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Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions
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We studyXYand dimerizedXX spin-1/2 chains with random exchange couplings by analytical and numeri-
cal methods and scaling considerations. We extend previous investigations to dynamical properties, to surface
quantities, and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomeno-
logical scaling theory of average quantities based on the scaling properties of rare regions, in which the
distribution of the couplings follows a surviving random-walk character. Using this theory we have obtained
the complete set of critical decay exponents of the randomXY andXX models, both in the volume and at the
surface. The scaling results are confirmed by numerical calculations based on a mapping to free fermions,
which then lead to an exact correspondence with directed walks. The numerically calculated critical operator
profiles on large finite systems (L<512) are found to follow conformal predictions with the decay exponents
of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmi-
cally slow and their distribution shows multiscaling character. In the Griffiths phase, which is an extended part
of the off-critical region, average autocorrelations have a power-law form with a nonuniversal decay exponent,
which is analytically calculated. We note on extensions of our work to the random antiferromagneticXXZ
chain and to higher dimensions.
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I. INTRODUCTION

Quantum spin chains exhibit many interesting physi
properties at low temperatures which are related to the
havior of their ground state and low-lying excitations. In th
context one should mention quasi-long-range order~QLRO!,
topological order, and quantum phase transitions, which h
purely quantum-mechanical origin. Considering isotropic
tiferromagnetic chains for integer spins there is a g
whereas half integer spin chains are gapless.1 However, al-
ternating couplings in spin-1/2 chains yield a dimeriz
ground state that has physical properties similar to the sp
chain: there is a finite gap, spatial correlations decay ex
nentially, and there is string topological order.

Randomness may have a profound effect on the phys
properties of quantum spin chains, as demonstrated by re
analytical and numerical studies.2 As an interplay of random-
ness and quantum fluctuations there are interesting ex
phases in disordered quantum spin chains, which are
present in classical random or pure quantum systems. It
been noticed that pure gapless systems are generally uns
against weak randomness,3,4 whereas for gapped systems
finite amount of disorder is necessary to destroy the ga5–7

~but see also Ref. 8!.
Among the theoretical methods developed for disorde

quantum spin chains one very powerful procedure is
renormalization group~RG! approach introduced by Das
gupta and Ma.3 This RG method, which is expected to b
PRB 610163-1829/2000/61~17!/11552~17!/$15.00
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asymptotically exact at large scales, i.e., close to criti
points, has been applied for a number of random quan
systems. The fixed point distribution of the RG transform
tion has been obtained analytically for some random qu
tum spin chains, among others for the transverse Ising s
chain,9 the spin-1/2 Heisenberg, and related spin chains w
random antiferromagnetic couplings.4 On the other hand,
some other one-dimensional problems (S51/2 Heisenberg
chain with mixed ferromagnetic and antiferromagne
couplings,10,11 S51 antiferromagnetic chain with and with
out biquadratic exchange,5–7 etc.!, as well as higher dimen
sional random quantum systems,12 have been studied by nu
merical implementation of the RG procedure. Comparing
RG results with those obtained by direct numerical eval
tion of the singular quantities13–16and by other exact17,15and
numerical methods one has obtained a good agreement i
vicinity of the critical point.

There are, however, other interesting singular quantit
which are not accessible by the RG method. We ment
among others, the dynamical correlations18 and the behavior
of the system far away from the critical point in the Griffith
phase,19 which denotes an extended region of the parame
space around the critical point. In the Griffiths phase
system is gapless, and thus dynamical correlations de
with a power law, although there is long-range order w
exponentially decaying spatial correlations. For the rand
quantum Ising chain dynamical correlations, both at the cr
cal point and in the Griffiths phase, have been exac
11 552 ©2000 The American Physical Society
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determined20–22 using a mapping to the Sinai model,23 i.e.,
random walk in a random environment.

In this paper we are going to study theS51/2 disordered
XX andXY spin chains by analytical and numerical metho
and by phenomenological scaling theory. The RG treatm
of the problem by Fisher4 predicts that the antiferromagnet
randomXX fixed point controls the critical behavior of th
antiferromagnetic Heisenberg~XXX! model, too. Further-
more, for random isotropic chains the RG approach pred
QLRO, and thus the average spatial correlations of differ
components of the spin decays with a power law. In t
so-called random singlet~RS! phase all spins are paired an
form singlets, but the distance between the two spins i
singlet pair can be arbitrarily large. Then these wea
coupled singlets dominate the average correlation funct
Therefore all components of the correlation function are p
dicted to decay with the same exponent.

By the introduction of either anisotropy or dimerizatio
the system becomes noncritical, but, randomness will d
the system into the Griffiths phase, which is still gapless.
shown by an RG analysis,5 applicable in the vicinity of the
RS fixed point, the Griffiths phase is characterized by
dynamical exponentz, defined by the asymptotic relation be
tween relevant time (t r) and length scales (j) as

t r;jz. ~1.1!

The dynamical exponent is predicted to be a continu
function of the quantum control parameter~anisotropy or
dimerization! and the singular behavior of different physic
quantities~specific heat, susceptibility, etc.! are all expected
to be related to the value of the dynamical exponent.

The RG predictions by Fisher4 and others5 have been
scrutinized by numerical studies,24–26 especially in the RS
phase of isotropic chains. Some crossover functions of
relations have also been studied in the Griffiths phase. In
RS phase some numerical results are controversial: in ea
studies25 a different scenario from the RG picture is pr
posed~in particular with respect to the transverse correlat
function!, but later investigations on larger finite system
have found satisfactory agreement with the RG prediction26

although the finite-size effects were still very strong.
In the present paper we extend previous work in sev

directions. Here we consider open chains and study b
bulk and surface quantities, as well as end-to-end corr
tions. We develop a phenomenological theory which is ba
on the scaling properties of rare events and determine
complete set of critical decay exponents.27 We calculate nu-
merically ~off-diagonal! spin-operator profiles, whose sca
ing properties are related to~bulk and surface! decay
exponents28 and compare the profiles with predictions
conformal invariance. Another feature of our work is t
study of dynamical correlations, both at the critical point a
in the Griffiths phase. Finally, we perform a detailed analy
cal and numerical study of the Griffiths phase and calcul
among others, the exact value of the dynamical exponentz in
Eq. ~1.1!.

The structure of the paper is the following. The model a
its free-fermion representation are presented in Sec. II
phenomenological theory based on the scaling behavio
rare events is developed in Sec. III. Results in the criti
state, where there is quasi-long-range order in the chain
s
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presented in Sec. IV, whereas the Griffiths phase is studie
Sec. V. We discuss the extensions of our results to rand
antiferromagneticXXZ chains and to higher dimensions
the final section, whereas some technical calculations
presented in the appendixes.

II. THE MODEL AND ITS FREE-FERMION
REPRESENTATION

A. XY and XX models

We consider an openXY chain ~i.e., with free boundary
conditions! with L sites described by the Hamiltonian

H5 (
l 51

L21

~Jl
xSl

xSl 11
x 1Jl

ySl
ySl 11

y !, ~2.1!

where theSl
m (m5x,y) are spin-1/2 operators and the co

plings (Jl
m.0) are independent random variables with d

tributionspm(Jm). The quantum control parameter is the a
erage anisotropy defined as

da5
@ ln Jx#av2@ ln Jy#av

var@ ln Jx#1var@ ln Jy#
, ~2.2!

where var(x) is the variance of random variablex and
@•••#av denotes the average over quenched disorder. Foda
.0 (,0) there is long-range order in thex (y) direction,
i.e., limr→`@Cm(r )#avÞ0, where

@Cm~r !#av5@^0uSl
mSl 1r

m u0&#av, ~2.3!

and for da50 the system is in a critical state with quas
long-range order, where correlations decay algebraically,

@Cm~r !#av;r 2hm
. ~2.4!

In the XX model, where thex andy couplings are correlated
as Jl

x5Jl
y5Jl , we introduce alternation such that even~e!

and odd ~o! couplings, connecting the site 2i ,2i 11 and
2i 21,2i , respectively, are taken from distributionsre(Je)
andro(Jo), respectively. For theXXmodel the quantum con
trol parameter is the average dimerization defined as

dd5
@ ln Jo#av2@ ln Je#av

var@ ln Jo#1var@ ln Je#
. ~2.5!

The RS phase is atdd50, whereasddÞ0 corresponds to the
random dimer~RD! phase. Throughout the paper we use tw
types of random distributions, both for theXY andXX mod-
els. For theXY model with the binary distribution theJx

couplings can take two valuesl.1 and 1/l with probability
p andq512p, respectively, while the couplingsJy are con-
stant:

px~Jx!5pd~Jx2l!1qd~Jx2l21!,

py~Jy!5d~Jy2J0
y!. ~2.6!

