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Low-energy fixed points of random Heisenberg models
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R. Mélin
Centre de Recherches sur les Tre´s Basses Tempe´ratures, B.P. 166, F-38042 Grenoble, France

H. Rieger
Theoretische Physik, Universita¨t des Saarlandes, 66041 Saarbru¨cken, Germany

F. Iglói
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The effect of quenched disorder on the low-energy and low-temperature properties of various two- and
three-dimensional Heisenberg models is studied by a numerical strong disorder renormalization-group method.
For strong enough disorder we have identified two relevant fixed points, in which the gap exponent,v,
describing the low-energy tail of the gap distributionP(D);Dv is independent of disorder, the strength of
couplings, and the value of the spin. The dynamical behavior of nonfrustrated random antiferromagnetic
models is controlled by a singletlike fixed point, whereas for frustrated models the fixed point corresponds to
a large spin formation and the gap exponent is given byv'0. Another type of universality class is observed
at quantum critical points and in dimerized phases but no infinite randomness behavior is found, in contrast to
that of one-dimensional models.
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I. INTRODUCTION

The Heisenberg model plays a central role in the theory
magnetic ordering1 and the two-dimensional~2D! antiferro-
magnetic~AF! model has been intensively studied motivat
by its relation to high-temperature superconductivity.2 Ac-
cording to the Mermin-Wagner theorem,3 no long-range or-
der ~LRO! can persist at finite temperatures in the homo
neous Heisenberg model ifd<2. At zero temperature, th
LRO of the classical ground state is reduced by quan
fluctuations. This effect is particularly strong in~quasi!-1D
AF models and gives rise to the complete destruction
Néel-type LRO. Fluctuations enhanced by quenched r
domness and frustration can further destabilize LRO, res
ing in disordered ground states even in higher-dimensio
systems. In various experiments, in which quasi-tw
dimensional magnetic materials that can appropriately be
scribed by the 2D Heisenberg antiferromagnet~HAF! model
were diluted with static nonmagnetic impurities~Mg or Zn in
La2CuO4, and Mg in K2CoF4 or K2MnF4), a disorder-
induced transition from Ne´el order to a spin liquid was ob
served: If the impurity concentration is larger than a critic
value the LRO is destroyed.4,5

The behavior of HAFs in the presence of quenched r
domness is generally very complex and present underst
ing of this is not complete. Most of the theoretical resu
have been obtained for 1D models, many of them by a str
disorder renormalization-group~SDRG! method introduced
originally by Ma, Dasgupta, and Hu for the randomS51/2
AF spin chain.6 Fisher7 has shown that the SDRG metho
leads to asymptotically exact results in the vicinity of a qua
0163-1829/2003/68~2!/024424~10!/$20.00 68 0244
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tum critical point, which corresponds to the chain witho
dimerization. At the quantum critical point, the ground sta
can be described by the notion of a random singlet~RS!
phase, which consists of effective singlets of pairs of sp
that are arbitrarily far from each other. Fisher’s SDRG tre
ment has been extended to the dimerized phases that tu
out to be equivalent to quantum Griffiths phases.8 The SDRG
method has also been applied for randomS51 ~Ref. 9! and
S53/2 ~Ref. 10! spin chains and for various random sp
ladder models.11 In general, the Haldane gapped phases s
gapped for weak disorder, while they become gapless
often form RS phases for strong disorder.

To study the singular properties of theS51/2 Heisenberg
model with mixed ferromagnetic~F! and AF couplings, the
SDRG method has to be modified. In one dimension,
presence of ferromagnetic couplings leads to the forma
of large spin clusters in the renormalization-group~RG!
treatment, with an effective moment that grows without lim
its as the energy scale is lowered.12 As a consequence, th
ground-state properties of random Heisenberg chains w
mixed AF and F couplings and of those with only AF co
plings are different. The presence of large effective spins
the low-energy limit was also observed for random AF sp
ladders with site dilution.13

Not many theoretical investigations of the effect
quenched disorder in higher-dimensional random HAFs
ist, and those that have been done are almost exclusi
restricted to dilution on the square lattice. Quantum Mo
Carlo studies of the HAF on a diluted square lattice sh
that LRO disappears at the classical percolation poin14

While in earlier investigations a unique,S-dependent critical
©2003 The American Physical Society24-1
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behavior was found,14 recent studies identify the transition a
an S-independent classical percolation transition with we
known exponents.15 Another work studied the6J Heisen-
berg~quantum! spin glass and found that for a concentrati
of F bondsp.pc'0.11 the Ne´el-type LRO in the ground
state vanishes and is replaced by a so-called spin-g
phase.16 Within the spin-glass phase, the average grou
state spin,Stot , scales asStot;AN, and the gap asDE
;1/N, whereN is the number of spins.17

In this paper we study the effect of randomness in high
dimensional HAFs by means of the SDRG method. In p
ticular, we consider the low-energy behavior of frustrat
and nonfrustrated systems in two and three dimensions
we mention in the next section the pure~i.e., nonrandom!
versions of these models have a ground state that has e
AF or dimer LRO or is disordered, i.e., in a spin-liquid sta
By calculating the gap distribution and cluster formati
within the SDRG scheme we characterize the change of
ground-state structure of the pure systems by the effect o
disorder.

