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Strongly disordered spin ladders
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The effect of quenched disorder on the low-energy properties of various antiferromagnetic spin-ladder
models is studied by a numerical strong disorder renormalization-group method and by density-matrix renor-
malization. For strong enough disorder the originally gapped phases with finite topological or dimer order
become gapless. In these quantum Griffiths phases the scaling of the energy, as well as the singularities in the
dynamical quantities, are characterized by a finite dynamical exponent,z, which varies with the strength of
disorder. At the phase boundaries, separating topologically distinct Griffiths phases the singular behavior of the
disordered ladders is generally controlled by an infinite randomness fixed point.
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I. INTRODUCTION

Low-dimensional quantum spin systems, chains, and
ders are fascinating objects, which are the subject of in
sive experimental and theoretical research. The main so
of this activity is due to the observation that quantum flu
tuations could result in qualitatively different low-energy b
havior in these interacting many-body systems. It w
Haldane1 who conjectured that antiferromagnetic~AF! spin
chains with integer spin have a gap in the energy spect
~Haldane phase!, whereas the spectrum of chains with ha
integer spins is gapless. By now a large amount of exp
mental and theoretical evidence has been collected in fa
of the Haldane conjecture. It has been realized by Affle
Kennedy, Lieb, and Tasaki2 ~AKLT ! that the ground-state
structure of the Haldane phase forS51 is closely related to
that of the valence-bond solid model, where the ground s
is built up from nearest-neighbor valence bonds. The hidd
topological order in the chain is measured by the nonlo
string order parameter:3

Oa52 lim
u i 2 j u→`

K Si
a expS ip (

l 5 i 11

j 21

Sl
aDSj

aL , ~1.1!

whereSi
a is a spin-1 operator at sitei, a5x, y, z, and ^¯&

denotes the ground-state expectation value.
Another source of activity in the field of low-dimension

quantum spin systems is due to the discovery of spin-lad
materials.4 It has been realized that spin ladders with ev
numbers of legs have a gapped spectrum, whereas the
trum of odd-leg ladders is gapless.5 For two-leg ladders,
which are analogous objects toS51 spin chains, the ground
state structure can be related to nearest-neighbor val
bonds, and a topological hidden order parameter, simila
that in Eq.~1.1!, can be defined.6

More recently, ladder models with competing interactio
such as with staggered dimerization7 and with rung and di-
agonal coupling,6 have been introduced and studied. In the
models, depending on the relative strength of the couplin
0163-1829/2002/65~10!/104415~10!/$20.00 65 1044
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there are several gapped phases with different topolog
order, which are separated by first- or second-order ph
transition lines.

Disorder turns out to play a crucial role in som
experiments on low-dimensional magnets. For instan
the N-methyl-phenazynium-tetracyanoquinodimethan co
pound8 can be well described byS51/2 spin chains with
random AF couplings. More recently, nonmagnetic subst
tions in low-dimensional oxides such as CuGeO3 ~Refs.
9–12! ~a spin-Peierls compound!, PbNi2V2O8,13 or
Y2BaNiO5 ~Refs. 14–19! ~both Haldane gap compounds!
have been the subject of intense investigations. The esse
feature of these compounds is the appearance of antife
magnetism at low temperature which can be well descri
by the effective low-energy models introduced in Refs. 1
21. Sr(Cu12xZnx)2O3 is a realization of the two-leg ladde
and can be doped by Zn, a nonmagnetic ion.22 The specific-
heat and spin susceptibility experiments indicate that
doped system is gapless even with low doping concen
tions. We note that the experimentally found phase diagr
of this compound, as well as other quantities, such as s
gered susceptibility, have been obtained by quantum Mo
Carlo simulations.23

Theoretically, spin chains in the presence of strong dis
der can be conveniently studied by a real-spa
renormalization-group~RG! method introduced by Ma, Das
gupta, and Hu24 ~MDH!. In this method strong bonds in th
system are successively eliminated and other bonds are
placed by weaker ones through a second-order perturba
calculation. As realized later by Fisher25 for the random spin-
1/2 chain and for the related model of random transver
field Ising spin chains26 the probability distribution of the
couplings under renormalization becomes broader
broader without limit and therefore the system scales into
infinite randomness fixed point~IRFP!, where the MDH
renormalization becomes asymptotically exact. Fisher
also succeeded in solving the fixed-point RG equations
analytical form and showing that for any type of~nonex-
tremely singular! initial disorder the system scales into th
same IRFP. Later numerical27–28 and analytical29 work has
confirmed Fisher’s results.
©2002 The American Physical Society15-1
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Generalization of the MDH approach for AF chains wi
larger values of the spin is not straightforward, since for
too strong initial disorder the generated new couplings co
exceed the value of the already decimated ones. To ha
this problem for theS51 chain Hyman and Yang30 and in-
dependently Monthus, Golinelli, and Jolicaeur31 have intro-
duced an effective model with spin-1 and spin-1/2 degree
freedom and with random AF and ferromagnetic~FM! cou-
plings. From an analysis of the RG equations they arrive
the conclusion that the IRFP of the model will be attractive
the original distribution parametrized by the power-law fo

Ppow~J!5
1

D
J2111/D ~1.2!

is strongly random, i.e., if 0,D21,D1
21. For weaker initial

disorder the system is still gapless, which is called the g
less Haldane phase.