At the critical point (p2q)ln l5ln J0
y . The uniform distribu-

tion is defined via

px~Jx!5H 1, for 0,Jx,1

0, otherwise,



nt

m
ca

orm

in-
-

ni-
ex-
an-

ion
in-
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py~Jy!5H ~J0
y!21, for 0,Jy,J0

y

0, otherwise
~2.7!

and the critical point is atJ0
y51.

For theXX model the corresponding distributionsre(Je)
andro(Jo) follows from the correspondences

Jx→Je, Jy→Jo, px~Jx!→re~Je!, py~Jy!→ro~Jo!.
~2.8!

Note that the critical points of the two models (da50 and
dd50, respectively! are not equivalent due to the differe
disorder correlations.

B. XY chain and the directed walk model

Using the Jordan-Wigner transformation, theXY model
Hamiltonian in Eq.~2.1! can be rewritten as a quadratic for
in fermion operators. It is then diagonalized through a
nonical transformation which gives

Sl
xSl 11

x 5
1

4
BlAl 11 , Sl

ySl 11
y 52

1

4
AlBl 11 , ~2.9!

with

Ai5 (
q51

L

Fq~ i !~hq
11hq!,

~2.10!

Bi5 (
q51

L

Cq~ i !~hq
12hq!,
,
te
e

th
-

in terms of the fermion creation (hq
1) and annihilation (hq)

operators. Then the Hamiltonian assumes the diagonal f

H5 (
q51

L

eqS hq
1hq2

1

2D , ~2.11!

where the ordering of the fermionic states is given with
creasing energyeq . The fermion excitations are non
negative and satisfy the set of equations

eqCq~ l !5Jl 21
y Fq~ l 21!1Jl

xFq~ l 11!,
~2.12!

eqFq~ l !5Jl 21
x Cq~ l 21!1Jl

yCq~ l 11!

with the boundary conditionsJL
x5JL

y50. The vectorsFq’s
andCq’s which are related to the coefficients of the cano
cal transformation are normalized. They enter into the
pressions of correlation functions and thermodynamic qu
tities.

Usually one proceeds29 by eliminating eitherCq or Fq in
Eqs.~2.12! and the excitations are deduced from the solut
of quadratic equations. This last step can be avoided by
troducing a 2L-dimensional vectorVq with components

Vq~4l 23!5Fq~2l 21!, Vq~4l 22!5Cq~2l 21!,
~2.13!

Vq~4l 21!5Cq~2l !, Vq~4l !5Fq~2l !

and noticing that the relations in Eqs.~2.12! then correspond
to the eigenvalue problem of the matrix
T51
0 0 J1

y

0 0 0 J1
x

J1
y 0 0 0 J2

x

J1
x 0 0 0 J2

y

J2
x 0 0 0 J3

y

J2
y 0 0 0 �

� � � � JL21
y

JL22
y 0 0 0 JL21

x

JL21
y 0 0 0

JL21
x 0 0

2 . ~2.14!
has
rse-

.
e

s

d

The matrixT can be interpreted as the transfer matrix~TM!
of a directed walk~DW! problem on four interpenetrating
diagonally layered square lattices. Each walker makes s
with weightsJl

x and Jl
y between next-neighbor sites on on

of the four square lattices and the walk is directed in
diagonal direction~see Fig. 1!.

According to Eqs.~2.12!, changingFq into 2Fq in Vq ,
the eigenvector corresponding to2eq is obtained. Thus all
information about the DW and theXY model is contained in
that part of the spectrum witheq>0. Later on we shall con-
ps

e

sider this sector. We note that similar correspondence
been established earlier between the DW and the transve
field Ising model~TIM !.30

The eigenvalues ofT in Eq. ~2.14! consist of two classes
For q52i 21, i 51,2, . . . ,L the odd components of th
eigenvectors are zero, i.e.,V2i 21(2 j )50, j 51,2, . . . ,L,
whereas for the other class withq52i the even component
are zero,V2i(2 j 21)50. Consequently,T can be expressed
as a direct productT5Ts ^ Tt , where the trigonal matrices
Ts ,Tt of size L3L represent transfer matrices of directe
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walks. As a result one has to diagonalize these two matr
of sizeL3L. Thus for chains with even number of sites,L
52N, the two classes of eigenvectors are given in terms
the variablesF andC via

e2k21 : F2k21~2 j !5C2k21~2 j 21!50,

e2k : F2k~2 j 21!5C2k~2 j !50 ~2.15!

for i , j 51, . . . ,N. Furthermore we assume that the vecto
Fq andCq are normalized to 1 separately.

For theXX model the even and odd sectors are degen
ate,e2k215e2k . Thus it is sufficient to diagonalize only on
matrix. In this case one has the additional relations

F2k21~2 j 21!5C2k~2 j 21!,

F2k~2 j ! 5C2k21~2 j !.
XX model ~2.16!

The matricesTs and Tt are in one-to-one corresponden
with the eigenvalue problem of one-dimensional TIM’s. Th
exact mapping for finite open chains is presented in App
dix A.

C. Local order parameters

Next we are going to study the long-range order in
ground state of the system. Having free boundary conditio
as in Eq.~2.1!, the expectation value of the local spin oper
tor ^0uSl

xu0& ~and^0uSl
yu0&) is zero for finite chains. Then th

scaling behavior of the spin operator can be obtained fr
the asymptotic behavior of the~imaginary! time-time corre-
lation function:

Gl
x~t!5^0uSl

x~t!Sl
x~0!u0&

5(̂
nu

u^nuSl
xu0&u2 exp@2t~En2E0!#, ~2.17!

where u0& and un& denote the ground state and thenth ex-
cited state ofH in Eq. ~2.1!, with energiesE0 and En , re-
spectively. In the phase with long-range order the first

FIG. 1. Sketch of the directed walk problem corresponding
the transfer matrix given in Eq.~2.14!. Note that one has two inde
pendent walks in thet direction of the diagonally layered squa
lattice, corresponding to the independent subspaces for the e
value problem~see text!. The coupling strengthJi

x,y are the transi-
tion rates for the random walker from one site in rowi to those in
row i 61.
es
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cited state is asymptotically degenerate with the ground s
in the thermodynamic limit, thus the sum in Eq.~2.17! is
dominated by the first term. In the larget limit
limt→` Gl

x(t)5(ml
x)2, thus the local order parameter

given by the off-diagonal matrix element

ml
x5^1uSl

xu0&. ~2.18!

In the free fermion representationSl
x is expressed as29

Sl
x5

1

2
A1B1A2B2•••Al 21Bl 21Al . ~2.19!

Using u1&5h1
1u0&, the matrix element in Eq.~2.18! is evalu-

ated by Wick’s theorem. Since foriÞ j ^0uAiAj u0&
5^0uBiBj u0&50 we obtain for the local order parameter

ml
x5

1

2UH1 G11 G12 . . . G1l 21

H2 G21 G22 . . . G2l 21

A A A � A

Hl Gl1 Gl2 . . . Gll 21

U , ~2.20!

where

H j5^0uh1Aj u0&5F1~ j !,
~2.21!

Gjk5^0uBkAj u0&52(
q

Cq~k!Fq~ j !.

For surface spins the local order parameter is simply gi
by m1

x5F1(1)/2, which can be evaluated in the thermod
namic limit L→` in the phase with long-range order, whe
e150. Using the normalization condition( l uF1( l )u251, we
obtain for the surface order parameter

m1
x5

1

2 F11 (
l 51

L/221

)
j 51

l S J2 j 21
y

J2 j
x D 2G21/2

XY,

~2.22!

m1
x5

1

2 F11 (
l 51

L/221

)
j 51

l S J2 j 21

J2 j
D 2G21/2

XX.

We note that this formula isexactfor finite chains if we use
fixed spin boundary condition,SL

x561/2, which amounts to
haveJL21

y 50. In the fermionic description the twofold de
generacy of the energy levels, corresponding toSL

x51/2 and
SL

x521/2, is manifested by a zero energy mode in Eq.~2.11!
and from the corresponding eigenvector one obtainsm1

x in
Eq. ~2.22! for any finite chain.

For nonsurface spins the expression of the local or
parameter in Eq.~2.20! can be simplified by using the rela
tions in Eq.~2.15!. Then, half of the elements of the dete
minant in Eq.~2.20! are zero, the nonzero elements bei
arranged in a checkerboard pattern, andml

x can be expressed
as a product of two determinants of half size, which reads
l 52 j as

o

en-
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m2 j
x 5

1

2U H1 G1,2 G1,4 . . . G1,2j 22

H3 G3,2 G3,4 . . . G3,2j 22

A A A � A

H2 j 21 G2 j 21,2 G2 j 21,4 . . . G2 j 21,2j 22

U
3U G2,1 G2,3 . . . G2,2j 21

G4,1 G4,3 . . . G4,2j 21

A A � A

G2 j ,1 G2 j ,3 . . . G2 j ,2j 21

U . ~2.23!

