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The random antiferromagnetic spin-1/2 XX and XXZ chain is studied numerically for varying strength of
the disorder, using exact diagonalization and stochastic series expansion methods. The spin-spin correlation
function as well as the stiffness display a clear crossover from the pure beliawidisordey to the infinite
randomness fixed point or random singlet behavior predicted by the real space renormalization group. The
crossover length scale is shown to divergeéasD™?, whereD is the variance of the random bonds. Our
estimates for the exponemptagrees well within the error bars with the one for the localization length exponent
emerging within an analytical bosonization calculation. Exact diagonalization and stochastic series expansion
results for the string correlation function are also presented.
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[. INTRODUCTION couplings equal to one. Examples of random spin chains in-
Quantum spin chains exhibit a number of interesting fea—CI.ude () thg random _p!fanar exchangenodel with J,(i)=1,
tures, especially at low temperature when quantum quctuaD! and J_i(') ranldom,(u) .the random“;jtz exchangemodel
tions are stronger than thermal ones. The antiferromagneti¥/ith J.()=1, Ui and J(i) random;iii) the random ex-
(AF) Heisenberg model in one dimensi@tD) has been ex- changeXXZ antiferromagnet for whichl, (i)=J,i) and are
tensively studied since the discovery in 1931 of the Bethéll random numbers.

ansat for the spinS=3 chain. In 1D, the AF XXZ model For the AF XXZ spin3 chain, it has been shown by Doty
defined by the Hamiltonian and Fishéf that disorder is relevant and that any amount of

randomness destroys the quasilong range order and drives
X7 - the system from a line of pure fixed points to an infinite
H —Jz [SS4+ S+ ASS] (1) randomness fixed poinlRFP).” The situation for higher
=t spins S>% is more complicated since it depefidsn the
with J>0, exhibits a gapless excitation spectrum fdr  parity of 2S and some issues are still under deSa&Re-
e[-1,1] for S:% (and more generally for half integer garding the thermodynamic properties of the random épin-
sping), whereas a gap opens up in the spectrum for integeXXX antiferromagnet, a real space renormalization group
spins? In 1D, the quantum fluctuations prevent the formation(RSRG scheme, introduced first by Ma, Dasgupta, and'Hu
of long-range ordérbut the correlation length of the model leads to a number of analytical results. In particular, indepen-
[Eq. ()] is infinite and aquastlong-range order emerges, dent of the initial distributior”(J) of couplings the low en-
with power-law decaying spin-spin correlation functions inergy properties at the IRFP are characterized by a dynamical

the ground statéGS), exponentz=c« and a GS which consists of a tensorial product
; of randomly long-range coupled dimers, the so-called
CUr) =(§'S%Ves ™ ) forr — oo (2)  random-singlet phaséRSP.” In such a phase, the disorder
+ 7, ’

averaged spin-spin correlation function is dominated by
strongly correlated pairs and is therefore slowly decreasing,

wherea=x, y or z, {-**)gs is the GS expectation value, and as a power-law

the critical exponenty, ,= 77;1:1—,u/7-r, with u=arccosA.
If the AF exchange couplings are position-dependent, or N P — (G
more generally distributed randomly according to a probabil- Car) = (§'Ses™ g (4)
ity distribution P(J), the situation changes dramatically. In- _
deed, the spid- chain described by the random-exchangeWhere 7rsp=2 for all spin componenta(--- denotes the av-
XXZ Hamiltonian erage over the disorder and the sitesOn the other hand, in
L the RSP thetypical correlations decay fastdi.e., with a
XXZ . . stretched exponentjathan theaveragecorrelations. These
Handom™= % [L0)(SS+ 990 + LDASSul, 3 gnaiytical predictions, that we will recall in greater detail in
Sec. I, have been tested numerically several times using
has lost the translation symmetry and rare events in the chaitifferent methods, e.g., Lanczos exact diagonalisation
dominate the low energy physie€.Note that the energy (ED);}2 free-fermions EF1314 numerical RSRG® For
scale is set to unity by choosing mean values of randonstrong enough disorder, such finite size systems computa-
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tions were in good agreement with the expected RSP univeexplanation of the method is given and some technical issues

sal behavior[Eg. (4)]. However, a recent density matrix about equilibration and GS convergence are discussed; then

renormalization group(DMRG) calculatiod® for chains results for spin-spin and string correlation functions are

(with free boundary conditionslefined by Eq(3) with weak  shown. Finally in Sec. V, we give a summary and some

randomness in the planar exchanges caused a oﬂébateeonduding remarks.

which we intend to settle in this paper. Indeed, the conclu-

sions of the DMRG simulations presented in Ref. 18 on sys-

tems up to 400 spins, quite similar to a previous one using Il. ANALYTICAL PREDICTIONS

smaller system&) disagree with the IRFP scenario in so far A. Real space renormalization group results

as a dependence of the exponentponA and the disorder _ .

strength was claimed. In this paper, we intend to shed more Theé RSRG method, introduced originally by Ma, Das-

light on this disorder induced phenomena in finite sig§)  gupta, and Hu for the random exchange XXX spichairt!

random quantum spig-chains and demonstrate convinc- has been developed and studied in an exhaustive way by

ingly via numerical studies of several related models definedFishef for more general random exchange XXZ Hamilto-

by Eq. (3) the consistency of FS effects and the IRFP scehians. The basic ingredient of this decimation procedure is a

nario. successive decrease of the energy scale via a successive deci-
The RSRG scheme is expected to be asymptotically exacmation of the strongest couplings in the chain.

but FS effects cannot be negligible, especially for weak dis- In the limit of infinite system size, Fisher has demon-

order, i.e., far away from the IRFP. Indeed, one can show thadtrated the existence of a fixed point for the the distribution

the RG flow toward the IRFP is controlled by a crossoverof the effective couplings, independent of the initial distribu-
characterized by a length scaievhich is disorder dependent tion, which is given by

and diverges when the disorder strength is approaching zero.

