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The random antiferromagnetic spin-1/2 XX and XXZ chain is studied numerically for varying strength of
the disorder, using exact diagonalization and stochastic series expansion methods. The spin-spin correlation
function as well as the stiffness display a clear crossover from the pure behavior(no disorder) to the infinite
randomness fixed point or random singlet behavior predicted by the real space renormalization group. The
crossover length scale is shown to diverge asj,D−g, whereD is the variance of the random bonds. Our
estimates for the exponentg agrees well within the error bars with the one for the localization length exponent
emerging within an analytical bosonization calculation. Exact diagonalization and stochastic series expansion
results for the string correlation function are also presented.
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I. INTRODUCTION

Quantum spin chains exhibit a number of interesting fea-
tures, especially at low temperature when quantum fluctua-
tions are stronger than thermal ones. The antiferromagnetic
(AF) Heisenberg model in one dimension(1D) has been ex-
tensively studied since the discovery in 1931 of the Bethe
ansatz1 for the spinS= 1

2 chain. In 1D, the AF XXZ model
defined by the Hamiltonian

HXXZ= Jo
i=1

L

fSi
xSi+1

x + Si
ySi+1

y + DSi
zSi+1

z g s1d

with J.0, exhibits a gapless excitation spectrum forD
P f−1,1g for S= 1

2 (and more generally for half integer
spins2), whereas a gap opens up in the spectrum for integer
spins.3 In 1D, the quantum fluctuations prevent the formation
of long-range order4 but the correlation length of the model
[Eq. (1)] is infinite and aquasi-long-range order emerges,
with power-law decaying spin-spin correlation functions in
the ground state(GS),

Casrd = kSi
aSi+r

a lGS~
s− 1dr

rha
for r → `, s2d

wherea=x, y or z, k¯lGS is the GS expectation value, and
the critical exponenthx,y=hz

−1=1−m /p, with m=arccosD.
If the AF exchange couplings are position-dependent, or

more generally distributed randomly according to a probabil-
ity distribution PsJd, the situation changes dramatically. In-
deed, the spin-12 chain described by the random-exchange
XXZ Hamiltonian

Hrandom
XXZ = o

i=1

L

fJ'sidsSi
xSi+1

x + Si
ySi+1

y d + JzsidDSi
zSi+1

z g, s3d

has lost the translation symmetry and rare events in the chain
dominate the low energy physics.5,7 Note that the energy
scale is set to unity by choosing mean values of random

couplings equal to one. Examples of random spin chains in-
clude (i) the random planar exchangemodel with Jzsid=1,
∀i and J'sid random;(ii ) the random z-z exchangemodel
with J'sid=1, ∀i and Jzsid random; (iii ) the random ex-
changeXXZ antiferromagnet for whichJ'sid=Jzsid and are
all random numbers.

For the AF XXZ spin-12 chain, it has been shown by Doty
and Fisher6 that disorder is relevant and that any amount of
randomness destroys the quasilong range order and drives
the system from a line of pure fixed points to an infinite
randomness fixed point(IRFP).7 The situation for higher
spins S.

1
2 is more complicated since it depends8 on the

parity of 2S and some issues are still under debate.9,10 Re-
garding the thermodynamic properties of the random spin-1

2
XXX antiferromagnet, a real space renormalization group
(RSRG) scheme, introduced first by Ma, Dasgupta, and Hu11

leads to a number of analytical results. In particular, indepen-
dent of the initial distributionPsJd of couplings the low en-
ergy properties at the IRFP are characterized by a dynamical
exponentz=` and a GS which consists of a tensorial product
of randomly long-range coupled dimers, the so-called
random-singlet phase(RSP).7 In such a phase, the disorder
averaged spin-spin correlation function is dominated by
strongly correlated pairs and is therefore slowly decreasing,
as a power-law

Cavg
a srd = kSi

aSi+r
a lGS~

s− 1dr

rhRSP
, s4d

wherehRSP=2 for all spin componentsas¯ denotes the av-
erage over the disorder and the sitesi). On the other hand, in
the RSP thetypical correlations decay faster(i.e., with a
stretched exponential) than theaveragecorrelations. These
analytical predictions, that we will recall in greater detail in
Sec. II, have been tested numerically several times using
different methods, e.g., Lanczos exact diagonalisation
(ED);12 free-fermions ED;5,13,14 numerical RSRG.16 For
strong enough disorder, such finite size systems computa-
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tions were in good agreement with the expected RSP univer-
sal behavior[Eq. (4)]. However, a recent density matrix
renormalization group(DMRG) calculation18 for chains
(with free boundary conditions) defined by Eq.(3) with weak
randomness in the planar exchanges caused a debate,19

which we intend to settle in this paper. Indeed, the conclu-
sions of the DMRG simulations presented in Ref. 18 on sys-
tems up to 400 spins, quite similar to a previous one using
smaller systems,20 disagree with the IRFP scenario in so far
as a dependence of the exponenth uponD and the disorder
strength was claimed. In this paper, we intend to shed more
light on this disorder induced phenomena in finite size(FS)
random quantum spin-1

2 chains and demonstrate convinc-
ingly via numerical studies of several related models defined
by Eq. (3) the consistency of FS effects and the IRFP sce-
nario.