The local order parameterml
y , related to the off-diagona

matrix element of the operatorSl
y can be obtained from Eqs

~2.20! and ~2.22! by exchangingJl
x↔Jl

y .
For theSl

z operator the autocorrelation functionGl
z(t) can

be expressed in a similar way asGl
x(t) in Eq. ~2.17! and its

long time limit, limt→` Gl
z(t)5(ml

z)2, is given by the local
order parameter

ml
z5^fzuSl

zu0&. ~2.24!

Here ufz& denotes the lowest eigenstate ofH in Eq. ~2.1!
having a nonvanishing matrix element ofSl

z with the ground
state. In the free fermion representationSl

z can be written
as29

Sl
z5 1

2 AlBl ~2.25!

and the off-diagonal order parameter is given by

ml
z5 1

2 u2F1~ l !C2~ l !1C1~ l !F2~ l !u. ~2.26!

For theXX model one can obtain simple expressions us
the relations in Eqs.~2.16! as

m2i 21
z 5 1

2 @F1~2i 21!#2,

XX model

m2i
z 5 1

2 @C1~2i !#2.

~2.27!
g

D. Autocorrelations

Next we consider the dynamical correlations of the s
tem as a function of the imaginary timet. First, we note that
the correlations betweenx components of the surface spin
can be obtained directly from Eq.~2.17! as

G1
x~t!5

1

4 (
q

uFq~1!u2 exp~2teq!

5
1

4 (
i

L/2

uF2i 21~1!u2 exp~2te2i 21!, ~2.28!

where we have used the relations in Eq.~2.15!.
For bulk spins the matrix element^nuSl

xu0& in Eq. ~2.17!
is more complicated to evaluate. One has to go back to
first equation of Eq.~2.17! and considers the time evolutio
in the Heisenberg picture:

Sl
x~t!5exp~tH !Sl

x exp~2tH !

5 1
2 A1~t!B1~t!•••Al 21~t!Bl 21~t!Al~t!.

~2.29!

The general time and position dependent correlation func

^Sl
x~t!Sl 1n

x &5 1
4 ^A1~t!B1~t!•••Al~t!A1B1•••Al 1n&,

~2.30!

where the bracketŝ•••& either mean the ground-state e
pectation value at zero temperature or the thermal expe
tion value at nonvanishing temperature, can then be
panded using Wick’s theorem into a sum over products
two-operator expectation values, which can be expressed
compact form as a Pfaffian:
4^Sl
x~t!Sl 1n

x &5

u^A1~t!B1~t!& ^A1~t!A2~t!& ^A1~t!B2~t!& ••• ^A1~t!Al~t!& ^A1~t!A1& ••• ^A1~t!Al 1n&

^B1~t!A2~t!& ^B1~t!B2~t!& ••• ^B1~t!Al~t!& ^B1~t!A1& ••• ^B1~t!Al 1n&

^A2~t!B2~t!& ••• ^A2~t!Al~t!& ^A2~t!A1& ••• ^A2~t!Al 1n&

� A

^Bl 1n21Al 1n&

U
56@detCi j #

1/2. ~2.31!

In Eq. ~2.31! Ci j is an antisymmetric matrixCi j 52Cji , with the elements of the Pfaffian~2.31! above the diagonal.

At zero temperature the elements of the Pfaffian are the following:
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^Aj~t!Ak&5(
q

Fq~ j !Fq~k!exp~2teq!,

^Aj~t!Bk&5(
q

Fq~ j !Cq~k!exp~2teq!,

^Bj~t!Bk&52(
q

Cq~ j !Cq~k!exp~2teq!,

^Bj~t!Ak&52(
q

Cq~ j !Fq~k!exp~2teq!, ~2.32!

whereas the equal-time contractions are given below
~2.10!. For the finite temperature contractions, see Ref. 3

For longitudinal correlations the matrix elements ofSl
z in

Eq. ~2.25! is given in a simple form for any positionl, there-
fore Gl

z(t) can be obtained from the analogous expressio
Eq. ~2.17! as

Gl
z~t!5

1

4 (
q

(
p.q

u2Cp~ l !Fq~ l !1Cq~ l !Fp~ l !u2

3exp@2t~eq1ep!#. ~2.33!

III. PHENOMENOLOGICAL THEORY FROM SCALING
OF RARE EVENTS

In classical random ferromagnets where the critical
havior is controlled by a random fixed point the distributi
of several physical quantities~order parameters, correlation
autocorrelations, etc.! is broad and as a consequence th
quantities are not self-averaging: their average and m
probable or typical values are different. In random quant
spin chains the critical properties are expected to be c
trolled by the infinite-randomness critical fixed point,32

where the distributions are extremely~logarithmically! broad
and as a consequence the average and typical behavi
these quantities are completely different. The average
dominated by realizations~the so calledrare events!, which
have a very large contribution, but their fraction is vanishi
in the thermodynamic limit. In this section we identify the
rare events for the randomXY ~andXX! model and use thei
properties to develop a phenomenological theory. Our b
observations are related to exact relations about the sur
order parameter and the energy of low-lying excitations.

A. Surface order parameter and the mapping to adsorbing
random walks

The local order parameter at the boundary is given by
simple formula in Eq.~2.22! as a sum of products of the rati
of the couplingsJ2 j 21

y and J2 j
x . It is easy to see from Eq

~2.22! that in the thermodynamic limit the average surfa
order parameter is zero~nonzero!, if the geometrical mean o
the J2 j

x couplings is greater~smaller! than that of theJ2 j 21
y

couplings. From this the definition of the control paramet
in Eqs.~2.2! and ~2.5! follows.

Next we compute the average value of the surface o
parameter for the extreme binary distribution,33, i.e., the limit
l→0 in Eq.~2.6!. For a random realization of the coupling
the surface order parameter at the critical point (p5q
q.
.
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51/2) is zero, whenever a product of the form
) i 51

l (Ji
x)22, l 51,2, . . . ,L is infinite, i.e., the number ofl

couplings exceeds the number ofl21 couplings in any of the
@1,l # intervals. Otherwise the surface order parameter ha
finite value ofO(1). Thedistribution of the couplingsJx can
be represented by one-dimensional random walks that sta
zero and make thei th step upwards~for J2i

x 5l21) or down-
wards~for J2i

x 5l). The ratio of walks representing a samp
with finite surface order parameter is given by the survi
probability of the walk Psurv, i.e., the probability of the
walker to stay always above the starting point inL/2 steps
which is given byPsurv(L/2);L21/2.

Next we consider the vicinity of the critical point, whe
the scaling behavior of the average surface order param
can be obtained from the survival probabilities of biased r
dom walks,15 where the probability that the walker makes
step towards the adsorbing boundaryq is different from that
of a step off the boundaryp. The control parameter of the
walk, dw5p2q, is analogous to the quantum control para
etersda anddd in Eqs.~2.2! and~2.5!, respectively. Thus we
have the basic correspondences between the average su
order parameter of theXY ~andXX! model and the surviving
probability of adsorbing random walks:

@m1~d,L !#av;Psurv~dw ,L/2!, d;dw . ~3.1!

We recall the asymptotic properties of the surviving pro
ability of adsorbing random walks.15 For unbiased walks,

Psurv~dw50,L !;L21/2, ~3.2!

for walks with a drift away from the wall,

Psurv~dw.0,L→`!;dw , ~3.3!

and for walks with a drift towards the wall,

Psurv~dw,0,L !;exp~2L/jw!, jw;dw
22 . ~3.4!

In this way we have identified the rare events for the surf
order parameter, which are samples with a coupling distri
tion which have a surviving walk character. The scali
properties of the average surface order parameter and
correlation length immediately follow from Eqs.~3.2!, ~3.3!,
and ~3.4! and will be evaluated in Sec. IV A.

B. Scaling of low-energy excitations

The rare events controlling the surface order param
are also important for the low-energy excitations. Our resu
are obtained by using a simple relation for the smallest
e1( l ) of an open system of sizel, i.e., with free boundary
conditions, expecting that it goes to zero at least as;1/l .
With this condition one can neglect the right-hand side of
eigenvalue problem ofT2 asT2V15e1

2V1, since terms at the
left-hand side in a second-order difference equation are
O( l 22). In this way one derives approximate expressions
the eigenfunctionsF1 andC1 and with these then one ge
from the first equation of Eq.~2.12!, i.e., with l 51,

e1~ l !;m1
xml 21

x Jl 21
y )

j 51

l /221 J2 j 21
y

J2 j
x

. ~3.5!
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Here m1
x is defined in Eq.~2.22! and the surface order pa

rameter at the other end of the chain,ml 21
x , is given as in

Eq. ~2.22! replacingJ2 j 21
y /J2 j

x by Jl 1122 j
y /Jl 22 j

x . ~For details
of the derivation of a similar expression for the quantu
Ising chain, see Ref. 34.!