Such a crossover from pure to random critical behavior is 7?0(3) o J1H0 1, S— o, (5)

very common in disordered systems and is always relevant, ) S

in experiments as well as in numerical studies, when thd he IRFP, characterized by such a broad distribution, is at-

disorder is not too strong and the length scales that can bgactive for any amount of randomness in the case of spins-

explored are not too large. A good understanding of the ordeand the RSP, discussed in Sec. I, describes the GS. At the

of magnitude of the crossover length scale, in particular it$ritical point, the energy and length scales are related via

scaling behavior in dependence of the disorder strength, is ~

therefore necessary in order not to be misled by the mere InA.~-+L 6)

appearance of the experimental and/or numerical (efta and as a consequence, the dynamical exponésinfinite.

Refs. 18 and 1P Concerning the correlation functions, the average and typical
Our purpose here is to study crossover effects for variougalues behave quite differently since rare events control the

1D spin% disordered models and to extract the relevaid-  physics[see Eq.(4)]. The average correlation function is

order dependeptenght scale which controls such a phenom-dominated by long-range paired singlet and takes the follow-

enon. Already mentioned by two of us in Ref. 19, this disor-ing expression, independently of the directidransverse or

der induced behavior is presented in greater details here ardngitudina)

is illustrated through large scales numerical calculations. )

Moreover, a nontrivial connection with the localization of Cavdl) & ﬂ 7

particles in a 1D disordered media is presented and only one av r2

relevant disorder dependent lenght scale is found to control . . . .

crossover as well as localization phenomena. The rest of thet _Another Iqu_anufty, W.h'cg ?ea:jsgrehanGr;ddedr! orde:bus the

paper is organized as follows. In Sec. II, we first recall the>"g corre ation functiondetined in the at distancey

analytical predictions of the RSRG scheme. Then, using the or+1 b

bosonization study of the weakly disordered spichain® Sr) = C 2SS Frdes: (8)

we establish a disorder-dependent length scale which is the i=1

localization length of the related problem of disordered par-a; the IREP. the disorder averaged expectation valg(r)

i i 21 - i . i ;
ticles in 1D In Sec. .”l' we present thg free fermlpns E'.:) is expected to decrease as a power law, with a well-defined
results for the spin-spin correlation functions for various d's'exponen122

order strengths for system siz@gth periodic boundary con-
ditions) up to 4096 sites. The crossover length scale, which — (=D

emerges naturally from the data analysis, is studied as a Savg(r) = S(r) = N 9)
function of the strength of the disorder and compared with _

the localization length extracted from spin stiffness calcula<=(1+\5)/2 being the golden mean.

tions. The Ising part of the Hamiltoniatq. (3)] has also Whereas this real space procedure provides predictions
been included and investigated via quantum Monte Carldor the thermodynamic limit, it does not capture FS effects.
simulations, using the stochastic series expangi®®85  However, in order to give good interpretations of numerical
method. Section IV is devoted to SSE calculations performedesults, the understanding of FS effects is crucial. This is
at very low temperatures for the random exchange XXXwhat we are striving for here, using the bosonization treat-
model and the random planar exchange model. First a brighent of the random chain.
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B. Bosonization of the random chain: Emergence of a pL,D) =g(L/IE* (D)), (14)
disorder-dependent length scale

. . . . ._the localization length has been precisely studied and agrees

In thls part, we SL_Jmmalrlze previous r.eslults opta|”3d USINGerfectly with Eq.(13) for weak disordersee Sec. Il C and

bosonization techniqués: The XXZ spins chain can be  pigs 4°and 5 Regarding the low-energy effective theory

mapped using the Jordan-Wigner transformatieee Sec. nredicted by some bosonization calculations, there is only

Il into a spinless interacting fermions problem in 1D. Theyne relevant length scale which emerges from it, i.e., the

low-energy excitations around the Fermi points can be conpalization lengthé* (D). Based on numerical calculations

S|d(_ared In terms of bo_somc f_|elds apd the resu!tlng Ham"'performed over FS clusters for various disorder strengths, the
tonian describes a Luttinger liqufd.It is characterized by a

fA-d d : liquid hich h next sections are dedicated to the study of the disorder de-
set ofA-dependentuttinger liquid parametersvhich are the o 4ence of the crossover length scale and its comparison
velocity of excitationsu and the parametds, given by

with the localization length.

sinl
uw =T =T o
2 p 2(m= ) Ill. EXACT DIAGONALIZATION STUDY
Several types of quenched randomness added to the pure AT THE XX POINT
XXZ model have been studied by Doty and Fishdihey A. Free fermions representation

found, for random perturbations that preserves the XY sym- _ _ _

metry, a critical behavior which belongs to the universality L€t us consider the 1D XX spig-model with random
class of the Giamarchi-Schulz transition for 1D bosons in &xchange couplings, (i). This quantum problem is gov-
random potentiad! Let us define the disorder strengthby ~ €rned by the following lattice Hamiltonian:

