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The effect of quenched disorder on the low-energy and low-temperature properties of various two- and
three-dimensional Heisenberg models is studied by a numerical strong disorder renormalization-group method.
For strong enough disorder we have identified two relevant fixed points, in which the gap exponent,
describing the low-energy tail of the gap distributi®fA) ~A® is independent of disorder, the strength of
couplings, and the value of the spin. The dynamical behavior of nonfrustrated random antiferromagnetic
models is controlled by a singletlike fixed point, whereas for frustrated models the fixed point corresponds to
a large spin formation and the gap exponent is giverwby0. Another type of universality class is observed
at quantum critical points and in dimerized phases but no infinite randomness behavior is found, in contrast to
that of one-dimensional models.
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[. INTRODUCTION tum critical point, which corresponds to the chain without
dimerization. At the quantum critical point, the ground state
The Heisenberg model plays a central role in the theory otan be described by the notion of a random singR®)
magnetic orderingand the two-dimensiondRD) antiferro-  phase, which consists of effective singlets of pairs of spins
magnetic(AF) model has been intensively studied motivatedthat are arbitrarily far from each other. Fisher’s SDRG treat-
by its relation to high-temperature superconducti@itc- ment has been extended to the dimerized phases that turned
cording to the Mermin-Wagner theoretmo long-range or-  out to be equivalent to quantum Griffiths pha8@$ie SDRG
der (LRO) can persist at finite temperatures in the homogemethod has also been applied for rand8m1 (Ref. 9 and
neous Heisenberg model if<2. At zero temperature, the S=3/2 (Ref. 10 spin chains and for various random spin
LRO of the classical ground state is reduced by quantuntadder modeld! In general, the Haldane gapped phases stay
fluctuations. This effect is particularly strong {quas)-1D  gapped for weak disorder, while they become gapless and
AF models and gives rise to the complete destruction obften form RS phases for strong disorder.
Neel-type LRO. Fluctuations enhanced by quenched ran- To study the singular properties of tie= 1/2 Heisenberg
domness and frustration can further destabilize LRO, resultmodel with mixed ferromagneti@F) and AF couplings, the
ing in disordered ground states even in higher-dimensioneg8DRG method has to be modified. In one dimension, the
systems. In various experiments, in which quasi-two-presence of ferromagnetic couplings leads to the formation
dimensional magnetic materials that can appropriately be desf large spin clusters in the renormalization-gro(RG)
scribed by the 2D Heisenberg antiferromag(¢fF) model treatment, with an effective moment that grows without lim-
were diluted with static nonmagnetic impuriti@dg or Znin its as the energy scale is lowerEdAs a consequence, the
La,CuQ,, and Mg in KCoF, or K,MnF,), a disorder- ground-state properties of random Heisenberg chains with
induced transition from Nal order to a spin liquid was ob- mixed AF and F couplings and of those with only AF cou-
served: If the impurity concentration is larger than a criticalplings are different. The presence of large effective spins in
value the LRO is destroyetf the low-energy limit was also observed for random AF spin
The behavior of HAFs in the presence of quenched rantadders with site dilutior®
domness is generally very complex and present understand- Not many theoretical investigations of the effect of
ing of this is not complete. Most of the theoretical resultsquenched disorder in higher-dimensional random HAFs ex-
have been obtained for 1D models, many of them by a strongst, and those that have been done are almost exclusively
disorder renormalization-grou(SDRG method introduced restricted to dilution on the square lattice. Quantum Monte
originally by Ma, Dasgupta, and Hu for the rand@® 1/2  Carlo studies of the HAF on a diluted square lattice show
AF spin chairf Fishef has shown that the SDRG method that LRO disappears at the classical percolation pdint.
leads to asymptotically exact results in the vicinity of a quan-While in earlier investigations a uniqu&,dependent critical
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behavior was foundf! recent studies identify the transition as o A T /1
an Sindependent classical percolation transition with well- s ]
known exponent> Another work studied the-J Heisen- K peee g
berg(quantum spin glass and found that for a concentration R e
of F bondsp>p.~0.11 the Nel-type LRO in the ground SRS SANELN CAELS S S G -
state vanishes and is replaced by a so-called spin-glass Ol AVl A
phasel.6 Within the spin-glass phase, the average ground- AN RN AN I N S T
state spin,S,;, scales asSy,~+/N, and the gap as\E (}'5 (s) -

