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We use extensive density matrix renormalization group �DMRG� calculations to explore the phase diagram
of the random S=1 antiferromagnetic Heisenberg chain with a power-law distribution of the exchange cou-
plings. We use open chains and monitor the lowest gaps, the end-to-end correlation function and the string
order parameter. For this distribution at weak disorder, the system is in the gapless Haldane phase with a
disorder dependent dynamical exponent, z, and z=1 signals the border between the nonsingular and singular
regions of the local susceptibility. For strong enough disorder, which approximately corresponds to a uniform
distribution, a transition into the random singlet phase is detected, at which the string order parameter as well
as the average end-to-end correlation function are vanishing and at the same time the dynamical exponent is
divergent. Singularities of physical quantities are found to be somewhat different in the random singlet phase
and in the critical point.
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I. INTRODUCTION

The S=1 spin antiferromagnetic Heisenberg chain has re-
ceived much attention, both experimentally and theoretically,
since Haldane1 conjectured that its low-energy properties are
qualitatively different from that of the exactly solved S
=1/2 model. The S=1 chain �together with all other integer
spin chains� has a finite gap in the excitation spectrum and
hidden topological order in the ground state, which is char-
acterized by the string correlation function.2 On the other
hand, the bulk spin-spin correlations of the model are short
ranged, having a finite correlation length, �. In an open chain
of length L, there are spin S=1/2 degrees of freedom at each
edge and the end-to-end correlations approach a finite value
in an exponential fashion, having the same characteristic
length scale, �, as bulk correlations.3

Quenched disorder, which is realized by random cou-
plings, also has different effects for S=1/2 and S=1. In the
former case any amount of disorder is enough to drive the
system into a new type of fixed point,4 whereas for the S
=1 chain, weak disorder is irrelevant and the properties of
the weakly random chain are the same as that of the pure
one.5 For stronger disorder, however, the low-energy proper-
ties of the system are changed and detailed analytical and
numerical investigations were devoted to clarify the proper-
ties of the new random fixed points.

The analytical studies of the random chain are made by
variants of the strong disorder renormalization group �RG�
method, which has been introduced for the S=1/2 chain by
Ma, Dasgupta, and Hu6 and has been analyzed in great detail
by Fisher.4 This strong disorder RG method has been used
afterwards for a large variety of random quantum and clas-
sical systems �for a review, see Ref. 7�. For the S=1 chain,
extensions of the original Ma-Dasgupta rules are necessary8,9

to describe the disorder induced phases in the system, which
include a gapless Haldane �GH� phase, for intermediate dis-

order, and a random singlet �RS� phase, for stronger disorder.
Numerical studies of the random S=1 chain have been

made by exact diagonalization10 of the density matrix
renormalization11 �DMRG�, by quantum Monte Carlo
�QMC� methods,12,13 and by numerical implementations of
the strong disorder RG method.14 Despite considerable nu-
merical effort, several aspects of the low-energy properties of
the random S=1 chain are still unclear and some numerical
results are conflicting. In the numerical calculations mainly
boxlike distribution of disorder is considered, which, as
noted in Ref. 15, represent only a limited strength of ran-
domness. In numerical RG studies both the GH and the RS
phases are identified; however, the transition point between
these phases is rather approximate. In DMRG calculation
�see also Ref. 10�, Hida11 has identified only the GH phase,
and conjectured that the RS phase is not accessible for any
finite strength of disorder. In a comment to Hida’s work,11

Yang and Hyman15 have predicted the appearance of the RS
phase for some type of power-law distribution of the disor-
der. Another numerical work by QMC simulations12 has
shown the existence of the RS phase even for the boxlike
distribution and these results are confirmed by independent
QMC simulations.13 In the QMC calculations, some proper-
ties of the RS phase are verified �cf. scaling relation between
length and time, decay of the string correlation function�, but
results about the spin-spin correlation function are different
from the RG predictions. At the critical point no numerical
estimates are available to check analytical RG predictions.
We note on recent studies of Griffiths effects16 in the system
with enforced dimerization17,18 and related work on the ran-
dom S=3/2 and higher spin chains.19–21