The RSRG scheme is expected to be asymptotically exact,
but FS effects cannot be negligible, especially for weak dis-
order, i.e., far away from the IRFP. Indeed, one can show that
the RG flow toward the IRFP is controlled by a crossover
characterized by a length scalej which is disorder dependent
and diverges when the disorder strength is approaching zero.
Such a crossover from pure to random critical behavior is
very common in disordered systems and is always relevant,
in experiments as well as in numerical studies, when the
disorder is not too strong and the length scales that can be
explored are not too large. A good understanding of the order
of magnitude of the crossover length scale, in particular its
scaling behavior in dependence of the disorder strength, is
therefore necessary in order not to be misled by the mere
appearance of the experimental and/or numerical data(cf.
Refs. 18 and 19).

Our purpose here is to study crossover effects for various
1D spin-12 disordered models and to extract the relevant(dis-
order dependent) lenght scale which controls such a phenom-
enon. Already mentioned by two of us in Ref. 19, this disor-
der induced behavior is presented in greater details here and
is illustrated through large scales numerical calculations.
Moreover, a nontrivial connection with the localization of
particles in a 1D disordered media is presented and only one
relevant disorder dependent lenght scale is found to control
crossover as well as localization phenomena. The rest of the
paper is organized as follows. In Sec. II, we first recall the
analytical predictions of the RSRG scheme. Then, using the
bosonization study of the weakly disordered spin-1

2 chain,6

we establish a disorder-dependent length scale which is the
localization length of the related problem of disordered par-
ticles in 1D.21 In Sec. III, we present the free-fermions ED
results for the spin-spin correlation functions for various dis-
order strengths for system sizes(with periodic boundary con-
ditions) up to 4096 sites. The crossover length scale, which
emerges naturally from the data analysis, is studied as a
function of the strength of the disorder and compared with
the localization length extracted from spin stiffness calcula-
tions. The Ising part of the Hamiltonian[Eq. (3)] has also
been included and investigated via quantum Monte Carlo
simulations, using the stochastic series expansion(SSE)
method. Section IV is devoted to SSE calculations performed
at very low temperatures for the random exchange XXX
model and the random planar exchange model. First a brief

explanation of the method is given and some technical issues
about equilibration and GS convergence are discussed; then
results for spin-spin and string correlation functions are
shown. Finally in Sec. V, we give a summary and some
concluding remarks.

II. ANALYTICAL PREDICTIONS

A. Real space renormalization group results

The RSRG method, introduced originally by Ma, Das-
gupta, and Hu for the random exchange XXX spin-1

2 chain11

has been developed and studied in an exhaustive way by
Fisher7 for more general random exchange XXZ Hamilto-
nians. The basic ingredient of this decimation procedure is a
successive decrease of the energy scale via a successive deci-
mation of the strongest couplings in the chain.

In the limit of infinite system size, Fisher has demon-
strated the existence of a fixed point for the the distribution
of the effective couplings, independent of the initial distribu-
tion, which is given by

P0sJ̃d ~ J̃−1+d−1
, d → `. s5d

The IRFP, characterized by such a broad distribution, is at-
tractive for any amount of randomness in the case of spins-1

2
and the RSP, discussed in Sec. I, describes the GS. At the
critical point, the energy and length scales are related via

ln De , − ÎL s6d

and as a consequence, the dynamical exponentz is infinite.
Concerning the correlation functions, the average and typical
values behave quite differently since rare events control the
physics [see Eq.(4)]. The average correlation function is
dominated by long-range paired singlet and takes the follow-
ing expression, independently of the direction(transverse or
longitudinal)

Cavgsrd ~
s− 1dr

r2 . s7d

Another quantity, which measure an hidden order is the
string correlation function, defined in the GS at distancer by

Ssrd =
2r+1

L
o
i=1

L

kSi
zSi+1

z
¯ Si+r

z lGS. s8d

At the IRFP, the disorder averaged expectation valueSavgsrd
is expected to decrease as a power law, with a well-defined
exponent,22

Savgsrd = Ssrd ~
s− 1dr

r2−f , s9d

f=s1+Î5d /2 being the golden mean.
Whereas this real space procedure provides predictions

for the thermodynamic limit, it does not capture FS effects.
However, in order to give good interpretations of numerical
results, the understanding of FS effects is crucial. This is
what we are striving for here, using the bosonization treat-
ment of the random chain.
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B. Bosonization of the random chain: Emergence of a
disorder-dependent length scale

In this part, we summarize previous results obtained using
bosonization techniques.6,21 The XXZ spin-12 chain can be
mapped using the Jordan-Wigner transformation(see Sec.
III ) into a spinless interacting fermions problem in 1D. The
low-energy excitations around the Fermi points can be con-
sidered in terms of bosonic fields and the resulting Hamil-
tonian describes a Luttinger liquid.23 It is characterized by a
set ofD-dependentLuttinger liquid parameterswhich are the
velocity of excitationsu and the parameterK, given by

usDd =
p

2

sinsmd
m

, KsDd =
p

2sp − md
. s10d

Several types of quenched randomness added to the pure
XXZ model have been studied by Doty and Fisher.6 They
found, for random perturbations that preserves the XY sym-
metry, a critical behavior which belongs to the universality
class of the Giamarchi-Schulz transition for 1D bosons in a
random potential.21 Let us define the disorder strengthD by

D',z = sJ',zsidd2 − sJ',zsidd2. s11d

More precisely, for the random planar exchange model
D=D', for the randomz-z exchange model,D=Dz and for
the random exchange XXZ model, since the randomness is
isotropicD=D'=Dz. For a weak random perturbation added
to the planar exchange, the renormalization under a change
of length scalel =ln L is