~1/N, whereN is the number of spin¥.
In this paper we study the effect of randomness in higher- FIG. 1. (8 TheJ;-J, model andb) the dimerized model on the
dimensional HAFs by means of the SDRG method. In parsquare lattice.
ticular, we consider the low-energy behavior of frustrated
and nonfrustrated systems in two and three dimensions. Adassical ground state the sublattice magnetization Sor
we mention in the next section the pufiee., nonrandom  =1/2 is reduced by about 40%. Generally in ordered AF
versions of these models have a ground state that has eithghases the excitation spectrum is gapless. In a finite
AF or dimer LRO or is disordered, i.e., in a spin-liquid state.d-dimensional system of linear size—according to spin-
By calculating the gap distribution and cluster formationwave theory and analysis of the nonlinear sigma model—the
within the SDRG scheme we characterize the change of thgap behaves 45
ground-state structure of the pure systems by the effect of the
disorder. AEqq(L)~12/L1. ©)
The paper is organized as follows: The models and their
phase diagrams for nonrandom couplings are presented Frustration generally leads to a further reduction of thelNe
Sec. Il. The SDRG method and its different low-energy fixedLRO. Frustration of geometrical origin is present in the tri-
points for (quas)-1D systems are discussed in Sec. lll. Re-angular lattice, where the sublattice magnetization is about
sults of the SDRG method on different 2D and 3D models50% of its classical valu# In more loosely packed frus-

are presented in Sec. IV and discussed in Sec. V. trated lattices, such as in tHegomelattice?* the square
lattice with crosses (see, however, Ref. 260r in the 3D
Il. THE MODELS AND THEIR PHASE DIAGRAM EOR pyrochlore latticé, the LRO completely disappears and the
NONRANDOM COUPLINGS systems have a disordered ground state. The correlations are

_ o . _ short ranged and one finds a finite triplet gap in which a
We start with the Hamiltonian of a nearest-neighbor spincontinuum of singlet excitations exists. In the case of the

1/2 AF Heisenberg model, kagomelattice these extend down to the ground sféte.
Competing interactions are another source of frustration
H.= J , 1 which can also .Iead to disordered grou'nd gtates. As an ex-
! <k% n S @) ample, we consider the AF;-J, model with first- ;) and

) ) second- {,) neighbor interactions, described by the Hamil-
whereJ>0 and the summation runs over nearest-neighbofynian

(nn) pairs, (k,k"), of a regular lattice. In one dimension,
Néel—type_LRO is_ destroyeq by quantum fluctu_ations and the H=H,+H,, (4)
system with half-integer spin vali&shows quasi-long-range

order (QLRO), i.e., correlations in the ground state decaywhere

algebraically:®° A similar behavior can be observed in AF

spin ladders with an odd number of ledsBoth systems

have a gapless excitation spectrum and in finite chains of H,= E J>SSe (5)
length L the gap vanishes algebraically with a dynamical (kk") nnn

critical exponentz,=1, which is characteristic for a quan-

tum critical point: and the coupling ifd; [Eq. (1)] is denoted ad=J, [see Fig.

1(@]. In two dimensions, there are at least three phases, as
AE(L)~1/L%. ) shown in Fig 2Za). For small frustration,),/J;=p, the sys-

tem possesses AF LRO, whereas for large frustration the
Quantum fluctuations play a different role in AF spin chainssystem goes to the collinear state, in which ferromagnetically
with an integer spit? and for spin ladders with an even ordered columns of spins are arranged antiferromagnetically.
number of leg€’ These systems show a topological stringIn the range 0.34 p<<0.60, the ground state is disordered
order, which is accompanied by exponentially decaying corand the spectrum is gapped for all types of excitatfSris.
relations and by a finite gap in the spectrum. According to recent numerical studi@shere are probably

One can approach a 2D geometry by successively increaseveral quantum phases in this region, separated by different

ing the number of legs of AF spin ladders. The resultingtypes of quantum phase transitions.
square lattice has a qualitatively different low-energy behav- Finally, we introduce a dimerization into model). We
ior: The effect of quantum fluctuations is weaker and theconsider the square lattice, denote a lattice lsiby its two
ground state shows Metype LRO?* Compared with the coordinatesk=(i,j), and define
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0 0 1 FIG. 3. Singlet formation and decimation for a spin configura-
(b) tion that does not have a chain topology and typically occurs in

) ) higher-dimensional systems.
FIG. 2. Phase diagrams of square lattice HAF modglsFor

the J;-J, model with varying frustrationp=J,/J,, there are three
regions: the ordered AF phase and the ordered collif@ar phase,
separated by a disordered spin-liqy&l) region.(b) In the dimer-
ized model, the AF and diméD) ordered phases are separated by
a quantum critical point at.. .

In a chain geometry the couplindg; andJ,, would not be
present and the resulting RG flow always generates AF cou-
plings. However, for extended, not strictly 1D objects, some
of the generated new couplings can be ferromagret:, if
J15<J13 and J3,>J,, or vice versa and therefore the deci-
mation rules have to be extended. If at one RG step an F
©6) bond turns out to be the strongest one, its decimation will

lead to an effective spis=1. In the following steps, the
system will renormalize to a set of effective spins of different
The dimerized model is then described by the Hamiltoniarmagnitude interacting via Bndor AF couplings.
H=H,+Hg, and has a layered structure, see Figdp)1lts For higher-dimensional systems, the basic decimation
phase diagram is shown in Fig(2 as a function of the processes are the singlet formation in EdQ.and the effec-
dimerization parameter a<<1. For a<a.=0.686 the tive spin(cluste) formation. To specify the latter, let us con-
ground state has AF LRO, whereas for a. the system is sider three spins,,S,, and S; with interactions fulfilling