In this paper, our aim is to study the low-energy proper-
ties of the random S=1 chain by the DMRG method.22 The
features of our study are the following: �i� We consider a
more general �power-law� distribution of disorder, which al-
lows us to enter more deeply into the RS phase, thus to
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obtain convincing evidence of its existence. �ii� We calculate
a different physical quantity, the end-to-end correlation func-
tion, which carries important information about the phases of
the system. The average end-to-end correlation function has
a finite limiting value in the GH phase and vanishes in the
RS phase. Furthermore, in the GH phase from the low-value
tail of its distribution, independent estimates about the dy-
namical exponent are obtained. �iii� We try to perform a
comparative analysis between the properties of the system at
the critical point and in the RS phase and to check the avail-
able RG predictions.

The structure of our paper is the following. The model,
the basic ingredients of the strong disorder RG methods, and
the conjectured phases are given in Sec. II. Results of our
DMRG studies are presented in Sec. III and discussed in Sec.
IV.

II. THE MODEL AND THE STRONG DISORDER RG
RESULTS

A. Model

We consider the spin S=1 random antiferromagnetic
Heisenberg chain with the Hamiltonian

H = �
i

JiS� i · S� i+1, �1�

where the Ji�0 are independent and identically distributed
random variables. Here, we use the following power-law dis-
tribution

p��J� = �−1J−1+1/� for 0 � J � 1, �2�

where �2=var�ln J� measures the strength of disorder. In pre-
vious numerical work, a boxlike distribution was used,

PW�J� = �1/W for 1 − W/2 � J � 1 + W/2

0 otherwise,
� �3�

in which the strength of disorder grows with W. Note that the
possible maximal value, W=2, corresponds to the uniform
distribution, which can be obtained from Eq. �2� with �=1
and having a prefactor, 1 /2, and a range 0�J�2. Conse-
quently, the power-law distribution for ��1 represents a dis-
order, which is stronger than any boxlike disorder.

The low-energy behavior of the system of size, L, is en-
coded in the distribution of the lowest gap, �, denoted by
PL���. We note that for an open chain the first gap corre-
sponds to the localized edge states; therefore, one should
study the second �not localized� gap. The average spin-spin
correlation function is denoted by

C�i, j� = ��Si
zSj

z	�av, �4�

where �¯�av stands for averaging over quenched disorder.
For bulk correlations with 
j− i
� i , j=O�L�, we have
C�i , j�=Cb�
j− i
�, whereas for end-to-end correlations,
C�1,L��C1�L�. The string correlation function of the model
is defined by2

Oz�r� = − �Sl
z exp�i	�Sl+1

z + Sl+2
z + ¯ + Sl+r−1

z ��Sl+r
z 	 , �5�

and its large r limiting value is the string order parameter.
For several quantities it turned out useful to consider the
average of its inverse. More precisely, for a physical observ-
able, f , we denote by f iv the following quantity:

f iv =
1

�f−1�av
, �6�

what we shall call as inverse average.

B. Weak disorder limit—Haldane phase

In absence of randomness �Ji=J� the spectrum is gapped,1

and bulk spin-spin correlations are short ranged, Cb�r�
�exp�−r /�� with �=6.033. On the contrary, end-to-end spin-
spin correlations and the string correlation function have a
finite limiting value. For weak disorder, when the distribu-
tion of J is sufficiently narrow, the Haldane gap is robust and
the system stays in the Haldane phase.5 The border of the
Haldane phase can be estimated by noting that the Haldane
gap is robust against enforced dimerization,23 when even and
odd couplings are different, so that

Ji = J�1 + D�− 1�i�exp��
i� , �7�

where 
i are random numbers of mean zero and variance
unity. The pure system ��=0� for D�0.25 stays in the
Haldane phase24 and at the phase transition point the cou-
pling at an odd bond, Jo, and that at an even bond, Je, are
related as Jo=0.6Je. We expect that in the presence of disor-
der the Haldane gap stays finite, if the maximum �Jmax� and
the minimum �Jmin� values of the couplings satisfy
Jmin/Jmax�0.6. From this argument we obtain for the border
of the Haldane phase for the box distribution WG
0.5. On
the other hand, for the power-law distribution in Eq. �2�
Jmin=0; therefore, for any ��0 the Haldane phase is ex-
pected to be destroyed.