Theoretical work about disordered spin ladders is mai
concentrated on the weak disorder limit. Results in this
rection are obtained in the weak interchain coupling limit v
the bosonization approach32 and by the random mass Dira
fermion method.33 In particular a remarkable stability of th
phases of the pure system against disorder withXYsymmetry
has been observed.32

In the experimental situation, however, as described
fore, the effect of disorder is usually strong and we are go
to consider this limiting case in this paper. Our aim is
provide a general theoretical background for strongly dis
dered spin ladders by studying in detail several models~con-
ventional ladder, dimerized ladder, zigzag ladder, and the
ladder with rung and diagonal couplings!, which could have
experimental relevance. Since often a small change in
couplings or in the strength of disorder could cause la
differences in the low-energy singular properties of the m
els, we have studied the phase diagrams in the space of
eral parameters. As a method of calculation we used a
merical implementation of the MDH approach, which cou
treat the combined effect of disorder, frustration, corre
tions, and quantum fluctuations, while some problems
also studied by the density-matrix renormalization gro
~DMR! method. In particular we have investigated the s
bility of the different topologically ordered phases and stu
ied the region of attraction of the IRFP.

The structure of the paper is the following. In Sec. II w
define different spin-ladder models and present their ph
diagram for nonrandom couplings. A short overview of t
MDH RG method and its application to random spin cha
is given in Sec. III. Our results about random spin ladders
presented in Sec. IV and discussed in Sec. V.

II. THE MODELS AND THEIR PHASE DIAGRAM
FOR NONRANDOM COUPLINGS

We start with two spin-1/2 Heisenberg chains, labeled
t51, 2 and described by the Hamiltonian

Ht5(
l 51

L

Jl ,tSl ,tSl 11,t , ~2.1!
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whereSl ,t is a spin-1/2 operator at sitel and on chaint and
Jl ,t.0. For nonrandom spin chains dimerization can be
troduced as

Jl ,t5J@11g~21! l 1n~t!#, 0<g,1, ~2.2!

with n(t)50,1, whereas for random dimerized couplings t
even and odd bonds are taken from different distributio
The pure chain without dimerization (g50) has a gapless
spectrum, and spin-spin correlations decay as a power
large distance, which is called quasi-long-range order. In
ducing dimerization forg.0 a gap opens in the spectrum,34

which is accompanied by nonvanishing dimer order,Odim
a

Þ0. This is measured as the difference between the st
order parameters in Eq.~1.1! calculated with spin-1/2 mo-
ments at even~e! and odd~o! sites:

Odim
a 5Oe

a2Oo
a . ~2.3!

In the following we generally consider nondimerized chain
others are explicitly mentioned.

Now we introduce the interchain interaction

HR5(
l 51

L

Jl
RSl ,1Sl ,2 , ~2.4!

which describes the usual rung coupling between the lad
@see Fig. 1~a!#. The conventional ladder model is describ
by the HamiltonianH5H11H21HR . In the pure model, by
switching on the AF rung couplings,Jl

R5JR.0, a Haldane-

FIG. 1. Spin-ladder models used in the paper: The conventio
two-leg ladder~a! and staggered dimerization in the chain couplin
~b!, the zigzag ladder~c! and its representation as a chain with firs
and second-neighbor couplings~d!, and the full ladder with rung
and diagonal couplings~e!.
5-2
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STRONGLY DISORDERED SPIN LADDERS PHYSICAL REVIEW B65 104415
type gap opens above the ground state and the system
nonvanishing even string topological order, which is me
sured by6,35

Oeven
a 52 lim

u i 2 j u→`
K ~Si 11,1

a 1Si ,2
a !

3expS ip (
l 5 i 11

j 21

~Sl 11,1
a 1Sl ,2

a !D ~Sj 11,1
a 1Sj ,2

a !L .

~2.5!

For strong AF rung couplings every spin pair on the sa
rung forms a singlet; therefore this phase is called the r
singlet ~RUS! phase.

