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Strongly disordered spin ladders
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The effect of quenched disorder on the low-energy properties of various antiferromagnetic spin-ladder
models is studied by a numerical strong disorder renormalization-group method and by density-matrix renor-
malization. For strong enough disorder the originally gapped phases with finite topological or dimer order
become gapless. In these quantum Griffiths phases the scaling of the energy, as well as the singularities in the
dynamical quantities, are characterized by a finite dynamical exponentich varies with the strength of
disorder. At the phase boundaries, separating topologically distinct Griffiths phases the singular behavior of the
disordered ladders is generally controlled by an infinite randomness fixed point.
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[. INTRODUCTION there are several gapped phases with different topological
order, which are separated by first- or second-order phase-

Low-dimensional quantum spin systems, chains, and la fransition lines.

ders are fascinating objects, which are the subject of inten- pisorder turns out to play a crucial role in some

sive experimental and theoretical research. The main SOUrG&nperiments on low-dimensional magnets. For instance,
of this activity is due to the observation that quantum fluc-the N-methyl-phenazynium-tetracyanoquinodimethan com-
tuations could result in qualitatively different low-energy be- pound can be well described b$=1/2 spin chains with
havior in these interacting many-body systems. It wasandom AF couplings. More recently, nonmagnetic substitu-
Haldané who conjectured that antiferromagnetiF) spin  tions in low-dimensional oxides such as CuGe(Refs.
chains with integer spin have a gap in the energy spectrurp—12 (a spin-Peierls compouind PbNiLV,0g,*° or
(Haldane phagewhereas the spectrum of chains with half- Y,BaNiO; (Refs. 14—19 (both Haldane gap compounds
integer spins is gapless. By now a large amount of experihave been the subject of intense investigations. The essential
mental and theoretical evidence has been collected in favdeature of these compounds is the appearance of antiferro-
of the Haldane conjecture. It has been realized by Affleckmagnetism at low temperature which can be well described
Kennedy, Lieb, and TasakiAKLT) that the ground-state by the effective low-energy models introduced in Refs. 19—
structure of the Haldane phase ®+1 is closely related to  21. Sr(Cy_,Zn,),0; is a realization of the two-leg ladder,
that of the valence-bond solid model, where the ground statend can be doped by Zn, a nonmagnetic ¥fihe specific-

is built up from nearest-neighbor valence bonds. The hidderfleat and spin susceptibility experiments indicate that the

topological order in the chain is measured by the nonlocafioped system is gapless even with low doping concentra-
string order parametér: tions. We note that the experimentally found phase diagram

of this compound, as well as other quantities, such as stag-
-1 gered susceptibilgigy, have been obtained by quantum Monte
o : o | ca Carlo simulations:
<S' exp( ! 7T|;rl S )S‘ > (.3 Theoretically, spin chains in the presence of strong disor-
der can be conveniently studied by a real-space
Wheresia is a spin_l operator at Sme a=X,Y, % and < > renormalization'grOUmRG) method introduced by Ma, Das-
denotes the ground-state expectation value. gupta, and Htf (MDH). In this method strong bonds in the
Another source of activity in the field of low-dimensional SyStem are successively eliminated and other bonds are re-

quantum spin systems is due to the discovery of spin-Iaddé?Iaced by weaker ones through a second-order perturbation

materials' It has been realized that spin ladders with evencalculation. As realized later by FisR&for the random spin-
2 chain and for the related model of random transverse-

numbers of legs have a gapped spectrum, whereas the sp ield Ising spin chair the probability distribution of the

trum of odd-leg ladders is gapleSsror two-leg ladders, couplings under renormalization becomes broader and
which are analogous objects$s=1 spin chains, the ground- . A ,
’ broader without limit and therefore the system scales into an

state structure can be related to nearest-neighbor valengei .o randomness fixed POINIRFP), where the MDH
bonds, and a topological h_lddeen order parameter, similar @ ormalization becomes asymptotically exact. Fisher has
that in Eq.(1.1), can be defined. o . also succeeded in solving the fixed-point RG equations in
More recently, ladder models with competing |nteract|ons,ana|ytica| form and showing that for any type tfonex-
such as with staggered dimerizaticand with rung and di-  tremely singular initial disorder the system scales into the

agonal coupling,have been introduced and studied. In thesesame IRFP. Later numericar28 and analytica® work has
models, depending on the relative strength of the couplingsonfirmed Fisher’s results.