Before using the relation in Eq.~3.5!, we note that~sur-
face! order and the presence of low-energy excitations
inherently related. These samples with an exponentially~in
the system size! small gap have finite,O(1), order param-
eters at both boundaries and the coupling distribution follo
a surviving walk picture. Such type of coupling configurati
represents a strongly coupled domain~SCD!, which at the
critical point extends over the size of the systemL. In the
off-critical situation, in the Griffiths phase the SCD’s have
smaller extent,l !L, and they are localized both in the vo
ume and near the surface of the system. The characte
excitation energy of an SCD can be estimated from Eq.~3.5!
as

e1~ l !; )
j 51

l /221 J2 j 21
y

J2 j
x

;expH 2
l tr

2
ln~Jy/Jx!J , ~3.6!

where l tr measures the size of transverse fluctuations o
surviving walk of lengthl andln(Jx/Jy) is an average ratio o
the couplings,~it is ln(Je/Jo) for the XX model!.

At the critical point (d50), wherel;L, the size of trans-
verse fluctuations of the couplings in the SCD~Ref. 15! is
l tr;L1/2. Consequently we obtain from Eq.~3.6! for the scal-
ing relation of the gap

e1~d50,L !;exp~2const•L1/2!. ~3.7!

Then the appropriate scaling variable is lne/AL and the dis-
tribution of the excitation energy is extremely~logarithmi-
cally! broad.

In the Griffiths phase the size of an SCD can be estima
along the lines of Ref. 15 asl;jw ln L and the size of trans
verse fluctuations is nowl tr; l; ln L. Setting this estimate
into Eq. ~3.6!, we obtain for the scaling relation of the gap

e1~L !;L2z, ~3.8!

wherez is the dynamical exponent as defined in Eq.~1.1!.
The distribution of low-energy excitations can be obtain
from the observation that an SCD can be localized at any
of the chain, thusPL( l );PL(ln e);L. For a given largeL
the scaling combination from Eq.~3.8! is Le1/z, thus we have
for the gap distribution in the thermodynamic limit

P~e!;e2111/z. ~3.9!

As already mentioned,z is a continuous function of the quan
tum control parameterd and we are going to calculate it
exact value in Sec. V.

C. Scaling theory of correlations

The scaling behavior of critical average correlations
also inherently connected to the properties of rare eve
Here the quantity of interest is the probabilityPm( l ), which
measures the fraction of rare events of the local order par
eter ml

m . For the surface order parameterm1
x it is given by

the surviving probability,Px(1)5Psurv, according to Eq.
e

s

tic

a

d

d
te

s
ts.

-

~3.1!. We start with the equal-time correlations in Eq.~2.3!.
In a given sample there should be local order at both re
ence points of the correlation function in order to ha
Cm(r )5O(1). This is equivalent of having two SCD’s in th
sample which occur with a probability ofP2

m( l ,l 1r ), which
factorizes for large separation limr→` P2

m( l ,l 1r )
5Pm( l )Pm(L1r ), since the disorder is uncorrelated. Th
probability of the occurrence of an SCD at positionl, Pm( l ),
has the same scaling behavior as the local order param
@ml

m#av5@^fmuSl
mu0&# av, which behaves at a bulk point, 0

, l /L,1, as

@ml
m~L !#av;L2xm

, ~3.10!

whereas for a boundary point,l 51, this relation involves the
surface scaling dimensionx1

m . Consequently,Pm( l ) trans-

forms asPm( l /b)5b2xm
Pm( l ) under a scaling transforma

tion, when lengths are rescaled by a factorb.1. As said
above, for spatial correlations there should be two indep
dent SCD’s we obtain the transformation law

@Cm~r !#av5b22xm
@Cm~r /b!#av. ~3.11!

Now takingb5r , one recovers the power-law decay in E
~2.4! with the exponent

hm52xm. ~3.12!

For critical time-dependent correlations the scaling behav
is different from that in Eq.~3.11!. This is due to the fact tha
disorder in the time direction is perfectly correlated and
autocorrelation function in a given sample isGl

m(t)5O(1),
if there is one SCD localized at positionl. Therefore the
average autocorrelation function@Gl

m(t)#av scales as the
probability of rare eventsPm( l ):

@Gl
m~t!#av5b2xm

G̃l /b
m ~ ln t/b1/2!, ~3.13!

where we have used the relation in Eq.~3.7!, together with
t;1/e1 at the critical point, andG̃l

m is a scaling function,
which is expected to be a smooth function of the positionl in
the bulk of the system. Taking the length scale asb
5(ln t)2, we obtain for pointsl in the volume

@Gl
m~t!#av;~ ln t!2hm

, ~3.14!

whereas for surface spins,l 51, one should use the corre
sponding surface decay exponenth1

m .
Next we turn to study the scaling properties of the avera

correlation functions in the Griffiths phase, i.e., outside
critical point. For equal-time correlations in a samp
Cm(r )5O(1), if the SCDextends over a large distance ofr,
which according to Eq.~3.4! is exponentially improbable
Thus the average spatial correlations decay as

@Cm~r !#av; exp~2r /j!, j ; jw , ~3.15!

wherejw is defined in Eq.~3.4!. On the other hand the au
tocorrelation function in a sample isGm(t)5O(1), if there
is one SCD localized atl, which occurs with a probability of
Pm( l );1/L. Consequently the average autocorrelation fu
tion, which scales asPm( l ), transforms under a scaling tran
formation as
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@Gl
m~t!#av5b21@Gl /b

m ~t/bz!#av d.0, ~3.16!

where we used the scaling combinationt/bz in accordance
with Eq. ~1.1!. Now takingb5t1/z we obtain

@Gl
m~t!#av; t21/z, ~3.17!

for any type of autocorrelations, both in the volume and
the surface.

IV. CRITICAL PROPERTIES

Here we consider in detail the randomXY andXX chains
in the vicinity of the critical points, as defined in Eqs.~2.2!
and~2.5!, respectively. The off-critical properties of the sy
tems in the Griffiths phase are presented afterwards in
following section.

A. Length and time scales

As we argued in the previous section the average beha
of random quantum spin chains are inherently related to
properties of the rare events, which are SCD’s, havin
coupling distribution of surviving RW character. The typic
size of an SCD, as given byjw in Eq. ~3.4!, is related to the
average correlation length of the system,@j#av. Then using
the correspondences in Eqs.~3.1!, ~3.4!, and ~3.15!, we get
the relation

@j#av;udu2n, n52. ~4.1!

The typical correlation lengthj typ as measured by the ave
age of the logarithm of the correlation function is differe
from the averagecorrelation length. One can estimate t
typical value by studying the formula in Eq.~2.22! for the
surface order parameter, where the products are typicall
) j (J2 j 21

y /J2 j
x )2; exp(const•uduL), thus @ms(L,d,0)# typ

; exp(2const•uduL); exp(2L/jtyp). Thus we obtain

n typ51. ~4.2!

We note thatat the critical point the largest value of the
above products is typically of) j (J2 j 21

y /J2 j
x )2; exp(AL1/2),

since the transverse fluctuations in the couplings are
O(L1/2); thus we have

@ms~L,d50!# typ; exp~2const•L1/2!.

As shown in Eq.~3.6!, the value of the smallest gap is relate
to the size of transverse fluctuations of a SCD,l tr . Away
from the critical point, where the correlation length is finit
one hasl tr; j1/2, and therefore the typical relaxation time
a sample with typical correlation lengthj scales as

ln t r;2 ln e i~ l !; j1/2. ~4.3!

We note that the results in this part about length and t
scales are valid both for theXY and XX models. They also
hold in an identical form for the random TIM,9,15 which can
be understood as a consequence of the mapping of theXY
chain into decoupled TIM’s~see Appendix A!. Since the
corresponding scaling expressions for the random TIM h
been studied in detail in previous numerical work,13,15we do
not repeat these calculations here.
t

e

or
e
a

of

of

e

e

B. Quasi-long-range order

At the critical point of random quantum chains the equ
time correlations decay with a power law@see Eq.~2.4!#,
thus there is QLRO in the system. The decay exponen
critical correlations are related to the scaling exponentxm of
the fraction of rare events of the given quantity@see Eq.
~3.12!# and its value generally depends on the type of cor
lations of the disorder; thus it could be different for theXY
and theXX models. Analyzing the scaling properties of th
rare events in theXY andXX chains, we have calculated th
critical decay exponents of different correlation function
both between two spins in the volume and for end-to-e
correlations. Our results are presented in Table I. In the
lowing we are going to derive these exponents by analyt
and scaling methods and then compare them with the res
of numerical calculations.