]D
]l

= s3 − 2KdD. s12d

Therefore, ifK,3/2 (i.e.) −1
2 ,D,1) the disorder is a rel-

evant perturbation and the phase is the RSP. The renormal-
ization flow toward the IRFP is controlled by a length scale
which emerges from Eq.(12),

j * sDd , D−f1/s3−2Kdg. s13d

For the random exchange XXX model, the random perturba-
tion added to the operatorSi

zSi+1
z is marginally irrelevant and

therefore the exponent 1/s3−2Kd= 1
2 for D=1 is expected to

have small logarithmic corrections.24

The length scalej* is called the localization length since
in the fermionic language, the transition atD.0 is a local-
ization transition.21,25 Such a metal-insulator transition
driven by the disorder is characterized for instance, by the
vanishing of the zero temperature Drude weight(also called
the charge stiffness or the spin stiffness in the case of the
spin-1/2 XXZ model) ∀D.0 in the thermodynamic limit.
Previous numerical studies have checked this effect on trans-
port properties in the case of interacting spinless fermions in
a random potential using ED(Ref. 26) or equivalently in the
case of the XXZ chain in a random magnetic field.27,28 For
the simpler model of noninteracting fermions with random
hopping, mapped into the random exchange XX spin chain,
very large scale numerical simulations have been carried out
on systems up to 2048 sites.29 Using the scaling law for the
spin stiffness

rssL,Dd = gsL/j * sDdd, s14d

the localization length has been precisely studied and agrees
perfectly with Eq.(13) for weak disorder(see Sec. III C and
Figs. 4 and 5). Regarding the low-energy effective theory
predicted by some bosonization calculations, there is only
one relevant length scale which emerges from it, i.e., the
localization lengthj* sDd. Based on numerical calculations
performed over FS clusters for various disorder strengths, the
next sections are dedicated to the study of the disorder de-
pendence of the crossover length scale and its comparison
with the localization length.

III. EXACT DIAGONALIZATION STUDY
AT THE XX POINT

A. Free fermions representation

Let us consider the 1D XX spin-1
2 model with random

exchange couplingsJ'sid. This quantum problem is gov-
erned by the following lattice Hamiltonian:

Hrandom
XX = o

i=1

L

fJ'sidsSi
xSi+1

x + Si
ySi+1

y dg. s15d

We impose periodic boundary conditions,SL+1=S1. It is well
known that this spin problem can be mapped into a free
spinless fermions model via the Jordan-Wigner transforma-

tion: Sj
z=1/2−nj, andSj

+=cje
ipol=1

j−1nl. Thecj satisfy fermionic
commutation relations,hci

†,cjj=di j , andnj =cj
†cj is the num-

ber of fermions(spin down) at the j-site. The Hamiltonian
can then be written as

Hrandom
XX = o

i=1

L−1FJ'sid
2

scici+1
† + h.c.dG +

J'sLd
2

eipNscLc1
† + h.c.d,

s16d

where h.c. is the Hermitian conjugate andN=oi=1
L ni is

the number of fermions in the system. In the nonrandom
case, the solution of the problem via a Fourier transform-
ation is trivial30 because of the translational invariance.
But in the random system, this symmetry is broken and we
have to solve numerically a random matrix problem. The
way to obtain the correlation functions is straightforward
and has already been explained in several previous
works;5,13,15,30it amounts to a numerical calculation of the
eigenvectors of aL3L band matrix and then the evaluation
of a sr −1d3 sr −1d (resp. 232) determinant in order to com-
pute the transverse(resp. longitudinal) spin-spin correlation
function at distancer Cxsrd (resp.Czsrd). We can note that in
the same way, the string correlation functions can also be
obtained.13

B. Numerical results for the spin-spin correlation functions:
Crossover effects

In order to study the crossover as a function of the disor-
der strength, we have chosen the followingW-dependent flat
bond distribution
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PsJ'd = 5 1

2W
if J' P f1 − W,1 +Wg

0 otherwise.
6 s17d

The disorder strength, defined by Eq.(11), is D=W2/3 and
we defined as the variance of the random variable lnJ'sid
by

d2 = sln J'sidd2 − sln J'sidd2 s18d

which is related toW according to

d =Î1 −
1 − W2

4W2 FlnS1 + W

1 − W
DG2

. s19d

We note that for weak disorderW!1, d,ÎD. In order to
reduce statistical errors and boundary effects we have used
the PBC and computed the bulk correlation function in the
transverse direction at midchain,

CxSL

2
D =

2

L
o
i=1

L/2

kSi
xSi+sL/2d

x lGS s20d

for several system sizessL=2q,q=1, . . . ,12d and disorder
strengths(W=0.25,0.5,0.625,0.75,1). The data forCxsL /2d
were computed for each individual sample using standard
routines and then averaged over the disorder. The number of
disorder configurations was more than 5·104 for Lø1024
and at least 500 for the largest size and weakest randomness
sL=4096,W=0.25d. In Fig. 1, we show the average bulk
correlation functionCavg

x sL /2d=CxsL /2d for different disor-
der strengths. We observe that for small system sizes the
slope ofCxsL /2d versusL in a log-log plot is much smaller
than 2, the value that one would expect form the IRFP sce-
nario. But whenL increases one observes a crossover, as
reported in Ref. 19, from an apparently nonuniversal

behavior with aW-dependent power law exponenthsWd for
small sizes to a universal behavior withCavg

x sL /2d,L−2 for
L→`, as predicted by the RSRG.7 Such a behavior suggests
the existence of a disorder-dependent crossover length scale
j which controls the crossover from the pure(instable) fixed
point to the IRFP which is attractive, even for weak disorder.
Defining the dimensionless parameterx=L /j, one can iden-
tify three different regimes:

(i) For x!1, the critical behavior of the pure system
fJ'sid=constantg is dominant, with an exponenthsWd=1/2.