O%=— lim

li=il—=
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Generalization of the MDH approach for AF chains with J

larger values of the spin is not straightforward, since for not _? T T T T r_R
too strong initial disorder the generated new couplings could @ 1 1 ! 1 e
exceed the value of the already decimated ones. To handle —é ¢ ——b ¢ —
this problem for theS=1 chain Hyman and Yari§ and in-
dependently Monthus, Golinelli, and Jolica&uhave intro- Ja-v) J(1+7)
duced an effective model with spin-1 and spin-1/2 degrees of i 1 1 1 1 1R
freedom and with random AF and ferromagnefd) cou- ®) ! ! ! 17
plings. From an analysis of the RG equations they arrived at —é St b ——4—
the conclusion that the IRFP of the model will be attractive if
the original distribution parametrized by the power-law form _1‘\ r—r—o J *-
1 6 | IREN 1 o | IR 1 N I"JR
B 1 D © SUONE N v /\\l
Ppow(d) =5 J (1.2) ——% ¢ ¢ ¢ p —
J
is strongly random, i.e., if &D ~*<D; *. For weaker initial (d) —e ° - ——o—o *—
disorder the system is still gapless, which is called the gap- AT £
less Haldane phase. J

Theoretical work about disordered spin ladders is mainly , i
concentrated on the weak disorder limit. Results in this di- (e 0000 ek

rection are obtained in the weak interchain coupling limit via

the bosonization approathand by the random mass Dirac ®
fermion method® In particular a remarkable stability of the ) ) _ )
phases of the pure system against disorder Xitlsymmetry FIG. 1. Spin-ladder models used in the paper: The conventional

two-leg ladder(@) and staggered dimerization in the chain couplings

has been observed. (b), the zigzag laddeft) and its representation as a chain with first
In the experimental situation, however, as described be-rlol second-neighbor couplings), and the ful ladder with rung

fore, the effect of disorder is usually strong and we are goininoI diagonal coupling®)
to consider this limiting case in this paper. Our aim is to 9 PING).
provide a general theoretical background for strongly disor- _ . . .
dered spin ladders by studying in detail several mo¢w=ig- Wher%S'Ig IS a spln-01|/2 opelrator: &.lt s%eland on phalm anbd .
ventional ladder, dimerized ladder, zigzag ladder, and the qu]'de> .dor nonrandom spin chains dimerization can be in-
ladder with rung and diagonal couplingsvhich could have troduced as

experimental relevance. Since often a small change in the ()

couplings or in the strength of disorder could cause large Ji=I1+y(-1) ], Osy<1, (2.2
differences in the low-energy singular properties of the mod- . _ L :

els, we have studied the phase diagrams in the space of se‘(‘ﬂth n(7)=0,1, whereas for random d|m¢r|zed coppl!ngs the
eral parameters. As a method of calculation we used a ngven and odd bonds are taken from different distributions.

merical implementation of the MDH approach, which could The pure chain without dimerizationy(=0) has a gapless

treat the combined effect of disorder, frustration, correla-SPECt'UM, and spin-spin correlations decay as a power for

tions, and quantum fluctuations, while some problems aréarg_e disf[anc_e, V\_’hiCh is called quasi-long_—range order. Intro-

also studied by the density-matrix renormalization groupdUcing dimerization fory>0 a gap opens in the spectrfh,

(DMR) method. In particular we have investigated the sta\Which is accompanied by nonvanishing dimer ord®f,

bility of the different topologically ordered phases and stud-#0- This is measured as the difference between the string

ied the region of attraction of the IRFP. order parameters in Eq1.1) c_alculated with spin-1/2 mo-
The structure of the paper is the following. In Sec. Il we Ments at everte) and odd(o) sites:

define different spin-ladder models and present their phase

diagram for nonrandom couplings. A short overview of the Ogim=0¢—0Og. 2.3

MDH RG method and its application to random spin chains ) ) o )

is given in Sec. III. Our results about random spin ladders arén the following we generally consider nondimerized chains;

presented in Sec. IV and discussed in Sec. V. others are explicitly mentioned. _
Now we introduce the interchain interaction

II. THE MODELS AND THEIR PHASE DIAGRAM

L
FOR NONRANDOM COUPLINGS
Hr= ;1 IS 1S, 2.4

We start with two spin-1/2 Heisenberg chains, labeled by

7=1, 2 and described by the Hamiltonian which describes the usual rung coupling between the ladders

L [see Fig. 1a)]. The conventional ladder model is described
HTZE 3,5 .S 11, (2.1) by _the.HamlltomarH= H{+ H2+_HR.F!rlthRe pure model, by
=1 switching on the AF rung couplingd;"=J">0, a Haldane-
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FIG. 2. Schematic phase diagram of the two-leg AF ladder with  FIG. 3. Schematic phase diagram of the full AF ladder with
staggered dimerizatiofsee Fig. 1b) for the definition of the cou- homogeneous rung and diagonal couplings. The transition between
plings]. At the phase boundary between the rung singlet and dimethe two topologically distinct gapped phases is of first order, except

phases the gap vanishes. in the limit Jg=Jp=0.

type gap opens above the ground state and the system has a . 5

nonvanishing even string topological order, which is mea- Hozlzl I (S1S+12tS525+10)- 2.7
sured b§3° -

It is known that the pure AF diagonal ladder described by the
. Hamiltonian H=H,+H,+Hp with J’=J°>0 has a
ever=— NIM { (S 1,+S7) gapped spectrufhlts ground state is of the AKLT type and
=il has a nonvanishing odd string ordedlefined in analogy to
Eq. (2.5,