in an ordered dimerized phase, in which spin-spin correlatJ,q>|J;4],|J13. In the action of the RG, the two original

tions along horizontal lines approach different limits if the gpins s, and S; form a new effective spin of magnitude
distarice between the spins is qdd or even, respgctlvely. Inthe|s,+S,| representing the total spin of the ground state in
dimerized phase, there is a finite gap which vanisheg @s  the two-spin HamiltoniarH ,3=J,3S,S,, where the positive
AE~(a—ac)” with »=0.71, characteristic for the univer- (negative sign refers to an FAF) coupling. The correspond-
Sa“ty CIaSS. of theBD C.IaSS|CaI He|Senberg m&aé? We ing energy gapA, between the ground state and the first
note that dimerization with another topology has been studexcited state in the HamiltoniaH,; is given by A
ied recently in Ref. 33. . _  =13,4(S+Ss) andA=J,4(|S,— S5|+ 1), for an F and AF
The random Heisenberg models we investigate in this pagoypling, respectively. 18,5>0 (AF) andS,=S;, it follows
per include the 2D/3D AF model on the regular lattid, an effective singlet formation as described aboveS#0,

the dimerized AF mode(6) in two dimensions, geometri- . = . .
cally frustrated AF models on the triangular lattice as well asW'thln first-order perturbation theory the new coupling be

on the kagonmielattice, the 2D/3DJ;-J, model, and the WeeNS; andSyis given by

2D/3D AF-F models. We are interested in how the phase ~eff

diagrams in Fig. 2 are modified due to the presence of strong J7=C1adiot Ciahas, ®
guenched randomness. with

Hgim= —iEj JaSyi ;Shit1j-

lll. THE SDRG METHOD AND ITS LOW-ENERGY FIXED Cip= S(S+D+ SZESE+ D =SSt 1)
POINTS IN 1D MODELS 25(S+1)

The basic ingredient of the SDRG method in Heisenbergnd
models is a successive decrease of the energy scale of exci- —
tations via a successive decimation of couplings. We start _S(S+1)+85(S3+1)—-Sy(S;+1)
with a S=1/2 HAF model in which the strongest coupling is, C15™ 25(5+1) '
say,J,3, the one between lattice sites 2 andc8 Fig. 3. If
Jog is much |arger than its neighboring Coup|ings At each RG step, we find the pair of the Spins with the Iargest
J12,d13.d24, @andJs,, the spins at 2 and 3 form an effective €nergy gapA that sets the energy scal®, and decimate
singlet and are decimated. The effective coupling betweefhem according to renormalization rules described in Egs.
the remaining sites 1 and 4 in second-order perturbatioﬁ)r (8) A detailed derivation of these renormalization rules
theory is given by can be found in Ref. 34.
The fixed point of the RG transformation for lattices that
(J1r— 319 (Jau— Jra) do not.hgve a.chgin geometry may depend on their topqlogy,
e\ S22 TI8T8 T2 \(S=1/2=1/2. (7) the original distribution of bonds, the strength of the disor-

Jas der, etc. We briefly summarize the existing results for spin
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chains and ladders since it might be helpful for analyzing theThe following random-walk argumeitgives {=1/2. The

RG results in higher-dimensional systems. total moment of a typical cluster of si2¢ can be expressed
In the case of the random AF chaiwhich has neither F  as Si4=|=)_,+ S|, where neighboring spins with FAF)

bonds nor frustration the RG procedure described above couplings enter the sum with the sariaifferend sign. If the

runs into an infinite randomness fixed poifiRFP) corre-  positions of the F and AF bonds are uncorrelated and if their

sponding to a random singlet phase. In this phase the renogtistribution is symmetrical, one h&gcNY?, i.e., Eq.(14)

malized clusters are singlets, thus the total magnetic momewyith = 1/2.

is zero, and the energy and length scales are related via A nontrivial relation constitutes the connection between

CInQ~LY2 ) the energy scal€) and the size of the effective spin,

which means that the dynamical exponent is formally infi- Serr~ ", (15)
nite. where a numerical estimate of the exponentis0.221).%2
A dimerizedS=1/2 chain with random AF evenl{) and  Comparing Eq(14) with Eq. (15), the relation between the
odd (J,) couplings shows dimer order, and the low-energylength scald.~N (d=1) and the energy scale is
behavior is controlled by a random dim@D) fixed point at
which the dynamical exponery, is finite and a continuously
varying function of the strength of the dimerization mea-
sured bySgim=[In Je]ay— [N Jo]av- 2> At this fixed point, the
low-energy tail of the distribution of the effective couplings,

_d4_1

kK 2K’

O~L7% z (16)

wherez is the dynamical exponent. The distribution of low-
energy gapsP (A), has the same power-law form as in Eq.

