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Disorder-induced phases in higher-spin antiferromagnetic Heisenberg chains
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Extensive density-matrix renormalization-group calculations for §sirl/2 andS= 3/2 disordered antifer-
romagnetic Heisenberg chains show a rather distinct behavior in the two cases. While at sufficiently strong
disorder both systems are in a random singlet phase, we show that weak disorder is an irrelevant perturbation
for the S=3/2 chain, contrary to what expected from a naive application of the Harris criterion. The observed
irrelevance is attributed to the presence of a new correlation length due to enhanced end-to-end correlations.
This phenomenon is expected to occur for all half-integjerl/2 chains. A possible phase diagram of the chain
for genericSis also discussed.

DOI: 10.1103/PhysRevB.69.144416 PACS nunider75.10.Hk, 05.50tq, 64.60.Ak

[. INTRODUCTION identicalS=1/2 spins. The SDRG decimation then produces
effective spins of magnitude®.< S obtained by linking the
A simple model where the effects of the interplay betweenspin-1/2 objects into correlated singlets. For 8wl case an

qguantum fluctuations and disorder can be studied in greeBDRG analysis shows that a sufficiently strong randomness

detail is the spirs random antiferromagnetic Heisenberg induces a RS phase with=1, separated from the gapped

(AFH) chain with Hamiltonian phase by a gapless region of Griffiths singularifleghe
gapless Haldane phdsgin which the dynamical exponeat
increases with disorder. A recent SDRG sttfdyf the disor-

H= Z S-S (@ dered AFH chain wittS=3/2 indicated the existence of two
phases: At strong disorder the relevant degrees of freedom
whereJ;>0 are quenched random variables. are S.z= 3/2 spins, while at weaker disorder they are of type

In the absence of randomnes3 €J) quantum fluctua- S.4=1/2. Both phases are of RS type with identical critical
tions lead to qualitatively different behavior for half-integer exponents. A quantum critical point separating them is ex-
(S=1/2,3/2...) andinteger §=1,2,...) values of the pected to have specific multicritical exponetfts?
spin! Half-integer spin chains have a gapless spectrum and As the SDRG method might fail at weak disorder, its
quasi-long-range order. It is believed that they all belong topredictions should be tested by means of accurate numerical
the same(bulk) universality class independently & This analysis, which is the aim of the present paper. We will
was explicitly verified numerically for the&s=3/2 chain®  present numerical evidences, supported by theoretical argu-
which was found to have the same bulk decay exponent asients, that the phase diagram for ®e 3/2 spin chain dif-
for the S=1/2 chain. Integer spin chains are instead gappeders from what predicted by SDR&.0ur numerical results
and have a hidden topological order. support the existence of a RS phase only for sufficiently

The effect of quenched randomness on the AFH chainstrong disorder, while weak disorder appears to be an irrel-
can be studied by the strong disorder renormalization-groupvant perturbation for the system.

(SDRG method. This technique consists in successively

decimating out the strongest bond in the chakor the S II. NUMERICAL RESULTS

=1/2 chain the SDRG procedure can be carried out in great N ) .
detail and yields a probability distribution of coupling con- _ Here we analyze the critical behavior of the AFH chains
stants that under renormalization is broadened without limitgvith varying degree of disorder by means af density-matrix
and in the so-called infinite randomness fixed point thd€hormalization-group(DMRG) techniques® Numerical
method becomes asymptotically exact. At this fixed pc,in»[,calculatlons are restricted to tl&=3/2 case, and the disor-
describing the so-calied random singi&S) phasé the en-  der average is performed on*tL0* samples taken from the
erg}/ scalel’, and the length scalé are related via lir ~ distribution

~¢&”, which differs from scaling at a convention@andon) a1+ 1S

fixed point, wherd~ £~ % with a finite dynamical exponent Ps(d)=5" for 0=J=<1, @)
z Numerical studies on random sp®= 1/2 antiferromag- where §°=varfInJ] measures the strength of disorder. As
netic chains generally agree with the SDRG restfits|- usual in DMRG(Ref. 14 we use open boundary conditions
though some issues are still debated. and keep typicallyn=80-100 states in the renormalization