C. Strong disorder limit—RG approach

For strong disorder the low-energy properties of the sys-
tem are explored by variants of the strong disorder RG ap-
proach. In the standard Ma-Dasgupta–type RG approach, the
couplings of the random antiferromagnetic Heisenberg chain
are put in descending order and the largest coupling defines
the energy scale, �, in the system. During renormalization
the pair of spins with the largest coupling, say Ji=�, are
replaced by a singlet and decimated out. At the same time a
new coupling is generated between the spins at the two sides
of the singlet, which is given in a perturbation calculation as

J̃ =
4

3

Ji−1Ji+1

Ji
. �8�

As noticed by Boechat, Saguia, and Continentino25 for weak
disorder some of the generated new couplings can be larger
than the energy scale, �. Therefore, the standard strong dis-
order RG approach works only for strong enough disorder
and describes only the RS phase of the system.
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To cure this problem, different types of RG approaches
are proposed. Monthus et al.9 suggested to replace the pair of
spin S=1 connected by the strongest bond by a pair of S
=1/2. In this case the renormalized system consists of a set
of spin S=1 and S=1/2 degrees of freedom, having both
antiferromagnetic and ferromagnetic couplings. The renor-
malized couplings, which are calculated perturbatively, are
all smaller than �. This RG approach, during which no spin
larger than S=1 is generated, can be used to describe both
the gapless Haldane and the RS phases and provides precise
numerical estimates about the critical exponents.

In another modified RG approach, Saguia et al.14 use the
standard perturbative approach in Eq. �8�, provided
max�Ji−1 ,Ji+1��3� /4. Otherwise the triplet of spins with
couplings, max�Ji−1 ,Ji+1�, and � is replaced by a single spin.
Also in this method the variation of the energy scale is
monotonic: the generated two new couplings are both
smaller than �.

Recently, a variant of the strong disorder RG method was
proposed by one of us,26 in which the pair of spins with the
strongest coupling is decimated out, but—and this is a fea-
ture of our current method—the new coupling between the
remaining spins is calculated nonperturbatively. The four
spins with couplings Ji−1, Ji, and Ji+1 are replaced by two
spins and during decimation the lowest gap in the two sys-
tems remains the same. It is easy to see that the rule we use
is somewhat similar to the approach by Saguia et al.14 How-
ever, this method has no discontinuity in the approximation,
which could be important in the vicinity of the critical point,
where a crossover takes place between the different decima-
tion regimes.

D. Disorder induced phases

Based on a modified strong disorder RG approach8,9,14

and different numerical calculations,11–13 the following sce-
nario of the phase transition in the model is conjectured with
increasing strength of disorder.

1. Gapless Haldane phase

For sufficiently strong disorder ����G or W�WG�, the
gap in the Haldane phase is closed and one arrives to the
gapless Haldane phase. As we have argued in Sec. II B, �G
=0 and WG
0.5. The GH phase is a quantum Griffiths
phase,16 in which the correlation length, ����, is finite,
whereas the typical time scale, tr��−1, is divergent. Rela-
tion between the size of the system, L, and the smallest gap
is given by

� � L−z, �9�

where z is the disorder induced dynamical exponent. The
distribution of the lowest gap is given by