Je, is given by . ;
(11). Therefore from the scaling behavior Bf (A) the gap
1(J\ "1 2da, exponent,w, and the dynamical exponent, can be ob-
P(le.M)de=—|§ o (100 tained. Due to the large moment formation the singularities

of the dynamical quantities are different from those in the
for 84im>0. This random dimer phase is a Griffiths phfise random dimer phase in E¢L2), i.e., at a GFP. Generalizing
and we refer to it as a Griffiths fixed poidGFP. At this  the reasoning in Ref. 12, we obtain dndimensions
GFP, the gap of finite chains of lengthobeys a distribution
similar to Eq.(10): x(TM)~T7% C(T)~T#*D[InT|,

PL(A):Lzﬁ(LZA)~LZ(l+w)Aw' (11) m(h)~h§(1+w)/[1+§(1+w)], (17)

which is characterized by the gap exponent,As a conse- thus the singularities involve both exponetjtandw. In the
quence of Eq(11), which holds in any dimension, several following, we refer to this type of fixed point as a large spin
dynamical quantities at a GFP are singular and the charactefixed point(LSFP).

istic exponents can all be expressed miaFor example, the ~ AF spin ladders, although being quasione dimensional,
susceptibilityy, the specific heat, (at a small temperatures have a nontrivial, non-chain-like topology and during renor-

T), and the magnetizatiom (in a small fieldh) behave as ~ Malization also F bonds can be generated according to Eq.
(7). Different random AF two-leg ladders were studied in

x(M~T7¢ C(T)~T**L, m(h)~he*l (120  Ref. 11 with the following results. If the disorder is strong
enough the gapped phases of the nonrandom systems be-
Come gapless. The low-energy behavior is generally con-
trolled by a GFP, where the dynamical exponent is finite and

. . o . . n n the strength of the disorder. However, at random
consideratiori’ If the Grlfflths_5|ngular|.t|es are due to rare gﬁgﬁtudnsw ?;ritic; Spo?nt%, sZpath?nzopizsesowﬁhediﬁaereitoig-
events(produced by the couplingshat give rise tdocalized pological or dimer order, the low-energy behavior is con-

low-energy excitations, the gap distribution should be pros e by an IRFP. In diluted AF spin ladders also LSFPs
portional to the volumeP, (A)~LY. From Eq.(11) it then have begn identifieﬁ‘. P

follows that To close this section we summarize that in one-

d dimensional and in quasi-one-dimensional random Heisen-

Zzl_, (13) berg systems there are two different types of low-energy

tow fixed points, which are expected to be present in higher-

which is consistent with the exact result in the random dimefimensional systems, too. Both for a GFP and for a LSFP,
phase in Eq(10). However, if the low-energy excitations are the low-energy excitations follow the same power-law form
extendeche relation(13) might not hold. as in Eq.(11) from which the exponentsp andz can be

In a spin chain with mixed F and AF couplinfslarge  deduced. At a GFP these two exponents are expected to be
effective spins,Sy, are formed at the fixed point of the related throughe=d/(1+w) (13). On the other hand, for a
transformation. The size of these spin clusters scales with theSFP, where the excitations are not localized, this relation

dynamical exponent, and the gap exponent, which can
be obtained by the following phenomenological

fraction of surviving sites during decimation,Nl/ as probably does not hold. At such a LSFP there is a third
independent exponeitinvolved in the dynamical singulari-
Seii~ N°. (14)  ties partially listed in Eq(17).
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In the next section we study different two- and three-
dimensional random Heisenberg models. In particular, we
are interested in the possible difference in the low-energy
fixed point for nonfrustrated and frustrated systems. Since
extendedquasione dimensional or higher dimensigmain-
dom HAF models and Heisenberg models with mixed F and
AF bonds follow the same renormalization route, they could,
in principle, be attracted by the same fixed points, but also
new fixed points can emerge, as we show.

IV. RENORMALIZATION OF HIGHER-DIMENSIONAL
SYSTEMS

This section is the central part of our work, where we
present our results for the ground-state structure of various
two- and three-dimensional random Heisenberg models ob- FIG. 4. Distribution of the energy gap of the square lattice HAF
tained by the numerical application of the SDRG. In practicewith uniformly distributed random couplings, for linear sizes
we start with a finite system of linear sitewith periodic ~ =8,16,24, and 32. The slope of the low-energy tail of the distribu-
boundary conditions and perform the decimation proceduréons is given by—(w+1)=—d/z. The straight line foL. =32 has
up to the last effective spifor decimate out the last spin & slope~—1.7.
singled. The energy scale corresponding to the last decima-
tion step is denoted by. This procedure is performed for Where ®(x)=1, for x>0 and zero, otherwise. The latter
several thousand realizations of the disorder and vyields éistribution is symmetric for =0, whereas for =1/2 we
histogram forA, which represents our estimate of the prob-recover the uniform distribution of AF couplings in E4.8)
ability distributionP (A). From this we extract the gap ex- With D=1.
ponentw and the dynamical exponeatvia the asymptotic
relation given in Eq(11). Moreover, from the average size A. Two-dimensional models
of the effective spin at the last step, =[ S¢]ay, the cluster
exponent/, in Eq.(14) is deduced. The value @, z, and
{ is then used to discriminate the different possible low-
energy fixed points described in the previous section.