The paper is organized as follows: The models and th
phase diagrams for nonrandom couplings are presente
Sec. II. The SDRG method and its different low-energy fix
points for ~quasi!-1D systems are discussed in Sec. III. R
sults of the SDRG method on different 2D and 3D mod
are presented in Sec. IV and discussed in Sec. V.

II. THE MODELS AND THEIR PHASE DIAGRAM FOR
NONRANDOM COUPLINGS

We start with the Hamiltonian of a nearest-neighbor sp
1/2 AF Heisenberg model,

H15 (
^kk8& nn

JSkSk8 , ~1!

whereJ.0 and the summation runs over nearest-neigh
~nn! pairs, ^k,k8&, of a regular lattice. In one dimension
Néel-type LRO is destroyed by quantum fluctuations and
system with half-integer spin valueSshows quasi-long-rang
order ~QLRO!, i.e., correlations in the ground state dec
algebraically.18,19 A similar behavior can be observed in A
spin ladders with an odd number of legs.20 Both systems
have a gapless excitation spectrum and in finite chains
length L the gap vanishes algebraically with a dynamic
critical exponentzc51, which is characteristic for a quan
tum critical point:

DEcr~L !;1/Lzc. ~2!

Quantum fluctuations play a different role in AF spin cha
with an integer spin19 and for spin ladders with an eve
number of legs.20 These systems show a topological stri
order, which is accompanied by exponentially decaying c
relations and by a finite gap in the spectrum.

One can approach a 2D geometry by successively incr
ing the number of legs of AF spin ladders. The resulti
square lattice has a qualitatively different low-energy beh
ior: The effect of quantum fluctuations is weaker and
ground state shows Ne´el-type LRO.21 Compared with the
02442
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classical ground state the sublattice magnetization foS
51/2 is reduced by about 40%. Generally in ordered
phases the excitation spectrum is gapless. In a fi
d-dimensional system of linear sizeL—according to spin-
wave theory and analysis of the nonlinear sigma model—
gap behaves as22

DEod~L !;1/Ld. ~3!

Frustration generally leads to a further reduction of the N´el
LRO. Frustration of geometrical origin is present in the t
angular lattice, where the sublattice magnetization is ab
50% of its classical value.23 In more loosely packed frus
trated lattices, such as in thekagome´ lattice,24 the square
lattice with crosses25 ~see, however, Ref. 26!, or in the 3D
pyrochlore lattice,27 the LRO completely disappears and th
systems have a disordered ground state. The correlation
short ranged and one finds a finite triplet gap in which
continuum of singlet excitations exists. In the case of
kagome´ lattice these extend down to the ground state.24

Competing interactions are another source of frustrat
which can also lead to disordered ground states. As an
ample, we consider the AFJ1-J2 model with first- (J1) and
second- (J2) neighbor interactions, described by the Ham
tonian

H5H11H2 , ~4!

where

H25 (
^kk8& nnn

J2SkSk8 , ~5!

and the coupling inH1 @Eq. ~1!# is denoted asJ[J1 @see Fig.
1~a!#. In two dimensions, there are at least three phases
shown in Fig 2~a!. For small frustration,J2 /J15r, the sys-
tem possesses AF LRO, whereas for large frustration
system goes to the collinear state, in which ferromagnetic
ordered columns of spins are arranged antiferromagnetic
In the range 0.34,r,0.60, the ground state is disordere
and the spectrum is gapped for all types of excitations.28,29

According to recent numerical studies30 there are probably
several quantum phases in this region, separated by diffe
types of quantum phase transitions.

Finally, we introduce a dimerization into model~1!. We
consider the square lattice, denote a lattice sitek by its two
coordinates,k5( i , j ), and define

FIG. 1. ~a! TheJ1-J2 model and~b! the dimerized model on the
square lattice.
4-2
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Hdim52(
i , j

JaS2i , jS2i 11,j . ~6!

The dimerized model is then described by the Hamilton
H5H11Hdim and has a layered structure, see Fig. 1~b!. Its
phase diagram is shown in Fig. 2~b! as a function of the
dimerization parameter 0,a,1. For a,ac50.686 the
ground state has AF LRO, whereas fora.ac the system is
in an ordered dimerized phase, in which spin-spin corre
tions along horizontal lines approach different limits if th
distance between the spins is odd or even, respectively. In
dimerized phase, there is a finite gap which vanishes atac as
DE;(a2ac)

n with n50.71, characteristic for the univer
sality class of the 3D classical Heisenberg model.31,32 We
note that dimerization with another topology has been st
ied recently in Ref. 33.