1. Longitudinal order parameter

We start with the scaling behavior of the longitudinal o
der parameterml

z , which in theXX chain is given by the
simple formula in Eq.~2.27!. Summing over all sites, one
gets the sum rule

(
l 51

L

ml
z51 XX model, ~4.4!

where we have used Eq.~2.15! and the fact that theFq and
Cq are normalized. Since this sum rule is valid for the av
age quantities too, we get immediately

@ml
z#av5L21m̃z~ l /L !, ~4.5!

wherem̃z( l̃ ) is a scaling function withl̃ 5 l /L. Consequently
for bulk spins the finite-size dependence of the local or
parameter is@ml

z#av;L21, thus from Eq.~3.10! we have
xz(XX)51 and from Eq.~3.12! the decay exponent is

hz~XX!52

as given in Table I. A further consequence of the sum rule
Eq. ~4.4! is that the average value of the bulk order para
eter is the same, if the averaging is performed over a
single sample. Thus the order parametermz and the correla-
tion function ^Sl

zSl 1r
z & areself-averaging. This is quite spe-

cial in disordered systems where the correlations are ge
ally not self-averaging.35 The self-averaging properties of th
Sz correlations provides an explanation of the accurate
merical determination of the decay exponenthz(XX)52 in
previous numerical work.25,26

The surface order parameterm1
z for theXX model satisfies

the relationm1
z52(m1

x)2, which follows from Eqs.~2.22!

TABLE I. Decay exponents of critical correlations in the ra
dom XY and XX chains. The exponents with a superscript(* ) are
those calculated by Fisher with the RG method~Ref. 4!, whereas
(** ) follows from the results of the random TIM in Ref. 9.

hx(XY) hx(XX) hz(XY) hz(XX)

Bulk 32A5(** ) 2(* ) 4 2(* )

Surface 1 1 2 1
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and ~2.27!. Then a rare event withm1
x5O(1) is also a rare

event for the order parameterm1
z ; consequently the fraction

of rare eventsP1
z is given by the surviving probability in Eq

~3.2!. Thus the scaling dimension isx1
z51/2 and the decay

exponent of critical end-to-end correlations is

h1
z~XX!51

as shown in Table I.
We studied the order parameter profile@ml

z#av numerically
for large finite systems up toL5256. As shown in Fig. 2 the
numerical points of the scaled variableL@ml

z#av are on one

scaling curvem̃z( l̃ ) for different values ofL. The scaling
curve has two symmetric branches for odd and even lat
sites, which cross atl 5L/2. The upper part of the curves i
the large L limit is very well described by the function
m̃z( l̃ )u5A sin(p l̃ )21/2, which corresponds to the conform
result about off-diagonal matrix element profiles:28

@ml
m#av;S p

L D xmS sinp
l

L D x1
m

2xm

, ~4.6!

with xz51 andx1
z51/2. On the other hand the lower part

the curves in Fig. 2 is given bym̃z( l̃ ) l5A sin(p l̃ ), which
corresponds to Eq.~4.6! with x2

z52. Thus we obtain tha
average critical correlations between two spins which
next to the surface are decaying as@Cz(2,L21)#av; L24.
Using the sum rule for the profile in Eq.~4.4! and the con-
formal predictions, one can determine the prefactorA from
normalization. Then from the equationA/2*0

1@(sinpx)21/2

1sinpx#dx51, one getsA50.86735, which fits well the
numerical data on Fig. 2.

These results about the conformal properties of the pro
are in agreement with similar studies of the random TIM.14,15

Thus it seems to be a general trend that critical order par
eter profiles of random quantum spin chains are describe
the results of conformal invariance, although these syst
are strongly anisotropic@see Eq.~4.3!# and therefore not con
formally invariant.

Next we turn to study the order parameterml
z and the

longitudinal correlation function in the randomXYmodel. In

FIG. 2. Finite-size scaling plot of the longitudinal order para
eter profiles@ml

z#av for the XX model at criticality for different
system sizes calculated numerically with the fermion method us
Eq. ~2.27!. The data are for the uniform distribution, averaged o
50 000 samples. The conformal results are indicated by full line
e

e

le

-
by
s

this model the disorder in theJl
x andJl

y couplings is uncor-
related, therefore one can perform averaging in the two s
spacesTs andTt , or in the two decoupled TIM’s, indepen
dently. Note that the expression forml

z in Eq. ~2.26! is given
as a product of two vector components, where each ve
belongs to different subspaces and have the same ave
behavior. Since the couplings entering the two separate
genvalue problems are independent, one gets for the diso
average

@ml
z#av5@F1~ l !#av•@C2~ l !#av. ~4.7!

Since the probability forml
z being of order 1 is the product o

the probabilities forF1( l ) and C2( l ) being of order 1, we
conclude that the scaling dimension forml

z in the randomXY
chain is twice that for the randomXX chain. Thus the decay
exponents are

hz~XY!54

and

h1
z~XY!52

in the bulk and at the surface, respectively, as shown
Table I.

The numerical results about the order parameter profil
shown in Fig. 3. The data collapse is satisfactory, althou
not as good as for theXX model. Similar conclusion holds
for the relation with the conformally predicted profile, whic
is also presented in Fig. 3.

2. Transverse order parameter

We start with the surface order parameterm1
x as given by

the simple formula in Eq.~2.22!. This formula is identical
both for theXY and XX models and its average behavi
follows from the adsorbing random-walk mapping in Sec.
A. Then from Eqs.~3.1! and ~3.2! one getsx1

x51/2 and

h1
x51,

both for the randomXYandXX models, as shown in Table I
The value of the decay exponents follows also from the m
ping to two TIM’s. As shown in Eq.~A8! in Appendix A, the

-

g
r
.

FIG. 3. Finite-size scaling plot of the longitudinal order para
eter profiles@ml

z#av for the XY model at criticality for different sys-
tem sizes calculated numerically with the fermion method using
~2.27!. The data are for the uniform distribution, averaged ov
50 000 samples.
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correlation function̂ S2l
x S2l 12r

x & is expressed as the produ
of spin correlations in the two TIM’s, one with open boun
ary conditions, but the other taken with fixed-spin bound
conditions in terms of dual variables. For end-to-end cor
lations this second factor in the product is unity, since it
the correlation between two fixed spins. Therefore end
end correlations between the random TIM and the rand
XYandXX models are identical and the decay exponent c
responds to the value in Table I.

For bulk correlations one can easily find the answer
the XY model with the mapping in Eq.~A8!. When the two
points of reference are located far from the boundary,
boundary condition does not matter and after performing
independent averaging for the two factors of the product
obtains@^S2l

x S2l 12r
x &#av51/4@^s l

xs l 1r
x &#av

2 ; thus

hx~XY!52h~TIM !532A5, ~4.8!

where the last result follows from Fisher’s RG calculatio9

~As shown in Ref. 36 the rare events for the bulk ord
parameter in the TIM are samples having a coupling dis
bution of average persistence character.! The scaling expo-
nentxx(XY) can identically be obtained from the expressi
of the order parameter profile in Eq.~2.23!, which is in the
form of a product of the two Ising order parameters and
the XY model the two factors are averaged independently

For the XY model the numerically calculated profile
shown in Fig. 4. The scaling plot with the exponents in Ta
I is reasonable, although larger systems and even m
samples would be needed to reach the expected asymp
behavior, as predicted by conformal invariance in Eq.~4.6!.

The arguments leading to the prediction~4.8! for the
transverse bulk order parameter exponent do not apply
theXX model and one cannot obtain a simple estimate for
bulk decay exponent from Eqs.~A8! or ~2.23! due to the
following reason. The expressions with the parameters of
two quantum Ising chains contain real and dual variables
the two (s and t) systems. SinceJl

x5Jl
y5Jl a domain of

strong couplings in thes chain corresponds to a domain
weak couplings in thet chain and vice versa. Therefore th
rare events of the TIM can not be simply related to the ra
events of theXX chain.

FIG. 4. Transverse order parameter profile@ml
x#av for the XY

model at criticality for different system sizes calculated numerica
with the fermion method using Eq.~2.23!. The data are for the
uniform distribution, averaged over 50 000 samples.
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The value forhx(XX), however, can be obtained by th
following argument. For simplicity let us consider the e
treme binary distribution in whichJ2i51 andJ2i 215l or
1/l with probability 1/2, taking the limitl→0. Then, from
Eq. ~2.22!, one gets only then a nonvanishing transver
surface magnetization, when the disorder configuration h
surviving walk character~meaning) i 51

l J2i 21,` for all l
51, . . . ,L/221). This implies also for general distribution
of couplings thatm1

x;O(1) only if the surface spin is
weaklycoupled to the rest of the system. It is instructive
note the difference to the surface magnetization in the T
wherem1

x;O(1) when the surface spin isstronglycoupled
to the rest of the system, meaning that) i 51

l (1/Ji),` for all
l 51, . . . ,L21 for the extreme binary distribution.