(S 11t Sfy,z)> . i-1
(2.5 Ogge=— lim < (S + Sﬁz)ex% [ leizﬂ (S'1+S5%)

i=il—o

i-1
xexp(iw > (Sh11+SH)

I=i+1

For strong AF rung couplings every spin pair on the same
rung forms a singlet; therefore this phase is called the rung X (S + S]f"z)>_ (2.9
singlet (RUS) phase. ’ '

_Dimerization of the chain couplings could occur in two i, e )| Jadder there are both rung and diagonal couplings
different ways. For parallel dimerization, when equal bondﬁsee Fig. 1e)] described by the Hamiltoniahl=H,+H.

in. tr?e two_chazins z;re on tbhe sdamf? pos}tion, e, inI(EcJZ), q +Hg+Hp. For nonrandom AF couplings there is a compe-
with n(1)=n(2), thecombined effect of rung coupling and i petween rung and diagonal couplings, so that the

dimerization will always result in a gapped phase. In the round-state phase diagram of the system consists of two

other possible case of staggered dimerization, i.e., wit o : - ;
. X . pologically distinct gapped phasésee Fig. 3. The phase
n(1)=—n(2) [see Fig. )], the two chains have an 0ppo- yangition between the two phases is of first ofder.

site dimer order, Wh!Ch competes with the rung coupling. AS" The main subject of our paper is to investigate how the
a result the phase diagram of the systeee Fig. 2consists  haqe diagrams of the pure ladder models, in particular in

of two gapped phases, which are separated by a gapless trgfjy > and 3, are modified due to the presence of quenched
sition line, starting in the pure, decoupled chains lifit. disorder.

Next, we extend our model by diagonal interchain cou-

plings, given by the Hamiltonian term
IIl. THE MDH RENORMALIZATION: RESULTS FOR

SPIN CHAINS

L
HZ:Z& NICESEERS (26 In the MDH renormalization-group method for random
spin-1/2 chains the random AF bonds are arranged in de-

The complete HamiltonianH=H,+H,+Hg+H,, de- scending order according to their strength, and the strongest
scribes a zigzag laddgsee Fig. 1c)] or can be considered as bond, sayl,3, connecting sites 2 and 3, sets the energy scale
a spin chain with nearest-neighbal(,J7) and next-nearest- in the problem()=J,;. We denote by 1 the nearest-neighbor
neighbor () couplings[Fig. 1(d)]. The pure model with Site to 2 with a connecting bon}, and similarly denote by
JlR:J|Z:31 andJ,=J, has two phases: a gapless phase fo the nearest-neighbor site to 3 with a connecting baad
J,13,<.24 is separated from a gapped phase by a quantut J23is much larger then the connecting bonds the spin pair

phase-transition point. (2, 3 acts as an effective singlet. It follows that the strongly
Finally, we extend our model by two types of diagonal correlated singlet pair can be frozen out. Due to the virtual
couplings, which are represented by the Hamiltonian triplet excitations, an effective coupliniy, is generated be-
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tween the sites 1 and 4. These two sites become nearest 0 S dim

neighbors once the singlet has been eliminated. In a second- =
order perturbation calculation one obtains V]

~ J RD RD

J=x 18143, K(S=1/2)=1/2. (3.1) \% Q
The new coupling is thus smaller than any of the original
ones. The energy scafe is continuously reduced upon iter- T 0

ating the procedure and at the same time the probability dis-
tribution of the couplingsP(J,(2) approaches a limiting FIG. 4. Schematic RG phase diagram of the random dimerized
function. In a gapless random systéintends to zero at the S=1/2 chain as a function of the quantum control paramétgy
fixed point of the transformation and the low-energy tail ofand the energy scal®. Along the RG trajectories the dynamical
the distribution is typically given by exponentz(dgm) is constant. The nondimerized model widh;,,

=0 is attracted by the IRFP withd# 0. With a decreasing energy

“1tlz4y scale(), disorder in the system increases.

P(J,Q)szE(—) e (3.2
z\Q Q
the “projecting onto the lowest level” procedufewhen af-
The dynamical exponemztdetermines how the length scdle  ter decimating out a strongly coupled singlet the generated
scales with the time scale new coupling is in the form of Eq(3.1), however with a
12 constant ofk(S=1)=4/3. Consequently at the initial RG
T~ ~LE (3.3 steps the energy scale could behave nonmonotonically, so
In generalz is not a universal quantity: its value depends onthat an IRFP behavior is expected only for strong enough
the form of the original disorder. Howeverstays invariant initial disorder. To cure this problem a modified RG scheme
under renormalizatioff Therefore one can deduce its value Was proposed ' which is based on the principle of “pro-
from the renormalized distribution in E¢3.2). Varying the  jecting out the highest level.” By this method an effective
parameters of the initial distribution one can reach a situatiofiamiltonian with spin-1 and spin-1/2 degrees of freedom has
where the width of the distribution in E¢3.2) grows with-  been introduced, where between the spins both AF and FM
out limits, i.e.,z formally tends to infinity. In this case, ac- couplings could be present but their distribution should re-
cording to exact results on the random AF spin-1/2 cRain, Spect some constraints. The RG analysis of this effective
one should formally replacein Eq. (3.2) by —InQ, so that model leads to two different types of strongly disordered

the scaling relation in Eq3.3) takes the form phases, provided the disorder of the original distribution ex-
ceeds the limiting value dD,. For an intermediate range of
Int,~L", y=1/2. (3.4  disorder, so thab,<D<D,, the system scales into a quan-

tum Griffiths phase, the so-called gapless Haldane phase,
wherez=z(D) is a monotonously increasing function of dis-
order and 1Z(D)>0. When the strength of disorder exceeds
a second limit, sayp>D,>Dg, the dynamical exponent
Lpecomes infinite and the singular behavior of the system is