The random Heisenberg models we investigate in this
per include the 2D/3D AF model on the regular lattice~1!,
the dimerized AF model~6! in two dimensions, geometri
cally frustrated AF models on the triangular lattice as well
on the kagome´ lattice, the 2D/3DJ1-J2 model, and the
2D/3D AF-F models. We are interested in how the pha
diagrams in Fig. 2 are modified due to the presence of str
quenched randomness.

III. THE SDRG METHOD AND ITS LOW-ENERGY FIXED
POINTS IN 1D MODELS

The basic ingredient of the SDRG method in Heisenb
models is a successive decrease of the energy scale of
tations via a successive decimation of couplings. We s
with a S51/2 HAF model in which the strongest coupling i
say,J23, the one between lattice sites 2 and 3~cf. Fig. 3!. If
J23 is much larger than its neighboring coupling
J12,J13,J24, andJ34, the spins at 2 and 3 form an effectiv
singlet and are decimated. The effective coupling betw
the remaining sites 1 and 4 in second-order perturba
theory is given by

J̃14
eff5l

~J122J13!~J342J24!

J23
, l~S51/2!51/2. ~7!

FIG. 2. Phase diagrams of square lattice HAF models.~a! For
theJ1-J2 model with varying frustration,r5J2 /J1, there are three
regions: the ordered AF phase and the ordered collinear~CL! phase,
separated by a disordered spin-liquid~SL! region.~b! In the dimer-
ized model, the AF and dimer~D! ordered phases are separated
a quantum critical point atac .
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In a chain geometry the couplingsJ13 andJ24 would not be
present and the resulting RG flow always generates AF c
plings. However, for extended, not strictly 1D objects, so
of the generated new couplings can be ferromagnetic~e.g., if
J12,J13 andJ34.J24 or vice versa! and therefore the deci
mation rules have to be extended. If at one RG step a
bond turns out to be the strongest one, its decimation
lead to an effective spinS̃51. In the following steps, the
system will renormalize to a set of effective spins of differe
magnitude interacting via Fand/or AF couplings.

For higher-dimensional systems, the basic decimat
processes are the singlet formation in Eq.~7! and the effec-
tive spin~cluster! formation. To specify the latter, let us con
sider three spinsS1 ,S2, and S3 with interactions fulfilling
uJ23u@uJ12u,uJ13u. In the action of the RG, the two origina
spinsS2 and S3 form a new effective spin of magnitudeS̃
5uS26S3u representing the total spin of the ground state
the two-spin HamiltonianH235J23S2S2, where the positive
~negative! sign refers to an F~AF! coupling. The correspond
ing energy gap,D, between the ground state and the fi
excited state in the HamiltonianH23 is given by D
5uJ23u(S21S3) andD5J23(uS22S3u11), for an F and AF
coupling, respectively. IfJ23.0 ~AF! andS25S3, it follows
an effective singlet formation as described above. IfS̃Þ0,
within first-order perturbation theory the new coupling b
tweenS1 and S̃23 is given by

J̃eff5c12J121c13J13, ~8!

with

c125
S̃~S̃11!1S2~S211!2S3~S311!

2S̃~S̃11!

and

c135
S̃~S̃11!1S3~S311!2S2~S211!

2S̃~S̃11!
.

At each RG step, we find the pair of the spins with the larg
energy gapD that sets the energy scale,V, and decimate
them according to renormalization rules described in Eqs.~7!
or ~8!. A detailed derivation of these renormalization rul
can be found in Ref. 34.

The fixed point of the RG transformation for lattices th
do not have a chain geometry may depend on their topolo
the original distribution of bonds, the strength of the dis
der, etc. We briefly summarize the existing results for s

FIG. 3. Singlet formation and decimation for a spin configu
tion that does not have a chain topology and typically occurs
higher-dimensional systems.
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chains and ladders since it might be helpful for analyzing
RG results in higher-dimensional systems.

In the case of the random AF chain~which has neither F
bonds nor frustration!, the RG procedure described abo
runs into an infinite randomness fixed point~IRFP! corre-
sponding to a random singlet phase. In this phase the re
malized clusters are singlets, thus the total magnetic mom
is zero, and the energy and length scales are related via

2 ln V;L1/2, ~9!

which means that the dynamical exponent is formally in
nite.