(ii ) For x@1, we are in the asymptotic regime where the
predictions of the RSRG are recovered, in particularhsWd
=hRSP=2.

(iii ) For x,1 we are in the crossover regime with aW-
andL-dependent effective(FS) exponenthsWd.

Consequently, we expect the following scaling form:

Cavg
x SL

2
D = L−1/2c̃sL/jd, s21d

where the scaling functionc̃sxd is constant in the regime(i),
and c̃sxd→x−3/2 in the regime(ii ). In Fig. 2, the scaling plot
following Eq. (21) is shown for the data of Fig. 1.jsW=1d
has been chosen such that the crossover region(iii ) is cen-
tered aroundx.1 and the other estimates have been adjusted
in order to give the best data collapse.

C. The crossover length scale as a localization length

In this part, the dependence of the crossover length scale
on the disorder strength is studied. A comparison with the
localization lengthj*, calculated using the spin stiffness of
the random exchange XX chain, is also presented. Figure 3
shows a plot ofj vs the disorder parametersD and d.
As expected one can observe a singular behavior forD or
d→0. More precisely, we observe in Fig. 3(a) that for suffi-
ciently weak disorder(typically for D,0.1), the crossover
length scale is well fitted by a power-law:jsDd~D−g with an
exponentg=1±0.1, in good agreement with the localization
length exponent predicted by Eq.(13) which gives 1/s3

FIG. 1. Averaged correlation functionCavg
x sL /2d as a function of

the system sizeL on a log-log scale forW=0, 0.25, 0.5, 0.625, 0.75,
1.0 (from top to bottom). The data are averaged over 50 000
samples forLø1024, 3000 forL=2048 and 500 forL=4096, the
statistical errors are smaller than the symbol sizes. The data for the
pure systemsW=0d follow CxsL /2d~L−1/2, the full line with slope
−2 is the expected asymptotic behavior according to the IRFP
scenario.

FIG. 2. Scaling plot according to Eq.(21) of the data shown in
Fig. 1 with j=600,140,88,54,20 forW=0.25, 0.5, 0.625, 0.75, and
1.0, respectively. The symbols are identical to Fig. 1.
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−2Kd=1 at the XX point. For stronger disorder, a deviation
from the power-law is observed. On the other hand,jsdd
shown in Fig. 3(b), can be fitted by a power-lawjsdd~d−F,
with F=1.8±0.2 for the whole range of randomness studied
here.

It is instructive to compare the crossover length scalej
with the localization lengthj*, extracted from the numerical
calculation of the spin stiffness of the random exchange XX
chain (for more details about this calculation, see Ref. 29).
While the transport properties of random spin chains are not
the purpose of this paper,31 we mention here some results
that two of us obtained by ED performed on the random
exchange XX chain.29 The spin stiffnessrs which measures
the magnetization transport along the ring is calculated in the
GS as the second derivative of the GS energy per site with
respect to a twist anglew applied at the boundaries using the
so-calledtwisted boundary conditions,32 and taking the limit
w→0. For the same model[Eq. (15)] studied in this section
and for systems sizes going from 8 to 2048 sites,rs has been
calculated by ED techniques for several disorder strengths
(from W=0.025 to W=1) and averaged over a very large
number of samples(from 105 for the smallest sizes to 500 for
the largest).

The stiffnessr has dimension of inverseslengthd−23jtd,
where jt is the correlation length in the imaginary time
direction.33 In our casejt,expsAj1/2d, which is one mani-
festation of the IRFP that dominates the critical behavior
of the random XX chain, andj=L for a finite system at
criticality we expectr to scale as lnrSsLd,−ÎL. Combining
this with Eq. (14) we show in Fig. 4 a scaling plot of
−sln gsL /j* dd−1 which displays the same features as Fig. 2.
Indeed, forL!j*, the pure behavior is observed with a stiff-
nessrS.1/p,34 and forL@j*, the IRFP behavior is recov-
ered with lngsL /j* d,−sL /j* d0.5; the regime where
L,j* being a crossover regime.

The localization lengthj* sWd has been estimated for dif-
ferent values of the disorder strength(note that the compu-
tational demand for calculating the stiffness is substantially

smaller than the one for the correlation function,35 for which
reason we could compute more data points) and is shown in
Fig. 5 versus the disorder parameter. We see clearly that the
behavior of the crossover lengthj as a function of the disor-
der strength(see Fig. 3) is exactly analogous to the one of
the localization lengthj*. Indeed, forD!1, the bosoniza-
tion result Eq.(13) agrees with numerical results, as shown
in Fig. 5(a), and for stronger disorder we observe the same
deviation as injsDd. Figure 5(b) gives us the confirmation
that for strong disorder Eq.(13) has to be replaced by

FIG. 3. Disorder dependence of the crossover length scalej of
the random XX chain. The full squares are the numerical estimates
from the data collapse in Fig. 2 and full lines are fits.(a) In function
of the disorder parameterD, a power law with an exponent −1.048
fits the data only for weak disorder whereas in(b), a fit jsdd
,d−1.8 works for the entire range of disorder strength studied here.