Dimerization of the chain couplings could occur in tw
different ways. For parallel dimerization, when equal bon
in the two chains are on the same position, i.e., in Eq.~2.2!,
with n(1)5n(2), thecombined effect of rung coupling an
dimerization will always result in a gapped phase. In t
other possible case of staggered dimerization, i.e., w
n(1)52n(2) @see Fig. 1~b!#, the two chains have an oppo
site dimer order, which competes with the rung coupling.
a result the phase diagram of the system~see Fig. 2! consists
of two gapped phases, which are separated by a gapless
sition line, starting in the pure, decoupled chains limit.7

Next, we extend our model by diagonal interchain co
plings, given by the Hamiltonian term

HZ5(
l 51

L

Jl
ZSl ,2Sl 11,1. ~2.6!

The complete Hamiltonian,H5H11H21HR1HZ , de-
scribes a zigzag ladder@see Fig. 1~c!# or can be considered a
a spin chain with nearest-neighbor (Jl

R ,Jl
Z) and next-nearest

neighbor (Jl) couplings @Fig. 1~d!#. The pure model with
Jl

R5Jl
Z5J1 andJl5J2 has two phases: a gapless phase

J2 /J1,.24 is separated from a gapped phase by a quan
phase-transition point.

Finally, we extend our model by two types of diagon
couplings, which are represented by the Hamiltonian

FIG. 2. Schematic phase diagram of the two-leg AF ladder w
staggered dimerization@see Fig. 1~b! for the definition of the cou-
plings#. At the phase boundary between the rung singlet and di
phases the gap vanishes.
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HD5(
l 51

L

Jl
D~Sl ,1Sl 11,21Sl ,2Sl 11,1!. ~2.7!

It is known that the pure AF diagonal ladder described by
Hamiltonian H5H11H21HD with Jl

D5JD.0 has a
gapped spectrum.6 Its ground state is of the AKLT type an
has a nonvanishing odd string order,35 defined in analogy to
Eq. ~2.5!,

Oodd
a 52 lim

u i 2 j u→`
K ~Si ,1

a 1Si ,2
a !expS ip (

l 5 i 11

j 21

~Sl ,1
a 1Sl ,2

a !D
3~Sj ,1

a 1Sj ,2
a !L . ~2.8!

In the full ladder there are both rung and diagonal couplin
@see Fig. 1~e!# described by the HamiltonianH5H11H2
1HR1HD . For nonrandom AF couplings there is a comp
tition between rung and diagonal couplings, so that
ground-state phase diagram of the system consists of
topologically distinct gapped phases~see Fig. 3!. The phase
transition between the two phases is of first order.6

The main subject of our paper is to investigate how
phase diagrams of the pure ladder models, in particula
Figs. 2 and 3, are modified due to the presence of quenc
disorder.

III. THE MDH RENORMALIZATION: RESULTS FOR
SPIN CHAINS

In the MDH renormalization-group method for rando
spin-1/2 chains the random AF bonds are arranged in
scending order according to their strength, and the stron
bond, sayJ23, connecting sites 2 and 3, sets the energy sc
in the problemV5J23. We denote by 1 the nearest-neighb
site to 2 with a connecting bondJ12 and similarly denote by
4 the nearest-neighbor site to 3 with a connecting bondJ43.
If J23 is much larger then the connecting bonds the spin p
~2, 3! acts as an effective singlet. It follows that the strong
correlated singlet pair can be frozen out. Due to the virt
triplet excitations, an effective couplingJ̃14 is generated be-

h

er

FIG. 3. Schematic phase diagram of the full AF ladder w
homogeneous rung and diagonal couplings. The transition betw
the two topologically distinct gapped phases is of first order, exc
in the limit JR5JD50.
5-3
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tween the sites 1 and 4. These two sites become ne
neighbors once the singlet has been eliminated. In a sec
order perturbation calculation one obtains

J̃145k
J12J43

V
, k~S51/2!51/2. ~3.1!

The new coupling is thus smaller than any of the origin
ones. The energy scaleV is continuously reduced upon ite
ating the procedure and at the same time the probability
tribution of the couplingsP(J,V) approaches a limiting
function. In a gapless random systemV tends to zero at the
fixed point of the transformation and the low-energy tail
the distribution is typically given by

P~J,V!dJ.
1

z S J

V D 2111/z dJ

V
. ~3.2!

The dynamical exponentz determines how the length scaleL
scales with the time scalet:

t;V21;Lz. ~3.3!

In generalz is not a universal quantity: its value depends
the form of the original disorder. Howeverz stays invariant
under renormalization.36 Therefore one can deduce its valu
from the renormalized distribution in Eq.~3.2!. Varying the
parameters of the initial distribution one can reach a situa
where the width of the distribution in Eq.~3.2! grows with-
out limits, i.e.,z formally tends to infinity. In this case, ac
cording to exact results on the random AF spin-1/2 chai25

one should formally replacez in Eq. ~3.2! by 2 ln V, so that
the scaling relation in Eq.~3.3! takes the form

ln tt;Lc, c51/2. ~3.4!

