are the following:
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) =1/2) is zero, whenever a product of the form of
(A(DAY=2 Do) Dy(K)exp — Tey), I_,(3972 1=1,2,...L is infinite, i.e., the number ok
d couplings exceeds the numbenof?! couplings in any of the
[1,] intervals. Otherwise the surface order parameter has a
(Aj(1)By)= > Dy(J)Vy(k)exp(— Teq), finite value ofO(1). Thedistribution of the couplingg* can
q be represented by one-dimensional random walks that start at
zero and make thigh step upwardsfor J5,=\ 1) or down-
(Bj(7)By)=— > Vo ())Wg(k)exp — 7eq), wards(for J5;=X\). The ratio of walks representing a sample
q with finite surface order parameter is given by the survival
probability of the walkPg,,, i.e., the probability of the
. - i — ) walker to stay always above the starting pointLif2 steps
(Bi(m)Ag ; FaDPqlloexp(=7ey). (2.3 which is given byPg,(L/2)~L Y2,
Next we consider the vicinity of the critical point, when
e scaling behavior of the average surface order parameter
can be obtained from the survival probabilities of biased ran-
dom walks!® where the probability that the walker makes a
step towards the adsorbing boundaris different from that
%t a step off the boundarp. The control parameter of the

whereas the equal-time contractions are given below E%h
(2.10. For the finite temperature contractions, see Ref. 31.
For longitudinal correlations the matrix elementsSjfin

Eq.(2.25 is given in a simple form for any positidn there-
fore G{(7) can be obtained from the analogous expression t

Eq.(2.179 as walk, 8,,=p—q, is analogous to the quantum control param-
1 etersd, anddy in Egs.(2.2) and(2.5), respectively. Thus we
Gi(7)= 2 Z E |—\pr(I)CDQ(I)4—\Ifq(l)(IDp(I)|2 have the basic correspondences between the average surface
a9 pP>q order parameter of th&Y (and XX) model and the surviving
X ex — 7(eqt €p)]. (2.33  Probability of adsorbing random walks:

[M1(8,L)]av~Psurd S ,L12), 6~ 0Oy - (3.1
IIl. PHENOMENOLOGICAL THEORY FROM SCALING
OF RARE EVENTS We recall the asymptotic properties of the surviving prob-

) . ability of adsorbing random walks.For unbiased walks,
In classical random ferromagnets where the critical be-

havior is controlled by a random fixed point the distribution Paunl 8,=0,L)~L "2 (3.2

of several physical quantitigerder parameters, correlations,

autocorrelations, efcis broad and as a consequence thesdor walks with a drift away from the wall,

guantities are not self-averaging: their average and most

probable or typical values are different. In random quantum Psud 6w> 0L —%)~ 4, 33

spin chains the.cr_itif:al properties are 'e'xpect.ed to be COMN3nd for walks with a drift towards the wall,

trolled by the infinite-randomness critical fixed poift,

where the distributions are extremélggarithmically) broad - _ 52

and as a consequence the average and typical behavior of Psul Sw<0.L)~exp(—L/&yw), Ew~6, . (3.9
these quantities are completely different. The average it this way we have identified the rare events for the surface
dominated by realizationghe so calledare eventy which  order parameter, which are samples with a coupling distribu-
have a very large contribution, but their fraction is vanishingtion which have a surviving walk character. The scaling
in the thermodynamic limit. In this section we identify these properties of the average surface order parameter and the
rare events for the randoMY (and XX) model and use their correlation length immediately follow from Eg€.2), (3.3),
properties to develop a phenomenological theory. Our basignd (3.4) and will be evaluated in Sec. IV A.

observations are related to exact relations about the surface

order parameter and the energy of low-lying excitations. B. Scaling of low-energy excitations

The rare events controlling the surface order parameter
are also important for the low-energy excitations. Our results
are obtained by using a simple relation for the smallest gap

The local order parameter at the boundary is given by the (1) of an open system of size i.e., with free boundary
simple formula in Eq(2.22 as a sum of products of the ratio conditions, expecting that it goes to zero at least-asl.
of the couplingsJ};_; and J3; . It is easy to see from Eq. With this condition one can neglect the right-hand side of the
(2.22 that in the thermodynamic limit the average surfaceeigenvalue problem of? asT?V, = €2V,, since terms at the
order parameter is zef@onzero, if the geometrical mean of |eft-hand side in a second-order difference equation are of
the J5; couplings is greatetsmalley than that of thel};_;  O(I~?). In this way one derives approximate expressions for
couplings. From this the definition of the control parametershe eigenfunctionsb, and¥, and with these then one gets

A. Surface order parameter and the mapping to adsorbing
random walks

in Egs.(2.2) and(2.5) follows. from the first equation of Eq2.12), i.e., with|=1,
Next we compute the average value of the surface order
parameter for the extreme binary distributitini.e., the limit 12-1 gy
A—0 in Eq.(2.6). For a random realization of the couplings ex(D~mm ¥ 1 Z'X_l. (3.5
=1 2j

the surface order parameter at the critical poipt=Q
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Here m} is defined in Eq(2.22 and the surface order pa- (3.1). We start with the equal-time correlations in Eg.3).

rameter at the other end of the chaim}_,, is given as in Ina given sample there should be local order at both refer-

Eq.(2.22 replacingdy;, ,/J% by JY,; ,/Jf 5. (For details ~ €nce points of t_hg corrfalation functi_on in order to have

of the derivation of a similar expression for the quantumC*(r)=0(1). This is equivalent of having two SCD's in the