FIG. 4. Inverse logarithm of the disorder averaged spin stiffness
plotted for several box sizesW specified on the plot. All the curves
are collapsed since a rescaling of thex-axis has been done, provid-
ing an universal curve as a function ofL /j* The W-dependent
localization length j* has been calculated for each disorder
strength, as indicated on the plot, in order to give the best data
collapse. The full line stands for the pure case and the dotted one is
for the IRFP behavior.

FIG. 5. Disorder dependence of the localization lengthj* of the
random XX chain calculated using the scaling of the stiffness[Eq.
(14)]. (a) In the function of the disorder parameterD, the expected
power-law Eq.(13) with an exponent equal to −1 is in perfect
agreement with numerical data(open circles) which can be fitted for
weak disorder, with an exponent equal to −1±0.01.(b) In the func-
tion of the other disorder parameterd, the numerical data(open
circles) are perfectly described by a power-law, for the entire range
of disorder, with an exponent equal to −2±0.02.
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j * sdd , d−F. s22d

Since for weak disorderd,ÎD, we expectF=2/s3
−2Kd which works perfectly for the entire range of disorder
considered here, as shown in Fig. 5(b).

Let us summarize our results that we obtained so far for
the random exchange XX chain. With ED calculations we
studied the crossover that controls the renormalization flow
starting from a system with a finite disorder to an infinite
disorder fixed point. As predicted by RSRG and bosonization
calculations, the IRFP is attractive for any amount of initial
disorder and the crossover length scalej is well described by
a power-law, diverging likeD−g. Moreover, the exponentg
has been identified to be identical with the localization length
exponent occurring inj* sDd,D−f1/s3−2Kdg. While the param-
eterD is suitable to quantify the divergence near 0, we have
found the parameterd, Eq. (18), to be a better candidate to
describe localization and/or crossover behaviors for any
strength of randomness:jsdd,j* sdd~d−F with F=2/s3
−2Kd.

IV. QUANTUM MONTE CARLO STUDY

A. The SSE method

The quantum Monte carlo SSE method has been de-
scribed as a loop algorithm in detail by one of us in Ref. 36.
More recently the concept of directed loop has been
developed37–39 and the efficiency of such an algorithm has
been demonstrated for several models, in particular for the
XXZ model, defined by Eq.(1). We start from the general
random-exchange XXZ Hamiltonian(3) that we can rewrite
as a sum over diagonal and off-diagonal operators

Hrandom
XXZ = − o

b=1

L

fJzsbdH1,b − J'sbdH2,bg,

where b denotes a bound connecting a pair of interacting
spinssisbd , jsbdd.

H1,b = C − DSisbd
z Sjsbd

z s23d

is the diagonal part and the off-diagonal part is given by

H1,b =
1

2
fSisbd

+ Sjsbd
− + Sisbd

− Sjsbd
+ g, s24d

in the basishualj=huS1
z ,S2

z , . . . ,SL
zlj. The constantC which

has been added to the diagonal part ensures that all non-
vanishing matrix elements are positive. The SSE algorithm
is based on Taylor expanding the partition function

Z=Trhe−bHrandom
XXZ

j up to a cutoffM which is adapted during
the simulations in order to ensure that all the elements of
order higher thanM in the expansion do not contribute. So,

Z = o
a

o
SM

bnsM − nd!
M!

kaup
i=1

M
Jai

sbidHai,bi
ual, s25d

whereSM denotes a sequence of operator indices

SM = fa1,b1g,fa2,b2g, ¯ faM,bMg s26d

with ai =1, 2 corresponds to the type of operator(diagonal or
not) and bi =1,2, . . . ,L is the bond index. Note thatJ1sbd
=Jzsbd and J2sbd=J'sbd. A Monte Carlo configuration is
therefore defined by a stateual and a sequenceSM. Of
course, a given operator string does not containM operators
of type 1 or 2, but onlyn; so in order to keep constant the
size ofSM, M−n unit operatorsH0,0=1 have been inserted
in the string, taking into account all the possible ways of
insertions. The starting point of a simulation is given by a
random initial stateual and an operator string containingM
unit operatorsf0,0g1, . . . ,f0,0gM. The first step is thediag-
onal updatewhich consists in exchanging unit and diagonal
operators at each positionpf0,0gp↔ f1,bigp in SM with Me-
tropolis acceptance probabilities

Pf0,0gp→f1,bgp
= minF1,

JzsbdLbkaspduH1,buaspdl
M − n

G , s27d

Pf1,bgp→f0,0gp
= minF1,

M − n + 1

JzsbdLbkaspduH1,buaspdlG . s28d

During the “propagation” fromp=1 to p=M, the “propa-
gated” state

uaspdl , p
i=1

p

Hai,bi
ual s29d

is used and the number of nonunit operatorsn can varies at
each indexp. The following step is theoff-diagonal update,
also called theloop update, carried out atn fixed. Its purpose
is to substitutef1,bigp↔ f2,bigp in a cluster-type update, i.e.,
with the operators forming closed loops. Such a construction
has already been discussed in detail elsewhere.37 A very ef-
ficient directed loop implementation can be used and for
DP f0,1g it has been shown that during the construction of
the loop, back-tracking processes can be avoided. At the
SU(2) AF point, the algorithm is deterministic because we
can build all the loops in a unique way. So, forD=1, all the
loops are updated independently of each other with probabil-
ity 1/2. For DÞ1 the construction of the loop depends on
some well defined probabilities37 at each time a non unit
operator is encountered in the loop building.

One MC step is consists ofdiagonal updates at all pos-
sible locations in the index sequence, followed by a number
of loop updates(the number adjusted so that the average
number of operators changes is comparable to the total num-
ber of operators). Before starting the measurement of physi-
cal observables, one has to perform equilibration steps, no-
tably necessary to adapt the cutoffM.