This type of fixed point, where the ratio of any two neigh-
boring bonds typically tends to zero or infinity, is called an
IRFP. It has been conjectured that the MDH renormalization
group transformation(3.1) leads toexact resultsregarding

the singular properties of the transformation, namely, th .
value o?zp in ng. ?3.4) is exact?>*! Y M%ontrolled by the IRFRsee Fig. 5.

For the random AF spin-1/2 chain, according to exact Until now, to our best knowledge, there have been no
result® any amount of disorder is sufficient to drive the humerical estimates about the limiting disorder strendiis,

: - . .andD. For the uniform distribution, which corresponds to
system into the IRFP. Similarly, the gapped dimer phase wil nab, o '
turn into a gapless random dimer phase for any amount of 1in Eq.(1.2), the system is in the gapless Haldane phase

: 39
disorder, where the dimerization parameter is defined as Wlth.Z%1.5. .
P Finally, we mention the work by Westerbeatal *° about
Sgim= 1N Jogdlav— [N Jevenl av (3.5 renormalization of spin-1/2 Heisenberg chains with mixed

. ] ) FM and AF couplings. In this problem, due to the presence
in terms of the couplingd,qqandJeenat odd and even sites, of strong FM bonds, under renormalization spin clusters with
respectively. The random dimer phase is a quantum versiogrpjtrary large effective momen&" are generated, such that

of the Griffiths phase, which has been originally introducedgefi._A -« \hereA is the largest local gap in the system and
for classical disordered systerfisThe schematic RG flow A—0 at the fixed point. Singularities of different physical

diagram of the random dimerized chain is drawn in Fig. 4. guantities are related to the scaling exponent
The MDH method has also been used to study the singu-
lar properties of the random AF spin-1 chain. Here we first
note that the spectrum of the pure system has a Haldane gap,
which is stable against weak randomness. Consequently the With a ladder geometry, spins are more interconnected
MDH renormalization, which is by definition a strong disor- than in a chain, which leads to a modification of the decima-
der approach, becomes valid if the initial disorder is in-tion procedure described in the previous section. As shown
creased over a limit, sal,. Our second remark concerns in Fig. 6 both spins of a strongly coupled pair, $2y3), are

IV. RENORMALIZATION OF AF SPIN LADDERS
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Conventional ladder, D=1

Log,  [P[-Log,,&)]]

IRFP

-Log, (4)

FIG. 5. Schematic RG phase diagram of the random AF spin-1
chain, as a function of the disorder stren@tfand the energy scale
Q. For weak disordeD <Dy, there is a Haldan€'H” ) gap in the
spectrum. For intermediated disordBg<<D<D,, the systemis in
the gapless HaldangéGH” ) phase with a varying dynamical expo-
nentz(D). For strong enough disordéd,>D 1, the system is in the
random single{“RS” ) phase and scales into the IRFP.

FIG. 7. Probability distribution of the first gaps for the conven-
tional random ladder with a disord®r=1 [see Eq(1.2)] and sys-
tem sizesL=32, L=64, andL=256. For clarity, we have not
shown the data corresponding lte=128. The solid lines represent
the best fit to the form log P(—log;pA)]=A, —1/z logpA,
with A32: 318, A64: 230, A128: 192, A256: 214, 232: 065, 264
=0.90, z1,4= 1.06, andz,s¢=1.07. We deduce that the asymptotic

. . value of the dynamical exponentis=1.07.
generally connected to the nearest-neighbor spins, denoted

by 1 and 4. After decimating out the singlet pair the new,

¢ ! ! In practice we use a finite-size version of the MDH renor-
effective coupling between 1 and 4 is of the form