This type of fixed point, where the ratio of any two neig
boring bonds typically tends to zero or infinity, is called
IRFP. It has been conjectured that the MDH renormalizati
group transformation~3.1! leads toexact resultsregarding
the singular properties of the transformation, namely,
value ofc in Eq. ~3.4! is exact.25,41

For the random AF spin-1/2 chain, according to ex
results25 any amount of disorder is sufficient to drive th
system into the IRFP. Similarly, the gapped dimer phase
turn into a gapless random dimer phase for any amoun
disorder, where the dimerization parameter is defined as

ddim5@ ln Jodd#av2@ ln Jeven#av ~3.5!

in terms of the couplingsJodd andJevenat odd and even sites
respectively. The random dimer phase is a quantum ver
of the Griffiths phase, which has been originally introduc
for classical disordered systems.37 The schematic RG flow
diagram of the random dimerized chain is drawn in Fig.

The MDH method has also been used to study the sin
lar properties of the random AF spin-1 chain. Here we fi
note that the spectrum of the pure system has a Haldane
which is stable against weak randomness. Consequently
MDH renormalization, which is by definition a strong diso
der approach, becomes valid if the initial disorder is
creased over a limit, sayD0 . Our second remark concern
10441
est
d-

l

s-

f

n

-

e

t

ll
of

on
d

u-
t
ap,
he

-

the ‘‘projecting onto the lowest level’’ procedure38 when af-
ter decimating out a strongly coupled singlet the genera
new coupling is in the form of Eq.~3.1!, however with a
constant ofk(S51)54/3. Consequently at the initial RG
steps the energy scale could behave nonmonotonically
that an IRFP behavior is expected only for strong enou
initial disorder. To cure this problem a modified RG schem
was proposed,30,31 which is based on the principle of ‘‘pro
jecting out the highest level.’’ By this method an effectiv
Hamiltonian with spin-1 and spin-1/2 degrees of freedom
been introduced, where between the spins both AF and
couplings could be present but their distribution should
spect some constraints. The RG analysis of this effec
model leads to two different types of strongly disorder
phases, provided the disorder of the original distribution
ceeds the limiting value ofD0 . For an intermediate range o
disorder, so thatD0,D,D1 , the system scales into a qua
tum Griffiths phase, the so-called gapless Haldane ph
wherez5z(D) is a monotonously increasing function of di
order and 1/z(D).0. When the strength of disorder excee
a second limit, sayD.D1.D0 , the dynamical exponen
becomes infinite and the singular behavior of the system
controlled by the IRFP~see Fig. 5!.

Until now, to our best knowledge, there have been
numerical estimates about the limiting disorder strengths,D0
andD1 . For the uniform distribution, which corresponds
D51 in Eq.~1.2!, the system is in the gapless Haldane pha
with z'1.5.39

Finally, we mention the work by Westerberget al.40 about
renormalization of spin-1/2 Heisenberg chains with mix
FM and AF couplings. In this problem, due to the presen
of strong FM bonds, under renormalization spin clusters w
arbitrary large effective momentsSeff are generated, such tha
Seff;D2v, whereD is the largest local gap in the system a
D→0 at the fixed point. Singularities of different physic
quantities are related to the scaling exponentv.

IV. RENORMALIZATION OF AF SPIN LADDERS

With a ladder geometry, spins are more interconnec
than in a chain, which leads to a modification of the decim
tion procedure described in the previous section. As sho
in Fig. 6 both spins of a strongly coupled pair, say~2,3!, are

FIG. 4. Schematic RG phase diagram of the random dimeri
S51/2 chain as a function of the quantum control parameterddim

and the energy scaleV. Along the RG trajectories the dynamica
exponentz(ddim) is constant. The nondimerized model withddim

50 is attracted by the IRFP with1/z50. With a decreasing energ
scaleV, disorder in the system increases.
5-4



o
w

-

en
e
t

ve
ize
nt
ile
.
a
a
o
H

al
g

M

r-
e

ne

r-

t

un-
up

st
ical
e

f

d in

m
n
ith

in-

-

er

n-

t
t

ic

STRONGLY DISORDERED SPIN LADDERS PHYSICAL REVIEW B65 104415
generally connected to the nearest-neighbor spins, den
by 1 and 4. After decimating out the singlet pair the ne
effective coupling between 1 and 4 is of the form

J̃14
eff5k

~J122J13!~J432J42!