- Y2 — )2 L
P OO =000 Y Hiancor™ 20 [IL (D(SFu+ )] (19
i=1

More precisely, for the random planar exchange model
D=D, for the randone-z exchange modelD=D, and for  \yg impose periodic boundary conditiorg,;=S,. It is well
the random exchange XXZ model, since the randomness i§,own that this spin problem can be mapped into a free

itsottrr]opich:DL:?Z. For a:r\]/veak randolm p:_erturbztion adr(]jed sg)inless fermions model via the Jordan-Wigner transforma-
o the planar exchange, the renormalization under a chan sl . o
P g qmn' qzzl/z—nj, andSJ*:cje'”Elenl. Thec; satisfy fermionic

of length scald=InL is ; . .
9 commutation relatlons{,cr,cj}:é,j, and nj:chcj is the num-
ber of fermions(spin down at thej-site. The Hamiltonian

JD
o (3-2K)D. (120 can then be written as

J. (L)

(Gl + h-C-)] + lTe‘”N(CLCI+ h.c),

Therefore, ifK <3/2 (i.e) -3 <A<1) the disorder is arel- , xx _ Lzl J.(0)
evant perturbation and the phase is the RSP. The renormaﬁfaﬂdom_ =l 2
ization flow toward the IRFP is controlled by a length scale
which emerges from Eq12), (16)
£% (D) ~ DTUE2], (13) where h.c. is the Hermitian conjugate aid=3";n; is
the number of fermions in the system. In the nonrandom
For the random exchange XXX model, the random perturbaease, the solution of the problem via a Fourier transform-
tion added to the operat&S,, is marginally irrelevant and ation is triviaf® because of the translational invariance.
therefore the exponent qg_zK):% for A=1 is expected to But in the random system, this symmetry is broken and we
have small logarithmic correctior$. have to solve numerically a random matrix problem. The
The length scalé* is called the localization length since way to obtain the correlation functions is straightforward
in the fermionic language, the transition&t>0 is a local- and has already been explained in several previous
ization transitior?¥?> Such a metal-insulator transition WorksP3153%it amounts to a numerical calculation of the
driven by the disorder is characterized for instance, by th&igenvectors of & X L band matrix and then the evaluation
vanishing of the zero temperature Drude weigiso called ~of a(r—1) X (r—1) (resp. 2< 2) determinant in order to com-
the charge stiffness or the spin stiffness in the case of thpute the transversgesp. longitudingl spin-spin correlation
spin-1/2 XXZ mode) 0D >0 in the thermodynamic limit. function at distance C*(r) (resp.C*(r)). We can note that in
Previous numerical studies have checked this effect on tranghe same way, the string correlation functions can also be
port properties in the case of interacting spinless fermions ibtained:
a random potential using E@Ref. 26 or equivalently in the
case of the XXZ chain in a random magnetic fiéld® For
the simpler model of noninteracting fermions with random
hopping, mapped into the random exchange XX spin chain,
very large scale numerical simulations have been carried out In order to study the crossover as a function of the disor-
on systems up to 2048 sitésUsing the scaling law for the der strength, we have chosen the followMgdependent flat
spin stiffness bond distribution

B. Numerical results for the spin-spin correlation functions:
Crossover effects
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FIG. 1. Averaged correlation functiod®, (L /2) as a function of FIG. 2. Scaling plot according to E¢R1) of the data shown in

the system sizk on a log-log scale fow=0, 0.25, 0.5, 0.625, 0.75, Fig. 1 with £=600,140,88,54,20 fow=0.25, 0.5, 0.625, 0.75, and
1.0 (from top to botton. The data are averaged over 50 000 1.0, respectively. The symbols are identical to Fig. 1.
samples fol. <1024, 3000 for.=2048 and 500 fot. =4096, the

statistical errors are smaller than the symbol sizes. The data for t . .
pure system(W=0) follow CX(L/2)=L~%2 the full line with slope 'E"ehawor with a-dependent power law exponentW) for

; ; ; ; -2

-2 is the expected asymptotic behavior according to the IRFFSmall sizes to .a universal behavior Wﬂzvg(uz)_ L™ for

scenario. L — o, as predicted by the RSRGSuch a behavior suggests
the existence of a disorder-dependent crossover length scale
& which controls the crossover from the pynestablg fixed

1 if J, e [1-W,1+W] point to the IRFP which is attractive, even for weak disorder.
PA,)=12W ’ (17 Defining the dimensionless parameterL/£, one can iden-
0 otherwise. tify three different regimes:

_ _ _ ) (i) For x<1, the critical behavior of the pure system
The disorder strength, defined by A1), is D=W"/3 and  [J (i)=constantis dominant, with an exponenf(W)=1/2.

we defines as the variance of the random variablelirti) (i) Forx>1, we are in the asymptotic regime where the
by predictions of the RSRG are recovered, in particuj@W)
= i))2- i))2 = 7Rrsp= 2.
&= (InJ, @)= (nJ. () (18) (i) Forx~1 we are in the crossover regime wittVé
which is related tdN according to andL-dependent effectiveFS) exponentyp(W).
Consequently, we expect the following scaling form:
1-W? 1+W)\ |? . y P g g
5=1/1- Py In T-w/ |- (19 L
%(5) =LVE(L8), (21)