malization, as for the RTIM in Ref. 42. In this method we
( y ) start with a finite ladder of. sites with periodic boundary
~ J127J13)(Ja3—Jg conditions and perform the decimation procedure until one
Jia=x Q . k(S=1/2)=1/2, (4.9) spin pair with a first gap\ remains in the system. Since
plays the role of the energy scale at length s¢ald andL
which should replace Eq3.1) obtained in the chain topol- should be related by the relati¢8.3) involving the dynami-
ogy, i.e., withJ;53=J,,=0. With the rule in Eq.(4.1) FM  cal exponent. Performing the above decimation for differ-
couplings are also generated. As a consequence, the ren@nt samples the probability distribution afin the smallA
malized Hamiltonian contains both AF and FM bonds. Whenlimit is described by the form in E(3.2), where the energy
at some step of the renormalization an FM bond becomes thgcale() is replaced by ~*.
strongest one, it will lead to the formation of an effective  The IRFP is signaled by a divergirgy or more precisely
spin-1 cluster. In further RG steps the system renormalizethe P, (A)dA distributions have strong dependence, so that
into a set of effective spin clusters having different momentghe appropriate scaling combination is
and connected by both AF and FM bonds. The detailed
renormalization rules have already been given in Ref. 21. In(LYPL(A)=f(L™¥InA), (4.2
Due to the ladder topology and the complicated renormal- , . . .
ization rules the RG equations cannot be treated analyticallyh_'clz XinLSe obtained from E¢3.2) by formally settingz

and one resorts to numerical implementations of the renor- In the actual calculations we have considered several hun-
malization procedure. We note that a variant of the MDH

o . . dred thousand realizations of random ladders with lengths up
renormalization has been successfully applied numer|call¥ o
. . . . o L=512. Then, from the distribution of the gap at the last
for thelavgo-d|men3|ona(2D) random t_ransverse-ﬁeld Ising step of the RG iteration we have calculatedgthF:e dynamical
modef***(RTIM) [also for double chains of the RTINRef. exponent,z. The random couplings were taken from the
42)]. An IRFP has been obtained both for the 2D RTIM P ' piing

: power-law distribution in Eq(1.2), where the strength of
(Refs. 41 and 4gand the double chain RTIF disorder is measured by the paraméein the following we
3 present our results for the specific ladder models discussed in
Sec. Il

A. Random conventional ladders

- .- ______ . . . . .
1 4 1 4 We start with the conventional ladders in Figajlwhere
the couplings along the chaing/, =1, 2) and the cou-
5 plings along the rungs]F) are taken from the same random

distributions. In Fig. 7 we show the probability distribution
FIG. 6. Singlet formation and decimation in the ladder Of the gaps at the last step of the RG iteration calculated with
geometry. the disorder parametd&y =1 [see Eq.1.2)]. As seen in the
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Conventional ladder 20, : 1 20 ¢
3.5 T T T T T T T [ OL-s DL OL.6s
=37 — g [ WL=128 (@ =, [ WL-128 ©
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2 st ] ]
L
=
2 0 .
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> s |
a : OL - 64 i
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By ]/\() 115 vLa2s6 " @
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1 1.5 2 25 3 35 4 45 5
Disorder D

FIG. 8. Variation of dynamical exponentversus disordeb for
the conventional ladder with lengths=32, L=64, L=128, and

L=256. For large system sizes and strong disorder, onezhas S
=0.42+0.58 <D. In the region withz.,.<1, where the disorder is . ) .
irrelevant, the system is in the gapped Haldane plisse text FIG. 9. Finite-size estimates of the dynamical exponent of ran-

dom conventional ladders with staggered dimerization as a function

figure the small energy tail of the distribution follows the of the coupling ratioJf,/Jnax, With @ disorder parametéd=1,

functional form given by Eq(3.2) and the dynamical expo- &nd for different dimerizationga) y=0.5, (b) y=0.75, and(c) y

nentz given by the asymptotic slope of the distributions is =1 In (d) a similar calculation for the randomX chain is pre-

finite and has only a very weak size dependence. sented Dfl,y.= 1), where_th_e _exact dynamical exponer_1t in Eq.
Repeating the calculation for other valueshbfve obtain (4.3), obtained in the.—oo limit, is shown by the dashed line.

a set ofD-dependent dynamical exponents which are repre-

sented in Fig. 8. For strong disorder we obta{D)<D, <vy=<l1, in Eq.(2.2). The different types of couplings in the

which means thatlisorder is reduced in the course of the ladder are taken from the power-law distribution in Eij2),

renormalization In the terminology of Motrunictet al,*  each having the same disorder parameBerhowever the

this system is dinite randomnessystem, as opposed to the range of the distribution for the different types of couplings
infinite randomnessystems that will be considered in the are 0<JR<JR_ for the rung couplings, and-<0J}"*¥< (1

next subsections. For weak disorder the dynamical exponent Y)Jma @nd 0<JSTOM (14413, for the weaker and
predicted by the approximate MDH renormalization is low- stronger chain couplings, respectively. For fixed valuey of

ered below 1 foD <Do~1. Here we argue that in this ré- nqp'\ve have calculated the finite-size-dependent effective

gion the effect of disorder is irrelevant, so that the system i%ynamical exponentz, as a function of the coupling ratio
in the gapped RUS phase. Indeed, in a pure quantum syste ) ' '
m max-

where scaling in time and space is isotropic, the dynamica As shown in Fig. 9 the effective exponents have the same

exponent 1Zpyre= 1 Slmlla_rly, for.d|sorQer-|.ndu.ced gapless type of qualitative behavior for different values of the dimer-
systems, where disorder in the time direction is strictly COriation parametery. In each case the curves have a maxi-

related, the dynamical exponent cannot be smaller than in thr‘?\um at some value of the couplings, where the finite-size
Syre dsygtedm, sdo dthazdis? leurezl' Conseqlueﬂtly, c;f the dependence is the strongest, whereas further from the maxi-