V
, k~S51/2!51/2, ~4.1!

which should replace Eq.~3.1! obtained in the chain topol
ogy, i.e., with J135J4250. With the rule in Eq.~4.1! FM
couplings are also generated. As a consequence, the r
malized Hamiltonian contains both AF and FM bonds. Wh
at some step of the renormalization an FM bond becomes
strongest one, it will lead to the formation of an effecti
spin-1 cluster. In further RG steps the system renormal
into a set of effective spin clusters having different mome
and connected by both AF and FM bonds. The deta
renormalization rules have already been given in Ref. 21

Due to the ladder topology and the complicated renorm
ization rules the RG equations cannot be treated analytic
and one resorts to numerical implementations of the ren
malization procedure. We note that a variant of the MD
renormalization has been successfully applied numeric
for the two-dimensional~2D! random transverse-field Isin
model41,42 ~RTIM! @also for double chains of the RTIM~Ref.
42!#. An IRFP has been obtained both for the 2D RTI
~Refs. 41 and 42! and the double chain RTIM.42

FIG. 5. Schematic RG phase diagram of the random AF sp
chain, as a function of the disorder strengthD and the energy scale
V. For weak disorder,D,D0 , there is a Haldane~‘‘H’’ ! gap in the
spectrum. For intermediated disorder,D0,D,D1 , the system is in
the gapless Haldane~‘‘GH’’ ! phase with a varying dynamical expo
nentz(D). For strong enough disorder,D.D1 , the system is in the
random singlet~‘‘RS’’ ! phase and scales into the IRFP.

FIG. 6. Singlet formation and decimation in the ladd
geometry.
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In practice we use a finite-size version of the MDH reno
malization, as for the RTIM in Ref. 42. In this method w
start with a finite ladder ofL sites with periodic boundary
conditions and perform the decimation procedure until o
spin pair with a first gapD remains in the system. SinceD
plays the role of the energy scale at length scaleL, D andL
should be related by the relation~3.3! involving the dynami-
cal exponentz. Performing the above decimation for diffe
ent samples the probability distribution ofD in the smallD
limit is described by the form in Eq.~3.2!, where the energy
scaleV is replaced byL2z.

The IRFP is signaled by a divergingz, or more precisely
thePL(D)dD distributions have strongL dependence, so tha
the appropriate scaling combination is

ln~LcPL~D!!. f ~L2c ln D!, ~4.2!

which can be obtained from Eq.~3.2! by formally settingz
.2 ln D;Lc.

In the actual calculations we have considered several h
dred thousand realizations of random ladders with lengths
to L5512. Then, from the distribution of the gap at the la
step of the RG iteration we have calculated the dynam
exponent,z. The random couplings were taken from th
power-law distribution in Eq.~1.2!, where the strength o
disorder is measured by the parameterD. In the following we
present our results for the specific ladder models discusse
Sec. II.

A. Random conventional ladders

We start with the conventional ladders in Fig. 1~a! where
the couplings along the chains~Jl

t , t51, 2! and the cou-
plings along the rungs (Jl

R) are taken from the same rando
distributions. In Fig. 7 we show the probability distributio
of the gaps at the last step of the RG iteration calculated w
the disorder parameterD51 @see Eq.~1.2!#. As seen in the

1
FIG. 7. Probability distribution of the first gaps for the conve

tional random ladder with a disorderD51 @see Eq.~1.2!# and sys-
tem sizesL532, L564, and L5256. For clarity, we have no
shown the data corresponding toL5128. The solid lines represen
the best fit to the form log10@P(2 log10 D)#5AL21/zL log10 D,
with A3253.18, A6452.30, A12851.92, A25652.14, z3250.65, z64

50.90,z12851.06, andz25651.07. We deduce that the asymptot
value of the dynamical exponent isz`.1.07.
5-5
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figure the small energy tail of the distribution follows th
functional form given by Eq.~3.2! and the dynamical expo
nent z given by the asymptotic slope of the distributions
finite and has only a very weak size dependence.

Repeating the calculation for other values ofD we obtain
a set ofD-dependent dynamical exponents which are rep
sented in Fig. 8. For strong disorder we obtainz(D),D,
which means thatdisorder is reduced in the course of th
renormalization. In the terminology of Motrunichet al.,41

this system is afinite randomnesssystem, as opposed to th
infinite randomnesssystems that will be considered in th
next subsections. For weak disorder the dynamical expo
predicted by the approximate MDH renormalization is lo
ered below 1 forD,D0'1. Here we argue that in this re
gion the effect of disorder is irrelevant, so that the system
in the gapped RUS phase. Indeed, in a pure quantum sys
where scaling in time and space is isotropic, the dynam
exponent iszpure51. Similarly, for disorder-induced gaples
systems, where disorder in the time direction is strictly c
related, the dynamical exponent cannot be smaller than in
pure system, so thatzdis>zpure51. Consequently, if the
disorder-induced dynamical exponent iszdis,1, then disor-
der could only influence the correction to scaling behav
but the system stays gapped. In view of this remarkD0 can
be considered as the lower limiting value of the disord
where the conventional finite randomness behavior ends
the phase diagram of random conventional two-leg spin
ders consists of two phases: a gapped RUS~Haldane! phase
and a random gapless Haldane phase. The latter is chara
ized by a finite dynamical exponentz(D) for any strong but
finite initial disorder. Consequently there is an importa
difference with the random AF spin-1 chain which flow
into the IRFP above a finite critical value of randomne
~see Fig. 5!.