Ising chain, see Ref. 3. sample which occur with a probability &f5(1,1 +r), which
Before using the relation in E¢3.5), we note thatsur-  factorizes for large separation lim. P5(l,1+r)

face order and the presence of low-energy excitations are= P#(I)P*(L+r), since the disorder is uncorrelated. The

inherently related. These samples with an exponentially probability of the occurrence of an SCD at positip®#(l),

the system sizesmall gap have finiteQ(1), order param- has the same scaling behavior as the local order parameter

eters at both boundaries and the coupling distribution foIIowimf‘]a\,=[(¢M|S”|0>] av» Which behaves at a bulk point, 0

a surviving walk picture. Such type of coupling configuration <I/L<1, as

represents a strongly coupled dom&BCD), which at the

critical point extends over the size of the systemin the [m,"(L)]a\,~L*X“, (3.10

off-critical situation, in the Griffiths phase the SCD’s have a . . S
smaller extent| <L, and they are localized both in the vol- whereas for a boundary poirit= 1, this relation involves the

ume and near the surface of the system. The characteristitIface scaling dimensior; . ConsequentlyP*(l) trans-

excitation energy of an SCD can be estimated from@d)  forms asP#(I/b)=b*P#(l) under a scaling transforma-

as tion, when lengths are rescaled by a fadwr1. As said
above, for spatial correlations there should be two indepen-

-1 gy dent SCD’s we obtain the transformation law

e~ I1 JZJX1~ex;J|’ - lzﬁ In(Jy/JX)], (3.6)

j=1 2j

[CH(r)]a=b"Z“TCH(r/0)]a- (3.12)

Now takingb=r, one recovers the power-law decay in Eq.
(2.4) with the exponent

wherel,, measures the size of transverse fluctuations of
surviving walk of length andIn(J/) is an average ratio of
the couplings(it is In(J%J°) for the XX mode).

At the critical point (6=0), wherel ~L, the size of trans- = 2x*, (3.12
verse fluctuations of the couplings in the SCRef. 15 is
l,~ L2 Consequently we obtain from E(.6) for the scal-
ing relation of the gap

For critical time-dependent correlations the scaling behavior
is different from that in Eq(3.11). This is due to the fact that
disorder in the time direction is perfectly correlated and the
€,(6=0,L)~exp —const L?). (3.70  autocorrelation function in a given sampleGg'(7)=0(1),

if there is one SCD localized at position. Therefore the
average autocorrelation functioriG{*(7)],, scales as the
probability of rare event®*(l):

Then the appropriate scaling variable iselfL and the dis-
tribution of the excitation energy is extremefipgarithmi-

cally) broad.

In the Griffiths phase the size of an SCD can be estimated GH —b B (In /b2 31
along the lines of Ref. 15 ds- &, InL and the size of trans- [GF()]ay tip(In 7/b75, 3.13
verse fluctuations is now,~|~InL. Setting this estimate where we have used the relation in Eg§.7), together with

into Eq. (3.6), we obtain for the scaling relation of the gap r~1/e, at the critical point, and5{* is a scaling function,
which is expected to be a smooth function of the position

er(L)~L7% (3.8 the bulk of the system. Taking the length scale las
wherez is the dynamical exponent as defined in Efl). = (In7)% we obtain for pointd in the volume
The distribution of low-energy excitations can be obtained Y
from the observation that an SCD can be localized at any site [GI(D]a~(n7)" 7, (3.19

of the chain, thusP (1)~P_(In €)~L. For a given large
the scaling combination from E¢B.9) is L €', thus we have
for the gap distribution in the thermodynamic limit

whereas for surface spink=1, one should use the corre-
sponding surface decay exponeyit.
Next we turn to study the scaling properties of the average
P(e)~e 1+12, (3.9  correlation functions in the Griffiths phase, i.e., outside the
critical point. For equal-time correlations in a sample
As already mentioned;is a continuous function of the quan- CH(r)=0(1), if the SCDextends over a large distancerof
tum control parametes and we are going to calculate its \yhich according to Eq(3.4) is exponentially improbable.
exact value in Sec. V. Thus the average spatial correlations decay as

C. Scaling theory of correlations [CH(r) e~ exp(—r/§), &~ &y, (3.19

The scaling behavior of critical average correlations iswhereé,, is defined in Eq(3.4). On the other hand the au-
also inherently connected to the properties of rare eventsocorrelation function in a sample B#(7)=0(1), if there
Here the quantity of interest is the probabil®y“(1), which  is one SCD localized dt which occurs with a probability of
measures the fraction of rare events of the local order paranP#(1)~1/L. Consequently the average autocorrelation func-
etermf*. For the surface order parametef it is given by  tion, which scales aB*(l), transforms under a scaling trans-
the surviving probability,P*(1)=Pg,,, according to Eq. formation as
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GH(7) b IIGH 7/b?) 5>0, (3.1 TABLE |. Decay exponents of critical correlations in the ran-
N Jav N Jav dom XY and XX chains. The exponents with a supersctipt are
where we used the scaling combinatietb? in accordance those calculated by Fisher with the RG metH&ef. 4, whereas

with Eq. (1.1). Now takingb= 7 we obtain () follows from the results of the random TIM in Ref. 9.
[Gf(D]a~ 7 (3.17 7XY) (XX XY) (XX)

for any type of autocorrelations, both in the volume and atBulk 3—BU*) 20%) 4 2(+)

the surface. Surface 1 1 2 1

IV. CRITICAL PROPERTIES .
B. Quasi-long-range order

_Here we consider in detail the randokY and XX chains At the critical point of random quantum chains the equal-
in the vicinity of t.he critical pomt.s', as defmecj in Eq2.2 time correlations decay with a power laigee Eq.(2.4)],
and(2_.5), respe_ct_lvely. The off-critical properties of the SYS- thus there is QLRO in the system. The decay exponent of
tems in the Criffiths phase are presented afterwards in thgitica) correlations are related to the scaling exponenof

following section. the fraction of rare events of the given quantisee Eq.
. (3.12] and its value generally depends on the type of corre-
A. Length and time scales lations of the disorder; thus it could be different for k¥

As we argued in the previous section the average behavigd theXX models. Analyzing the scaling properties of the
of random quantum spin chains are inherently related to thEare events in th&Y and XX chains, we have calculated the
properties of the rare events, which are SCD’s, having &ritical decay exponents of different correlation functions,
coupling distribution of surviving RW character. The typical Poth between two spins in the volume and for end-to-end
size of an SCD, as given b, in Eq.(3.4), is related to the correlations. Our results are presented in Table I. In the fol-
average correlation length of the systdré],,. Then using lowing we are going to derive these exponents by analytical

the correspondences in Eq8.1), (3.4), and(3.15, we get and scaling methods and then compare them with the results
the relation of numerical calculations.