ISorder-induced dynamica expone_ntz@< ' t'en IS0 mum the convergence of the data is faster. To decide about
der could only influence the correction to §caI|ng behaviory, e possible limiting value d, in particular at the maximum
but the system stays gapped. In view of this remagkcan of the curves, we analyze the behavior for 1 in Fig. 90),

be considered as .the onvger limiting value of th? disorderWhich is just a dimerized random chain, the properties of
where the conventional finite randomness behavior ends. %ﬁhich are exactly known to some extént®

the phase_diagram of random conventional two-leg spin lad- The random critical point of this system is situated at
ders consists of two phases: a gapped F{HSIdane)_phase JR JIma=2, Where the critical behavior is governed by an
and a random gapless Haldane phase. The latter is charact EP. s0 that the dynamical exponentis formally infinit
ized by a finite dynamical exponen{D) for any strong but ' y P y Y-

finite initial disorder. Consequently there is an important.':Or any other values of the coupllngﬁaj\]max, the system

difference with the random AF spin-1 chain which flows IS in the random dimer phase, where the dynamical exponent

into the IRFP above a finite critical value of randomness” f|'n|.te and coupling dependent. To see the general ten_d_ency
. of finite-size convergence of tleexponent around the criti-
(see Fig. b. ; !
cal point we have repeated the calculation at the 1, y
=1 case for the randorKX chain and the numerical finite-
size results are compared in Figdpwith the exact value of
In this subsection we consider conventional ladders witlthe dynamical exponent, as given by the solution of the equa-

staggered dimerization having a dimerization parameter, @on

B. Random ladders with staggered dimerization
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FIG. 10. (a) Probability distribution of the first gap at the tran- RD |

sition point of the random conventional ladder with staggered 05
dimerization,D=1, y=0.5, andJ® /Jna=1.1. The distributions
become broader and broader withwhich signals infinite random-
ness behavior(b) Scaling plot in terms of the scaling combination FIG. 11. Phase diagram of random conventional ladders with

0.25 0.5 0.76 1
v

in Eq. (3.4). staggered dimerization for different disorder parameters. The ran-
dom dimer(“RD” ) phase and the random rung sing(&RRS")
Jfr*]ax D2 -z phase are separated by a random critical line of infinite randomness
I (W) , (4.3 behavior.

known from Refs. 36 and 29. As. seen in Fig. 9 the dynamical hich is wide, in particular for weak disordésee Fig. 12
exponents of randonXX and Heisenberg ladders have very At J2 a)JJl
m

e . ; max—=0, where the zigzag ladder reduces to a random
S|m|llar coupling dependgnues 'and one expects the same YR§ chain, the system is in the IRFP, thus the extrapolated
ggdlve_rﬁ]ellcet attrt]he crlf_lcal t?or:m for alllt\r/]alues Wt"t]hFl?. .value of the dynamical exponent is formally infinity. Given
=Y we Tlustrate the scaling behavior of the gap at the transiy, strong finite-size corrections in the numerical RG data of
tion point, i.e., at the maximum of the curves in Figa)9

The distributions in Fig. 1@) become broader and the dynamical exponettin Fig. 12, it is difficult to decide

broad h i d the effective d cal ti whether the IRFP behavior of the zigzag ladders is extended
roader with size and the etiective dynamical exponent Ny, o fyite region of the couplingd?,/J-..>0 or whether
creases with size, without limits. An appropriate scaling col-, . . . . : ' .
e . g this region shrinks to a single point only. The first scenario
lapse of the gap distributions has been obtained in Fi)10 may be related to the existence of a gapless phase of the pure
where the scaling variable in Et.2), with = 1/2, is used. y 9ap P P

2711
A similar type of infinite randomness behavior is observed a{nodel forJ*J°<0.24.

. o X . To discuss this issue we have calculated the dynamical
other points of the critical lines, with the same expongnt . 4 .
- . . exponent by an independent method based on density-matrix
=1/2, which turned out to be universal. Thus we conclude s o : .
that the random conventional ladder with stacaered dirnerrenormallzatlon. In principle, the dynamical exponent is re-
o g 99 lated to the distribution of the first gag, in the smallA
ization has two Griffiths-type gapless phases, the random - . . .
. : . imit, see in EQ.(3.2 with A—J. However, a precise nu-
dimer phase and the random rung singlet phase, which are

separated by a random critical line, along which there ismencal calculation of a smald by the DMRG method is

infinite randomnesbehavior. For a different disorder param- very difficult; therefore we used another strategy, as de-
eter, D, the position of the random critical line is modified, scribed in detail in Refs. 36 and 43. By this method one
and generally stronger disorder is in favor of the random

rung singlet phase, see Fig. 11.