A dimerizedS51/2 chain with random AF even (Je) and
odd (Jo) couplings shows dimer order, and the low-ener
behavior is controlled by a random dimer~RD! fixed point at
which the dynamical exponent,z, is finite and a continuously
varying function of the strength of the dimerization me
sured byddim5@ ln Je#av2@ ln Jo#av.8,35At this fixed point, the
low-energy tail of the distribution of the effective coupling
Je , is given by

P~Je,V!dJe.
1

z S Je

V D 2111/z dJe

V
, ~10!

for ddim.0. This random dimer phase is a Griffiths phas36

and we refer to it as a Griffiths fixed point~GFP!. At this
GFP, the gap of finite chains of lengthL obeys a distribution
similar to Eq.~10!:

PL~D!5LzP̃~LzD!;Lz(11v)Dv, ~11!

which is characterized by the gap exponent,v. As a conse-
quence of Eq.~11!, which holds in any dimension, sever
dynamical quantities at a GFP are singular and the chara
istic exponents can all be expressed viav. For example, the
susceptibilityx, the specific heatCv ~at a small temperature
T), and the magnetizationm ~in a small fieldh) behave as

x~T!;T2v, Cv~T!;Tv11, m~h!;hv11. ~12!

In the Griffiths phase there is a simple relation between
dynamical exponent,z, and the gap exponent,v, which can
be obtained by the following phenomenologic
consideration.37 If the Griffiths singularities are due to rar
events~produced by the couplings! that give rise tolocalized
low-energy excitations, the gap distribution should be p
portional to the volume,PL(D);Ld. From Eq.~11! it then
follows that

z5
d

11v
, ~13!

which is consistent with the exact result in the random dim
phase in Eq.~10!. However, if the low-energy excitations ar
extendedthe relation~13! might not hold.

In a spin chain with mixed F and AF couplings,12 large
effective spins,Seff , are formed at the fixed point of th
transformation. The size of these spin clusters scales with
fraction of surviving sites during decimation, 1/N, as

Seff;Nz. ~14!
02442
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The following random-walk argument12 gives z51/2. The
total moment of a typical cluster of sizeN can be expressed
as Seff5u(151

N 6Si u, where neighboring spins with F~AF!
couplings enter the sum with the same~different! sign. If the
positions of the F and AF bonds are uncorrelated and if th
distribution is symmetrical, one hasSeff}N1/2, i.e., Eq.~14!
with z51/2.

A nontrivial relation constitutes the connection betwe
the energy scaleV and the size of the effective spin,

Seff;V2k, ~15!

where a numerical estimate of the exponent isk50.22(1).12

Comparing Eq.~14! with Eq. ~15!, the relation between the
length scaleL;N1/d (d51) and the energy scale is

V;L2z, z5
dz

k
5

1

2k
, ~16!

wherez is the dynamical exponent. The distribution of low
energy gaps,PL(D), has the same power-law form as in E
~11!. Therefore from the scaling behavior ofPL(D) the gap
exponent,v, and the dynamical exponent,z, can be ob-
tained. Due to the large moment formation the singularit
of the dynamical quantities are different from those in t
random dimer phase in Eq.~12!, i.e., at a GFP. Generalizing
the reasoning in Ref. 12, we obtain ind dimensions

x~T!;T21, Cv~T!;T2z(v11)u ln Tu,

m~h!;hz(11v)/@11z(11v)#, ~17!

thus the singularities involve both exponentsz andv. In the
following, we refer to this type of fixed point as a large sp
fixed point ~LSFP!.

AF spin ladders, although being quasione dimension
have a nontrivial, non-chain-like topology and during ren
malization also F bonds can be generated according to
~7!. Different random AF two-leg ladders were studied
Ref. 11 with the following results. If the disorder is stron
enough the gapped phases of the nonrandom systems
come gapless. The low-energy behavior is generally c
trolled by a GFP, where the dynamical exponent is finite a
depends on the strength of the disorder. However, at ran
quantum critical points, separating phases with different
pological or dimer order, the low-energy behavior is co
trolled by an IRFP. In diluted AF spin ladders also LSF
have been identified.13

To close this section we summarize that in on
dimensional and in quasi-one-dimensional random Heis
berg systems there are two different types of low-ene
fixed points, which are expected to be present in high
dimensional systems, too. Both for a GFP and for a LS
the low-energy excitations follow the same power-law fo
as in Eq.~11! from which the exponents,v and z, can be
deduced. At a GFP these two exponents are expected t
related throughz5d/(11v) ~13!. On the other hand, for a
LSFP, where the excitations are not localized, this relat
probably does not hold. At such a LSFP there is a th
independent exponentz involved in the dynamical singulari
ties partially listed in Eq.~17!.
4-4
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In the next section we study different two- and thre
dimensional random Heisenberg models. In particular,
are interested in the possible difference in the low-ene
fixed point for nonfrustrated and frustrated systems. Si
extended~quasione dimensional or higher dimensional! ran-
dom HAF models and Heisenberg models with mixed F a
AF bonds follow the same renormalization route, they cou
in principle, be attracted by the same fixed points, but a
new fixed points can emerge, as we show.