For S>1/2 the SDRG procedure requires a higher degreg@rocedure. In order to obtain numerically stable results we
of approximations with respect to ti$e= 1/2 case. AspiilBis  use the DMRG finite system method performing several
represented by a maximally symmetrized combination®f 2 “sweeps” (~4-5) through the chaitf, which is an essential
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0.4 - —_ ] 005 brings its local scaling dimensiony/2 and %°2, respec-
03  S=3/2 /,,,;5;_:.’{5;’!”: 0.04 tively. In order to eliminate the surface exponent contribution
. 455 et e, {003 we consider the ratio
O i e T se12 0.02
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o L=~ . 5 C(1,L/2+1)C(L/2,L)
0.0 0.1 02 L= s , (4)
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o B0 .\'\-\,\;:\ sl LN PP which decays asymptotically & ~L 7. The plot of InC_
O =.5=08 L SN versus IrL is shown in Fig. 1b). In the pure system the bulk
g af—""r \-‘—\,\.\21\ Yo 55 exponent isy=1, while in a RS phase one expecixs
$=3/2 e (b) =2. The numerical data fd8= 3/2 are quite consistent with
=0 Y 20 e PR a 1L decay, which seem to be in disagreement with the
' ' InL ' ' existence of a RS phase at weak disorder, but rather support

) . the same critical behavior as for the pure system.

FIG. 1. Average correlations in the rando8+ 1/2 and 3/2 _ . .

chains with disorder strengttés= 0.3 (circles and 5= 0.8 (squares In the S=1/2 case the data are not fully consistent .Wlth

(a) End-to-end correlations; dashed lines are linear fits of the dat t'he expected RS.exponem{$=2, shown as a. dashed I|_ne,

(b) C, vsL in alog-log scale. Here the dashed line shows the deca}’Ut are characterlzed_ by .an m(;reallsm_g slopk agreases in .

in the pure system (L) and in a RS phase 1. he.log-log scale, which is an mdlcatlo_n that thg asymptotlc_
regime has not yet been reached. This slope in any case is

clearly larger than 1. Notice that for the calculation of the

step in the DMRG procedure. The DMRG calculations forbulk exponent we use a combinatifsee Eq.(4)] of corre-

the S=3/2 chain have been extended uplte 32 for weak lation functions between an edge spin and a spin in the

disorder, while at stronger disorder thg procedure tends Yhiddle of the chain. As the distance between these spins is
become less stable and we had to restrict ourselves to shortE;2 it is plausible that, is plagued by stronger finite-size

cha_ms. However, the phys_lcal behavior in the strong fj'so.rdeéorrections compared to the surface-surface correlation func-
regime turns out to be quite well understood, while, in V|ewtion cs
L .

of the limitations of the SDRG at weak disorder, it is pre-
cisely this regime which is physically the most interesting. In
the weak disorder regime the DMRG is a rather stable and B. Dynamical exponent

reliable technique. We consider next the dynamical singularities in the sys-

tem, which are related to the integrated probability distribu-
A. Correlation functions tion ()(&) of the smallest energy gap. This quantity, for

In order to emphasize the differences between the twéma”‘g’ behaves as
cases we present together the results for3ke3/2 andS
=1/2 chains for the spin-spin correlation function defined as O(g)~el?, (5)

C(i ,J')=[<3|2512>]av, ©) If z’<1 quantum fluctuations dominate and the true dynami-
cal exponent iz=1, as in the pure system. ' >1 the
where[ - - - ], denotes the averaging over quenched disordelg'r?%?i; ?r?edSqusc'j[lgrt]l:n;rszegtser?%n;pbeteaa::ntf;enf:)nng;I?;np(;gﬁ;
The correlation function obviously does not depend on theT. ' the sy , gov y f vent
ixed point withz=2". In the RS phase=2z'—o.

spin direction. ) B
Figure Xa) shows a plot of the surface-surface correlation Figure 2 shows plojcs of If(e) Versus Ire er S=3/2(a)
function CS=C(1,L) plotted as a function of L/ for S and S=1/2 (b). The different scaling behavior for the two
—1/2 (5:63) an<,jS= 3/2 (5=0.3, 0.8). In a RS phase one values of the spin can be seen by comparing the data for the
expects that asymptotically ih the surface-surface correla- same st.rength of disordes¢: 0.3) " In the_S= 1/2 cham the
distribution becomes broader by increasing the chain length,