PL���d� = L−zP̃� �

Lz�d� , �10�

and P̃�x��x−1+1/z for small x, so that from the low-energy
tail z can be calculated. Similarly the distribution of the end-
to-end correlation function has a vanishing tail, which be-

haves as27 P�C1��C1
−1+1/z, which gives an independent way

to calculate the dynamical exponent. Some thermodynamical
quantities such as the local susceptibility, �, and the specific
heat, cv, are singular at low temperature,7

��T� � T−1+1/z, cv�T� � T1/z. �11�

The limit of divergence of ��T� is signaled by z=1, and the
corresponding disorder is denoted by �1�W1�. The separation
of the two parts of the GH phase with z�1 and z�1 can be
located by considering the inverse average of the gap, �iv,
and the inverse average of the end-to-end correlation func-
tion, C1

iv. In the nonsingular region, z�1, both �iv and C1
iv

are finite, whereas in the singular region, z�1, both are van-
ishing.

To see this, we consider the inverse average of the gap

�iv � ��
�min

�max

�−2+1/zd��−1

�
z − 1

�min
−1+1/z − �max

−1+1/z , �12�

which indeed tends to zero, if z�1 and �min→0. On the
other hand, for the vanishing of the average gap, one needs
�max→0. One can use a similar reasoning for the end-to-end
correlation function, for which the upper limit of the distri-
bution, C1

max�0, thus �C1�iv�0, in the whole region, �
��1.

In a static sense, the gapless Haldane phase is noncritical:
the average end-to-end correlation function, as well as the
string order parameter, is finite in the complete GH phase.

2. Critical point

Increasing the strength of disorder over a critical value
��C or WC�, the system arrives at the random singlet phase.
As the critical strength of disorder is approached, the corre-
lation length diverges: ����C−��−
, with 
= �1+�13� /2,
and the string order parameter vanishes as8,9 Oz������C

−��2�, with �=2��3−�5� / ��13−1��. At the critical point the

string order-parameter decays algebraically, Oz�r��r−�st
,

with �st=2� /
. The end-to-end correlation function goes to
zero algebraically, too, C1�L��L−�1, similarly to the bulk
spin-spin correlation function, Cb�r��r−�. Here, however,
there are no theoretical conjectures about the exponents �1
and �. The relation at the critical point between the correla-
tion length and the relaxation time is strongly anisotropic,

ln tr � ��, �13�

with �=1/3; thus, the dynamical exponent, z, is formally
infinity. This type of infinite disorder scaling is seen in the
distribution of the gaps, which is given by

PL���d� = L−�P̃� ln �

L� �d ln � . �14�

In the space of variables, dimerization �D� and disorder ���,
the critical point of the system, represent a multicritical point
in which three Griffiths phases with different symmetry
meet.17 The corresponding exponents follow by permutation
symmetry and the calculation can be generalized for higher
values of S.17
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3. Random singlet phase

For a disorder ���C �W�WC�, the low-energy behavior
of the system is controlled by an infinite disorder fixed point
and the system is in the RS phase. The RS phase is a critical
phase, both � and tr are divergent, and its properties are
assumed to be identical to the RS phase of the random S
=1/2 chain. This latter system is studied in great detail by
Fisher4 with the asymptotically exact strong disorder RG
method and these results have been confronted with detailed
numerical investigations.28–30 Here we repeat that in the RS
phase there is infinite disorder scaling, so that relations in
Eqs. �13� and �14� are valid with an exponent, �=1/2. The
RS phase is unstable against enforced dimerization, as given
in Eq. �7�, and the correlation length behaves as ��D��D−
,
with 
=2. In the RS phase the bulk and end-to-end correla-
tion functions decay algebraically. In Table I we collected the
conjectured values of the critical exponents both in the ran-
dom singlet phase and at the critical point and compared
these values with the estimates obtained in this paper.