IV. RENORMALIZATION OF HIGHER-DIMENSIONAL
SYSTEMS

This section is the central part of our work, where w
present our results for the ground-state structure of var
two- and three-dimensional random Heisenberg models
tained by the numerical application of the SDRG. In pract
we start with a finite system of linear sizeL with periodic
boundary conditions and perform the decimation proced
up to the last effective spin~or decimate out the last spi
singlet!. The energy scale corresponding to the last decim
tion step is denoted byD. This procedure is performed fo
several thousand realizations of the disorder and yield
histogram forD, which represents our estimate of the pro
ability distributionPL(D). From this we extract the gap ex
ponentv and the dynamical exponentz via the asymptotic
relation given in Eq.~11!. Moreover, from the average siz
of the effective spin at the last step,mL5@Seff#av, the cluster
exponent,z, in Eq. ~14! is deduced. The value ofv, z, and
z is then used to discriminate the different possible lo
energy fixed points described in the previous section.

Throughout this paper we use a power-law distribution
the random couplings 0,J<1 for AF models:

PD~J!5
1

D
J2111/D, ~18!

where D25@(ln J)2#av2@ ln J#av
2 denotes the strength of th

disorder. Note that both the initial distribution of the co
plings in Eq. ~18! and the final distribution of gaps in Eq
~11! follow power laws. If 1/(v11),D, the strength of
disorder is reduced during renormalization, thus the lo
energy random fixed point is a conventional one. More g
erally, for a conventional random fixed point,v.21. In
contrast to this, at an IRFP the disorder growths with
limits, thus here formallyv521 and the dynamical expo
nent is infinite. We often use the uniform distribution, whi
corresponds toD51 in Eq. ~18!. For models with random F
and AF couplings we take either a Gaussian distribution

PG~J!5
1

A2ps2
exp~2J2/2s2!, ~19!

or a rectangular distribution

Pr~J!5Q~J2r 11/2!Q~r 11/22J!, ~20!
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where Q(x)51, for x.0 and zero, otherwise. The latte
distribution is symmetric forr 50, whereas forr 51/2 we
recover the uniform distribution of AF couplings in Eq.~18!
with D51.

A. Two-dimensional models

In the calculations for two dimensions we usually cons
ered systems of linear size up toL532, but for some case
in which the convergence was faster we went only up toL
510216. The typical number of realizations were seve
hundred thousands for the smaller sizes and several ten t
sands for larger systems for each value ofD. At the first part
we investigate nonfrustrated models, such as the HAF on
square lattice with and without dimerization. In the seco
part of our study we consider frustration, the origin of whi
could be~i! geometrical such as, for instance, for the tria
gular andkagome´ lattices~ii ! due to a random mixture of F
and AF couplings such as, for instance, for the6J spin-glass
model, and ~iii ! due to competition between first- an
second-neighbor couplings such as for theJ1-J2 model.

1. HAF on the square lattice

We start with the renormalization of the HAF on th
square lattice. The probability distribution of the gap calc
lated for a uniform bond distribution@Eq. ~18! with D51] is
shown in Fig. 4 for different linear sizes. In a log-log plot th
small gap region of the curve is linear, the slope of whic
according to Eq.~11!, corresponds tov11. With increasing
size one observes a slight broadening of the distributi
indicating a decreasing effective gap exponent which, ho
ever, seems to converge to a finite asymptotic value,

vAF50.7~1!, d52. ~21!

During renormalization we observed simultaneously
effective singlet formation, thus in Eq.~14! one hasz50.
Our estimate for the dynamical exponent satisfies the rela
in Eq. ~13!, yielding zAF51.2. Thus we conclude that th

FIG. 4. Distribution of the energy gap of the square lattice HA
with uniformly distributed random couplings, for linear sizesL
58,16,24, and 32. The slope of the low-energy tail of the distrib
tions is given by2(v11)52d/z. The straight line forL532 has
a slope'21.7.
4-5
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low-energy fixed point of the system is aconventional, finite
disorder Griffiths fixed point and the thermodynamical si
gularities are given by Eq.~12!. For other disorder strength
D we reach the same conclusions and our estimates for
gap exponents for eachD agree with the value in Eq.~21!
within the error bars. Thus the low-energy singular behav
of the 2D random HAF does not depend on the strength
disorder, in contrast to random quantum spin ladders.11

2. Square lattice HAF with dimerization

Next we study the low-energy behavior of the dimeriz
HAF, as sketched in Fig. 1~b!. For site and bond dilution the
stability of the gapped, dimerized phase was recen
investigated.38 Here we consider the effect of strong AF bon
disorder. In our calculation we used uniform initial random
ness and performed the renormalization for several value
the dimerization parameter,a. The possible values of th
two types of couplings were in the regions (0,1) and@0,(1
2a)#, respectively. For any value ofa in the range 0,a
,1, we observed an effective singlet formation, and the
timated gap exponentsv and dynamical exponentsz are
found to satisfy the relation in Eq.~13!. The extrapolated
dynamical exponents as plotted in Fig. 5 seem to be appr
mately constant in two regions, which corresponds to the
phases of the pure model in Fig. 2~b!. For weaker dimeriza-
tion the dynamical exponent corresponds to the one of
random HAF, and for stronger dimerizationz is approxi-
mately equal to the one of the disconnected two-leg lad
systems, to which the casea51 reduces, withz'1.07.11 We
expect that the dimer order is finite in the RD regio
whereas it is zero~or very small! in the random HAF region.
Between the two regions, corresponding to the neighborh
of the phase-transition point in the pure system in Fig. 2~b!,
the dynamical exponent drops to a minimal value. T
crossover could happen in a smooth, nonsingular way, or
sharp phase transition separating the random AF and the
dom dimer phases. Due to strong finite-size effects we co
not discriminate between the two scenarios.