. . _ .S . . . .
tion vanishes a~L " 7rs with 7ps=1.° This s '”deid while in the S=3/2 chain In()(¢) tends to have a finite non-
observed in the case=1/2. In theS=3/2 case mstead:,_ Vanishing S|ope for SmaH;, |mp|y|ng that ]_t’>0, a con-

extrapolates to a finite value which indicates the presence @flusion which is at odds with a RS phase.
a surface ordering phenomenon or, in other words, a first- For sufficiently strong disordef=3, however, also the
order surface transitiotformally »°=0). The same type of S=3/2 spin chains show a broadening gap distribufieigy.
behavior is observed for the=3/2 chain in the absence of 2(a)]. The inset of Fig. 2 presents a graph oflte) plotted
randomness$? as a function of the rescaled variableslh”, with = 1/2, as

To obtain the bulk exponeny we consideiC(1,L/2) the  expected in the RS pha&&Similar results were also found
correlation function between an edge and a spin in they §=2. At such strong values of disorder, due to difficulties
middle of the chain, which decays asymptotically asin the convergence of the DMRG method, we restricted our-
C(1L/2+1)~L (n* 72 Thus each point of reference selves to exact diagonalization data of rather short chains
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FIG. 4. Finite-size scaling of the firéd) and secondb) gap in

_'2 0 the dimerizedS=3/2 chain. Data collapse for the first gap is ex-
pected to work only in the disordered regian>Q0).

it

FIG. 2. Integrated probability distribution of the first gap in ] o )
log-log scale(a) S=3/2, §=0.3 (L=4, 8, 12, 16, 20, 24, 32 from At 6=2 and even stronger disorder the scaling is consistent
left to right) and =3 (L=4, 6, 8, 10 shown as solid linesp) ~ With a RS behavior. The borderline between the RS phase
S=1/2, 6=0.3 (L=4,...,24, 32 shown as dashed lines. Inset: and the weak disorder phase seems to be located at around
Collapse of the data fd8=3/2 andé=3 as expected in a RS phase 6=1.

(L=4, 6, 8, 10.
. L C. About the Harris criterion
=<10. The asymptotic behavior is, however, reached already . ) )
for rather small chains, as the good C0||apse of the data of the The numerical results for the correlation functions and for

inset of Fig. 2 demonstrates. the gap distribution strongly suggest that at weak disorder

We have also calculated the dynamical exponent from théhe S=3/2 chain has the same critical properties as in the
distribution of the end-to-end correlation functio@®®,  Pure case, i.e., the disorder iiselevant™ For sufficiently

which is expected to scale ds strong disorder the DMRG results show also that the system

is in a RS phase, therefore there is a transition induced by the

P ﬁ)w(cf)lff_ (6) strength of disorder. The analysis of both the gap and corre-

lation functions indicates that the region of irrelevance ex-
Figure 3 shows a plot of the exponenz’(L) versus 1,  tends up tos=1.
for =0.3 obtained from the analysis of the gap and of the  According to the Harris criteridfi disorder isrelevantif
correlation functiofEgs.(5) and(6)]. Both estimates lead to  an appropriately defined correlation lengtin the pure sys-
a finite valuez’~0.13. One may wonder whether this is a tem diverges with an exponent such that 24>d (hered
genuine effect or just due to a very slow convergence t0 & 1). |n the present case, as the disorder is coupled to the
possible asymptotic behavior consistent with a RS phas?ocal energy operatoéi-éiﬂ, the correlation lengtt en-

142 (I;])—{O. On the View of Olﬁr numl_ekn(ial res_ults w?dbehev_e tering in the Harris criterion is that associated to the strength
that the latter scenario Is rather uni 93{' as It would requir€yt the dimerizationt defined as the amplitude of the alter-
also a nonmonotonic scaling in of 1/z'(L) for the data

. nated modulation of the coupling constantd;=1+
obtained from the gap. pling i

- : . (—1)'t. In the limit t—O0 this correlation length diverges as
In a similar way we estimated the dynamical exponent fo

r —v _ _ 21 ¢ ;
~ . = = < -
other strengths of disorder. Fé=0.8 we findz'=0.8(2). gval|rt1|ce oflz/]végi ?isolrger(.:ase,v 2132, implying rel