E. Summary of the existing numerical results

In previous numerical studies the box distribution in Eq.
�3� has been used. In Table II we present the estimates of the
borders of the different phases obtained by different numeri-
cal methods, such as by numerical implementation of the
strong disorder RG, by DMRG, and by QMC. We note that
for the power-law disorder in Eq. �2� the critical disorder is
estimated15 as �C
1.5. Using variants of the strong disorder
RG method,9,14 the calculated critical exponents in the RS
phase—within numerical precision—correspond to the pre-
dicted, analytical values. To reach the asymptotic region,
however, one often needs to treat very long chains of length
L=104–106, see Ref. 9. The DMRG and QMC investigations

have led to different conclusions for the strongest box disor-
der, with W=2. No RS phase is found by DMRG,11 whereas
by QMC infinite disorder scaling is detected.12,13 The aver-
age string correlation function was shown to decay algebra-
ically with13 �st=0.378�6�, close to the theoretical result in
Table I. On the other hand, the average spin-spin correlation
function was found to have an exponent,13 �=1, which
greatly differs from the theoretical value of �=2.

III. NUMERICAL INVESTIGATIONS

A. The DMRG method

Most of our numerical results are based on DMRG calcu-
lations. In this case we used open chains up to length L
=64, for weak disorder and up to L=32 for strong disorder
and calculated the lowest two gaps, the end-to-end correla-
tion function and the string order parameter. This latter quan-
tity is calculated for open chains between points i=L /4 and
j=3L /4. Note that for an open chain the first gap is related to
the surface degrees of freedom and goes to zero exponen-
tially with L. The characteristic bulk excitations are given by
the second gap and we studied this quantity. In the numerical
calculation we have retained up to m=180 states in the
DMRG and checked that convergence of the numerical re-
sults is reached. We used the power-law distribution of dis-
order in Eq. �2� in the canonical ensemble, i.e., there was no
constraint to the value of the sum of the odd and even cou-
plings. In this way there is a nonzero residual dimerization,
which could be the source of some error for small systems.
However, using the microcanonical ensemble, in which the
sum of the odd couplings is the same as that of the even
couplings, could lead to different finite-size exponents for
the end-to-end correlation function, which is known for the
random transverse-field Ising chain.31–33 We have calculated
typically 10 000 independent disorder realizations in each
case.

B. Gapless Haldane phase

1. Nonsingular region: z�1

We have calculated the distribution of the �second� gap
and determined its inverse average, �iv, which is presented in
Fig. 1 as a function of the inverse size, L−1, for different
values of �. The limiting value as L→� is monotonously
decreasing with � and �iv seems to approach zero at a lim-
iting disorder �1
0.45−0.5. A similar conclusion is ob-
tained from the behavior of the inverse average of the end-
to-end correlation function, C1

iv�L�, which is shown in the
inset of Fig. 1.

TABLE I. Theoretical predictions for the critical exponents in the random singlet �RS� phase and at the
critical point �CP�. Values obtained in this paper are given in square brackets.

�st � 
 � � �1

RS 0.382 �0.41�4�� 2 1/2 �0.45�5�� 2 1 �0.86�6��
CP 0.509 �0.39�3�� 0.586 2.30 1/3 �0.35�5�� �0.69�5��

TABLE II. Numerical estimates for the borders of the different
phases of the random S=1 chain with boxlike disorder, see Eq. �3�.
The different phases are defined by W�WG, Haldane phase; WG

�W�W1, GH phase with nondivergent local susceptibility; W1

�W�WC, GH phase with divergent local susceptibility; and W
�WC, RS phase.

WG W1 WC

RG�9� 1.48

RG�14� 0.76 2.

DMRG�11� 1.8 no

QMC�12� 1.37 1.7 1.8

QMC�13� �2
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Note, however, that the average end-to-end correlation
function, as shown in Fig. 3 is finite at �1. The extrapolated
values of �iv and C1

iv�L� are shown in Fig. 2. Close to �1,
both curves are compatible with an approximately linear
variation with �1−�. At the boundary point, �1=�, the size
dependences of �iv and C1

iv�L� are shown in the inset of Fig.
2. Both are linear in L−1, in accordance with the criterion that
at �1 the disorder induced dynamical exponent is z��1�=1.