We note thatz in the crossover region behaves in t
opposite way as that in the dimerized ladders, where

FIG. 5. Extrapolated dynamical exponent of the random dim
ized HAF on the square lattice. The random AF and the rand
dimerized phases are separated by a crossover region in whic
dynamical exponent is minimal.
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dynamical exponent at the transition point in a finite syst
is maximal, and increases without limits11 for increasing sys-
tem size, signaling an IRFP. In the two-dimensional ca
considered here the combined effect of critical fluctuatio
and quenched randomness seem to reduce the value o
dynamical exponent. Our calculations indicate that in
random dimer phase the low-energy behavior is contro
by a GFP and the dynamical singularities are given
Eq. ~12!.

3. Randomly frustrated models (two dimensions)

In this section we consider the Heisenberg model on
square lattice with a random mixture of F and AF coupling
This is a model for a quantum spin glass16,17 and we denote
the corresponding fixed point as the spin-glass fixed po
~SGFP!, although we do not explicitly check for the exis
tence of proper spin-glass order in the ground state~for in-
stance, via the calculation of the Edwards-Anderson sp
glass order parameter39!. As we can see, this fixed poin
differs from the other fixed points we found for nonfrustrat
models, so we feel that the use of this notation is justified
particular, we find a large spin formation proportional toL
during the RG procedure implying a ground-state spinS
}AN, which is reminiscent of the spin-glass behavior fou
in ~Refs. 16 and 17! for this model with alternative methods

First we report the results for the Gaussian randomnes
Eq. ~19!. For this case the distributions of the gaps and of
effective spin moments are shown in Fig. 6. The gap dis
butions for different finite sizes have a very similar structu
they are merely shifted to each other by a constant prop
tional to lnL. The slope of the low-energy tail of the distr
butions is practically independent of the strength of disor
and in all cases the gap exponent is equal to

vSG50, d52, ~22!

within an accuracy of a few percent. From the finite-si
scaling properties of the gap distribution, we infer that t
relation in Eq.~13! is satisfied and therefore

r-
m
the

FIG. 6. Probability distribution of the energy gap on the squ
lattice with mixed F and AF bonds following a Gaussian distrib
tion with s51. ~The slope of the straight line is21.! Inset: Dis-
tribution of the spin moments.
4-6
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zSG52, d52, ~23!

within an accuracy of a few percent.
On the other hand, the distribution of the effective sp

moments in the inset to Fig. 6 shows a tendency to broa
with increasing system size and its average value has a li
L dependence,@mL#av'.42L. Therefore the moment expo
nent in Eq.~14! is

zSG51/2, d52. ~24!

We have repeated the above analysis using the symm
rectangular distribution in Eq.~20! both for theS51/2 and
the S51 models, and we obtained the same critical ex
nents as those in the Gaussian case. Thus we can con
that the low-energy behavior in randomly frustrated 2D mo
els is controlled by the same SGFP, independent of the
of randomness and the size of the spin.

4. Geometrically frustrated models

In this section we consider the HAF on two geometrica
frustrated lattices that have qualitatively different grou
states in the nonrandom case. The triangular lattice has fi
AF long-range order and low-energy excitations behave
those in Eq.~3!. In contrast to this, the ground state of th
kagome´ lattice is disordered and the low-energy singlet e
citations have a more complicated size dependence.

We start with the HAF on the triangular lattice using t
power-law distribution in Eq.~18! for the random couplings
The distribution function of the gap is presented in Fig. 7
different disorder strengths. The slope of the low-energy
of the distributions is again, as for the randomly frustra
model of the last section, practically independent of
strength of disorder and in all cases the gap exponent is e
to v50 within an accuracy of a few percent.

When calculating the moment of the spin clusters,
notice large spin formation during the action of the R
From the size dependence of the average moment we o
the exponent in Eq.~14! to be z51/2, independent of the
strength of disorder. From the finite-size scaling propertie
the gap distribution, we infer that the relation in Eq.~13! is

FIG. 7. Probability distribution of the energy gap for the tria
gular lattice HAF for different strength of randomness in Eq.~18!.
The low-energy tail of the distributions, which has practically
finite-size dependence forL>10, is consistent with the same ga
exponent,v50, implying a dynamical exponentzSG5d52.
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satisfied and thereforezSG5d52. Thus we can conclude
that the thermodynamical quantities in the random triangu
HAF obey the relations in Eq.~17!.