B. Random ladders with staggered dimerization

In this subsection we consider conventional ladders w
staggered dimerization having a dimerization paramete

FIG. 8. Variation of dynamical exponentz versus disorderD for
the conventional ladder with lengthsL532, L564, L5128, and
L5256. For large system sizes and strong disorder, one haz`

.0.4210.58D,D. In the region withz`,1, where the disorder is
irrelevant, the system is in the gapped Haldane phase~see text!.
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<g<1, in Eq. ~2.2!. The different types of couplings in th
ladder are taken from the power-law distribution in Eq.~1.2!,
each having the same disorder parameter,D, however the
range of the distribution for the different types of couplin
are 0,Jl

R,Jmax
R for the rung couplings, and 0,Jl

weak,(1
2g)Jmax and 0,Jl

strong,(11g)Jmax for the weaker and
stronger chain couplings, respectively. For fixed values og
andD we have calculated the finite-size-dependent effec
dynamical exponent,z, as a function of the coupling ratio
Jmax

R /Jmax.
As shown in Fig. 9 the effective exponents have the sa

type of qualitative behavior for different values of the dime
ization parameter,g. In each case the curves have a ma
mum at some value of the couplings, where the finite-s
dependence is the strongest, whereas further from the m
mum the convergence of the data is faster. To decide ab
the possible limiting value ofz, in particular at the maximum
of the curves, we analyze the behavior forg51 in Fig. 9~c!,
which is just a dimerized random chain, the properties
which are exactly known to some extent.25,29

The random critical point of this system is situated
Jmax

R /Jmax52, where the critical behavior is governed by a
IRFP, so that the dynamical exponent,z, is formally infinity.
For any other values of the couplings,Jmax

R /Jmax, the system
is in the random dimer phase, where the dynamical expon
is finite and coupling dependent. To see the general tende
of finite-size convergence of thez exponent around the criti
cal point we have repeated the calculation at theD51, g
51 case for the randomXX chain and the numerical finite
size results are compared in Fig. 9~d! with the exact value of
the dynamical exponent, as given by the solution of the eq
tion

FIG. 9. Finite-size estimates of the dynamical exponent of r
dom conventional ladders with staggered dimerization as a func
of the coupling ratio,Jmax

R /Jmax, with a disorder parameterD51,
and for different dimerizations~a! g50.5, ~b! g50.75, and~c! g
51. In ~d! a similar calculation for the randomXX chain is pre-
sented (D51,g51), where the exact dynamical exponent in E
~4.3!, obtained in theL→` limit, is shown by the dashed line.
5-6
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Jmax
R

Jmax
52S D2

D22z22D 2z

, ~4.3!

known from Refs. 36 and 29. As seen in Fig. 9 the dynam
exponents of randomXX and Heisenberg ladders have ve
similar coupling dependencies and one expects the same
of divergence at the critical point for all values ofg. In Fig.
10 we illustrate the scaling behavior of the gap at the tra
tion point, i.e., at the maximum of the curves in Fig. 9~a!.

The distributions in Fig. 10~a! become broader an
broader with size and the effective dynamical exponent
creases with size, without limits. An appropriate scaling c
lapse of the gap distributions has been obtained in Fig. 10~b!,
where the scaling variable in Eq.~4.2!, with c51/2, is used.
A similar type of infinite randomness behavior is observed
other points of the critical lines, with the same exponenc
51/2, which turned out to be universal. Thus we conclu
that the random conventional ladder with staggered dim
ization has two Griffiths-type gapless phases, the rand
dimer phase and the random rung singlet phase, which
separated by a random critical line, along which there
infinite randomnessbehavior. For a different disorder param
eter,D, the position of the random critical line is modifie
and generally stronger disorder is in favor of the rand
rung singlet phase, see Fig. 11.

We note that the previously studied random conventio
ladder is contained as a special point in this phase diagra
Jmax

R /Jmax51 andg50. This point is in the random rung sin
glet phase for any value ofD, thus the dynamical exponent
finite in accordance with the previous results.

C. Random zigzag ladders

For the zigzag ladders the nearest-neighbor coupli
(Jl

R5Jl
Z[Jl

1) are taken from the power-law distribution i
Eq. ~1.2! with the coupling Jl

1 within the range 0,Jl
1

,Jmax
1 . Similarly, the next-nearest-neighbor couplings (Jl

[Jl
2) are taken from the same type of power-law distributi

and the range of couplings is now 0,Jl
2,Jmax

2 .
The calculated dynamical exponent,z, as shown in Fig.