The same remains true for a bulk spin, which also h
nonvanishing transverse magnetization only if it is wea
coupled to the rest of the system~the trivial example being
the case where both its couplings to the left and to the ri
are exactly zero, which gives the maximum valuem1

x

51/2). Thus the central spin in a chain of length, sayL
21, hasmx;O(1) if and only if the bond configurations o
both sides have surviving character, as it is depicted in Fi
for the extreme binary distribution. Since the probabil
Psurv(L/2) for a configuration ofL/2 couplings to represent
surviving walk isPsurv(L/2); L21/2, it is

ml
x;$Psurv~L/2!%2;L21, i.e., xx~XX!51. ~4.9!

From this one obtains

hx~XX!52, ~4.10!

as given in Table I.
We verified the strong correlation between weak coupl

and nonvanishing transverse order parameter numerical
the following way: We considered a chain withL11 sites
and the couplings at both sides of the central spin were ta
randomly from a distribution calledSW,37 which represents
those samples in the uniform distribution which has a surf
magnetization ofm1

x(SW).1/4. ~Thus cutting one of the
couplings to the central spin results in a local magnetizat
greater than 0.25.! Then we calculated numerically the ord
parameter at the central spin and its average value over
SWconfigurations@mL/2

x #sw as given in Table II. As seen in
the table the averaged surface order parameter stays con

y

FIG. 5. Sketch of a bond configuration for a chain of leng
2L21 that gives a nonvanishing transverse magnetizationmx

;O(1) for the central~bulk! spin. The example is for the extrem
binary distribution. Weak couplings (J2i 215l) correspond to
downward steps of the random walk on both sides of the cen
spin ~here at 0!. Note that both the right and the left halves of th
random walk have surviving character, i.e., do not cross the star
point.
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for large values ofL, whereas the bulk order parameter d
creases very slowly, actually slower than any power. T
data can be fitted by@mL/2

x #sw;(ln L)2s, with s'0.5. Thus
we conclude that the numerical results confirm Eq.~4.10!,
although there are strong logarithmic corrections, which
ply for the average transverse correlations

@Cx~r !#av; r 22 ln21~r ! XX model. ~4.11!

These strong logarithmic corrections render the numer
calculation of critical exponents very difficult.26,25 In earlier
numerical work using smaller finite systems, disorder dep
dent exponents were reported.25 We believe that these nu
merical results can be interpreted as effective, size-depen
exponents and the asymptotic critical behavior is indeed
scribed by Eq.~4.11!.

Note that our results in Table I satisfy the relatio
hx(XX)5hz(XX), both in the volume and at the surfac
which corresponds to Fisher’s RG result.4 In this way we
have presented independent justification of Fisher’s
phase picture, where the average correlations are domin
by random singlets, so that the distance between the p
could be arbitrarily large.

We checked numerically the above theoretical predicti
in the randomXX model. In Fig. 6 we present the scaledml

x

profiles for the binary distribution for finite systems up
L5512. The profiles have a broad plateau and the point
Lxx

ml
x do not perfectly fall on one scaling curve due

strong finite-size effects. Even system sizes as large aL
5512 appear to be insufficient to get rid of such correct
terms. Therefore we have calculated the effective s
dependentxx(L) exponents by two-point fitting. For this w

TABLE II. Surface and bulk transverse order parameters av
aged over 50 000 SW configurations for the uniform distribution

L 2@m1
x#sw 2@mL/2

x #sw

16 0.817 0.531
32 0.806 0.471
64 0.799 0.431

128 0.792 0.413
256 0.791 0.383

FIG. 6. Transverse order parameter profile@ml
x#av for the XX

model at criticality for different system sizes calculated numerica
with the fermion method using Eq.~2.23!. The data are for the
binary distribution, averaged over 50 000 samples.
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have averaged the order parameter in the middle of the
file for L/4, l ,3L/4 and compared this average value f
finite systems withL/2 andL sites. As seen in Table III the
effective exponents are monotonously increasing with
size of the system and they are not going to saturate,38 even
for L5512.

From the data in Table III one cannot make an accur
estimate of the limiting value ofxx(L), but it is clear that
xx(L) grows at least up to the theoretical limitxx51, al-
though it could, in principle, reach even a larger value. W
note that similar observation was made by Henelius a
Girvin from the averageSx correlation function, where the
effective hx exponents seem to grow over the theoretica
predicted value ofhx52 ~see Fig. 2 of Ref. 26!.

C. Autocorrelations

According to the scaling theory in Sec. III C the decay
average critical autocorrelations in random quantum s
chains is ultraslow; it takes place in logarithmic time scal
as given in Eq.~3.14!. Here we confirm these prediction
with the results of numerical calculations. We start with t
surface autocorrelation function@G1

x(t)#av for theXX model,
which is calculated in the binary distribution (l54) on finite
systems up toL5128. As seen in Fig. 7~top! the logarithmic
time dependence is well satisfied and the decay expone
found in agreement withh1

x(XX)51 as given by the scaling
result in Eq.~3.14!. For bulk spin critical autocorrelations w
considered@GL/2

z (t)#av for theXX model. Again the numeri-
cal results in Fig. 7~bottom! are consistent with a logarith
mic decay with an exponenthz(XX)52, as given in Table I.

Next we turn to study thedistribution of critical autocor-
relations. As we have seen, the average behavior is loga
mically slow, but for typical samples, as described in Appe
dix B, one expects a faster decay with a power-law tim
dependence. ThenGl

m(t); t2g and theg exponent could
vary from sample to sample. Such type of ‘‘multiscaling
behavior of the autocorrelations has been recently obse
by Kisker and Young39 in the random quantum Ising mode
In Fig. 8 we have numerically checked this assumption
the critical autocorrelationsG1

x(t) andGL/2
z (t), respectively,

of the randomXX chain, the average behavior of which ha
been studied before. As seen in Fig. 8 we have obtai
indeed a good data collapse of the probability distributio
Pm(g) in terms of the scaling variableg52 ln Gl

m/ln t for
both types of autocorrelations, but the scaling curve in
two cases are different.

The average correlation functions generally have con
butions from the scaling functionPm(g), but there could be

r-

y

TABLE III. Effective bulk scaling dimension of the transvers
order parameter in the randomXX chain.

L xx(L)

16 0.635
32 0.677
64 0.730

128 0.823
256 0.872
512 0.910
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also nonscaling contributions, as found for the random qu
tum Ising chain in Ref. 40. The scaling contribution is co
ing from the smallg part of the scaling function, which
according to Fig. 8~top! for the autocorrelationsG1

x(t), ap-
proaches a finite value linearly,Px(g); A1B g. Thus we
have for the average autocorrelations

@G1
x~t!#av5E

0

`

Px~g!G1
x~t!dg

; E
0

`

~A1Bg!exp~2g ln t!dg

; A~ ln t!211B~ ln t!22, ~4.12!

in agreement with the scaling result in Eq.~3.14! and with
the numerical result in Fig. 8~top!. We note that the correc
tion to scaling contribution to the average autocorrelation
Eq. ~4.12! is also logarithmic.

For the critical autocorrelationGL/2
z (t) the scaling func-

tion in Fig. 8 ~bottom! for small g approaches zero
linearly;41 Pz(g); g. Thus the scaling contribution to th
average autocorrelation, as evaluated along the lines of
~4.12!, is @G1

x(t)#av;(ln t)22, in agreement with the scalin
result in Eq.~3.14!.

V. GRIFFITHS PHASE

Random quantum systems exhibit unusual off-criti
properties: they are gapless in an extended region, 0,udu

FIG. 7. Spin autocorrelation function@Gl
m(t)#av for the XX

model forL532, 64, and 128 calculated numerically with the fe
mion method using Eqs.~2.28! and ~2.33!. The data are for the
binary distribution (l54), averaged over 50 000 samples.~a! ~top!
shows l 51, the surface transverse autocorrelations,~b! ~bottom!
showsl 5L/2, the bulk longitudinal autocorrelations.
n-
-

n

q.

l

,dG , as a result of the so-called Griffiths-McCo
singularities.19,42 In this Griffiths phase the system is critica
in the time direction, although spatial correlations decay
ponentially.

Quantitatively the basic information is contained in t
distribution of low energy excitationsP(e) as given in Eq.
~3.9!. With this the average autocorrelations can be obtai
as

@G~t!#av; E
0

`

P~e!exp~2t e!de ; t21/z, ~5.1!

which is expected to hold for any component of the spin.43 In
this way we have recovered the scaling result in Eq.~3.17!.
In the Griffiths phase also some thermodynamic quanti
are singular, which are expressed as an integral of the a
correlation function. We mention the local susceptibilityx l

x

at site l, which is defined through the local order parame
ml

x in Eq. ~2.18! as

x l
x5 lim

Hl
x→0

]ml
x

]Hl
x , ~5.2!

whereHl
x is the strength of the local longitudinal field, whic

enters the Hamiltonian in Eq.~2.1! via an additional term
Hl

xSl
x . x l

x can be expressed as

FIG. 8. Scaling plot of the probability distribution of the auto
correlation functionGl

m(t) for theXX model for different values of
t at criticality (L5128). The data are for the uniform distributio
averaged over 100 000 samples.~a! ~top! showsl 51, the surface
transverse autocorrelations,~b! ~bottom! shows l 5L/2, the bulk
longitudinal autocorrelations.
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x l
x52(̂

nu

u^nuSl
xu0&u2

En2E0
; ~5.3!

thus its average value scales in finite systems asx l
x(L)

; Lz21, where we have used the scaling relation in Eq.~3.8!
and the fact that the matrix element in Eq.~5.3! is ; 1/L,
since an SCD can be localized at any site of the chain. F
small finite temperatureT we can use the scaling relation
T ; e ; L2z and we have for the singular behavior

@x l
x~T!#av; T2111/z. ~5.4!