Next we focus on thekagome´ lattice and enlarge the pa
rameter space by considering the dimerized model, as in
duced in Ref. 40: Couplings in up-pointing triangles~J! are
different from those in down-pointing triangles (J8) ~see Fig.
1 of Ref. 40!. Analyzing the results of the RG calculation a
already described for the triangular lattice, we obtain a se
gapped, dynamical, and moment exponents for differ
dimerizations, 0.1,J8/J,1.5, and disorder strengths,D
51, 2.5, and 5. In Fig. 8 we show our estimates for t
dynamical exponents forD52.5, which are consistent with
the SGFP result in Eq.~22!. Also for other disorder strength
we find the same behavior and we conclude that the lo
energy physics of the randomkagome´ HAF is controlled by
the SGFP and the thermodynamic singularities are descr
by Eq. ~17!.

5. The J1-J2 model

In our final example for the 2D case, the source of fru
tration is the competition between first- —J1—and second-
neighbor—J2—couplings, which obey a power-law distribu
tion in Eq. ~18! within the ranges of 0,J1<J1

max and 0
,J2<J2

max, respectively. We have performed the previo
analysis at different points of the phase diagram,J2

max/J1
max,

and for different strengths of disorder,D. In all cases we
found that the relation in Eq.~13! is valid. As an illustration
we show in Fig. 9 our estimates for the dynamical expone
for a disorder strengthD55/3, which are consistent with th
SGFP value in Eq.~22! in a wide range of 0.2,J2

max/J1
max

,2.0. The same conclusion holds for other disord
strengths in the range of 1<D<5. During renormalization
there is large spin formation and the calculated cluster ex
nent is consistent withzSG51/2. Thus we can conclude tha
in the J1-J2 model the different phases in the pure mod
~AF and CL ordered, disordered SL! are washed out by
strong disorder, and the whole frustrated region,J2 /J1.0, is
controlled by the SGFP.

B. Three-dimensional models

For the calculations in three dimensions that we pres
now we considered only systems of linear sizesL56,8,10,

FIG. 8. Dynamical exponent of the random HAF on the dim
izedkagome´ lattice with a randomness parameterD52.5 calculated
in finite systems havingL2 triangles, thus 3L2 sites. The connecting
lines are guide to the eyes, and a typical error bar is also indica
4-7
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and 12, in some cases we went up toL516. Larger system
sizes were computationally not feasible. The typical num
of realizations were several ten thousands for each po
Due to the smaller system sizes the finite-size effects in th
dimensions are stronger than in two dimensions. Th
finite-size effects turned out to be too strong in the rand
HAF on the cubic lattice for a safe estimate for the g
exponent. We can, however, conclude that there is no la
spin formation and the low-energy behavior is controlled
a conventional GFP.

1. Randomly frustrated models (three dimension)

We have studied models with mixed F and AF couplin
for different forms of initial randomness~Gaussian, symmet
ric, and asymmetric rectangular! and for comparison, calcu
lations on theS51 model are also performed. The calculat
distributions of the gaps are presented in Fig. 10.

FIG. 9. Dynamical exponent of theJ1-J2 model on the square
lattice with a power-law randomness withD55/3. The connecting
lines are guide to the eyes, and a typical error bar is also indica

FIG. 10. Probability distribution of the energy gap on the cu
lattice with mixed F and AF bonds.~a! Gaussian distribution,s
51; ~b! symmetric rectangular distribution (r 50); ~c! asymmetric
rectangular distribution (r 50.25); ~d! S51 symmetric rectangula
distribution. The low-energy tails of the gap distributions for
cases, indicated by straight lines, have a slope21, corresponding to
v50.
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As seen in Fig. 10 the slopes of the low-energy tail of t
gap distributions are approximately constant, and for our
nite systems they are consistent with a vanishing gap ex
nent

v'0 ~d53!. ~25!

During renormalization, such as in the case of two dime
sions, there is a large spin formation and the correspond
moment exponent isz50.55, for symmetric distributions
~Gaussian and rectangular! and z50.58 for the asymmetric
rectangular distribution. Thusz appears to be close to 1/2 i
both cases. We have also studied the scaling behavior o
reduced gap distribution,P̃(LzD)5L2zPL(D). In Fig. 11 we
show a scaling collapse of the distributions, which is o
tained byz'1.5 independently of the disorder distributio
The scaling curves seem to tend to a finite limiting value
D50, implying a gap exponentv'0. We can thus conclude
that—within the range of validity of the SDRG method—th
relation in Eq.~13! is not valid for frustrated 3D models.