We note that for weak disorda<1, §~D. In order to _ o _ o
reduce statistical errors and boundary effects we have usewhere the scaling functiot(x) is constant in the regime),
the PBC and computed the bulk correlation function in theand©(x) —x 32 in the regime(ii). In Fig. 2, the scaling plot

transverse direction at midchain, following Eqg. (21) is shown for the data of Fig. (W=1)
L2 has been chosen such that the crossover regigns cen-
CX(E) _ ZE (S ) (20) tered arounc=1 and the other estimates have been adjusted
2) LS +L12)/GS in order to give the best data collapse.
for several system sized =29,9=1,...,12 and disorder
strengths(W=0.25,0.5,0.625,0.75/1The data forC¥(L/2) C. The crossover length scale as a localization length

were computed for each individual sample using standard |n this part, the dependence of the crossover length scale
routines and then averaged over the disorder. The number eh the disorder strength is studied. A comparison with the
disorder configurations was more than 5* #6r L<1024 |ocalization lengthé*, calculated using the spin stiffness of
and at least 500 for the largest size and weakest randomnegg random exchange XX chain, is also presented. Figure 3
(L=4096 W=0.25. In Fig. 1, we show the average bulk shows a plot of¢ vs the disorder parametef® and é.
correlation functionCy,(L/2)=C*(L/2) for different disor- ~As expected one can observe a singular behaviofar

der strengths. We observe that for small system sizes th&— 0. More precisely, we observe in Fig(aB that for suffi-
slope of C¥(L/2) versusL in a log-log plot is much smaller ciently weak disordertypically for D<0.1), the crossover
than 2, the value that one would expect form the IRFP scelength scale is well fitted by a power-la§(D) « D~ with an
nario. But whenL increases one observes a crossover, asxponenty=1+0.1, in good agreement with the localization
reported in Ref. 19, from an apparently nonuniversallength exponent predicted by E@l3) which gives 1(3
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100 = <100
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D

FIG. 3. Disorder dependence of the crossover length scafe

the random XX chain. The full squares are the numerical estimates

from the data collapse in Fig. 2 and full lines are fit.In function
of the disorder parametd?, a power law with an exponent —1.048
fits the data only for weak disorder whereas (), a fit &(5)
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— pg=l/m  pure case i‘\
® W=0.025 £'=7875 o
= W=0.05 &'=2135 "
* W=0.075 £'=882
AW=0.1 £'=500
W=0.125 £'=332
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W=0.175 &£'=168
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-Ln[p (L)]

0.1

LE

FIG. 4. Inverse logarithm of the disorder averaged spin stiffness

~ 518 works for the entire range of disorder strength studied hereplotted for several box size specified on the plot. All the curves

—-2K)=1 at the XX point. For stronger disorder, a deviation
from the power-law is observed. On the other haé@)
shown in Fig. 8b), can be fitted by a power-lag(8) < 5,

are collapsed since a rescaling of theaxis has been done, provid-
ing an universal curve as a function af & The W-dependent
localization length & has been calculated for each disorder
strength, as indicated on the plot, in order to give the best data

with ®=1.8+0.2 for the whole range of randomness studied-ollapse. The full line stands for the pure case and the dotted one is

here.

It is instructive to compare the crossover length scale
with the localization lengtf#*, extracted from the numerical
calculation of the spin stiffness of the random exchange X
chain (for more details about this calculation, see Ref).29
While the transport properties of random spin chains are n
the purpose of this papét,we mention here some results
that two of us obtained by ED performed on the rando
exchange XX chai? The spin stiffnesp, which measures
the magnetization transport along the ring is calculated in th
GS as the second derivative of the GS energy per site witl
respect to a twist angle applied at the boundaries using the
so-calledtwisted boundary condition® and taking the limit
¢— 0. For the same mod¢Eq. (15)] studied in this section
and for systems sizes going from 8 to 2048 sitgdas been

calculated by ED techniques for several disorder strength

(from W=0.025 toW=1) and averaged over a very large
number of samplegrom 1 for the smallest sizes to 500 for
the largest

The stiffnessp has dimension of inversgengt{=2x ¢,),
where &, is the correlation length in the imaginary time
direction®® In our caseé,~exp(A&?), which is one mani-
festation of the IRFP that dominates the critical behaviot
of the random XX chain, ang¢=L for a finite system at
criticality we expeci to scale as Ipg(L) ~—vL. Combining
this with Eq. (14) we show in Fig 4 a scaling plot of
—(Ing(L/&*))"* which displays the same features as Fig. 2.
Indeed, forL < &*, the pure behavior is observed with a stiff-
nessps=1/m,%* and forL> &, the IRFP behavior is recov-
ered with Ing(L/&*)~—(L/£*)%5 the regime where
L ~ & being a crossover regime.

The localization lengtlE* (W) has been estimated for dif-
ferent values of the disorder strengdtiote that the compu-

g

m

for the IRFP behavior.

smaller than the one for the correlation functiripr which
eason we could compute more data poitsd is shown in

ig. 5 versus the disorder parameter. We see clearly that the
ehavior of the crossover lengéhas a function of the disor-

er strength(see Fig. 3 is exactly analogous to the one of
the localization lengthé*. Indeed, forD<1, the bosoniza-
tion result Eq.(13) agrees with numerical results, as shown

dn Fig. 5@), and for stronger disorder we observe the same

Heviation as in&(D). Figure %b) gives us the confirmation
that for strong disorder Eq13) has to be replaced by