B. Convergences issues

The precise determination of physical observables using
quantum Monte Carlo suffers obviously from statistical er-
rors since the number of MC steps is finite. As we deal with
disordered spin chains, the sample to sample variation is an-
other source of errors. Moreover, the calculation of GS ex-
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pectation values for a system close to an IRFP, where FS gap
scale like lnDe,ÎL, requires a very carefully numerical
treatment. In order to avoid finite temperature effects and to
ensure that we measure observables in the GS, we use the
b-doubling scheme, developed in Ref. 40 and then used in
Refs. 10 and 41. Such a scheme is a very powerful tool
because it allows to reach extremely low temperatures rather
rapidly and reduces considerably equilibration times in the
MC simulation. The procedure is quite simple to implement
and its basic ingredient consists in carrying out simulations
at successive inverse temperaturesbn=2n, n=0,1, . . . ,nmax.
Starting with a given sample atn=0 we perform a small
number of equilibration stepsNeq followed by Nm=2Neq
measurement steps. At the end of the measurement process,
b is doubled(i.e., n→n+1) and in order to start with an
“almost equilibrated” MC configuration, the starting se-
quence used is the previousSM doubled, i.e.,

S2M = fa1,b1g, . . . ,faM,bMgfaM,bMg, ¯ ,fa1,b1g.

s30d

Such a scheme becomes very efficient at low temperature
and for disordered systems, in which very small correlations
may develop. It is for the moment the most efficient tech-
nique available to cancel remaining temperature effects al-
though a zero-temperature SSE algorithm might be devel-
oped soon.42 The next point concerns the number of
equilibration and measurement steps that we have to per-
form. It is illustrated for anL=16 random exchange XXX
chain with random bonds distributed according to Eq.(17)
with W=0.5 in Fig. 6. Here the disorder averaged midchain
longitudinal correlation function

Cavg
z SL

2
D =

2

L
o
i=1

L/2

kSi
zSi+sL/2d

z lGS s31d

is plotted for different values of(Neq, Nm). The averaging is
done over 103 independent samples and we observe that

when the temperature becomes low enough, even for a
couple(Neq, Nm) quite small, averaged values do not depend
on the number of MC steps. As already mentioned in Refs.
10, 40, and 41 we conclude that the sample to sample varia-
tion produces larger error bars than statistical errors, even for
a number of measurement stepsø100, and in the following
we will use the b-doubling scheme with sNeq,Nmd
=s50,100d and a sufficiently large number of sampless
ù103d.

In order to make reliable predictions for the GS, very
largeb have to be reached. This is illustrated for the random
exchange XXX model with disorder strengthW=0.6 in Fig.
7, whereCavg

z sL /2d is plotted vsb for different chain sizesL.
We consider that the GS expectation value is obtained when
there are no statistically significant differences between the
results forbmax=2nmax and b=2nmax−1. More precisely, our
GS convergence criterion is the following: the GS is consid-
ered reached if the expectation value is 98% of the saturation
value. Note that using such a criterion, we can define a sys-
tem size dependent temperature scale below which the ther-
mal expectation values are indistinguishable from GS expec-
tation values:bGS=2nmax−1±2nmax−2 and as shown in the inset
of Fig. 7, we obtain for this quantity a FS scaling of the form
ln bGS,ÎL for W=0.6. Note that we have checked the va-
lidity of this scaling for all disorder strengths considered
here. Such a scaling is not surprising since the FS gap also
obeys to a similar law Eq.(6).

C. Spin-spin correlation functions
of the random-exchange XXX model

After these careful checks of equilibration and tempera-
ture effects in our simulations, we can analyze the SSE re-

FIG. 6. Test for the convergence of the disorder averaged lon-
gitudinal correlation function calculated for a the random exchange
XXX chain at W=0.5 with 16 sites. Results, averaged over 103

samples, are for a different number of MC steps(Neq, Nm) as shown
on the plot. Theb-doubling scheme has been used with inverse
temperaturesbn=2n, with n used here for thex-axis.

FIG. 7. Test for the GS convergence ofCavg
z sL /2d, defined by

Eq. (31), versus the inverse temperatureb. SSE calculations per-
formed on the random exchange XXX model forW=0.6 using the
b-doubling scheme withsNeq,Nmd=s50,100d. Averaging has been
done over 103 different samples and the results are shown for the 4
larger sizesL=32, 48, 64, and 96. In the inset, the GS inverse
temperaturebGS (see the text for its definition) is plotted in a log
scale versus the square root of system sizes. A linear fit is repre-
sented by the full line.
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sults obtained for the disorder averaged longitudinal spin-
spin correlationCavg

z . In order to extract the bulk value, we
compute this quantity at midchain and perform the averages
along the chains and over random samples, according to Eq.
(31). We consider in the following the random exchange
XXX Hamiltonian