2. Singular region: z�1

We have calculated the average string order parameter
and the average end-to-end correlation function for different
sizes L. Also we have determined the disorder induced dy-
namical exponent, z, which is deduced from the low-energy
tail of the gap distribution �see Eq. �10��. The extrapolated
values of Oz and C1, as well as 1 /z are plotted in Fig. 3 for
different strengths of disorder. All these three quantities tend
to zero around the same limiting value of disorder and the
border of the Griffiths phase, i.e., the location of the critical
point can be determined as �c=1.0�1�. In the extrapolation
procedure we have made use of the finite-size dependence of
Oz�L��L−�st and C1�L��L−�1 at the critical point, which is
shown in the inset of Fig. 3. For weaker disorder, �
��c ,Oz tends to a finite limiting value, which is illustrated
in Fig. 4 using a scale L−�st. A similar conclusion is obtained
for the average end-to-end correlation function, which is pre-
sented in the inset of Fig. 4.

C. Critical point and the RS phase

Our aim with the numerical investigations in this subsec-
tion is twofold: first, to check the properties of the RS phase,
thus to present numerical evidences, and second, and this is
numerically more demanding, to try to discriminate between
the properties in RS phase and at the critical point. We start
to analyze the finite-size dependence of the average string
order parameter and that of the average end-to-end correla-
tion function, which is shown in the inset of Fig. 3 at two
values of the disorder, �=1 and �=1.5. The first value should

FIG. 1. The inverse average gap, �iv, as a function of the in-
verse size of the system for different strengths of disorder, �=0.1,
0.2, 0.3, 0.4, and 0.5 from the top to the bottom, respectively. �iv

seems to vanish around �
0.5. Inset: the inverse average end-to-
end correlation function as a function of inverse size, with the same
values of disorder, as in the main panel. Note that for weak disorder
the size dependence of C1

iv is nonmonotonic, which is due to a finite
correlation length in the system.

FIG. 2. Extrapolated values of the inverse average gap and the
inverse average end-to-end correlation function as a function of the
strength of disorder. At �=0 we obtain estimates for the nonrandom
model, �=0.4105�3� and C1=0.283�1�. Inset: Size dependence of
the inverse average gap and the inverse average end-to-end corre-
lation function in a log-log plot at the boundary of the gapless
Haldane phase. Both lines have an approximate slope, z=1, denoted
by broken lines. The typical value of the error is indicated; other-
wise, the error is smaller than the size of the symbol.

FIG. 3. The average string order parameter, Oz, the average
end-to-end correlation function, C1�L�, and the disorder induced
dynamical exponent, 1 /z, as a function of the strength of disorder.
Inset: finite-size dependence of the string order parameter and the
average end-to-end correlation function at the critical point ��c=1,
open symbols� and in the RS phase ��c=1.5, full symbols� in a
log-log plot. The slope of the broken lines representing the critical
exponents are �, 0.39±0.03�0.509�; �, 0.41±0.04�0.382�; �,
0.69±0.05; and �, 0.86±0.06�1.0�, where in the brackets we pre-
sented the theoretical RG results; see Table I. Typical values of the
error are indicated; otherwise, the error is smaller than the size of
the symbol.
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be close to the critical point �see Fig. 3�; however, there is
certainly some uncertainty, see the values of WG in Table II.
The second value of disorder, �=1.5, should be deeply in the
RS phase; however, see the RG estimates in Ref. 15.