Throughout this paper we use a power-law distribution for,
the random couplings©J=<1 for AF models:

In the calculations for two dimensions we usually consid-
ered systems of linear size up lte=32, but for some cases
in which the convergence was faster we went only up to
=10-16. The typical number of realizations were several
hundred thousands for the smaller sizes and several ten thou-
sands for larger systems for each valudofit the first part
we investigate nonfrustrated models, such as the HAF on the
1 b square lattice with and without dimerization. In the second
Po(J)=5J ; (18 part of our study we consider frustration, the origin of which
could be(i) geometrical such as, for instance, for the trian-

ular andkagomelattices(ii) due to a random mixture of F
where D2=[(In J)?],,—[In JJ3, denotes the strength of the 9 : . :

: S . and AF couplings such as, for instance, for thé spin-glass
disorder. Note that both the initial distribution of the cou- model, and (i) due to competition between first- and

plings in Eqg.(18) and the final distribution of gaps in Eq. : :

(1) follow power laws. If 1/@+1)<D, the strength of second-neighbor couplings such as for e, model.
disorder is reduced during renormalization, thus the low-
energy random fixed point is a conventional one. More gen- ) o
era”y, for a conventional random fixed p0|ru'),>_1 In We start with the renormalization of the HAF on the
contrast to this, at an IRFP the disorder growths withoutSguare lattice. The probability distribution of the gap calcu-
limits, thus here formallyw=—1 and the dynamical expo- lated for a uniform bond distributiofEq. (18) with D=1] is
nent is infinite. We often use the uniform distribution, which Shown in Fig. 4 for different linear sizes. In a log-log plot the
corresponds t® =1 in Eq.(18). For models with random F Small gap region of the curve is linear, the slope of which,

and AF couplings we take either a Gaussian distribution ~according to Eq(11), corresponds ta + 1. With increasing
size one observes a slight broadening of the distributions

indicating a decreasing effective gap exponent which, how-

1. HAF on the square lattice

Pa(d)= 1 zexp(—J2/202), (19 ever, seems to converge to a finite asymptotic value,
V2o war=0.7(1), d=2. (21)
or a rectangular distribution During renormalization we observed simultaneously an
effective singlet formation, thus in Eq14) one has{=0.
Our estimate for the dynamical exponent satisfies the relation
P, (J)=0(J—r+1/20(r+1/2-J), (20 in Eq. (13), yielding zag=1.2. Thus we conclude that the
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FIG. 5. Extrapolated dynamical exponent of the random dimer-
ized HAF on the square lattice. The random AF and the random
dimerized phases are separated by a crossover region in which tkl‘éett
dynamical exponent is minimal.

FIG. 6. Probability distribution of the energy gap on the square
ice with mixed F and AF bonds following a Gaussian distribu-
tion with o=1. (The slope of the straight line is 1.) Inset: Dis-

. . . . - tribution of the spin moments.
low-energy fixed point of the system iscanventional, finite

d|s|0r(_jtngr|ff|th§ f'xid ;I)Eowitzar::d theththe;modé/nan?cal :ts;]n dynamical exponent at the transition point in a finite system
gularities are given by Ed12). For other disorder strengths is maximal, and increases without linit$or increasing sys-

D we reach the same conclusions and our estimates for the <o signaling an IRFP. In the two-dimensional case
ggp_exponents for eadn agree with the Va"_Je in Eq21) ._considered here the combined effect of critical fluctuations

within the error bars. Thus the low-energy singular behavior, nd quenched randomness seem to reduce the value of the
gf th% 2D. random HAF dogs not depend on trzggength 0 ynamical exponent. Our calculations indicate that in the
Isorder, in contrast to random quantum spin ladders. random dimer phase the low-energy behavior is controlled
2. Square lattice HAF with dimerization lé)(; 5(3112()3FP and the dynamical singularities are given by

Next we study the low-energy behavior of the dimerized
HAF, as sketched in Fig.(lh). For site and bond dilution the

stability of Bthe gapped, dimerized phase was recently |, s section we consider the Heisenberg model on the
investigated® Here we consider the effect of strong AF bond square lattice with a random mixture of F and AF couplings.

disorder. In our calculation we us_ed L_miform initial random--l-hiS is a model for a quantum spin gl&&¥ and we denote
ness gnd performed the renormahzatlon_ for several values gf,o corresponding fixed point as the spin-glass fixed point
the dimerization pgrametea. _The poss_lble values of the (SGFP, although we do not explicitly check for the exis-
two types of couplings were in the regions (0,1) 401 gnce of proper spin-glass order in the ground sttein-

