
Random-exchange quantum Heisenberg antiferromagnets on a square lattice

Nicolas Laflorencie,1 Stefan Wessel,2 Andreas Läuchli,3 and Heiko Rieger4

1Department of Physics & Astronomy, University of British Columbia, Vancouver, B.C., Canada V6T 1Z1
2Institut für Theoretische Physik III, Universität Stuttgart, 70550 Stuttgart, Germany

3Institut Romand de Recherche Numérique en Physique des Matériaux, EPFL, 1015 Lausanne, Switzerland
4Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany

�Received 12 November 2005; published 14 February 2006�

The ground state properties of random-exchange spin-1
2 Heisenberg antiferromagnets �AFM� on a square

lattice are investigated using a combination of quantum Monte Carlo simulations, exact numerical diagonal-
izations, and spin wave calculations. Whereas arbirarily weak disorder has a drastic effect on one-dimensional
Heisenberg AFM, we find that in two dimensions the characteristics of the ground state such as long-range
order is robust even against strong disorder. While the antiferromagnetic order parameter and the spin stiffness
are exponentially reduced for singular exchange distributions, they vanish only in the limit of infinite
randomness.

DOI: 10.1103/PhysRevB.73.060403 PACS number�s�: 75.40.Mg, 75.10.Nr, 02.70.Ss, 75.30.Ds

The spin-1
2 Heisenberg antiferromagnet �AFM� on a

square lattice has attracted a lot of interest in the past two
decades,1–8 motivated, in particular, by the suggestion that
the high-temperature superconductivity in cuprates is related
to the magnetic properties of their CuO planes.9 Its ground
state �GS� is antiferromagnetically ordered and the value for
the staggered magnetization mAF=0.3070�3� is known for
high accuracy.8 Recently, it was found that this magnetic
long-range order �LRO� is robust against the introduction of
static nonmagnetic impurities, as observed in Mg or Zn
doped La2CuO4.10 In fact, using numerical simulations, it
was shown that LRO persists up to the percolation threshold
for the site dilution.11,12 Furthermore, the critical exponents
for the transition to the paramagnetic phase are those of the
classical percolation transition.12

The question then arises, how the GS properties change
for other forms of quenched disorder, in particular, for ge-
neric bond disorder, i.e., randomness in the strength of the
antiferromagnetic exchange coupling. In the one-
dimensional �1D� case, where the GS of the pure system is
critical, bond disorder is relevant,13 and an infinitesimal
amount of bond disorder drives the system into the random
singlet phase with unconventional scaling properties.14–16 On
the other hand, the gapped spin-liquid GS of antiferromag-
netic spin-1

2 Heisenberg ladders is stable against the intro-
duction of bond disorder.17,18 Indications for similar stability
were obtained recently also for 2D Heisenberg antiferromag-
nets using the strong disorder renormalization group,19,20

which is, however, reliable only for the opposite scenario,
i.e., when the GS is described by an infinite randomness
fixed point scenario.

Here, we employ exact numerical methods to reliably es-
timate the stability of the GS of 2D Heisenberg AFMs
against exchange randomness. In particular, we consider the
bond-disordered spin-1

2 Heisenberg AFM on a square lattice,
defined by the Hamiltonian

H = �
�i,j�

JijSi · S j , �1�

where �i , j� are nearest neighbor bonds on a L�L square
lattice �N=L2�, Si are spin-1

2 operators, and the AFM ex-
change couplings Jij �0 are quenched random variables with
probability distribution P�J�. In the following, we will con-
sider two different types of disorder distributions: �i� a
W-dependent flat, bounded bond distribution, where the
bonds are uniformly and symmetrically distributed around 1
with width W:

P�J� = �„J − �1 − W�… · �„�1 + W� − J…/2W �2�

and �ii� a singular distribution controlled by the parameter �
and given by21

P�J� = J−1+�−1
�−1��J���1 − J� . �3�

This second type of disorder distribution allows us to study
the stability of the GS towards a singular proliferation of
weak bonds in the lattice structure.

We analyze the GS properties of the model �1� using a
combination of quantum Monte Carlo �QMC� simulations,
exact diagonalizations �ED� based on the Lanczos method,
and the spin-wave theory �SW�. In particular, we consider
the stability of the staggered magnetization and the spin stiff-
ness towards bond disorder, using disorder averaged quanti-
ties as obtained from several thousand disorder realizations
from the distributions �2� and �3� with different parameters
W or �, respectively.