10000

Il

10000

£ D) 40| 10 £

[ ——"— S I
0.0001 0.01 10.01
D

FIG. 5. Disorder dependence of the localization lengjtof the
random XX chain calculated using the scaling of the stiffrjéss
(14)]. (& In the function of the disorder paramet®r the expected
power-law Eg.(13) with an exponent equal to -1 is in perfect
agreement with numerical datapen circleswhich can be fitted for
weak disorder, with an exponent equal to —1+0@).In the func-
tion of the other disorder parametér the numerical datgopen
circles are perfectly described by a power-law, for the entire range

tational demand for calculating the stiffness is substantiallyof disorder, with an exponent equal to —2+0.02.
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Ex(8)~ 5. (22) S =[ag,b1],[az,0,], - -~ [an, byl (26)

Since for weak disordeo~ \@, we expect®=2/(3  with =1, 2 corresponds to the type of operatdiagonal or
-2K) which works perfectly for the entire range of disorder not) andb;=1,2,... L is the bond index. Note thal;(b)
considered here, as shown in Figbp =J,(b) and J,(b)=J,(b). A Monte Carlo configuration is

Let us summarize our results that we obtained so far fotherefore defined by a state) and a sequencs,,. Of
the random exchange XX chain. With ED calculations wecourse, a given operator string does not contfedroperators
studied the crossover that controls the renormalization flovof type 1 or 2, but onlyn; so in order to keep constant the
starting from a system with a finite disorder to an infinite size ofS,,, M —n unit operatord, o=1 have been inserted
disorder fixed point. As predicted by RSRG and bosonizationin the string, taking into account all the possible ways of
calculations, the IRFP is attractive for any amount of initialinsertions. The starting point of a simulation is given by a
disorder and the crossover length scals well described by  random initial staté«) and an operator string containiogl
a power-law, diverging likeD™”. Moreover, the exponeng  unit operator§0,0]4, ...,[0,0],. The first step is theliag-
has been identified to be identical with the localization lengthonal updatewhich consists in exchanging unit and diagonal
exponent occurring ig* (D) ~ D Y3291 while the param-  operators at each positii0, 0],«[1,b;], in S, with Me-
eterD is suitable to quantify the divergence near 0, we haveropolis acceptance probabilities
found the parametes, Eq. (18), to be a better candidate to
describe localization and/or crossover behaviors for any P = mi [1 Jz(b)LB(“(p)|Hl,b|“(p)>} 27

[0,0],—[1.b], ) '

strength of randomnessi(8) ~ £* (8)x 6% with ®=2/(3 M-=-n
-2K).
o M-n+1
IV. QUANTUM MONTE CARLO STUDY Pl1.1,-10.01, = MM 1’Jz(b)Lﬁ(a(p)|Hlyb|a(p)) - 29
A. The SSE method During the “propagation” fromp=1 to p=M, the “propa-

The quantum Monte carlo SSE method has been dedated” state
scribed as a loop algorithm in detail by one of us in Ref. 36. p
More recently the concept of directed loop has been la(p)) ~ 1TH, bl (29
developed3° and the efficiency of such an algorithm has =1
been demonstrated for several models, in particular for the . .
XXZ model, defined by Eq(1). We start from the general Is used and the number of nonunit operatorsan varies at

random-exchange XXZ Hamiltoniai3) that we can rewrite e?Ch inlclieéphge foll?jwing step dis the)ff-fdiagonal update
. o also called théoop update carried out ah fixed. Its purpose
as a sum over diagonal and off-diagonal operators is to substitutd 1,b;],[2,b;], in a cluster-type update, i.e.,

L with the operators forming closed loops. Such a construction
H?gr%om: -> [J(b)Hyp— I, (D)H2p], has already been discussed in detail elsewkekevery ef-
b=1 ficient directed loop implementation can be used and for

, , , A e][0,1] it has been shown that during the construction of
whereb denotes a bound connecting a pair of interactingye |oop, back-tracking processes can be avoided. At the
spins(i(b),j(b)). SU(2) AF point, the algorithm is deterministic because we

can build all the loops in a unique way. So, fdr1, all the
Hip=C- ASZ(b)S(b) (23 loops are updated independently of each other with probabil-

ity 1/2. For A#1 the construction of the loop depends on
some well defined probabilitiés at each time a non unit
1 operator is encountered in the loop building.
Hip= ‘[S‘L(bﬁ(b) +$‘(b)§+(b)], (24) One MC step is consists afiagonal updates at all pos-

2 sible locations in the index sequence, followed by a number
. . _ . of loop updategthe number adjusted so that the average
in the basis{|a)}={|5}. S, )} The constanC which number of operators changes is comparable to the total num-
has been added to the diagonal part ensures that all nogs, ¢ operatorg Before starting the measurement of physi-

yanishing matrix elements are _positive. The .S.SE algorij[hnbal observables, one has to perform equilibration steps, no-
is based on Taylor expanding the partition funCt'O”tably necessary to adapt the cutofl