HRE
XXX= o

i=1

L

fJsidsSi
xSi+1

x + Si
ySi+1

y + Si
zSi+1

z dg, s32d

with Jsid random AF couplings taken from theW-dependent
distribution Eq.(17). We have also used the more singular
distribution PsJd=dJ−1+d−1

if Jø1 and 0 otherwise, with
d=2. Such a distribution is, a priori, closer to the IRFP and
therefore we expect the asymptotic behaviorCavg

z sL /2d
,L−2 to become visible already for not too large system
sizes. Indeed, this is what we can see in Fig. 8, where
Cavg

z sL /2d is plotted versusL for different disorder strengths.
The crossover phenomena, already mentioned for the ran-
dom exchange XX case, is also clearly visible but from 16
sites the RSP behavior is recovered for thed=2 case. For
weaker disorder, the asymptotic behavior is visible only for
larger distances and an analysis analogous to the one we
have performed for the XX chain is necessary in order to
extract a disorder-dependent crossover length scalej. In the
pure XXX case the exponent in Eq.(2) is hz=1, but loga-
rithmic corrections have to be taken into account43

Czsrd ~ s− 1dr
Îln r

r
, s33d

with which our numerical data forW=0 agree(see Fig. 8).
As in the XX case we expect a disorder dependent length

scalej to govern the crossover from pure XXX behavior for

L!j to the asymptotic RSP behavior visible forL!j. Then
CzsL /2d should obey the following scaling form:

Cavg
z SL

2
D =

Îln L

L
c̃sL/jd, s34d

with c̃sxd a scaling function that is constant in the pure re-
gime sx!1d and proportional tosx ln1/2 xd−1 for x@1 in or-
der to reproduce the IRFP behaviorCavg

z sL /2d~L−2 for L
@j. In Fig. 9, the scaling Eq.(34) is shown for the data of
Fig. 8.44 The W-dependent crossover lengths scalej was
chosen for each value forW individually to obtain the best
data collapse.jsW=1d has been chosen such that the cross-
over regime is centered aroundx.1 (i.e., when the system
size is of the same order of magnitude as the crossover
length scalej). In comparison with the XX results(see Sec.
III ), the asymptotic behaviorCavg

z ,L−2 sets in already for
smaller system sizes. This observation is compatible with the
fact that that the disorder dependent length scale defined in
Eq. (13) diverges much slower at the XXX pointsjXXX

~D−1/2d, than at the XX pointsjXX~D−1d.
The disorder dependence of the crossover length scale of

the random exchange XXX model is shown in Fig. 10. For
D→0 it diverges with a power law and for small disorder
strengths, we can fit the data well byjsDd,D−0.6±0.1 [see
Fig. 10(a)]. As a function ofd the fit jsdd,d−1.2±0.2 is work-
ing in the whole range of disorder strengths[see Fig. 10(b)].

The agreement of our numerical estimate of the exponent
governing the divergence of the crossover lengths with the
bosonization prediction for the localization length(0.6±0.1
versus 0.5) is not as good as in the XX case but still accept-
able within the error bars. These minor deviations might be
due to small logarithmic corrections to formula(13). This is
expected since the bosonization approach gives predictions
for the random planar exchange model, whereas the random
exchange case considered here is only qualitatively similar

FIG. 8. Averaged longitudinal correlation functionCzsL /2d for
the random XXX model as a function of the system sizeL on a
log-log scale forW=0,0.25,0.5,0.6,0.8,0.9,1.0 andd=2 (top to bot-
tom). The data, computed in the GS using SSE method and
b-doubling scheme, are averaged over more than 1000 samples.
The data for the pure system(W=0, open circles) follow CzsL /2d
~ÎlnsLd /L, the dashed line with slope −2 is the expected
asymptotic behavior according to the IRFP scenario.

FIG. 9. Scaling plot according to Eq.(34) for the data of Fig. 8
with j=87,37,28,16.5,13,10 forW=0.25,0.5,0.6,0.8,0.9, and 1.0,
respectively. The full line stands for the pure behavior and the
dashed line is the expected asymptotic behavior according to the
IRFP scenario.
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because the randomness added to the Ising term is margin-
ally irrelevant.24

D. String correlation function

The string correlation, Eq.(8), was introduced to measure
hidden order in in integer spin chains where the ordinary
spin-spin correlations vanish exponentially. In the RS phase
the decay of the string correlation is expected to be described
by a power law[see Eq.(9)], with a decay exponent of
h,0.382. It has been shown before10,13 that the string cor-
relation converges particularly quickly to the expected be-
havior.

In this section we begin by demonstrating yet another
crossover effect in the random singlet phase: The RSRG cal-
culation predicts that all components of the spin and string
order correlations should decay with the same exponents al-
though the underlying XXZ Hamiltonian is not rotationally
invariant. This follows from the fact that the ground state of
two S- 1

2 spins coupled together by an interaction of the form

H = JfS1
xS2

x + S1
yS2

y + DS1
zS2

zg s35d

is a rotationally invariant singlet, independently of the aniso-
tropy D. So if all the spins really are bound pairwise in
singlets, then the decay of different components of the cor-
relation functions should be identical. However, at finite dis-
order strength, although the components are found to decay
with the same exponents, the prefactors are different.13 This
is due to the fact that for finite disorder strength the strong
bonds in the system are not necessarily surrounded by much
weaker bonds, which leads to fluctuations in the singlet cou-
plings. As the disorder strength is increased these fluctua-
tions should diminish and true rotational invariance should
be observed. Since the string order converges fairly quickly
to the expected random singlet exponents it is a suitable
quantity to use to illustrate this crossover behavior. In Fig. 11
thex andz components of the string order are shown for the
XX chain with disorder parametersW=0.5,W=1, d=10. For

flat disorder of strengthW=0.5 the string correlation func-
tions already decay with the expected RS exponent, but the
two components are quite far from each other. Increasing the
disorder strength toW=1 the two components approach each
other, and for a power law distribution withd=10 they are
within about 10% of each other. Increasingd further brings
them closer still, but it is necessary to use very high numeri-
cal precision to get reliable data.