2. The J1-J2 model

We also considered frustration caused by a competi
between nearest- and next-nearest-neighbor couplings in
der to determine to what extent the universality of the sp
glass~SG! phase, observed in 2D models, is valid in thr
dimensions. Here we study systems at different points of
phase diagram,J2

max/J1
max, and for different initial disorder,

D, using the same notations as those for two dimensio
Typical gap distributions are shown in Fig. 12, where w
observe that the low-energy tail of the distributions in ea
case has approximately the same slope close to21, which
results in a gap exponent,v'0. This result is consisten
with Eq. ~25! obtained for randomly frustrated models. Du
ing renormalization large spin formation is observed, and
moment exponent,z, is found to depend on the position i
the phase diagram: forJ2

max/J1
max50.5 and 1.0 it is given by

z5.58 and .78, respectively (D51 is in both cases!. The
dynamical exponent in these cases was about the samz
'3/2) as for that of randomly frustrated models.

Thus we can conclude that also in three dimensions
low-energy fixed points of random Heisenberg systems w

d.

FIG. 11. Scaling of the reduced gap distribution,P̃(LzD)
5L2zPL(D), for randomly frustrated 3D systems:~a! Gaussian
randomness,s51 and ~b! symmetric rectangular randomness.
both cases it isz51.5.
4-8
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different types of frustration are controlled by the same ty
of SGFP, having the same gap exponent,v'0, as in a two-
dimensional SGFP. Therefore we conjecture that the gro
states of these 3D frustrated models are in a spin-glass ph
too. At these SGFPs the dynamical exponent is const
however, the moment exponent has a system depende
Thus the low-energy excitations have a universal scaling
havior, but the thermodynamical singularities in Eq.~17!,
which depend on the value ofz, are system dependent.

V. DISCUSSION

In this paper we considered higher-dimensional HAFs a
studied the effect of strong randomness on their low-ene
low-temperature properties by a numerical application of
SDRG method. Comparing with the known, partially exa
results for 1D HAFs we noticed several important diffe
ences. First, in higher dimensions one observes a strong
versality scenario: there are only a few relevant fixed po
~most important are the random AF fixed point and t
SGFP! and their properties do not depend on the coordi
tion number, the strength of disorder, value of the spin, e
rather just on the dimension of the model and the degre
frustration in the system. In contrast to this, in random s
chains~with dimerization! and ladders one usually has a co
tinuum of low-energy fixed points parametrized by the va
of the dynamical exponentz and which do depend on th
aforementioned details. Second, in higher-dimensional HA
the singularities are controlled by~a few! conventional ran-
dom fixed points, at which the dynamical exponent is fin
In higher-dimensional systems there are no IRFPs that
generally be found in~quasi!-1D systems at random quantu
critical points. A third difference between 1D and highe
dimensional AFs is the following. In one dimension th
renormalization of random spin-1/2 AF spin chains and r

FIG. 12. Probability distribution of the energy gap of theJ1-J2

model. ~a! J2
max/J1

max50.5, D51; ~b! J2
max/J1

max51, D52; ~c!
J2

max/J1
max51, D51. ~The slope of the straight lines in all cases

21.!
e-

m
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dom quantum ferromagnets, such as the random transv
Ising model,7,8,41 leads to similar IRFPs at quantum critic
points. In higher-dimensional random transverse Ising m
els the random quantum critical point is still an IRFP,42,43

whereas for the random HAF, even at random quantum c
cal points, we found in this work the dynamical exponent
be finite.

One remarkable aspect of our results is the observed
versality of the fixed point controlling the low-energy cha
acteristics of random frustrated systems.44 The gap exponen
of this so-called spin-glass fixed point~SGFP! is numerically
very close to zero45 and we can explain this observation
the following way. During renormalization there is a larg
spin formation in these systems and therefore we expect
the low-energy excitations ind>2 are extended over th
whole ~finite! volume of the system~in a 1D topology these
excitations are not extended since unfavorable domains
ally restrict the size of excitations!. As a consequence thes
excitations can be considered as compact objects so that
reduced ~scale-invariant! probability density P̃(LzD)
5L2zPL(D) has no size dependence for a fixed small g
D. This last statement is consistent with a vanishing g
exponent,v50, according to Eq.~11! and is supported by
the numerical results in Fig.11.

Finally we remark about the accuracy of the results o
tained with the SDRG method. It is generally expected t
the SDRG method leads to asymptotically exact relatio
concerning singularities and scaling functions at IRFPs.7,41

However, the same type of asymptotic accuracy of the res
is predicted at GFPs and checked numerically by the dens
matrix renormalization-group method.8 Therefore we expec
the predictions of the SDRG method about LSFPs and
SGFP also to be correct. This expectation finds support in
results of numerical calculations for the 1D Heisenbe
model with mixed F-AF couplings46 and for the6J square
lattice HAF.17 Nevertheless alternative calculations are n
essary to check the validity of the predictions of our SDR
results.
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