Z=Tr{e‘Beraﬁon} up to a cutoff M which is adapted during
the simulations in order to ensure that all the elements of
order higher than\ in the expansion do not contribute. So, B. Convergences issues

is the diagonal part and the off-diagonal part is given by

B(M =)l M The precise determination of physical observables using
Y ; o

7= 3. (b)H ’ 25 quantum Monte Carlo suffers obwqus!y_from statistical er-
22 M! <a|i11 a0 a*’bi|a> 29 rors since the number of MC steps is finite. As we deal with
disordered spin chains, the sample to sample variation is an-
whereS,, denotes a sequence of operator indices other source of errors. Moreover, the calculation of GS ex-

aSM
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FIG. 6. Test for the convergence of the disorder averaged lon-
gitudinal correlation function calculated for a the random exchange
XXX chain at W=0.5 with 16 sites. Results, averaged ovef 10 ~ FIG. 7. Test for the GS convergence ©f,(L/2), defined by
samples, are for a different number of MC stélN&% N, as shown  Eq. (31), versus the inverse temperatyse SSE calculations per-
on the plot. Thes-doubling scheme has been used with inverseformed on the random exchange XXX model ##=0.6 using the
temperature®,=2", with n used here for the-axis. B-doubling scheme witl{Ngq, Niw) =(50,100. Averaging has been

done over 18 different samples and the results are shown for the 4
pectation values for a system close to an IRFP, where FS gdp/9¢" SizesL=32, 48, 64, and 96. In the inset, the GS inverse

scale like InA,~ \[’ requires a very carefully numerical temperatureBgs (see the text for its definitionis plotted in a log

le ver h re r f m sizes. A linear fit is repre-
treatment. In order to avoid finite temperature effects and {Goe Versus the square root of system sizes ear fitls repre

ensure that we measure observables in the GS, we use tﬁ%med by the full line.
B-doubling scheme, developed in Ref. 40 and then used in
Refs. 10 and 41. Such a scheme is a very powerful toovhen the temperature becomes low enough, even for a
because it allows to reach extremely low temperatures rath&PUPI€(Neq Nrm) quite small, averaged values do not depend
rapidly and reduces considerably equilibration times in theOn the number of MC steps. As already mentioned in Refs.
MC simulation. The procedure is quite simple to implement10; 40, and 41 we conclude that the sample to sample varia-
and its basic ingredient consists in carrying out simulationdion produces larger error bars than statlst!cal errors, even for
at successive inverse temperatu®s 2", n=0,1, ... fowe & number of measurement stepd.00, and in Fhe following
Starting with a given sample at=0 we perform a small We Wwill use the p-doubling scheme with (Neg,Np)
number of equilibration stepsly, followed by N,=2Ng,  =(50,100 and a sufficiently large number of samplés
measurement steps. At the end of the measurement proce?s,log)-
B is doubled(i.e., n—n+1) and in order to start with an In order to make reliable predictions for the GS, very
“almost equilibrated” MC configuration, the starting se- large 8 have to be reached. This is illustrated for the random
quence used is the previo@s, doubled, i.e., exchange XXX model with disorder strengiti=0.6 in Fig.
7, whereC3, ((L/2) is plotted vsg for different chain sizes.
Som=lanbul, - e budlavebad, -+ [ag, by We consider that the GS expectation value is obtained when
there are no statistically significant differences between the
rresults for Brax= 2”m_aX a}nd ,_8=2“maX‘1. More preciselly, our
and for disordered systems, in which very small correlationsES convergence criterion |s.the foIIovymg: the GS'is cons@-
may develop. It is for the r'noment the most efficient teCh_ered reached if the expectation v_alu_e is 98% of the saturation
nique avaiIaBIe to cancel remaining temperature effects a\_/alue._ Note that using such a criterion, we can define a sys-
em size dependent temperature scale below which the ther-

though a z%ro—temperature .SSE algorithm might be deVelr"nal expectation values are indistinguishable from GS expec-
oped soort? The next point concerns the number of

equilibration and measurement steps that we have to etgtion valuesiBgs=2"mer"'£2mer® and as shown in the inset

q o - P PeGt Fig. 7, we obtain for this quantity a FS scaling of the form
form. It is illustrated for anL=16 random exchange XXX Bos~ L for W=0.6. Note that we have checked the va-
chain with random bonds distributed according to FL) Gs .

. - g : . . lidity of this scaling for all disorder strengths considered
with .W_.O'S In Fig. 6 Here the disorder averaged mIdChamhere. Such a scaling is not surprising since the FS gap also
longitudinal correlation function

obeys to a similar law Eq6).

(30)

L

5 L/2
C;vg<_> = Egl <SZSZ+(L/2)>GS

> (31)

C. Spin-spin correlation functions
of the random-exchange XXX model

is plotted for different values afNgq Ny). The averaging is After these careful checks of equilibration and tempera-
done over 18 independent samples and we observe thature effects in our simulations, we can analyze the SSE re-
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FIG. 8. Averaged longitudinal correlation functi@#(L/2) for FIG. 9. Scaling plot according to E¢34) for the data of Fig. 8

the random XXX model as a function of the system sizen a  With §=87,37,28,16.5,13,10 fow=0.25,0.5,0.6,0.8,0.9, and 1.0,
log-log scale fotw=0,0.25,0.5,0.6,0.8,0.9,1.0 aid 2 (top to bot- respectively. The full line stands for the pure behavior and the
tom). The data, computed in the GS using SSE method andlashed line is the expected asymptotic behavior according to the
B-doubling scheme, are averaged over more than 1000 sampleRFP scenario.