At �=1.5 the decay of the average string order-parameter,
as well as that of the end-to-end correlation function is alge-
braic, and the decay exponents of both quantities are in
agreement with the theoretical prediction in the RS phase, as
given in Table I. For the average end-to-end correlation func-
tion we have somewhat less accuracy, which could be due to
similar crossover effects as noted for the bulk spin-spin cor-
relation function in Ref. 13. The same type of analysis of the
results at �=1 give somewhat different results. The decay of
the average end-to-end correlation function is characterized
by an exponent, �1=0.69, which differs considerably from
the value in the RS phase. On the other hand, the decay
exponent of the average string order parameter, within the
error of the calculation, agrees with the value found in the
RS phase. We note that at the same disorder in the QMC
simulation13 also the exponent in the RS phase is observed.
One possible explanation is that �=1 is already in the RS
phase and therefore we find the corresponding exponent.
Anyway, even at the critical point one expects strong cross-
over effects due to the vicinity of the RS fixed point, so that
probably much larger systems are needed to observe the true
asymptotic behavior.

Finally, we compare in Fig. 5 the distribution of the gaps
at the critical point �a� and in the RS phase �b�. For both
cases the distribution is broadened with increasing L, which
is a clear signal of infinite disorder scaling. Indeed, one can
obtain a good scaling collapse using the form in Eq. �14�. In
the insets we have illustrated this type of behavior by using
the theoretical predictions, �=1/3 at the critical point and
�=1/2 in the RS phase, respectively. The estimated expo-
nents obtained from the optimal scaling collapse are shown
in Table I.

IV. CONCLUSION

The random antiferromagnetic S=1 chain is a paradigm
of disorder induced phase transition phenomena �see also
Ref. 34� for which detailed strong disorder RG predictions
are available. These predictions, however, have only been
partially verified by numerical calculations and even the nu-
merical results are somewhat conflicting. In this paper we
have used extensive DMRG calculations with the aim to
clarify the low-energy properties of the system with varying
strengths of disorder. The sizes of the systems we used in the
calculation are comparable with those in previous DMRG
studies;11 however, we used a power-law distribution of the
couplings in Eq. �2�, which can be more random, than the
box distribution in Eq. �3� used previously. We have also
calculated a quantity, the end-to-end spin-spin correlation
function, which can be used to locate the borders of the
different phases in the system and to obtain an independent
estimate of the dynamical exponent. Our calculations gave
further numerical support of the phase diagram predicted by
the strong disorder RG method and our results are basically
in agreement with the scenario of disorder induced phase
transitions. In the RS phase we made calculations far from
the critical point, which is not possible with boxlike distri-
bution of couplings as given in Eq. �3� and obtained esti-
mates for the critical exponents which are compatible with
the RG predictions. Our results at the critical point are less
conclusive, which is probably due to crossover effects and
the inaccurate location of this point. For the critical exponent
of the end-to-end correlation function, �1, and that of the gap
scaling, �, numerical estimates at the critical point are
clearly different from that in the RS phase, which are in
accordance with the RG results. On the other hand, for the
average string correlation function our numerical results are
in conflict with the RG prediction. We believe that at this
point much larger finite systems are necessary to obtain a
precise numerical estimate and thus to be able to test the
results of RG predictions.

FIG. 4. The average string order-parameter as a function of
L−�st, with �st=0.39 as obtained in the inset of Fig. 3, for disorder,
�=0.3, 0.5, 0.8, 1.0, and 1.5 from the top to the bottom. Inset: the
average end-to-end correlation function as a function of L−�1, �1

=0.69 being the critical decay exponent, for the same values of
disorder as in the main panel. Solid straight lines over the �=1.0
points are guides to the eyes.

FIG. 5. �Color online� Distribution of the gaps in finite systems
at the critical point, �=1 �a� and in the RS phase, �=1.4 �b�. In the
insets scaling collapse with Eq. �14� is shown with �=1/3 �a� and
�=1/2 �b�.
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We close our paper by mentioning that the present day
numerical possibilities to explore the properties of the ran-
dom S=1 chain seem to be exhausted, as far as DMRG or
QMC methods are considered. Some independent and prob-
ably more accurate results can be expected, however, by the
numerical application of different variants of the strong dis-
order RG method, in particular in the vicinity of the critical

point and in the RS phase. Results obtained in this direction
will be published in the future.26
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