12, has its maximum atJmax
2 /Jmax

1 50 and around this poin
one can observe strong finite-size dependence, the rang

FIG. 10. ~a! Probability distribution of the first gap at the tran
sition point of the random conventional ladder with stagge
dimerization,D51, g50.5, andJmax

R /Jmax51.1. The distributions
become broader and broader withL, which signals infinite random-
ness behavior.~b! Scaling plot in terms of the scaling combinatio
in Eq. ~3.4!.
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which is wide, in particular for weak disorder~see Fig. 12!.
At Jmax

2 /Jmax
1 50, where the zigzag ladder reduces to a rand

AF chain, the system is in the IRFP, thus the extrapola
value of the dynamical exponent is formally infinity. Give
the strong finite-size corrections in the numerical RG data
the dynamical exponent44 in Fig. 12, it is difficult to decide
whether the IRFP behavior of the zigzag ladders is exten
to a finite region of the couplingsJmax

2 /Jmax
1 .0 or whether

this region shrinks to a single point only. The first scena
may be related to the existence of a gapless phase of the
model forJ2/J1,0.24.

To discuss this issue we have calculated the dynam
exponent by an independent method based on density-m
renormalization. In principle, the dynamical exponent is
lated to the distribution of the first gap,D, in the smallD
limit, see in Eq.~3.2! with D→J. However, a precise nu
merical calculation of a smallD by the DMRG method is
very difficult; therefore we used another strategy, as
scribed in detail in Refs. 36 and 43. By this method o

d

FIG. 11. Phase diagram of random conventional ladders w
staggered dimerization for different disorder parameters. The
dom dimer~‘‘RD’’ ! phase and the random rung singlet~‘‘RRS’’ !
phase are separated by a random critical line of infinite random
behavior.

FIG. 12. Variation of the dynamical exponentz versusJmax
2 /Jmax

1

for the zigzag ladder with a disorderD51 ~a! and D55 ~b!. For
D51, the MDH renormalization-group data withL5128, L
5256, andL5512 have been compared to the DMRG calculati
with L532 ~see Fig. 13!. The lines connecting the calculated poin
are guides for the eye.
5-7
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considers the equivalent AF chain with random first- a
second-neighbor couplings@see Fig. 1~d!# and with fixed free
boundary conditions and calculate the surface magnetiza
ms , at the free end, which can be done very accurately
the DMRG method. As argued in Refs. 36 and 43 for
random chain,ms andD can be considered as dual quantitie
so that the distribution of the surface magnetization is
ymptotically given by

P~ ln ms!;ms
1/2, ms→0. ~4.4!

Thus the dynamical exponentz can be obtained from an
analysis of the smallms tail of the distribution, as illustrated
in Fig. 13 where the distribution function of lnms is given in
a log-log plot for different lengths of the ladder. As seen
this figure the slope of the distribution is well defined f
larger systems, from which one can obtain an accurate
mate for the dynamical exponent, which is finite. Repeat
the calculation for other values of the coupling rat
Jmax

2 /Jmax
1 , we have obtained a set of the dynamical exp

nents, which is plotted in Fig. 12. These accurate DMR
data show that the extrapolated values of the effective ex
nents calculated by the numerical RG method are finite
any Jmax

2 /Jmax
1 .0. Consequently the random zigzag ladd

has just one IRFP atJmax
2 /Jmax

1 50, whereas the system in th
region ofJmax

2 /Jmax
1 .0 is in a gapless random dimer phase.

view of the numerical results in Fig. 12, wherez` seems to
stay overzpure51, it is quite probable that the random dim
phase exists for any small value of the disorder.

D. Random J1-J2 ladders

The full ladder, as represented in Fig. 1~e! has three dif-
ferent type of couplings:Jl , Jl

R , andJl
D . Here we consider

a special case of this model, when the chain (Jl) and rung
(Jl

R) couplings are taken from the same power-law distrib
tion with a disorder parameterD and having a range of 0
,Jl , Jl

R,Jmax
1 . On the other hand the diagonal couplings a

taken from the same type of power-law distribution and

FIG. 13. Distribution of the log surface magnetization of t
random zigzag ladder using a power-law distribution (D
51,Jmax

2 /Jmax
1 50.5), for different lengths of the ladder,L. The

asymptotic slope of the distribution, indicated by the straight line
the inverse of the dynamical exponent, see Eq.~4.4!.
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within the interval 0,Jl
D,Jmax

2 . This model, having first-
and second-neighbor interactions, is called aJ1-J2 ladder.
We have calculated the finite-size dynamical exponents
function of the coupling ratioJmax

2 /Jmax
1 for different strengths

of disorder~see Fig. 14!. These curves show similar qualita
tive behavior as those calculated for the random conv
tional ladders with staggered dimerization in Fig. 9, so t
we can draw similar conclusions.