[Ela—1077, y=2. (4.7 1. Longitudinal order parameter

The typical correlation lengtr¢,,, as measured by the aver- We start W'thzthe s_call_ng behavior o_f the angﬂudmal or-
age of the logarithm of the correlation function is different 967 Parametemy, which in the XX chain is given by the
from the averagecorrelation length. One can estimate the SimPle formula in Eq.(2.27. Summing over all sites, one
typical value by studying the formula in Eq.22 for the ~ 9€tS the sum rule

surface order parameter, where the products are typically of L

I1;(3%;_1/3%;)>~ exp(const| 5|L), thus [mg(L,5<0)]yy S m?=1 XX model, (4.4)

~ exp(—const | |L) ~ exp(—L/&y,). Thus we obtain =1

— 4.2) where we have used E(.19 and the fact that thé> and
P V¥, are normalized. Since this sum rule is valid for the aver-
We note thatat the critical pointthe largest value of the age quantities too, we get immediately
above products is typically off;(J%;_/J3)~ exp@AL*?), 5
since the transverse fluctuations in the couplings are of [mila=L""m?(I/L), (4.5

O(LY?); thus we have - ~
(L9 wherem?(1) is a scaling function with =1/L. Consequently

[My(L,6=0)]yp~ exp( —const LY?), for bulk spins the finite-size dependence of the local order
parameter i mf],~L "%, thus from Eq.(3.10 we have
As shown in Eq(3.6), the value of the smallest gap is related x?(XX)=1 and from Eq(3.12 the decay exponent is
to the size of transverse fluctuations of a SCP, Away
from the critical point, where the correlation length is finite, 74 (XX)=2
one had~ _51/2' and therefore the typical relaxation time of 55 given in Table I. A further consequence of the sum rule in
a sample with typical correlation lengthscales as Eq. (4.4) is that the average value of the bulk order param-
1/ eter is the same, if the averaging is performed over any
Int,~—Ine(l)~ &< (4.3 single sample. Thus the order parametérand the correla-
We note that the results in this part about length and timdion function(S’Sy, ) areself-averaging This is quite spe-
scales are valid both for th&Y and XX models. They also cial in disordered systems where the correlations are gener-
hold in an identical form for the random TIRES which can  ally not self-averaging® The self-averaging properties of the
be understood as a consequence of the mapping oKthe S’ correlations provides an explanation of the accurate nu-
chain into decoupled TIM'Ssee Appendix A Since the merical determination of the decay exponesi{XX)=2 in
corresponding scaling expressions for the random TIM hav@revious numerical work>?®
been studied in detail in previous numerical wotk>we do The surface order parametef, for the XX model satisfies
not repeat these calculations here. the relationm?=2(m%)2, which follows from Egs.(2.22
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FIG. 2. Finite-size scaling plot of the longitudinal order param-  FIG. 3. Finite-size scaling plot of the longitudinal order param-
eter profiles[m?],, for the XX model at criticality for different eter profile§ m{],, for the XY model at criticality for different sys-
system sizes calculated numerically with the fermion method usingem sizes calculated numerically with the fermion method using Eq.
Eq. (2.27). The data are for the uniform distribution, averaged over(2.27. The data are for the uniform distribution, averaged over
50 000 samples. The conformal results are indicated by full lines. 50 000 samples.

and(2.27. Then a rare event witm;=0(1) is also a rare this model the disorder in thg' andJ} couplings is uncor-
event for the order parameta¥ ; consequently the fraction related, therefore one can perform averaging in the two sub-
of rare event$? is given by the surviving probability in Eq. SPacesT, andT,, or in the two decoupled TIM's, indepen-
(3.2. Thus the scaling dimension i€=1/2 and the decay dently. Note that the expression for’ in Eq. (2.26) is given

exponent of critical end-to-end correlations is as a product of two vector components, where each vector
belongs to different subspaces and have the same average
7E(XX)=1 behavior. Since the couplings entering the two separate ei-
genvalue problems are independent, one gets for the disorder
as shown in Table I. average
We studied the order parameter profitef],, numerically
for large finite systems up to=256. As shown in Fig. 2 the [M{a=[P1(D)]av [V2(D)]av: (4.7

i . . 2
numgncal points of the §caled variatllgmj ], are on ON€ " Since the probability fom? being of order 1 is the product of
scaling curvem?(l) for different values ofL. The scaling the probabilities ford (1) and ¥ ,(l) being of order 1, we
curve has two symmetric branches for odd and even latticgonclude that the scaling dimension fof in the randonXy

sites, which cross dt=L/2. The upper part of the curves in chajn s twice that for the randodiX chain. Thus the decay
the largeL limit is very well described by the function exponents are

m?(T) = Asin(arl) "2, which corresponds to the conformal
result about off-diagonal matrix element profif&s: 7(XY)=4
and

sinm —

I Xq —x#
y

At
in the bulk and at the surface, respectively, as shown in
I L ~ L . Table 1.
the curves in Fig. 2 is given ZbWZ(I)IZAS'n(”l)’ which The numerical results about the order parameter profile is
corresponds to Eq4.6) with x;=2. Thus we obtain that shown in Fig. 3. The data collapse is satisfactory, although
average critical correlations between two spins which arggt a5 good as for th&¥X model. Similar conclusion holds

next to the surface are decaying [@*(2L—1)]a~L™*  for the relation with the conformally predicted profile, which
Using the sum rule for the profile in E¢4.4) and the con- s also presented in Fig. 3.

formal predictions, one can determine the prefaciofrom
normalization. Then from the equatid/2[ [ (sinmx) 2 2. Transverse order parameter
+sinwx]dx=1, one getsA=0.86735, which fits well the
numerical data on Fig. 2.

with x*=1 andx} = 1/2. On the other hand the lower part of

We start with the surface order parametgras given by
These results about the conformal properties of the profiI%\,)hcj?ths'fr:)1 Plaef(;(r:?l;lr? d';f%iﬁ;)é ;?]'ds {gg:ﬁ;;édsgﬁgsgor

are in agreement with similar studies of the random #f\g . ) ol
Thus it seems to be a general trend that critical order paran’fgnows from the adsorbing random-walk mapping in Sec. Ill