In order to check the decay of the string order away from
the XX point we again use the SSE method. Here we will use
chains of lengthL=256 and go to sufficiently low tempera-
tures to observeT→0 converged string correlations. In Fig.
12 the temperature effects are illustrated for an XX system at
disorder strengthW=0.5. In this case, it is possible to obtain
T→0 converged results for all distances. ForW close to 1,
this would require prohibitively low temperatures, but it is

FIG. 10. Disorder dependence of the crossover length scalej of
the random XXX chain. The full squares are the numerical esti-
mates from the data collapse in Fig. 9.(a) In the function of the
disorder parameterD, the power law fitj,dW

−0.61±0.1works only for
weak disorder whereas in(b), the fit j,dW

−1.16±0.2 works for the
entire range of disorder strength studied here.

FIG. 11. Exact diagonalization results for thex and z compo-
nents of the string order at disorder strengthsW=0.5, W=1, and
d=10.

FIG. 12. SSE results for the string correlations of anL=256 XX
system atW=0.5 calculated at inverse temperaturesb=2n with
n=0, . . . ,15. Theb=215 results are shown with solid circles; the
string correlations decrease with increasing temperature(decreasing
n).
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still possible to obtain well converged results up to distances
sufficiently long for observing the asymptotic RS behavior.
Figure 12 also illustrates that the string correlations, unlike
spin-spin correlations, are not symmetric with respect to
r =L /2 in these periodic systems. From the definition, Eq.
(8), it is clear thatSsrd cannot be symmetric unless the total
magnetizationoiSi

z=0. This is the case in the ground state,
where indeed the symmetry is observed.

In Fig. 13 low-temperature results are shown at different
W. Here deviations from the RS behavior due to temperature
effects can be seen forr *20 whenW=1, whereas deviations
due to effects of the periodic boundaries(flattening out close
to r =L /2) can be seen atW=0.5. In Fig. 14 we show similar
results for the XXZ chain for two different combinations of
the Ising anisotropyD and the disorder strengthW. In both
cases RS behavior can be observed over a significant dis-
tance range, before temperature or boundary effects become

visible for r *50. The very good agreement with the RS
exponent provides further evidence that the system indeed is
in the RS phase for any anisotropy and disorder strength.

V. CONCLUSION

In this paper we have investigated numerically the spin-1
2

antiferromagnetic random-exchange XX and XXZ chains for
varying disorder strength. Using exact diagonalization calcu-
lations at the XX point and quantum Monte Carlo SSE simu-
lations for Dù0 we studied the ground state spin-spin and
string correlation functions for system sizes up toL=4096
for D=0. With the SSE calculations forD.0 we went up to
L=256 and down to very low temperature, for instance we
reachedbmax=217 at the random XXX point forL=96 and
disorder strengthW=0.6. We found clear evidences for the
asymptotically universal behavior of the correlation func-
tions as predicted by the RSRG analysis of Fisher.7 The main
issue of our work presented here consists in the detailed
analysis of the RG flow from the pure instable line of XXZ
fixed points toward the attractive infinite randomness fixed
point. Indeed, as we have demonstrated, such a flow is con-
trolled by a disorder dependent length scalej which diverges
as the randomness approaches zero.19 In our large scale nu-
merical calculations we showed that the spin-spin correlation
function is very sensitive to such crossover effects whereas
the string order converges more rapidly to its asymptotic RS
value. Nevertheless the string order also displays a crossover
phenomena, visible not in the decay exponents as in the spin-
spin case but rather in the prefactors.

The spin-spin correlation function as well as the stiffness
display a clear crossover from the pure behavior to the IRFP
behavior as predicted by the RSRG. The crossover length
scale, extracted from numerical data, is shown to diverge as
j,D−g. Our estimates for the exponentg<1.0 agrees very
well within the error bars with the localization length expo-
nent calculated within an analytical bosonization approach.6

However, as the bosonization approach is only valid for a
disorder that is not too strong, our estimates for the crossover
length scalejsDd and for the localization lengthj* sDd both
deviate(in a perfectly similar way) from the predicted be-
havior described by Eq.(13) when the disorder strength in-
creases. For any strength of randomness, we found a better
parameter to describe crossover as well as localization ef-
fects. Indeed, using the variance of the logarithm of the ran-
dom couplings,d given by Eq.(18), our estimates for the
crossover length scale fits in the whole range of disorder
strengths considered here very well the formjsdd,j* sdd
~d−F with F=2/s3−2Kd. It would be interesting to check
such ad dependence ofj or j* also for DÞ0 or 1. The
connection between crossover and localization effects has
been clearly demonstrated here and has motivated further
studies of the localization in 1D.29

Whereas the models we have studied are described by the
IRFP for any strength of the disorder, several disordered
magnetic systems require a critical value of randomness to
display universal RSP features. For instance, gaped systems
like the spin-1 chains or spin-1

2 n-legs ladders are not un-
stable with respect to the introduction of weak disorder and a

FIG. 13. SSE results for the string correlations of anL=256 XX
system at different disorder strengthsW, calculated at the inverse
temperatures indicated in the figure. The straight line shows the
T=0 RS power law.

FIG. 14. SSE results for the string correlations ofL=256 XXZ
system at two combinations of Ising anisotropyD and disorder
strengthW. The line shows theT=0 RS behavior.
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precise identification of the critical disorderDc might be
easier if one considers the divergence ofj when the disorder
strength approaches the critical valueD→Dc.
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