The extrapolated position of the maximum of thez curves
is identified as a quantum critical point with infinite random
ness behavior. Indeed, repeating the calculation as indic
for the dimerized ladder model in Fig. 10 we obtained
scaling behavior as in Eq.~3.4!. with an exponent which is
compatible withc51/2. The random quantum critical poin
separates two gapless Haldane phases, having odd and
topological order, respectively.

Repeating the calculation for different disorder para
eters we obtain a phase diagram shown in Fig. 15. In
range of disorder we used in the calculation, the rand

s

FIG. 14. Variation of the dynamical exponentz versusJmax
2 /Jmax

1

for the randomJ1-J2 ladder with disorderD51 ~a! andD55 ~b!.
The lines connecting the calculated points are guides for the
Note the strong finite-size corrections in the Griffiths phases~Ref.
44!.

FIG. 15. Phase diagram of the randomJ1-J2 ladder obtained
from the maximum in the variation of the dynamical exponent v
susJmax

2 /Jmax
1 for the largest available sizeL5256 ~see Fig. 14 for

D51 andD55!. The two straight lines connecting the calculat
transition points are guides for the eye. The whole transition l
between the two phases with even and odd topological orders
spectively, is presumably a line of IRFP’s.
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critical point is always attracted by the IRFP; this proper
probably remains true for any small value of disorder.

V. DISCUSSION

In this paper different types of random AF spin-ladd
models have been studied using a numerical strong diso
RG method. In particular we asked~i! how the phase dia-
grams of the pure models are modified due to quenched
order and~ii ! how the concepts observed in random A
chains, such as infinite randomness and Griffiths-type sin
larities, are valid for these more complicated, quasi-on
dimensional models.

In our numerical calculations we observed as a gene
rule that for strong enough disorder the ladder models, l
the random chains, become gapless. The dynamical expo
of the models is generally nonuniversal:z depends on both
the strength of disorder and on the value of the couplings
models where there is a competition between different ty
of phases, either due to staggered dimerization or frustrat
such as in theJ1-J2 model, at the phase boundary the critic
behavior of the random model is generally controlled by
infinite randomness fixed point, at least for strong enou
disorder. The low-energy properties of the systems in t
IRFP are asymptotically exactly known from analytical ca
culations in random AF spin chains.25,29 Thus the general
phase diagram consists of Griffiths-type phases with diff
ent topological order separated by a random critical point
the IRFP type. The zigzag ladder is an exception, wh
there is just one Griffiths phase and the random critical po
is located at its boundary.

Next we turn to discuss possible crossover effects wh
the strength of disorder is varied. These problems canno
directly studied by the simple strong disorder RG metho
however, from arguments considering the sign ofzdis2zpure
and from analogous investigations on quantum s
chains30,31,43we can suggest the following picture. Originall
gapped phases could stay gapped for weak disorder and
come gapless only if the strength of disorder exceeds so
finite limiting value, as seen for the random convention
ladder. However, for frustrated ladders, such as the zig
and theJ1-J2 ladders, any small amount of disorder seems
bring the system into a random gapless phase. At a ph
boundary, such as in the staggered dimerized ladder and
tt

B
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J1-J2 model, the random critical behavior is of the IRF
type, probably for any small amount of disorder.

At this point we comment on the similarity of the low
energy behavior of spin chains with 2S5odd (2S5even)
spins and that of spin-1/2 ladders withn5odd (n5even)
legs. If the pure systems are gapless, i.e., 2S5n5odd,
strong enough disorder is expected to bring both systems
the IRFP. For n5odd>3, there is a limiting disorder
strength,Dc(n), below which the system is described by
conventional random fixed point withz,`. On the other
hand for 2S5n5even we have only a partial analogy: fo
weak disorder both systems are gapped, which turns in
gapless Griffiths-type phase for stronger disorder. While
random ladder stays in this conventional random phase
any strength of the disorder, the random spin chain will tu
to IRFP behavior at some finite limiting randomness. T
type of infinite randomness behavior can, however, be s
for frustrated even-legJ1-J2 ladders at the transition poin
We can thus conclude that random ladders with even and
numbers of legs belong to different universality classes.

Finally, we comment on random square lattice antifer
magnets, which can be obtained in the limit when the nu
ber of legs,n, goes to infinity. By increasingn the value of
the limiting strength,Dc(n), is expected to increase, too
both for n5even~for frustrated ladders! andn5odd. In the
limit n→`, Dc(n) very probably tends to infinity, so tha
the critical behavior of that system is described by a conv
tional random fixed point. Work is in progress to verify th
scenario and to obtain a general physical picture about
low-energy properties of random two-dimension
antiferromagnets.45

ACKNOWLEDGMENTS

F.I. is grateful to J.-C. Angle`s d’Auriac and G. Fa´th for
useful discussions. This work has been supported b
German-Hungarian exchange program~DAAD-MÖB!, by
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