X
eter profiles of random quantum spin chains are described t@) Then from Eqs(3.1) and (3.2 one getsx; =1/2 and
the results of conformal invariance, although these systems X_q
are strongly anisotropicsee Eq(4.3)] and therefore not con- KER
formally invariant. both for the randonXY and XX models, as shown in Table I.
Next we turn to study the order parametef and the The value of the decay exponents follows also from the map-
longitudinal correlation function in the randoXY model. In  ping to two TIM’s. As shown in Eq(A8) in Appendix A, the
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2L—1 that gives a nonvanishing transverse magnetizatith

~O(1) for the centralbulk) spin. The example is for the extreme

binary distribution. Weak couplingsJ§,_,1=\) correspond to

downward steps of the random walk on both sides of the central
FIG. 4. Transverse order parameter profite}],, for the Xy  SPin (here at 0. Note that both the right and the left halves of the

model at criticality for different system sizes calculated numericallyr@ndom walk have surviving character, i.e., do not cross the starting

with the fermion method using Eq2.23. The data are for the POINt.

uniform distribution, averaged over 50 000 samples.
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The value forz*(XX), however, can be obtained by the

. . . following argument. For simplicity let us consider the ex-
X X
correlation function(S};S5, . »,) is expressed as the product treme binary distribution in whicH, =1 andJ, ;=\ or

of spin correlations in the two TIM's, one with open bound- 1 \ "\ un hrobability 1/2, taking the limit—0. Then, from
ary c.o.ndltlc_)ns, but the other taken with fixed-spin boundaryEq. (2.22, one gets only then a nonvanishing transversal
conditions in terms of dual variables. For end-to-end corre, ¢ .o magnetization, when the disorder configuration has a
lations this second factor in the product is unity, since it is

the correlation between two fixed spins. Therefore end-to—s_ u;vwlngL\//;zilkl Ch?;?g%”};i”;?gf}igrl‘]Ze'aé;r difé)trrik?lljltilons
end correlations between the random TIM and the random_f e I g X (’)pl v if hg ; oo
XY andXX models are identical and the decay exponent cor® couplings thatm;~O(1) only if the surface spin is

responds to the value in Table I. weaklycoupled to the rest of the system. It is instructive to

For bulk correlations one can easily find the answer fofnote the difference to the surface magnetization in the TIM,

the XY model with the mapping in EAS). When the two  Wheremi~0O(1) when the surface spin &rongly coupled
points of reference are located far from the boundary, thdO the rest of the system, meaning thgt , (1/J;) < for al

boundary condition does not matter and after performing thé=1, ... L—1 for the extreme binary distribution.
independent averaging for the two factors of the product one The same remains true for a bulk spin, which also has
obtains] (S5S5 4 or Y lav= 14 (oo, VI2,; thus nonvanishing transverse magnetization only if it is weakly

coupled to the rest of the systefthe trivial example being
the case where both its couplings to the left and to the right
7(XY)=27(TIM)=3— 5, (4.8 are exactly zero, which gives the maximum valog
=1/2). Thus the central spin in a chain of length, sdy 2
where the last result follows from Fisher's RG calculation. —1, hasm*~ (1) if and only if the bond configurations on
(As shown in Ref. 36 the rare events for the bulk orderboth sides have surviving character, as it is depicted in Fig. 5
parameter in the TIM are samples having a coupling distrifor the extreme binary distribution. Since the probability
bution of average persistence charagt@&he scaling expo- Pg(L/2) for a configuration of./2 couplings to represent a
nentx*(XY) can identically be obtained from the expressionsurviving walk isPg,(L/2)~ L~ 2, it is
of the order parameter profile in ER.23), which is in the - .
form of a product of the two Ising order parameters and for M ~{Pa(L/2}*~L71, ie,x(XX)=1. (4.9
the XY model the two factors are averaged independently. . .
For the XY model the numerically calculated profile is From this one obtains
shpwn in Fig. 4. The scaling plot with the exponents in Table P(XX)=2, (4.10
| is reasonable, although larger systems and even more
samples would be needed to reach the expected asympto&é given in Table I.
behavior, as predicted by conformal invariance in Eg6). We verified the strong correlation between weak coupling
The arguments leading to the prediction.8 for the and nonvanishing transverse order parameter numerically in
transverse bulk order parameter exponent do not apply fdahe following way: We considered a chain with+ 1 sites
the XX model and one cannot obtain a simple estimate for th@nd the couplings at both sides of the central spin were taken
bulk decay exponent from Eq$A8) or (2.23 due to the randomly from a distribution calle8 W3’ which represents
following reason. The expressions with the parameters of théhose samples in the uniform distribution which has a surface
two quantum Ising chains contain real and dual variables fomagnetization ofmj(SW)>1/4. (Thus cutting one of the
the two (o and 7) systems. Sincd{'=J{=J, a domain of couplings to the central spin results in a local magnetization
strong couplings in ther chain corresponds to a domain of greater than 0.25.Then we calculated numerically the order
weak couplings in the chain and vice versa. Therefore the parameter at the central spin and its average value over the
rare events of the TIM can not be simply related to the rareSW configurationd m{ ,]s as given in Table Il. As seen in
events of theXX chain. the table the averaged surface order parameter stays constant
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TABLE Il. Surface and bulk transverse order parameters aver- TABLE Ill. Effective bulk scaling dimension of the transverse
aged over 50 000 SW configurations for the uniform distribution. order parameter in the randoXX chain.