We note that the previously studied random conventional zig-zag ladder, D=1 " Zigzag laader, D=5
T T T T T T T T T T T

ladder is contained as a special point in this phase diagram a t:igg —;(—
JﬁaJJmaX=1 andy=0. This point is in the random rung sin- Br L=512 - ]

glet phase for any value @, thus the dynamical exponent is
finite in accordance with the previous results.

Dynamical exponent z
Dynamical exponent z

—_ N W s LR N 0 0

C. Random zigzag ladders

For the zigzag ladders the nearest-neighbor couplings GRS S S - v
(IR=37=J}) are taken from the power-law distribution in ~ ° 2 ° .93, 1 12 1418 b orOsaLte, | F ML
Eq. (1.2 with the couplingJi within the range €:J @ ®)
<J! .. Similarly, the next-nearest-neighbor couplingd (

AR FIG. 12. Variation of the dynamical exponentersusJ?../J*
=J?) are taken from th(_e same type ofzpovger-law distributiong o zigzag ladder with a Ei/isordér=1 ?a) andD=5 E"g)*/ l’:“S?
and the range of couplings is now@; <Jp, D=1, the MDH renormalization-group data with=128, L
The calculated dynamical exponeaf,as shown in Fig. =256, andL=512 have been compared to the DMRG calculation
12, has its maximum aiZ,/J..=0 and around this point with L=32 (see Fig. 13 The lines connecting the calculated points

one can observe strong finite-size dependence, the range ak guides for the eye.
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0 - J1-J2 ladder, D=1 J1-J2 ladder, D=5
c—>o L=8 @
o——o L=16 N N
2| =—aL=32 g §
— 0.17*X-1.7 g %
e g g
£ -4 g 3
a & 3
=
-6 00 02 04 06 08 1 1.2 14 16 l() OI.Z Ot4 0t6 ots ll l',2 l‘.4 1.6
% Jhas/ Fhax JBad/ Jrhax
4 (@) ()
-8 FIG. 14. Variation of the dynamical exponenwersusJ;,,/J
~-25 -15 -5 v max Ymax
for the randomJ;-J, ladder with disordeD =1 (a) andD=5 (b).
Inm, The lines connecting the calculated points are guides for the eye.
FIG. 13. Distribution of the log surface magnetization of the zlf)te the strong finite-size corrections in the Griffiths phaesf.

random zigzag ladder using a power-law distributioD (
=12 /3t =0.5), for different lengths of the laddet, The

asymptotic slope of the distribution, indicated by the straight line, iswithin the interval 0<JP<Jhae This model, having first-

the inverse of the dynamical exponent, see @c). and second-neighbor interactions, is called,al, ladder.

We have calculated the finite-size dynamical exponents as a
considers the equivalent AF chain with random first- andfunction of the coupling ratid?,_ /3% for different strengths
second-neighbor couplingsee Fig. 1d)] and with fixed free  of disorder(see Fig. 1% These curves show similar qualita-
boundary conditions and calculate the surface magnetizatiotive behavior as those calculated for the random conven-
ms, at the free end, which can be done very accurately byional ladders with staggered dimerization in Fig. 9, so that
the DMRG method. As argued in Refs. 36 and 43 for awe can draw similar conclusions.
random chainmg andA can be considered as dual quantities, The extrapolated position of the maximum of theurves
so that the distribution of the surface magnetization is asis identified as a quantum critical point with infinite random-

ymptotically given by ness behavior. Indeed, repeating the calculation as indicated
" for the dimerized ladder model in Fig. 10 we obtained a
P(Inmg)~mg=,  ms—0. (4.4 scaling behavior as in Eq3.4). with an exponent which is

compatible withgy=1/2. The random quantum critical point
separates two gapless Haldane phases, having odd and even
topological order, respectively.

Repeating the calculation for different disorder param-
eters we obtain a phase diagram shown in Fig. 15. In the
fange of disorder we used in the calculation, the random

Thus the dynamical exponeiztcan be obtained from an
analysis of the smalng tail of the distribution, as illustrated
in Fig. 13 where the distribution function of iny is given in

a log-log plot for different lengths of the ladder. As seen in
this figure the slope of the distribution is well defined for
larger systems, from which one can obtain an accurate es
mate for the dynamical exponent, which is finite. Repeating

the calculation for other values of the coupling ratio, 7172 ladder
J2 JI . we have obtained a set of the dynamical expo- 0.6 ' ' ' '
nents, which is plotted in Fig. 12. These accurate DMRG
data show that the extrapolated values of the effective expo- 0.5 T ]
nents calculated by the numerical RG method are finite for 5
any J2,./3t_>0. Consequently the random zigzag ladder “:E 0.4 1 =3 ObD ]
has just one IRFP a2 /J =0, whereas the system in the 42
region ofJ2 /3% >0 is in a gapless random dimer phase. In TO03E AT T T
view of the numerical results in Fig. 12, whezg seems to EVEN
stay overz,,=1, it is quite probable that the random dimer 02 - 7
phase exists for any small value of the disorder. ol . . . ‘
' 1 2 3 4 5
D. Random J;-J, ladders Disorder D