In the S=3/2 case there is no numerical result available
for the critical exponenw, therefore we have analyzed the
] scaling behavior of the smallest gaps as a function Stal-
%%% % 2 a ing plots are given in Fig. 4 and as a comparison the same
-

10

quantities for thes=1/2 chain are shown in Fig. 5. The gaps
are expected to scale as

1/z

-
4t
e(L,t)=L"%g (L"), @)
2+t RS ® Gap 1
/ @ Corr. functions with &, a scaling function and wherle=1,2 label the first
0 s , and second gapg.As shown above for th&=3/2 at weak
0 0.05 L 0.1 015 disorder and for the pure system the surface is ordered at

=<0, i.e., the correlation function between the edge spins is
FIG. 3. Finite-size analysis of the inverse dynamical exponenfinite in the limit L—o (for L even. There are several

1/2' as a function of the inverse chain length Tér S=3/2 atweak known examples of models with spontaneous surface étder,

disorder5=0.3. In the RS phase one would expea’140. as the one observed in ti&=3/2 chain. In these cases one
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-10 =5 1,401 5 10 -2 -l 144(1) 12 function of the strength of disordef. The RS denotes a random
Lot Lot singlet phase where the relevant degrees of freedom are eff&tive
FIG. 5. As in Fig. 4 forS=1/2. spins. The WD and ID are the region at weak and intermediate
disorders.

expects a localized low-energy excitationtat0 with a gap i _ o7 _

that vanishes faster thanLlbecause the ground state is de-Which for the S=1/2 chain i$" xg=7%/2=1. For the S
generate in the thermodynamic limit, i.@,~L % with z, =3/2 chqln the results in Fig. 4 are considerably smaller, our
>1. Indeed this can be seen in Fig. 4 for the smallest gap iffSimate is aroungs=1/2. Thus there are very probably new
the S=3/2 case,e;. In the absence of dimerization this OPerators for the ope&=3/2 chain, which are not present in

quantity scales with an exponent~1.36>1, as shown by the S=1/2 chain. o . _
the scaling collapse at the poirnt 0 in Fig. 4a). The figure As a comparison we plot in Figs a similar scaling C.Ol'
also shows that in the surface disordered regiof a rea- aPS€ analysis for the first two gaps in e 1/2 case, using

sonably good data collapse fey is obtained with the choice a similar range of system si_zes as in_ Fig. 4i Notice _that the
L1st with »,=2. Notice that in the surface ordered region P€St collapse is obtained with a scaling variabfe®t, im-

t<<0 no scaling collapse can be observed. All the other gap !ying ’WO'?.l’ not far fr'om the expecteq va_luec 213, a
in the S=3/2 are nonlocalized and scale witk 1, as illus- ifference which can be imputed to logarithmic corrections.

trated in Fig. 4b) for &5, and their scaling form involves the The an_alysis at finitet reveals .that.the dimerization
bulk correlation lengthé~|t|~”, with »~1. This estimate couples differently to the&s=3/2 chain with respect to the

for v is different from the valuer=2/3 in theS=1/2 chain. S=1/2 chain. We argue thaF th? a_pproopriate correlation
We expect that the origin of this difference is due to thelength_to be used m_the Harris criterioit® for the S=3/2 .
existence of a dangerous irrelevant scaling vari&biehich chain is¢, that asspmated .to thg smallest gap and thus W'th
is generally observed at first-order surface transifidas in Vs~ 2 the disorder is marginally irrelevant. An accumulation
this case of weak bonds along the chain may result indeed in an ef-
our nl.JmericaI results. summarized above. can be com€ctive cut of the system. The resulting scenario is that of
pared with theoretical predictions in Ref. 25. In the resonatVeakly interacting segments_of f|n|te Iength in which t_he
ing valence bond picture the low-energy excitations of theelevant length scale i§s, which is associated to a chain

openS=3/2 chain are expected to be described by effectivéVith 0Pen boundary conditiongWe note that a similar sce-