L 2[m3 Jw 2[m ol sw L x(L)
16 0.817 0.531 16 0.635
32 0.806 0.471 32 0.677
64 0.799 0.431 64 0.730
128 0.792 0.413 128 0.823
256 0.791 0.383 256 0.872
512 0.910

for large values ot., whereas the bulk order parameter de- _ _

creases very slowly, actually slower than any power. Thédave averaged the order parameter in the middle of the pro-
data can be fitted bym’ ,,]q,~ (INL)~7, with 0~0.5. Thus file for L/4<I<3L/4 and compared this average value for
we conclude that the numerical results confirm E410), finite systems with_/2 andL sites. As seen in Table Il the
although there are strong logarithmic corrections, which im-ffective exponents are monotonously increasing with the

ply for the average transverse correlations size of the system and they are not going to satufaéeen
for L=512.
[CXN)]a~r 2In"Yr) XX model. (4.1 From the data in Table Ill one cannot make an accurate

) ) ) . estimate of the limiting value of*(L), but it is clear that
These strong logarithmic corrections render the numerlch(L) grows at least up to the theoretical limi¥=1, al-

calculation of critical exponents very diffiCLﬁ‘f:Z?In earlier  ihough it could, in principle, reach even a larger value. We
numerical work using smaller finite systems, disorder depenynie that similar observation was made by Henelius and
dent exponents were 'report%":dWe believe that these nu- Ginin from the averages* correlation function, where the
merical results can be mterpr_eted_ as effectlve, &_ze_—dependegﬁective 7 exponents seem to grow over the theoretically
exponents and the asymptotic critical behavior is indeed deﬁredicted value of*=2 (see Fig. 2 of Ref. 26

scribed by Eq(4.17).

Note that our results in Table | satisfy the relation
7*(XX) = »*(XX), both in the volume and at the surface,
which corresponds to Fisher's RG restiin this way we According to the scaling theory in Sec. 1l C the decay of
have presented independent justification of Fisher's R®werage critical autocorrelations in random quantum spin
phase picture, where the average correlations are dominatéfains is ultraslow; it takes place in logarithmic time scales,
by random singlets, so that the distance between the pai@&s given in Eq.(3.14. Here we confirm these predictions
could be arbitrarily large. with the results of numerical calculations. We start with the

We checked numerically the above theoretical predictionsurface autocorrelation functi¢®;(7) ],y for the XX model,
in the randomXX model. In Fig. 6 we present the scaleyf  which is calculated in the binary distribution £ 4) on finite
profiles for the binary distribution for finite systems up to Systems up th =128. As seen in Fig. ftop) the logarithmic
L=512. The profiles have a broad plateau and the points dfime dependence is well satisfied and the decay exponent is

Lm* do not perfectly fall on one scaling curve due to found in agreement witty}(XX)=1 as given by the scaling
strong finite-size effects. Even system sizes as large as resul_t in Eq.(3.14). For bulk spin critical auto_correlatlons we
—512 appear to be insufficient to get rid of such correctionconsidered Gf ;,(7) J for the XX model. Again the numeri-
terms. Therefore we have calculated the effective sizecal results in Fig. Abottom are consistent with a logarith-

dependenk*(L) exponents by two-point fitting. For this we Mic decay with an exponenf*(XX)=2, as given in Table I.
Next we turn to study thelistribution of critical autocor-

20 -— relations. As we have seen, the average behavior is logarith-

C. Autocorrelations

18 | L8 - mically slow, but for typical samples, as described in Appen-

16 L=16 = dix B, one expects a faster decay with a power-law time

14 ¢ =32 - 3 dependence. TheG{ ()~ 7~ and they exponent could
312k =128 o R vary from sample to sample. Such type of “multiscaling”
=10 6 t=§?g : e behavior of the autocorrelations has been recently observed
o 83 - L4 by Kisker and Youn@ in the random quantum Ising model.

6 In Fig. 8 we have numerically checked this assumption for

4 the critical autocorrelation§’(7) andGf ,(7), respectively,

g of the randomXX chain, the average behavior of which have

been studied before. As seen in Fig. 8 we have obtained
indeed a good data collapse of the probability distributions
P#(y) in terms of the scaling variable= —In Gf*/In 7 for

FIG. 6. Transverse order parameter profita],, for the XX  both types of autocorrelations, but the scaling curve in the
model at criticality for different system sizes calculated numericallytwo cases are different.
with the fermion method using Eq2.23. The data are for the The average correlation functions generally have contri-
binary distribution, averaged over 50 000 samples. butions from the scaling functioR*(y), but there could be

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
(-0.5)/L
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FIG. 7. Spin autocorrelation functiopGf(7)]a, for the XX FIG. 8. Scaling plot of the probability distribution of the auto-

mpdel forL=32, .64’ and 128 calculated numerically with the fer- correlation functiorG{(7) for the XX model for different values of
mion method using Eq92.28 and (2.33. The data are for the S - . o
binary distribution § =4), averaged over 50 000 samplé. (top) T at criticality (L=128). The data are for the uniform distribution
s;mv?;ll—lI tlljmla sun;lce’tr;/nsvzrse ;utocorrelatio(m)sp(bc;ttor% averaged over 100000 sampléal (top) shows| =1, the surface
o o ) ! transverse autocorrelationy) (bottom showsl|=L/2, the bulk
showsl =L/2, the bulk longitudinal autocorrelations. I .
longitudinal autocorrelations.

also nonscaling contributions, as found for the random quan-

tum Ising chain in Ref. 40. The scaling contribution is com-<&s, as a result of the so-called Griffiths-McCoy

ing from the smally part of the scaling function, which, singularitiest®*? In this Griffiths phase the system is critical

according to Fig. §top) for the autocorrelation§’(7), ap-  in the time direction, although spatial correlations decay ex-

proaches a finite value linearlp*(y)~ A+B y. Thus we Pponentially.

have for the average autocorrelations Quantitatively the basic information is contained in the
distribution of low energy excitationB(e) as given in Eq.

o j: PX() Gy ((313;.9). With this the average autocorrelations can be obtained
~ fo (A+By)exp(—yIn7)dy [G(7)]av~ f Pleexp—re)de~ %, (5.1
0
~A(n7) " *+B(In7)"? (4.12

. . ) i . which is expected to hold for any component of the $pim

in agreement with the scaling result in H§.14 and with  thjs way we have recovered the scaling result in &ql7.

the numerical result in Fig. @op). We note that the correc- |n the Griffiths phase also some thermodynamic quantities
tion to scaling contribution to the average autocorrelations irgre singular, which are expressed as an integral of the auto-
Eq. (4.19 is also logarithmic. , _ correlation function. We mention the local susceptibility