—a)], respectively. For any value af in the range 8<a  giance, via the calculation of the Edwards-Anderson spin-
<1, we observed an effective singlet formation, and the €Sglass order paramefd). As we can see, this fixed point
timated gap exponent® and dynamical exponents are jtfers from the other fixed points we found for nonfrustrated
found to satisfy the relation in Eq13). The extrapolated models, so we feel that the use of this notation is justified. In
dynamical exponents as plotted in Fig. 5 seem to be approxjsarticular, we find a large spin formation proportionallto
mately constant in two regions, which corresponds to the tWQiuring the RG procedure implying a ground-state sgin

phases of the pure model in Figh2 For weaker dimeriza- YN, which is reminiscent of the spin-glass behavior found
tion the dynamical exponent corresponds to the one of thg, (pets 16 and 1y7for this model with alternative methods.
random HAF, and for stronger qllmerlzancmls approxi- First we report the results for the Gaussian randomness in
mately equal to the one of the dlsconnepted two-llelg Iaddeﬁq. (19). For this case the distributions of the gaps and of the
systems, to which the case-=1 reduces, witlz~1.07""We  ofoctive spin moments are shown in Fig. 6. The gap distri-
expect that the dimer order is finite in the RD region,y, ions for different finite sizes have a very similar structure:
whereas it is zergor very small in the random HAF region. e\ are merely shifted to each other by a constant propor-
Between the two regions, corresponding to the nelghborhooéz)na' to InL. The slope of the low-energy tail of the distri-

of the phas_e—transition point in the pure sy;tem in Fig),2 . _butions is practically independent of the strength of disorder
the dynamical exponent drops to a minimal value. This

. . . ~and in all cases the gap exponent is equal to
crossover could happen in a smooth, nonsingular way, or in a
sharp phase transition separating the random AF and the ran-
dom dimer phases. Due to strong finite-size effects we could
not discriminate between the two scenarios. within an accuracy of a few percent. From the finite-size
We note thatz in the crossover region behaves in the scaling properties of the gap distribution, we infer that the

opposite way as that in the dimerized ladders, where theelation in Eq.(13) is satisfied and therefore

3. Randomly frustrated models (two dimensions)

wsc=0, d=2, (22
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Triangular lattice, L=10 Kagome, D=2.5, L=8

10°
107!
102
1073
104
107
106

24

. 1.8 | 1
7] 1.6 1

| 1 | | | 1 |
0 2 4 6 8 10 12 0 02040608 1 12 14
B

P (-Log (A)

FIG. 7. Probability distribution of the energy gap for the trian- . FIG. 8. ,Dyngmlcgl exponent of the random HAF on the dimer-
. . . izedkagomdattice with a randomness paramefe+ 2.5 calculated
gular lattice HAF for different strength of randomness in Etp). in finite systems having? triangles, thus B2 sites. The connectin
The low-energy tail of the distributions, which has practically no Y ges, ) 9

finite-size dependence far=10, is consistent with the same gap lines are guide to the eyes, and a typical error bar is also indicated.

exponentw=0, implying a dynamical exponemts=d=2. satisfied and thereforesg=d=2. Thus we can conclude
that the thermodynamical quantities in the random triangular
Zsg=2, d=2, (23)  HAF obey the relations in Eq17).
Next we focus on th&kagomelattice and enlarge the pa-
within an accuracy of a few percent. rameter space by considering the dimerized model, as intro-

On the other hand, the distribution of the effective spinduced in Ref. 40: Couplings in up-pointing triangle are
moments in the inset to Fig. 6 shows a tendency to broadedifferent from those in down-pointing triangled’( (see Fig.
with increasing system size and its average value has a linedrof Ref. 40. Analyzing the results of the RG calculation as

L dependencd, i, ],~.42L. Therefore the moment expo- already described for the triangular lattice, we obtain a set of
nent in Eq.(14) is gapped, dynamical, and moment exponents for different

dimerizations, 0.£J'/J<1.5, and disorder strength®)
{se=1/2, d=2. (240 =1,25, and 5. In Fig. 8 we show our estimates for the

dynamical exponents fdd = 2.5, which are consistent with
We have repeated the above analysis using the symmetribe SGFP result in Eq22). Also for other disorder strengths
rectangular distribution in Eq20) both for theS=1/2 and we find the same behavior and we conclude that the low-
the S=1 models, and we obtained the same critical expo€nergy physics of the randokagomeHAF is controlled by
nents as those in the Gaussian case. Thus we can concluf® SGFP and the thermodynamic singularities are described
that the low-energy behavior in randomly frustrated 2D mod-PY Eq. (17).
els is controlled by the same SGFP, independent of the type 5. The J,-J, model

of randomness and the size of the spin. )
In our final example for the 2D case, the source of frus-