ferlr?te tfulle I;?Sg[; Tlli rszrejs nt:: dI?DFI%ee)lrza\l;etToess%fe-r FIG. 15. Phase diagram of the randatJ, ladder obtained
yp PINGSJy, Ji L from the maximum in the variation of the dynamical exponent ver-

a gpeCIaI case of this model, when the chaly) @nd 'ung = gysg2_sat _ for the largest available size= 256 (see Fig. 14 for
(Jr") couplings are taken from the same power-law distribup — 1 andD =5). The two straight lines connecting the calculated
tion with a disorder parametdd and having a range of O transition points are guides for the eye. The whole transition line
<J;, IR<J} 4 On the other hand the diagonal couplings arebetween the two phases with even and odd topological orders, re-
taken from the same type of power-law distribution and arespectively, is presumably a line of IRFP's.
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critical point is always attracted by the IRFP; this propertyJ;-J, model, the random critical behavior is of the IRFP

probably remains true for any small value of disorder. type, probably for any small amount of disorder.
At this point we comment on the similarity of the low-
V. DISCUSSION energy behavior of spin chains withS2 odd (2S=even)

) ) , spins and that of spin-1/2 ladders with=o0dd (n=even)
In this paper different types of random AF sp|n—ladder|egs_ If the pure systems are gapless, i.65=2=odd,

models have been studied using a numerical strong disordgfong enough disorder is expected to bring both systems into
RG method. In particular we aske® how the phase dia- he |RFP, Forn=odd=3, there is a limiting disorder

grams of th_(_a pure models are modified due t_o quenched di%‘trength,DC(n), below which the system is described by a
order and(ii) how the concepts observed in random AF ., entional random fixed point wita<w. On the other
chains, such as infinite randomness and Griffiths-type sinthand for S=n=even we have only a partial analogy: for

anUes,l areI valid Ifor these more complicated, quasi-oneyaak disorder both systems are gapped, which turns into a
dimensional moqle S . b q apless Griffiths-type phase for stronger disorder. While the
In our numerical calculations we observed as a genergly 4o |adder stays in this conventional random phase for

rule that for strqng enough disorder the ladder fT‘Ode'S' Iikeany strength of the disorder, the random spin chain will turn
the random chains, become gapless. The dynamical exponept|rEp hehavior at some finite limiting randomness. This

of the models is. generally nonuniversaldepends on Iboth type of infinite randomness behavior can, however, be seen
the strength of disorder and on the value of the couplings. 155 ¢qtrated even-leg,-J, ladders at the transition point.

models where there is a competition between different typege an thus conclude that random ladders with even and odd
of phases, either due to staggered dimerization or frustratior}]umbers of legs belong to different universality classes.
such as in thd,-J, model, at the phase boundary the critical g1y we comment on random square lattice antiferro-
behavior of the random model is generally controlled by aMagnets ,which can be obtained in the limit when the num-
infinite randomness fixed point, at least for strong enough .~ Ieés,n, goes to infinity. By increasing the value of
disorder. The low-energy properties of the systems in thi§he limiting strength,D.(n), is expected to increase, too
IRFP are asymptotically exactly known from analytical cal- ;o4 for n— even(for ;‘rucstra’ted laddedsandn=odd. In ,the '

culationg in random.AF spin .Chaiﬁg'zg Thus the ggnergl limit n—o, D.(n) very probably tends to infinity, so that
phase diagram consists of Griffiths-type phases with dIﬁter'he critical behavior of that system is described by a conven-
ent topological order separated by a random critical point 0{

) . . ional random fixed point. Work is i t ify thi
the IRFP type. The zigzag ladder is an exception, wher jona randorm fixed poin ork is in progress to verify this

S - o "Scenario and to obtain a general physical picture about the
there is just one Griffiths phase and the random critical po'nfow-energy properties  of random  two-dimensional
is located at its boundary.

. . antiferromagnet&
Next we turn to discuss possible crossover effects when 9

the strength of disorder is varied. These problems cannot be
directly studied by the simple strong disorder RG method,

however, from arguments considering the sigregf—zy,re F.l. is grateful to J.-C. Angke d’Auriac and G. Fth for

and from analogous investigations on quantum spiruseful discussions. This work has been supported by a
chaing®***3we can suggest the following picture. Originally German-Hungarian exchange progra®AAD-MOB), by
gapped phases could stay gapped for weak disorder and bgve German Research Foundation DFG, by the Hungarian
come gapless only if the strength of disorder exceeds somigational Research Fund under Grant Nos. OTKA TO23642,
finite limiting value, as seen for the random conventionalTO25139, TO34183, MO28418, and M36803, by the Minis-
ladder. However, for frustrated ladders, such as the zigzagy of Education under Grant No. FKFP 87/2001, and by the
and thel;-J, ladders, any small amount of disorder seems taCenter of Excellence Grant No. ICA1-CT-2000-70029. Nu-
bring the system into a random gapless phase. At a phaseerical calculations were partially performed on the Cray-
boundary, such as in the staggered dimerized ladder and tfeE at Forschungszentrumlidin.
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