~ For the critical autocorrelatio®{ () the scaling func- 4t sjtel, which is defined through the local order parameter

tion in Fig. 8 (bottom for small y approaches zero xin Eq.(2.18 as

linearly** P?(y)~ vy. Thus the scaling contribution to the

average autocorrelation, as evaluated along the lines of Eq. o
(4.12, is [GX(7) ]a~ (In 772, in agreement with the scaling Y= lim - (5.2
. | HX’ .
result in Eq.(3.14). Hraoa |
V- GRIFFITHS PHASE whereH| is the strength of the local longitudinal field, which

Random quantum systems exhibit unusual off-criticalenters the Hamiltonian in Ed2.1) via an additional term
properties: they are gapless in an extended regienjd H[S'. x| can be expressed as
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n X 0 2 0 T T T T T
xi=23 —|<E|S_|E>| ; (53 » s —
(n n 0 ol Ro=§ .
thus its average value scales in finite systemsypd.) 3 3 \\ 0
~ L271 where we have used the scaling relation in Bg) 5 e
and the fact that the matrix element in E§.3) is ~ 1/L, (o3 .
since an SCD can be localized at any site of the chain. For a s 57 .
small finite temperaturd we can use the scaling relations 6 \
T~ €~ L % and we have for the singular behavior 7t S
XN ]a~ T 12 (5.4) %0 2 4 & 8 10 12
To estimate the temperature dependence of the average spe- Int
cific heat[ C(T) ],y we calculate first the average excitation 0 . . . . .
energy per SCD withP(e) in Eq. (3.9 as [ eP(e)de At :8;@8:22 _____________ ]
~ €771 which is proportional to the thermal excess energy 5 -0.75InT e
per spin~ T¥**1 from which we obtain . '3 3 %331'”3 ]
T hy=2.0 =«
[C(T) Lo~ T (5.9 Sl =80 -
5 . hg=4.0 -
We note that several other physical quantities are singular in c
the Griffiths phasgnonlinear susceptibility, higher excita- 61 N
tions, etc) and the corresponding singularities are expected 7t N
to be related to the dynamical exponentFor a detailed 8 . . . e
study of this subject in the random quantum Ising model, see 0 2 4 6 8 10 12
Ref. 22. Int

In the following we calculate the exact value of the dy-
namical exponent using the same strategy as for the randonawti
‘?'“a'?t“m Ising model in Refs. 20 and 21. Our basic observaf-or various values ohy. The straight lines have a slope ok(li),
tion I.S the fact that the eigenvalue prpblem of e (or TT) where the dynamical exponerthy) agrees well with the exact
matrix can be mapped through a unitary .transformatlon to falue determined via the formu(a.6). The data are for the uniform
Fokker-Planck operator, which appears in the master €qUastribution averaged over 50 000 samples of ize128.
tion of a Sinai diffusion, i.e., random walk in a random
environment? The transition probabilities of the latter prob- oughly investigated numericallyj:11522The autocorrelation
lem are then expressed with the coupling constants of thg,ntions, however, are different in the two models and we
spin model. The Griffiths phase of the spin model corre-5.4 going to study those in the following.

sponds to the anomalous diffusion region of the Sinai walk " e ayerage bulk longitudinal autocorrelation function

and from the exact results about the scaling form of the en GZ (1) Ty Of the XX model is shown in Fig. 9 in a log-log
T . . av .

ergy scatlesf ;E(;R'(S pré)bllem one obtains for the dynamic lot at different points of the Griffiths phase. The asymptotic

exponent o mode behavior in Eq(5.1) is well satisfied and the dynamical ex-

(Jx 1z ponents obtained from the slope of the curves are in good

5)

=1, (5.6) agreement with the analytical results in £§.6). A similar
av conclusion can be drawn from the average surface transverse
whereas for theXX model the result follows with the corre-
spondences in Eq2.8). For the binary distribution in Eq.

autocorrelation§ Gi(7) ]y, as shown in Fig. 9.
Next we study the distribution of the autocorrelation func-
(2.6) the Griffiths phase extends over the regiom Jy<\
andzis given by

FIG. 9. The average surfag¢®p) and bulk(bottom autocorre-
on function[ G{',.1(7) Jay of the XX model in the Griffiths phase

tions. In Fig. 10 the distribution of the bulk longitudinal
autocorrelation function of th¥X model is given at different
times 7. As argued in Appendix B, the typical autocorrela-

In X\ tions are of a stretched exponential form
(IY)Ve= cosl’{ —) . (5.7)
z G(7)~ exp(—constrY(t72), (5.9
For the uniform distribution thus the relevant scaling variable is
zIn(l-z ?)=-1InJy, (5.9 InG(r)
,
and the Griffiths phase extends te<l}< o. T ey (5.10

Next we are going to study numerically the Griffiths
phase and to verify some of the scaling results describetdsing this scaling argument, we obtained a good data col-
above. In this respect we shall not consider those quantitidapse of the points of the distribution function as shown in
which have an equivalent counterpart in the random quanturfig. 10. We note that for the random quantum Ising model
Ising model(distribution of energy gaps, local susceptibility, Young'® has also derived the scaling function from phenom-
specific heat, etg, since that model has already been thor-enological arguments,
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can be treated perturbatively whéf<J*,J. Here we con-
sider theXXZ chain, with Jf=¢J, and e<1. To see the
scaling behavior of the energy gap we express the small per-
turbationH in terms of two decoupled TIM’$see Appen-