4. Geometrically frustrated models tration is the competition between first-3r—and second-
) ) ) i neighbor—J,—couplings, which obey a power-law distribu-
In this section we consider the HAF on two geometrlcallytiOn in Eq. (18) within the ranges of J,;<J™ and 0

frustrated lattices that have qualitatively different ground <3,<J7 respectively. We have performed the previous
states in the nonrandom case. The triangular lattice has finite 2| 2 'Ed'ff t Do .t f the ph diagrafi1 e
AF long-range order and low-energy excitations behave a nalysis at difierent points of the phase diagragt,7J; =,

those in Eq.(3). In contrast to this, the ground state of the and for different st_rengths of d.isordldb,. In all cases we

kagomelattice is disordered and the low-energy singlet ex_found tha.t th? relation in .Ec(13) is valid. As an.|IIustrat|on

citations have a more complicated size dependence. we shqw in Fig. 9 our estimates _for the dyna_mlcal exponents
We start with the HAF on the triangular lattice using thefor a disorder strengtb =5/3, which are consistent with the

power-law distribution in Eq(18) for the random couplings. SCGFP value in Eq(22) in a wide range of 0237797

The distribution function of the gap is presented in Fig. 7 for<2:0. The same conclusion holds for other disorder

different disorder strengths. The slope of the low-energy taiftrengths in the range of<ID<5. During renormalization

of the distributions is again, as for the randomly frustratecthere is large spin formation and the calculated cluster expo-

model of the last section, practically independent of thehent is consistent witlfsc=1/2. Thus we can conclude that

strength of disorder and in all cases the gap exponent is equif) the J;-J, model the different phases in the pure model

to w=0 within an accuracy of a few percent. (AF and_ CL ordered, disordered Blare Wa_lshed out_by
When calculating the moment of the spin clusters, westrong disorder, and the whole frustrated regibyJ; >0, is

notice large spin formation during the action of the RG.controlled by the SGFP.

From the size dependence of the average moment we obtain

the exponent in Eq(14) to be /=1/2, independent of the

strength of disorder. From the finite-size scaling properties of For the calculations in three dimensions that we present

the gap distribution, we infer that the relation in E43) is  now we considered only systems of linear sites6,8,10,

B. Three-dimensional models
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J1-J2 model, D=5/3, L=10 (a) (b)
24 . . . 8 ‘ 6 ‘

P.(A)/L"

12 ¢ 1

0 0.5 1 1.5 o 02 04 o6 08°0 02 04 06 o8
1.5
n/n AL

FIG. 9. Dynamical exponent of th#-J, model on the square FIG. 11. Scaling of the reduced gap distributioR(L"A)
lattice with a power-law randomness with="5/3. The connecting =L “PL(4), for randomly frustrated 3D systemga) Gaussian
lines are guide to the eyes, and a typical error bar is also indicatedandomnessg=1 and (b) symmetric rectangular randomness. In

both cases it iz=1.5.
and 12, in some cases we went upLte 16. Larger system
sizes were computationally not feasible. The typical number As seen in Fig. 10 the slopes of the low-energy tail of the
of realizations were several ten thousands for each poingap distributions are approximately constant, and for our fi-
Due to the smaller system sizes the finite-size effects in thregite systems they are consistent with a vanishing gap expo-
dimensions are stronger than in two dimensions. ThesBent
finite-size effects turned out to be too strong in the random
HAF on the cubic lattice for a safe estimate for the gap w~0 (d=3). (25
exponent. We can, however, conclude that there is no large o ] .
spin formation and the low-energy behavior is controlled byPuring renormalization, such as in the case of two dimen-

a conventional GEP. sions, there is a large spin formation and the corresponding
moment exponent i€=0.55, for symmetric distributions
1. Randomly frustrated models (three dimension) (Gaussian and rectangulaand {=0.58 for the asymmetric

. . . . _rectangular distribution. Thus appears to be close to 1/2 in
We have studied r_m_)(_jels with mixed F anq AF COUIOIIngSboth cases. We have also studied the scaling behavior of the
for different forms of initial randomneg&aussian, symmet-

ric, and asymmetric rectangujaand for comparison, calcu- 'educed gap distributio(L*A) =L "*P (4). In Fig. 11 we
lations on theS=1 model are also performed. The calculatedShoW @ scaling collapse of the distributions, which is ob-
distributions of the gaps are presented in Fig. 10. tained byz~1.5 independently of the dlls_ord(_er _Q|str|but|on.
The scaling curves seem to tend to a finite limiting value at
A=0, implying a gap exponerié~0. We can thus conclude
that—within the range of validity of the SDRG method—the
relation in Eg.(13) is not valid for frustrated 3D models.

(a)

=L =6
L =8

2. The J;-J, model

We also considered frustration caused by a competition
between nearest- and next-nearest-neighbor couplings in or-
der to determine to what extent the universality of the spin-
glass(SGQ phase, observed in 2D models, is valid in three
dimensions. Here we study systems at different points of the
phase diagram)5®737®, and for different initial disorder,

D, using the same notations as those for two dimensions.