A Néel-ordered GS in the thermodynamic limit is signaled
by a nonvanishing infinite system size limit mAF

2 of the stag-
gered structure factor per site s�� ,��:

s��,�� =
3

N2���
i=1

N

�− 1�iSi
z�2	→ mAF

2 �N → �� . �4�
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The QMC simulations have been performed using the sto-
chastic series expansion technique with a directed loop up-
date scheme.22 For the clean �i.e., no disorder� case, we stud-
ied square lattices up to L=64. We found that a scaling of the
inverse temperature as �=8�L allows us to obtain GS prop-
erties. For the random case we needed to perform the QMC
simulations at much lower temperatures, as correlations on
weak bonds �i.e., small Jij� still develop at very low tempera-
tures. To stimate GS quantities reliable, we used the
�-doubling scheme12 which accelerates the simulations con-
siderably at low temperatures. We were able to extract the
GS properties of systems with up to 32�32 lattice sites, for
values of the disorder parameter up to �=5 by doubling � up
to 216 �see the inset of Fig. 1�. For the small lattices we have
also carefully checked the convergence against the ED re-
sults. The number of random samples considered for disorder
averaged quantities varied between 1000 for the largest lat-
tice and 10 000 for smaller lattices.

In Fig. 1 we show the disorder averaged GS values of
�s�� ,���, which we obtained from the QMC and ED calcu-
lations as functions of 1 /L. For the clean case ��=0� QMC
data for lattices ranging from L=4 up to L=64 have been
extrapolated to the thermodynamic limit using an uncon-
strained third-order polynomial fit in 1/L. The obtained stag-
gered magnetization mAF=0.3064�2�, is in good agreement
with previous estimates.8,23 Increasing the randomness �, we
found that large system sizes are required to reliably extrapo-
late to the thermodynamic limit. While in the clean case and
for weak disorder the finite size scaling is dominated by a
term linear in 1/L, higher-order terms become important for
larger values of �. This can be seen from Fig. 1, where for
strong disorder and large systems sizes, the curvature of the
polynomial extrapolations become more pronounced, indeed

requiring up to third-order polynomials in 1/L. We checked
that the extrapolated values did not change within the statis-
tical error bars upon allowing higher-order fitting polynomi-
als.

To further analyze the effects of the randomness on the
quantum fluctuations above the classical Néel state, we em-
ploy linear spin-wave24 theory. This appears justified given
the finite, although strongly reduced, staggered moment ob-
tained within the QMC simulations. As translational symme-
try is broken in each realization for the disordered system,
we adopt a a real-space formulation of the spin-wave ap-
proach to finite systems. In the following, we use the method
of Ref. 25, which is based upon solving a non-Hermitian
eigenvalue problem and subsequent orthogonalization to ob-
tain the bosonic eigenmodes of the quadratic part of the spin-
wave Hamiltonian. Similar approaches have been used re-
cently to study site-dilution effects in the Heisenberg model
on the square26 and honeycomb27 lattice. For details on the
numerical scheme, we refer to Ref. 25.

We perform the above procedure for typically 1000 disor-
der realizations for system sizes L=8, 16, 24, 32, and 40 for
various values of �. The spin-wave estimate of �s�� ,��� for
given values of L and � is finally obtained by averaging the
local staggered moments from the various disorder realiza-
tions. We found that for ��1 a small fraction of sites attain
negative values of the local staggered moment. We treat this
artifact of the linear spin-wave theory, related to the singular
disorder distribution at J=0, by explicitly setting the local
staggered moments of the corresponding sites to zero before
performing the averaging procedure. Results of the SW cal-
culation are shown in Fig. 2 for various disorder strengths as
functions of 1 /L. Extrapolations to the thermodynamic limit
have been performed using third-order polynomial fits in
1/L, where again high-order terms become important as the
randomness increases.

Based on our finite size scaling analysis, we now consider
the behavior of the staggered magnetization mAF in the pres-
ence of bond randomness. We plot the values obtained from
both the ED and QMC and the SW calculations as functions
of � in Fig. 3.

FIG. 1. �Color online� Disorder averaged value of the GS stag-
gered structure factor �s�� ,��� as a function of 1/L. Filled symbols
are ED data and open symbols QMC data. The number of random
samples varied between 1000 for the largest lattice and 10 000 for
the smaller lattices. Dashed lines denote third-order polynomial fits
of the finite size data. The inset exhibits the convergence of
�s�� ,��� using a �-doubling scheme for �=1,2,3,4,5 �top to bot-
tom� and L=32.