To estimate the temperature dependence of the average
cific heat@C(T)#av, we calculate first the average excitatio
energy per SCD withP(e) in Eq. ~3.9! as * e P(e)de
; e1/z11, which is proportional to the thermal excess ener
per spin; T1/z11, from which we obtain

@C~T!#av; T1/z. ~5.5!

We note that several other physical quantities are singula
the Griffiths phase~nonlinear susceptibility, higher excita
tions, etc.! and the corresponding singularities are expec
to be related to the dynamical exponentz. For a detailed
study of this subject in the random quantum Ising model,
Ref. 22.

In the following we calculate the exact value of the d
namical exponent using the same strategy as for the ran
quantum Ising model in Refs. 20 and 21. Our basic obse
tion is the fact that the eigenvalue problem of theTs ~or Tt)
matrix can be mapped through a unitary transformation t
Fokker-Planck operator, which appears in the master eq
tion of a Sinai diffusion, i.e., random walk in a rando
environment.23 The transition probabilities of the latter prob
lem are then expressed with the coupling constants of
spin model. The Griffiths phase of the spin model cor
sponds to the anomalous diffusion region of the Sinai w
and from the exact results about the scaling form of the
ergy scales in this problem one obtains for the dynam
exponent of theXY model

F S Jx

JyD 1/zG
av

51, ~5.6!

whereas for theXX model the result follows with the corre
spondences in Eq.~2.8!. For the binary distribution in Eq
~2.6! the Griffiths phase extends over the region 1,J0

y,l
andz is given by

~J0
y!1/z5coshS ln l

z D . ~5.7!

For the uniform distribution

z ln~12z22!52 ln J0
y , ~5.8!

and the Griffiths phase extends to 1,J0
y,`.

Next we are going to study numerically the Griffith
phase and to verify some of the scaling results descri
above. In this respect we shall not consider those quant
which have an equivalent counterpart in the random quan
Ising model~distribution of energy gaps, local susceptibilit
specific heat, etc.!, since that model has already been th
a

pe-

y

in

d

e

m
a-

a
a-

e
-
k
-
l

d
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oughly investigated numerically.13,16,15,22The autocorrelation
functions, however, are different in the two models and
are going to study those in the following.

The average bulk longitudinal autocorrelation functi
@GL/2

z (t)#av of the XX model is shown in Fig. 9 in a log-log
plot at different points of the Griffiths phase. The asympto
behavior in Eq.~5.1! is well satisfied and the dynamical ex
ponents obtained from the slope of the curves are in g
agreement with the analytical results in Eq.~5.6!. A similar
conclusion can be drawn from the average surface transv
autocorrelations@G1

x(t)#av, as shown in Fig. 9.
Next we study the distribution of the autocorrelation fun

tions. In Fig. 10 the distribution of the bulk longitudina
autocorrelation function of theXX model is given at different
times t. As argued in Appendix B, the typical autocorrel
tions are of a stretched exponential form

G~t!; exp~2constt1/(11z)!, ~5.9!

thus the relevant scaling variable is

a52
ln G~t!

t1/(z11)
. ~5.10!

Using this scaling argument, we obtained a good data
lapse of the points of the distribution function as shown
Fig. 10. We note that for the random quantum Ising mo
Young16 has also derived the scaling function from pheno
enological arguments,

FIG. 9. The average surface~top! and bulk~bottom! autocorre-
lation function@GL/2;1

m (t)#av of theXX model in the Griffiths phase
for various values ofh0. The straight lines have a slope of 1/z(h0),
where the dynamical exponentz(h0) agrees well with the exac
value determined via the formula~5.6!. The data are for the uniform
distribution averaged over 50 000 samples of sizeL5128.
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P~x!5c~cx!1/z expS 2
z

11z
~cx!111/zD , ~5.11!

which is also presented in Fig. 10. One can see consider
differences between the numerical and theoretical cur
Similar tendencies have been noticed for the random qu
tum Ising model in Ref. 16. The discrepancies are proba
due to strong correction to scaling or finite-size effec
These corrections, however, do not affect the scaling form
Eq. ~5.10!.

VI. DISCUSSION

In this section we first discuss the possible extension
our results to randomXXZ chains and to higher dimension
systems, and then we conclude with a brief summary of
findings.

A. Random XXZ chains

The more generalXXZ ~or XYZ) Heisenberg spin chain
where the Hamiltonian in Eq.~2.1! contains an additiona
interaction term of the form

HZ5 (
l 51

L21

Jl
zSl

zSl 11
z ~6.1!

FIG. 10. ~Top!: Probability distribution of the bulk longitudina
autocorrelation function of theXX model in the Griffiths phase fo
h051.5. The data are for the uniform distribution from 100 0
samples of sizeL5128. ~Bottom!: Scaling plot of the data in the
top figure. The scaling variable@ ln G(t)#/t1/(z11) contains the dy-
namical exponentz(h0) known from the formula~5.6!. The full
curve is the theoretical prediction in Eq.~5.11! using the exact
value ofz(h051.5)52.659 and a fit parameterc50.22.
le
s.
n-
ly
.
in

f

r

can be treated perturbatively whenJl
z!Jx,Jy. Here we con-

sider theXXZ chain, with Jl
z5«Jl and «!1. To see the

scaling behavior of the energy gap we express the small
turbationHZ in terms of two decoupled TIM’s~see Appen-
dix A! as

HZ52
1

4 (
i 51

L/221

~J2i 21
z s i

zt i
z1J2i

z s i
xs i 11

x t i
xt i 11

x !, ~6.2!

whose expectation value in the unperturbed ground stat
just the product of the local energy densities of the TIM
The perturbative correction to the gap,Dz(L)5^1uHzu1&
2^0uHzu0&, evaluated with the states of the unperturb
Hamiltonian,̂ 0u and^1u, is proportional to the gap of one o
the random TIM’s, es(L). At the critical point15 es(L)
; exp(2const•L1/2), which is the same scaling form as fo
the XY model in Eq.~3.7!. Thus the scaling relation in Eq
~4.3! is valid also for theXXZ chain. In the Griffiths phase
one has againes(L); L2z, and the dynamical exponentz,
has the same value as in Eq.~5.6!. Thus we arrive at the
conclusion that also in the Griffiths phase the correspond
scaling relation in Eq.~1.1! is valid in the same form for the
randomXXZ chain, at least for smallJz couplings.

Next we study the asymptotic properties of average cr
cal correlations in the randomXXZ model through the scal
ing behavior of the local order parameters. As we argued
Sec. III, these quantities are related to the fraction of r
events,Pm, and here we are going to investigate the infl
ence of the perturbationHZ to Pm. We start with the surface
transverse order parameterm1

x and recall that it is maximal,
i.e., m1

x51/2, if the surface spin is disconnected in theXY
plane, i.e.,J1

x5J1
y50. Evidently the value ofm1

x51/2 does
not change for any finite value of the couplingJ1

z . Now
consider the infinite-randomness fixed point of theXX chain
with the extreme binary distribution, where a rare event
represented by couplings with a surviving random-walk co
figuration and withm1

x5O(1). Roughly speaking, a rare
event is formally equivalent to a situation in which there is
very weak surface coupling ofJ15O(L21/2), whereL is the
system size. Then switching on homogeneous and finite c
plingsJz the lowest excitation of the chain stays localized
the surface, since the shape of the wave function does
change significantly in first-order perturbation theory. Co
sequently the surface order parameter is stillm1

x5O(1), and
the sample is a rare event for theXXZ chain, too. For small
random couplingsJl

z the accumulated fluctuations inJl
z are

divergent as;L1/2; however, these are still negligible com
pared with the fluctuations in the transverse couplings. T
the rare events of theXX chain are identical with those ap
pearing in theXXZ chain for small values of the random
longitudinal couplings. As a consequence the critical end
end average correlations decay with the same exponen
given in Table I. Since the rare events for other local ord
parameters are also connected to SCD’s with localized w
functions the stability of the infinite-randomness fixed po
holds for the other critical correlations, too. Actually,
seems to be plausible that the attracting region of theXX
fixed point extends up to@ ln Jx#av.@ ln Jz#av, i.e., where the
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average transverse couplings are larger than the longitud
ones, thus up to the randomXXX fixed point, in agreemen
with Fisher’s conjecture.4