The data for the pure syste/=0, open circlesfollow C4L/2)

«yIn(L)/L, the dashed line with slope -2 is the expected| < ¢ to the asymptotic RSP behavior visible fot< & Then

asymptotic behavior according to the IRFP scenario. C¥L/2) should obey the following scaling form:

sults obtained for the disorder averaged longitudinal spin- L nL

spin correlationC,. In order to extract the bulk value, we z (—> SALL TLIY), (34)
compute this quantity at midchain and perform the averages A2 L

along the chains and over random samples, according to Eq.
(31). We consider in the following the random exchangewith €(x) a scaling function that is constant in the pure re-
XXX Hamiltonian gime (x<1) and proportional tdx In*2x)~* for x>1 in or-

L der to reproduce the IRFP behavi6,(L/2)x<L for L

HE= 2 00)(SS + 59 +SS]. (82 =& InFig. 9, the scaling Eq(34) is shown for the data of

i=1 Fig. 824 The W-dependent crossover lengths scdlavas
chosen for each value fa individually to obtain the best
data collapseé(W=1) has been chosen such that the cross-
over regime is centered aroume=1 (i.e., when the system
size is of the same order of magnitude as the crossover

with J(i) random AF couplings taken from th&-dependent

distribution Eq.(17). We have also used the more singular
. . . -1 . . .

distribution P(J)=563"1* " if J<1 and 0 otherwise, with

6=2. Such a distribution is, a priori, closer to the IRFP a”dlength scalef). In comparison with the XX resulisee Sec.
ther_ezfore we expect the asymptotic behaviof,L/2) I, the asymptotic behavio€s,,~L2 sets in already for
~L"" to become visible already for not too large systemgmajier system sizes. This observation is compatible with the
sizes. Indeed, this is what we can see in Fig. 8, whergyct that that the disorder dependent length scale defined in
Cavd(L/2) is plotted versus for different disorder strengths. Eq. (13) diverges much slower at the XXX pointyyy

The crossover phenomena, already mentioned for the ran:p-112) than at the XX poin(&y=D™Y).

dom exchange XX case, is also clearly visible but from 16 ¢ gisorder dependence of the crossover length scale of
sites the RSP behavior is recovered for #e2 case. FOr 1o random exchange XXX model is shown in Fig. 10. For

weaker disorder, the asymptotic behavior is visible only fory _ ¢ it diverges with a power law and for small disorder
larger distances and an analysis analogous to the one Wrengths, we can fit the data well ByD)~ D 0601 [see
have perfo_rmed for the XX chain is necessary in order tOFig. 1Qa)]. As a function ofs the fit £(5) ~ 5-22:02is work-
extract a disorder-dependent crossover length sgdle the ing in the whole range of disorder strengfisse Fig. 1(b)].

E;Jhrfnii:oéérrceacstﬁ)rgzeh?\\);gotgegé Itnge(rf)ir:tSo Z;cgéggt loga- The agreement of our numerical estimate of the exponent
governing the divergence of the crossover lengths with the
bosonization prediction for the localization length6+0.1

Jnr versus 0.5is not as good as in the XX case but still accept-

(33 able within the error bars. These minor deviations might be

due to small logarithmic corrections to formuyli3). This is

with which our numerical data foW=0 agree(see Fig. 8. expected since the bosonization approach gives predictions

As in the XX case we expect a disorder dependent lengtifor the random planar exchange model, whereas the random
scale& to govern the crossover from pure XXX behavior for exchange case considered here is only qualitatively similar

CAr) e (= 1)

r l
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(@) m Numerical results (b)
100 1100
g g
e
)
[ = NN
-0 %, W=0.5
10k 10 =—a S, W=1.0
[ . o1 L 58S, W=1.0 |
0.01 : ¥ S 8=10
v S, §=10
FIG. 10. Disorder dependence of the crossover length goafle 1'0 160
the random XXX chain. The full squares are the numerical esti- r
mates from the data collapse in Fig. (@) In the function of the
disorder parametep, the power law fitt ~ &,0-°*** works only for FIG. 11. Exact diagonalization results for tkeand z compo-
weak disorder whereas itb), the fit £~ &, 1%*°2works for the  nents of the string order at disorder strengtis 0.5, W=1, and
entire range of disorder strength studied here. 6=10.

ons already decay with the expected RS exponent, but the
two components are quite far from each other. Increasing the
_ _ _ disorder strength t#v=1 the two components approach each
D. String correlation function other, and for a power law distribution with=10 they are
The string correlation, Eq8), was introduced to measure Within about 10% of each other. Increasiadgurther brings
hidden order in in integer spin chains where the ordinanjthem closer still, but it is necessary to use very high numeri-
spin-spin correlations vanish exponentially. In the RS phaséal precision to get reliable data.
the decay of the string correlation is expected to be described In order to check the decay of the string order away from
by a power law[see Eq.(9)], with a decay exponent of the XX pointwe again use the SSE method. Here we will use
7~0.382. It has been shown beféféd that the string cor- chains of length.=256 and go to sufficiently low tempera-
relation converges particularly quickly to the expected belures to observd — 0 converged string correlations. In Fig.
havior. 12 the temperature effects are illustrated for an XX system at
In this section we begin by demonstrating yet anotherdisorder strengthV=0.5. In this case, it is possible to obtain
crossover effect in the random singlet phase: The RSRG calF— 0 converged results for all distances. Rrclose to 1,
culation predicts that all components of the spin and stringhis would require prohibitively low temperatures, but it is
order correlations should decay with the same exponents al-
though the underlying XXZ Hamiltonian is not rotationally
invariant. This follows from the fact that the ground state of
two S% spins coupled together by an interaction of the form