Typical gap distributions are shown in Fig. 12, where we

observe that the low-energy tail of the distributions in each

case has approximately the same slope close 19 which

results in a gap exponeniy~0. This result is consistent

0 5 0 15 20 0 5 o 15 20 with Eq. (25) obtained for randomly frustrated models. Dur-
—log A ing renormalization large spin formation is observed, and the

FIG. 10. Probability distribution of the energy gap on the cubicmoment exponenfg, IS fgf”ﬂaﬁo depend on t_h(_e pqsmon N
lattice with mixed F and AF bond€a) Gaussian distributiong ~ th€ phase diagram: foljzn_ 131 =0.5 and 1.0 itis given by
=1: (b) symmetric rectangular distributiom € 0); (c) asymmetric ~ {=-58 and .78, respectivelyd(=1 is in both cases The
rectangular distributionr(=0.25); (d) S=1 symmetric rectangular dynamical exponent in these cases was about the same (
distribution. The low-energy tails of the gap distributions for all ~3/2) as for that of randomly frustrated models.
cases, indicated by straight lines, have a slefie corresponding to Thus we can conclude that also in three dimensions the
0w=0. low-energy fixed points of random Heisenberg systems with
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. (b) © dom quantum ferromagnets, such as the random transverse
i : ! Ising model’®* |leads to similar IRFPs at quantum critical
~ 107 tfg L fg ! points. In higher-dimensional random transverse Ising mod-
:1010’2 i i L=10 + -10 1 els the random quantum critical point is still an IREP?
LID 100 L T i ] whereas for the random HAF, even at random quantum criti-
o Pl cal points, we found in this work the dynamical exponent to
i f aw be finite.

One remarkable aspect of our results is the observed uni-
versality of the fixed point controlling the low-energy char-
acteristics of random frustrated systetighe gap exponent

FIG. 12. Probability distribution of the energy gap of thed,  Of this so-called spin-glass fixed poif8GFB is numerically
model. (a) JT®YJM*=05,D=1; (b) JIJI'*=1,D=2; (c) Very close to zer? and we can explain this observation in
JI¥JM= 1 D=1. (The slope of the straight lines in all cases is the following way. During renormalization there is a large
-1) spin formation in these systems and therefore we expect that

the low-energy excitations inl=2 are extended over the
different types of frustration are controlled by the same typewhole (finite) volume of the systeniin a 1D topology these
of SGFP, having the same gap exponesnt 0, as in a two-  excitations are not extended since unfavorable domains usu-
dimensional SGFP. Therefore we conjecture that the groundlly restrict the size of excitationsAs a consequence these
states of these 3D frustrated models are in a spin-glass phascitations can be considered as compact objects so that their
too. At these SGFPs the dynamical exponent is constanteduced (scale-invariant probability density P(LZA)
however, the moment exponent has a system dependence| ~2p, (A) has no size dependence for a fixed small gap,
Thus the low-energy excitations have a universal scaling bea, This last statement is consistent with a vanishing gap
havior, but the thermodynamical singularities in K47),  exponentw=0, according to Eq(11) and is supported by

50 5 101520 0 5 101520 0 5 10 15 20
—log A

which depend on the value ¢f are system dependent. the numerical results in Fig.11.
Finally we remark about the accuracy of the results ob-
V. DISCUSSION tained with the SDRG method. It is generally expected that

) ] ] ] ) the SDRG method leads to asymptotically exact relations
In this paper we considered higher-dimensional HAFs an¢.oncerming singularities and scaling functions at IRE®s.

studied the effect of strong randomness on their low-energyljo\vever, the same type of asymptotic accuracy of the results
low-temperature properties by a numerical application of thgs predicted at GFPs and checked numerically by the density-
SDRG method. Comparing with the known, partially €xactmatrix renormalization-group meth8dTherefore we expect
results for 1D HAFs we noticed several important differ- e predictions of the SDRG method about LSFPs and the
ences. First, in higher dimensions one observes a strong UnsGEp also to be correct. This expectation finds support in the
versality scenario: there are only a few relevant fixed pointgesyits of numerical calculations for the 1D Heisenberg
(most important are the random AF fixed point and themggel with mixed F-AF couplind and for the=J square
SGFR and their properties do not depend on the coordinargtice HAF Nevertheless alternative calculations are nec-

tion number, the strength of disorder, value of the spin, etC.egsary to check the validity of the predictions of our SDRG
rather just on the dimension of the model and the degree g its.

frustration in the system. In contrast to this, in random spin
chains(with dimerization and ladders one usually has a con-
tinuum of low-energy fixed points parametrized by the value
of the dynamical exponert and which do depend on the F.l. is grateful to G. Fth for useful discussions. This work
aforementioned details. Second, in higher-dimensional HAF&as been supported by a German-Hungarian exchange pro-
the singularities are controlled lga few) conventional ran- gram (DAAD-MOB), by the Hungarian National Research
dom fixed points, at which the dynamical exponent is finite.Fund under Grant Nos. OTKA TO34138, TO37323,

In higher-dimensional systems there are no IRFPs that camMO28418, and M36803, by the Ministry of Education under
generally be found ifiquas)-1D systems at random quantum Grant No. FKFP 87/2001, and by the Center of Excellence
critical points. A third difference between 1D and higher- Grant No. ICA1-CT-2000-70029. Numerical calculations are
dimensional AFs is the following. In one dimension the partially performed on the Cray-T3E at Forschungszentrum
renormalization of random spin-1/2 AF spin chains and randuich.
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