= dix A) as
o
1 ot z zZ_ 7 z X _X
Hz=-7 ;1 (J5i-10i T+ 350707417 T41), (6.2
x = -In Gf5(1) . . .
whose expectation value in the unperturbed ground state is
0.14 ——r : : just the product of the local energy densities of the TIM's.
o012 | “y 1583 - The perturbative correction to the gap,(L)=(1|H,|1)
' NG 1100 = —(0|H,|0), evaluated with the states of the unperturbed
01 | t=300 -~ Hamiltonian,(0| and(1|, is proportional to the gap of one of
008} 9%;? z:;ggg : the random TIM's, e, (L). At the critical point® € (L)
= 0.06 3 ~ exp(—const L9, which is the same scaling form as for
' the XY model in Eq.(3.7). Thus the scaling relation in Eq.
0.04 (4.3 is valid also for theXXZ chain. In the Griffiths phase
0.02 one has agair (L)~ L% and the dynamical exponent
has the same value as in E.6). Thus we arrive at the
0 0 5 1'0 15 00 conclusion that also in the Griffiths phase the corresponding
X = -n GZ 5(1) / 149 scaling relation in Eq(1.1) is valid in the same form for the
L2 randomXXZ chain, at least for small> couplings.
FIG. 10. (Top): Probability distribution of the bulk longitudinal ~ Next we study the asymptotic properties of average criti-

autocorrelation function of th¥X model in the Griffiths phase for C€al correlations in the randoXXZ model through the scal-
ho=1.5. The data are for the uniform distribution from 100 000 ing behavior of the local order parameters. As we argued in
samples of sizé. =128. (Bottom): Scaling plot of the data in the Sec. lll, these quantities are related to the fraction of rare
top figure. The scaling variabldn G(]/7/**1) contains the dy- events,P#, and here we are going to investigate the influ-
namical exponent(hy) known from the formula(5.6). The full ence of the perturbatioH , to P#. We start with the surface
curve is the theoretical prediction in E¢6.11) using the exact transverse order paramet@i and recall that it is maximal,
value ofz(ho=1.5)=2.659 and a fit parameter=0.22. i.e., mi=1/2, if the surface spin is disconnected in tk¥
plane, i.e.J}=J{=0. Evidently the value ofm}=1/2 does
not change for any finite value of the couplidg. Now
consider the infinite-randomness fixed point of ¥ chain
with the extreme binary distribution, where a rare event is
which is also presented in Fig. 10. One can see considerablgpresented by couplings with a surviving random-walk con-
di.ffe_rences betv_veen the numericgl and theoretical curvesiguration and withm{=0(1). Roughly speaking, a rare
Similar tendencies have been noticed for the random quansyent is formally equivalent to a situation in which there is a
tum Ising model in Ref. 16. The d'lscrepar!c!es are probabl)oery weak surface coupling df,=O(L ), whereL is the
due to strong correction to scaling or f|n|te-5|z_e effec'fs_-system size. Then switching on homogeneous and finite cou-
These corrections, however, do not affect the scaling form inyjings 32 the lowest excitation of the chain stays localized at
Eg. (5.10. the surface, since the shape of the wave function does not
change significantly in first-order perturbation theory. Con-
VI. DISCUSSION sequently the surface order parameter is stfl= O(1), and
he sample is a rare event for t&XZ chain, too. For small
andom couplings){ the accumulated fluctuations iif are
divergent as~LY% however, these are still negligible com-
[)ared with the fluctuations in the transverse couplings. Thus
the rare events of th®¥X chain are identical with those ap-
pearing in theXXZ chain for small values of the random
A. Random XXZ chains longitudinal couplings. As a consequence the critical end-to-
end average correlations decay with the same exponent as
given in Table I. Since the rare events for other local order
parameters are also connected to SCD’s with localized wave
functions the stability of the infinite-randomness fixed point

P(x)=c(cx)*? exp( - %(cx)“l’z), (5.12)

In this section we first discuss the possible extension of
our results to randonXXZ chains and to higher dimensional
systems, and then we conclude with a brief summary of ou
findings.

The more generakXZ (or XY 2) Heisenberg spin chain,
where the Hamiltonian in Eq2.1) contains an additional
interaction term of the form

L-1 holds for the other critical correlations, too. Actually, it
H,= E RSt (6.) seems tp be plausible that Xthe attragtlng. region of Xbe
=1 fixed point extends up tpln 3|, >[In J],,. i.e., where the
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average transverse couplings are larger than the longitudinailg form of the distribution of autocorrelations. In the off-
ones, thus up to the randoXiX X fixed point, in agreement critical regime we investigated the singular physical quanti-

with Fisher's conjecturé. ties in the Griffiths phase. In particular we have obtained
exact expression for the dynamical exponentvhich is a
B. Higher dimensions continuous function of the quantum control parameter and

) ) ) ) ) . the singularities of all physical quantities can be related to its
In one dimension the topology is special since there is;g) e.

only a single path between two points, whereas in higher
dimensional lattices one has several distinct paths connecting
two points. This topological difference is essential when ran-
domXXmagnets are considered in higher dimensions. Let us This work was partially performed during our visits in
consider again the surface transverse order parameter ak@In and Budapest, respectively. F.l.'s work was supported
construct a rare event in the extreme binary distribution. Foby the Hungarian National Research Fund under Grant No.
this purpose the surface spin should be extremely weaklDTKA TO23642, TO25139, MO28418, and by the Minis-
coupled to the bulk of the system. Thus considering anytery of Education under Grant No. FKFP 0596/1999. H.R.
non-self-crossing path from the spin to the volume, onewas supported by the Deutsche Forschungsgemeinschaft
should have a surviving random-walk configuration in the(DFG). We thank L. Turban for helpful comments on the
couplings. In higher dimensions the number of such pathsnanuscript.

grows exponentially with the size of the systémthus the

fraction of rare events, which is related to the Iength as a APPENDIX A: MAPPING TO DECOUPLED ISING

power in one dimension, becomes exponentially small in QUANTUM CHAINS

higher dimensions. Consequently the infinite-randomness

fixed point picture is not applicable here and one concludes We start here with the observation in Sec. 1B that the
that the critical properties of higher dimensionék and  eigenvalue matrixT in Eq. (2.14 can be represented as a
Heisenberg antiferromagnets are controlled by conventionalirect productT=T,®T,. The tridiagonal matrices,,T,
random fixed points. This result is also in agreement withof size L XL represent transfer matrices of directed walks,
numerical RG calculations in two dimensiolfdVe note that ~ which are in one-to-one correspondence with Ising chains in
in contrast to random Heisenberg antiferromagnets the rariransverse fieflf defined by the Hamiltonians

dom ferromagnetic quantum Ising models in higher dimen-

ACKNOWLEDGMENTS

. . P . L/2—1 L/2
sions are still controlled by infinite-randomness fixed 1 © % x 1 y ,
points?>12 Ha:_z 21 J2i0i "i+1_ZZi J3i-107,
Al
VIl. SUMMARY 1 L/2—1 L2 (A1)