H=JSS+9S+ASS)] (35

is a rotationally invariant singlet, independently of the aniso-
tropy A. So if all the spins really are bound pairwise in
singlets, then the decay of different components of the cor-
relation functions should be identical. However, at finite dis-
order strength, although the components are found to decay
with the same exponents, the prefactors are differefhis

is due to the fact that for finite disorder strength the strong
bonds in the system are not necessarily surrounded by much
weaker bonds, which leads to fluctuations in the singlet cou-
plings. As the disorder strength is increased these fluctua-
tions should diminish and true rotational invariance should
be observed. Since the string order converges fairly quickly FiG. 12, SSE results for the string correlations oflar256 XX
to the expected random singlet exponents it is a suitablgystem atw=0.5 calculated at inverse temperatugs 2" with
quantity to use to illustrate this crossover behavior. In Fig. 11n=0, ... ,15. Thep=2%5 results are shown with solid circles; the
thex andz components of the string order are shown for thestring correlations decrease with increasing temperatieereasing
XX chain with disorder parameteW=0.5,W=1, 6=10. For  n).

because the randomness added to the Ising term is margiBat disorder of strengtW=0.5 the string correlation func-
[

ally irrelevant?*

"o 50 100 150 200 250
r
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1.0 ‘ : visible for r=50. The very good agreement with the RS
exponent provides further evidence that the system indeed is
in the RS phase for any anisotropy and disorder strength.

V. CONCLUSION

In this paper we have investigated numerically the sﬁoin-
antiferromagnetic random-exchange XX and XXZ chains for
varying disorder strength. Using exact diagonalization calcu-

S(@)

0.1} lations at the XX point and quantum Monte Carlo SSE simu-
o W=1.000 (B=2"%) 5 T Iati_ons forAz.O we stqdied the ground state spin-spin and

o W=0.875 (B=2"%) %§ string correlation functions for system sizes uplte4096

o W=0.500 (B=2") i{) for A=0. With the SSE calculations fax>0 we went up to
L=256 and down to very low temperature, for instance we

1 - — reachedB,=2'" at the random XXX point fol.=96 and

disorder strengtiW=0.6. We found clear evidences for the
asymptotically universal behavior of the correlation func-

FIG. 13. SSE results for the string correlations oflar256 XX tions as predicted by the RSRG analysis of Fighke main
system at different disorder strengtig calculated at the inverse issue of our work presented here consists in the detailed
temperatures indicated in the figure. The straight line shows th@nalysis of the RG flow from the pure instable line of XXZ
T=0 RS power law. fixed points toward the attractive infinite randomness fixed

point. Indeed, as we have demonstrated, such a flow is con-
still possible to obtain well converged results up to distancesrolled by a disorder dependent length scailghich diverges
sufficiently long for observing the asymptotic RS behavior.as the randomness approaches 2&ia. our large scale nu-
Figure 12 also illustrates that the string correlations, unlikemerical calculations we showed that the spin-spin correlation
spin-spin correlations, are not symmetric with respect tdunction is very sensitive to such crossover effects whereas
r=L/2 in these periodic systems. From the definition, Eq.the string order converges more rapidly to its asymptotic RS
(8), it is clear that(r) cannot be symmetric unless the total value. Nevertheless the string order also displays a crossover
magnetization>;S'=0. This is the case in the ground state, phenomena, visible not in the decay exponents as in the spin-
where indeed the symmetry is observed. spin case but rather in the prefactors.

In Fig. 13 low-temperature results are shown at different The spin-spin correlation function as well as the stiffness
W. Here deviations from the RS behavior due to temperaturdisplay a clear crossover from the pure behavior to the IRFP
effects can be seen for= 20 whenW=1, whereas deviations behavior as predicted by the RSRG. The crossover length
due to effects of the periodic boundarid@attening out close scale, extracted from numerical data, is shown to diverge as
tor=L/2) can be seen aV=0.5. In Fig. 14 we show similar §~D~”. Our estimates for the exponept=1.0 agrees very
results for the XXZ chain for two different combinations of well within the error bars with the localization length expo-
the Ising anisotropyA and the disorder strengtlv. In both  nent calculated within an analytical bosonization apprdach.
cases RS behavior can be observed over a significant dislowever, as the bosonization approach is only valid for a
tance range, before temperature or boundary effects becongésorder that is not too strong, our estimates for the crossover
length scaleg(D) and for the localization length* (D) both

T

1.0 ; ‘ deviate(in a perfectly similar way from the predicted be-
= A=0.50, W=0.500 (B=2") havior described by Eq13) when the disorder strength in-
» A=0.25, W=0.875 (=2"% creases. For any strength of randomness, we found a better

parameter to describe crossover as well as localization ef-
fects. Indeed, using the variance of the logarithm of the ran-
o dom couplings,é given by Eq.(18), our estimates for the
LI crossover length scale fits in the whole range of disorder
o strengths considered here very well the foé)~ &* ()
o & with ®=2/(3-2K). It would be interesting to check
such aé dependence of or & also for A#0 or 1. The
connection between crossover and localization effects has
been clearly demonstrated here and has motivated further
studies of the localization in 1B.

Whereas the models we have studied are described by the
IRFP for any strength of the disorder, several disordered
magnetic systems require a critical value of randomness to

FIG. 14. SSE results for the string correlationsLef256 Xxz ~ display universal RSP features. For instance, gaped systems
system at two combinations of Ising anisotropyand disorder like the spin-1 chains or spié-n-legs ladders are not un-
strengthW. The line shows th&=0 RS behavior. stable with respect to the introduction of weak disorder and a

S(r)

0.1

1 10 100
r
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precise identification of the critical disorddp, might be
easier if one considers the divergenceefhen the disorder
strength approaches the critical valle—D...
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