S=1/2 edge-spin degrees of freedom, which are very weakl;?ario is used for the renormalization of rand@s 1 chains,

coupled to the rest of aB= 1/2 chain. In the thermodynamic in which the effective coupling between spin-1/2 degrees of

limit the edge spins are expected to be decoupled, the effef€€dom is exponentially small) This scenario therefore
tive coupling being logarithmically small, as 1ln In this provides a plausible explanation for the opserved irrelevance
picture the smallest gagat t=0) scales ass;~1/LInL, of weak disorder for the randoi®=3/2 chains.

whereas the other gaps scale in the same way as for the open

S=1/2 chain. Our numerical findings disagree with this pre- 1. CONCLUSION

diction at two points. First, the localized gap has a faster size We conclude by suggesting a general phase diagram for
depe_nder_we, our ’?“me”ca' results cannot be _descnbed bytl"i‘e spinS AFH chains as a function of the strength of disor-
logarithmic correction. As a matter of fact for sizes we used

in th lculation the effecti ¥ ) | der 8. This phase diagram, shown in Fig. 6, is obtained by
In the calculation the efiective Exponezitis monotonously .combining DMRG and SDRG results known for tH&
increasing with the size and there is no sign of reversing this ;5 1 ands=3/2 cases with some general arguments

tendency. Data of previous numerical calculations in Fig. 5for higher S. First of all, differently from theS=1/2 case
of Ref. 26 show also strong deviations from a pure logarith- ' '

. ' : where any amount of disorder is known to lead to a RS
mic correction. Our second disagreement concerns the secs;

ond gap at=0, the value of which according to conformal phase, we expect that all chains B 1/2 have a region of
. gap at="o, 9 irrelevance, the weak disordéWD) region, where the sys-
invariance should be

tem is either criticalhalf-integerS) or gapped(integerS).
e,(L,0)L= 70 Xq (8) This was _already known flo‘.B integer. Our results for thS
=3/2 chain suggest that it may be true also for noninteger
in the largeL limit. Here v =3.87 is the sound velocityfor  spin.
the S=3/2 chain and is the surface anomalous dimension, At strong enough disorder a8 are in a RS phase com-
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posed of effectivéS spins, which we indicate as BSForthe  recent work of Seguizet al,*> who performed a SDRG
S=1 case there is only one such phase {R%hile arecent analysis of the disordere8=3/2 AFH chain. Their calcula-
SDRG study forS=3/2 (Ref. 12 predicts two distinct tion differs from that of Ref. 12 as the decimation scheme
phases: R$, and RS,,. We found no signatures of this spin keeps into account more states, thus it is expected to be more
reduction transition in our DMRG calculations, which could accurate. While the results of Ref. 12 indicated the existence
be anyhow difficult to detect as the RSand RS, have of two RS phases with different effective spir¢=1/2 and
identical critical exponents. There is also the possibility toSez=3/2), in the work of Seguiat al3 the renormalization
have, for higher spins§>3/2), a sequence of multiple RS flow indicates that the weak disorder is an irrelevant pertur-
phases of different nature. Possible phase diagram for highéation of the system. This is in agreement with the conclu-
S has been recently discussEdWe have indicated these sion of this paper.

transition lines in the phase diagram of Fig. 6, which, for the

time being cannot be supported by numerical results. Finally, F.l. is grateful to G. Fh for useful discussions. This work
the WD region may be separated from the RS pf®dy an  was supported by a German-Hungarian exchange program
intermediate disordgtD) region where exponents vary con- (DAAD-MOB), by the Hungarian National Research Fund
tinuously with 8, as observed in other modéfsFor the under OTKA Grants Nos. TO34138, TO37323, MO45596,
gappedintegerS) case this would correspond to a region of and M36803, by the Ministry of Education under FKFP
Griffiths singularities. The qualitative nature of the disorder-Grant No. 87/2001, by Kuwait University Research Grant
induced crossover phenomena for e 1 chain is still de-  No. SP 09/02, by the Center of Excellence Grant No. ICA1-
bated(see in Refs. 29 and 30We will discuss this issue in CT-2000-70029, and the numerical calculations by NIIF

a future publicatiort!

Grant No. 1030. P.L. thanks M. M. Sharma for help in nu-

After this paper was submitted we became aware of anerical calculation.
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