B. Higher dimensions

In one dimension the topology is special since there
only a single path between two points, whereas in hig
dimensional lattices one has several distinct paths connec
two points. This topological difference is essential when r
domXX magnets are considered in higher dimensions. Le
consider again the surface transverse order parameter
construct a rare event in the extreme binary distribution.
this purpose the surface spin should be extremely wea
coupled to the bulk of the system. Thus considering a
non-self-crossing path from the spin to the volume, o
should have a surviving random-walk configuration in t
couplings. In higher dimensions the number of such pa
grows exponentially with the size of the systemL, thus the
fraction of rare events, which is related to the length a
power in one dimension, becomes exponentially small
higher dimensions. Consequently the infinite-randomn
fixed point picture is not applicable here and one conclu
that the critical properties of higher dimensionalXX and
Heisenberg antiferromagnets are controlled by conventio
random fixed points. This result is also in agreement w
numerical RG calculations in two dimensions.12 We note that
in contrast to random Heisenberg antiferromagnets the
dom ferromagnetic quantum Ising models in higher dim
sions are still controlled by infinite-randomness fix
points.45,12

VII. SUMMARY

Quantum spin chains in the presence of quenched diso
show unusual critical properties, which are controlled by
infinite-randomness fixed point. A common feature of the
systems is that various physical properties, especially th
related to local order parameters and correlation functi
are not self-averaging and their average behavior is de
mined by the rare events~or rare regions!, which give the
dominant contribution, although their fraction is vanishing
the thermodynamic limit. In this paper we have performe
detailed study of the scaling behavior of rare events app
ing in the randomXY andXX chains. We identified the rar
events as strongly coupled domains, where the coupling
tribution follows some surviving random walk characte
From the scaling properties of the rare events we have id
tified the complete set of critical decay exponents and fo
exact results about the correlation length exponent and
scaling anisotropy. Here we note that most~not all! of the
random walk arguments are for the extreme binary distri
tion, but all analytical predictions from these arguments
supported by numerical data for generic distributions. Th
we expect the results to be generally valid and universa
should hold because of the infinite-randomness fixed p
governing the critical behavior of these systems. In this
spect the extreme binary distribution represents one pos
explicit construction of the infinite-randomness fixed poin

Another aspect of our work was the study of dynami
correlations. We have obtained the asymptotic behavio
the average autocorrelation function and determined the s
al
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ing form of the distribution of autocorrelations. In the of
critical regime we investigated the singular physical quan
ties in the Griffiths phase. In particular we have obtain
exact expression for the dynamical exponentz, which is a
continuous function of the quantum control parameter a
the singularities of all physical quantities can be related to
value.
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APPENDIX A: MAPPING TO DECOUPLED ISING
QUANTUM CHAINS

We start here with the observation in Sec. II B that t
eigenvalue matrixT in Eq. ~2.14! can be represented as
direct productT5Ts ^ Tt . The tridiagonal matricesTs ,Tt
of size L3L represent transfer matrices of directed walk
which are in one-to-one correspondence with Ising chain
transverse field30 defined by the Hamiltonians

Hs52
1

4 (
i 51

L/221

J2i
x s i

xs i 11
x 2

1

4 (
i

L/2

J2i 21
y s i

z,

~A1!

Ht52
1

4 (
i 51

L/221

J2i
y t i

xt i 11
x 2

1

4 (
i

L/2

J2i 21
x t i

z.

Here thes i
x,z andt i

x,z are two sets of Pauli matrices at sitei
and there are free boundary conditions for both chains.
can then write HXY5Hs1Ht . Note the symmetry
s i

x,z↔t i
x,z andJl

x↔Jl
y , thus anisotropy in theXY model has

different effects in the two Ising chains.
One can easily find the transformational relations betw

the XY and Ising variables:

s i
x5 )

j 51

2i 21

~2Sj
x!, s i

z54S2i 21
y S2i

y ,

~A2!

t i
x5 )

j 51

2i 21

~2Sj
y!, t i

z54S2i 21
x S2i

x ,

whereas the inverse relations are the following:

2S2i 21
x 5s i

x)
j 51

i 21

t j
z, 2S2i

x 5s i
x)

j 51

i

t j
z ,

~A3!

2S2i 21
y 5t i

x)
j 51

i 21

s j
z, 2S2i

y 5t i
x)

j 51

i

s j
z .

We note that a relation between theXY model and two de-
coupled Ising quantum chains in the thermodynamic lim
has been known for some time;44,4 here we have extende
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this relation for finite chains with the appropriate bounda
conditions. These are essential in mapping local order
rameters and end-to-end correlation functions.

End-to-end correlations are related as

^S1
xSL

x&5
1

4
^s1

xsL/2
x &K )

i 51

L/2

t i
zL 5

1

4
^s1

xsL/2
x &, ~A4!

since in the ground statê) i 51
L/2 t i

z&51. Similarly,

^S1
ySL

y&5 1
4 ^t1

xtL/2
x &, ~A5!

thus the end-to-end correlations in the two models are
identical form. As a consequence the corresponding de
exponent in the random models,h1

x in Table I is the same in
the two systems and the same conclusion holds also for
correlation length exponent,n in Eq. ~4.1!. These results are
also independent of the type of correlation of the disord
and thus are valid both for theXY andXX models.

Correlations between two spins at general positionsl
and 2l 12r are related as

^S2l
x S2l 12r

x &5
1

4
^s l

xs l 1r
x &K )

i 51

r

t l 1 i
z L . ~A6!

The second factor in the right-hand side,^) i 51
r t l 1 i

z &, defines
a stringlike order parameter26 which can be expressed in
simpler form in terms of the dual Ising variablest̃ i 11/2

x ,
which are defined on the bonds of the original Ising chain

t̃ i 11/2
z 5t i

xt i 11
x ,

t i
z5 t̃ i 21/2

x t̃ i 11/2
x . ~A7!

Under the duality transformation fields and couplings
exchanged; therefore the vanishing bonds at the two end
an open chain are transformed to vanishing fields; thus
dual chain has two end spins fixed to the same state. So
obtain for the correlations in Eq.~A6!

^S2l
x S2l 12r

x &5 1
4 ^s l

xs l 1r
x &^t̃ l 11/2

x t̃ l 1r 11/2
x &11, ~A8!

where the superscript11 denotes fixed-spin boundary con
dition. For nonsurface points the average value of the co
lation function in Eq.~A8! depends on the type of disorde
correlations. For theXY model, where the disorder is unco
related, the two factors in Eq.~A8! can be averaged sepa
rately, whereas this is not possible for theXX model. We
treated this point in Sec. IV B 2.
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APPENDIX B: DISTRIBUTION
OF AUTOCORRELATION FUNCTIONS

The autocorrelation functions are represented by the g
eral form

G~t!5(
k

uMku2 exp~2tDEk!, ~B1!

where the dominant contributions to the sum in Eq.~B1! are
from SCD’s, which are localized at some distancel from the
spin and have a very small excitation energyDE( l ). The
scaling form ofDE( l ) follows from the considerations in
Sec. III B and one obtains from Eqs.~3.7! and ~3.8!

DE~ l !;H e0 exp~2Al1/2!, d50

e0l 2z(d), d,0
~B2!

at the critical point and in the Griffiths phase, respective
wheree0 denotes the energy scale. Thus the larger the
tance from the spin the larger the probability to have an S
with a very small energy. For the matrix elementuM ( l )u2 the
tendency is the opposite, since the overlap with the w
function of the SCD is~exponentially! decreasing with the
distance. The corresponding scaling form can be read f
the typical behavior of the surface order parameter as gi
below and above Eq.~4.2! as

uM ~ l !u2;H exp~2Bl1/2!, d50

exp~2 l /j typ!, d,0.
~B3!

ThenG(t) in Eq. ~B1! can be approximated by a sum whic
runs over SCD’s localized at different distancesl and this
sum is dominated by the largest term withl 5 l 0:

G~t!;uM ~ l 0!u2 exp@2tDE~ l 0!#. ~B4!

Using the scaling forms in Eqs.~B2! and ~B3! one gets the
following result.

At the critical point the characteristic distance isl 0
5@ ln(t e0A/B)/A#2 and the typical autocorrelation functio
decays as a power:

G~t!; t2B/A, d50. ~B5!

Thus the relevant scaling variable of the problem is

g52
ln G~t!

ln t
, d50. ~B6!

In the Griffiths phase the characteristic distance has a pow
law t dependence,l 05j typ(te0z)1/(z11), which is, however,
different from the average scaling form in Eq.~1.1!. The
typical autocorrelations now are in a stretched exponen
form:

G~t!;expF2~t e0z!1/(z11)S 11
1

zD G , d Þ0, ~B7!

and the relevant scaling variable is given in Eq.~5.10!.
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