1
Hi=—7 21 J%iﬁ(fﬁl_zg NP

Quantum spin chains in the presence of quenched disorder
show unusual critical properties, which are controlled by the _ ) i
infinite-randomness fixed point. A common feature of theseere theoi"* and 7"* are two sets of Pauli matrices at site
systems is that various physical properties, especially thosand there are free boundary conditions for both chains. We
related to local order parameters and correlation function§an then write Hyy=H,+H.. Note the symmetry
are not self-averaging and their average behavior is deter} “— 7,"* andJi'—J}, thus anisotropy in th&Y model has
mined by the rare eveni®r rare regions which give the different effects in the two Ising chains.
dominant contribution, although their fraction is vanishing in ~ One can easily find the transformational relations between
the thermodynamic limit. In this paper we have performed dhe XY and Ising variables:
detailed study of the scaling behavior of rare events appear-

2i-1
ing in the randonmXY and XX chains. We identified the rare X " .

events as strongly coupled domains, where the coupling dis- 7= 11:[1 (25), o =4S55i1Sh,

tribution follows some surviving random walk character. (A2)
From the scaling properties of the rare events we have iden- 2i-1

tified the complete set of critical decay exponents and found = JHl (23{), P=4S5 S5,

exact results about the correlation length exponent and the

scaling anisotropy. Here we note that mgebt "?1") of t_he_ whereas the inverse relations are the following:
random walk arguments are for the extreme binary distribu-

tion, but all analytical predictions from these arguments are i-1 [

supported by numerical data for generic distributions. Thus zszxi_lzgfﬂ sz, ZSEiZUiXH sz,

we expect the results to be generally valid and universality =1 j=1

should hold because of the infinite-randomness fixed point - i (A3)
governing the critical behavior of these systems. In this re-

spect the extreme binary distribution represents one possible 28} ,= T?(jljl of,  285= Tixjﬂl a5

explicit construction of the infinite-randomness fixed point.

Another aspect of our work was the study of dynamicalWe note that a relation between tK& model and two de-
correlations. We have obtained the asymptotic behavior ofoupled Ising quantum chains in the thermodynamic limit
the average autocorrelation function and determined the scatas been known for some tinfé# here we have extended
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this relation for finite chains with the appropriate boundary APPENDIX B: DISTRIBUTION
conditions. These are essential in mapping local order pa- OF AUTOCORRELATION FUNCTIONS
rameters and end-to-end correlation functions.

. Th rrelation functions are represen h n-
End-to-end correlations are related as € autocorrelation functions are represented by the ge

eral form

L/2

1 1 = 2 —
<S§Sf>=z<a§of/2><i[[1Tf>=z<aiof/2>, (A G(n=2 M exe—7aEy, By

where the dominant contributions to the sum in EfL) are
since in the ground stal(d'[}fgf}zl. Similarly, from SCD’s, which are localized at some distahéeom the
spin and have a very small excitation eneyi(l). The
scaling form of AE(l) follows from the considerations in
()= (771, (A5) Sec. lll B and one obtains from Eg&.7) and (3.8

€0 exp(—AIY?), 5=0
thus the end-to-end correlations in the two models are in AE(l)~ —2(5)
identical form. As a consequence the corresponding decay ol , 6<0
exponent in the random modelg; in Table | is the same in - . _ o _
the two systems and the same conclusion holds also for tHé the critical point and in the Griffiths phase, respectively,
correlation length exponent, in Eq. (4.1). These results are Where €, denotes the energy scale. Thus the larger the dis-
also independent of the type of correlation of the disordertance from the spin the larger the probability to have an SCD

(B2)

and thus are valid both for th€Y and XX models. with a very small energy. For the matrix eleméwi(1)|? the
Correlations between two spins at general positiohs 2t€ndency is the opposite, since the overlap with the wave
and 2+ 2r are related as function of the SCD igexponentially decreasing with the

distance. The corresponding scaling form can be read from
the typical behavior of the surface order parameter as given
below and above Ed4.2) as

1 r
<S)2(|S)2(|+2r>:Z<U'IXU'IX+r><i1_I1 7'|Z+i>- (A6) exp(—BIY?), 6=0

2
M| exp(—1/&yp), 6<0. B3)

. . - .
Thet §ec|9knd faé:tor in the f%%ht'ﬂ?‘?]d S'dﬁgﬂﬁ“% defljngs ThenG(7) in Eg.(B1) can be approximated by a sum which
a stringlike order parameterwhich can be expressed in a .\« oyer SCD’s localized at different distandeand this

simpler form in terms of the dual Ising variables, .,  sym is dominated by the largest term with
which are defined on the bonds of the original Ising chain as

G(1)~[M(lg)|? exd — rAE(lo)]. (B4)
=TT Using the scaling forms in Eq$B2) and (B3) one gets the
following result.
o At the critical point the characteristic distance lig
=T 1T 12 (A7)  =[In(r&A/B)/AJ? and the typical autocorrelation function
decays as a power:

Under the duality transformation fields and couplings are
exchanged; therefore the vanishing bonds at the two ends of
an open chain are transformed to vanishing fields; thus the

dual chain has two end spins fixed to the same state. So wiUS the relevant scaling variable of the problem is
obtain for the correlations in E4A6) InG(7)

Y=-

G(r)~ 7 BA  s=0. (B5)

N, 6=0. (B6)
In the Griffiths phase the characteristic distance has a power-
law = dependence o= &y,(7€02) V"), which is, however,
different from the average scaling form in E(..1). The

. ) . typical autocorrelations now are in a stretched exponential
where the superscript © denotes fixed-spin boundary con- %Em b

dition. For nonsurface points the average value of the corre-

lation function in Eq.(A8) depends on the type of disorder

correlations. For th&XY model, where the disorder is uncor- G(T)Mex[{ — (7 €pz) V@D
related, the two factors in EqA8) can be averaged sepa-

rately, whereas this is not possible for th&X model. We

treated this point in Sec. IV B 2. and the relevant scaling variable is given in E5,.10.

<S)2(|S)2(| +2r> = % <0'i(0'i(+r><;lx+1/2;|X+r+1/2>+ ’ (A8)

. 5+0, (B7)

1
1+=
Z
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