FIG. 2. �Color online� Results from spin wave theory for the
disorder averaged value of the GS staggered structure factor
�s�� ,��� as a function of 1/L. Dashed lines denote polynomial fits
in 1/L.
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We find that the Néel order is very robust against bounded
bond randomness. While the SW approach slightly overesti-
mates the order parameter �as expected�, the form of the �
dependence of mAF calculated within SW theory agrees well
with the ED and QMC results. Using the distribution of Eq.
�3�, the order parameter shows an exponential decay �c.f. the
inset Fig. 3� of the form

mAF 
 exp�− cm�� , �5�

with cm=0.301�5� obtained from the ED and QMC calcula-
tions, and cm=0.260�5� within SW theory. This suggests that
the robust LRO vanishes only in the limit of infinite random-
ness, i.e., for �→�.

In addition to the staggered magnetization, the ordered
nature of the Heisenberg antiferromagnet is accompanied by
a finite value of the spin stiffness, defined as the second
derivative of the GS energy with respect to a twist angle 	
introduced at the boundary along a direction perpendicular to
the order parameter:


s =
3

2
� �2E0

�	2 �
	=0

. �6�

In contrast to mAF, the spin stiffness is a dimensionful quan-
tity, and in the clean case, where 
s=0.175�2�J, scales pro-
portional to the exchange constant J. A naive expectation
would suggest that in the disordered case, 
s scales with the

averaged value of the exchange, J̄
1/�+1, leading to an
algebraic decay for large values of �. In the following, we
show that instead 
s shows an exponential decay, similar to
the staggered magnetization, mAF. From the QMC simula-
tions, 
s can be evaluated for each disorder realization by
measuring the world-line winding number fluctuation,8 and
finally performing a disorder averaging. In a clean system, a
twist 	 enforced at the boundaries will be equally distributed
among the bonds along the corresponding direction, resulting
in a homogeneous twist in the order parameter of 	 /L per
bond. In contrast, for a bond-disordered system, larger twists
occur for weaker bonds,28 resulting in an inhomogeneous

distribution of the local twist angle. The winding number
however, being a global quantity, provides an estimate for
the global rigidity of the system under such a twist in the
boundary conditions.

The spin stiffness can be expressed as 
s=−e0 /2−3�s
0 /2,

in terms of the GS energy per site without twist, e0, and
�s

0, the �=0 current-current correlation function �s���
=1/L2�0

�d e−i��js��js�0��.8,30 According to spin-wave
calculations,29,30 in the clean case �s

0�L� scales like �s
0�L�

=�s
0+a1 /L+a2 /L2+¯, whereas the GS energy scales as

e0�L�−e0
1/L3.8,31 We find that the 1/L3 scaling of e0�L�
also holds for the disordered averaged values. To reliably
obtain the disorder average spin stiffness 
s in the thermody-
namic limit, we subtracted the energy contribution to the
stiffness and performed polynomial fits in 1/L for the disor-
der averaged values of �s

0�L�, as shown in the inset of Fig. 4.
Interestingly, for increasing disorder, finite size effects get
strongly reduced which implies that the thermodynamic limit
value for 
S is, within error bars, reached for smaller systems
as the disorder increases. Since more QMC steps are needed
for each random sample to compute the fluctuations in the
winding numbers, than for the structure factor, the disorder
average was performed over slightly less random samples.
Typically 1000 samples were used for the smaller and 200
for the largest lattice with L=32. Our results for 
s as a
function of � are shown in Fig. 4. We find that the spin
stiffness remains finite upon increasing the disorder, showing
an exponential reduction with �, similar to the AF order pa-
rameter. In fact, a decay


s��� 
 exp�− c
�� , �7�

with c
=1.60�2�, fits the QMC data for ��1.
In conclusion we have studied the ground state properties

of the bond-disordered spin-1
2 Heisenberg model on a square

lattice, and found the antiferromagnetic order to be rather

FIG. 3. �Color online� Disorder averaged antiferromagnetic or-
der parameter as a function of the disorder strength �. Dashed lines
denote exponential fits of the data for ��1, and the inset shows the
same data on a semilogarithmic plot. Note also that error bars are
smaller than symbol sizes.

FIG. 4. �Color online� Disorder averaged values of the spin
stiffness 
s obtained from QMC simulations on systems with up to
L=32 and careful finite size scaling to the thermodynamic limit �see
text�. The solid line denotes an exponential fit Eq. �7�. Inset:
Finite size scaling of the disorder average �=0 current correlator
�s

0�L�=−e0�L� /3−2
s�L� /3 plotted vs 1/L for �=0, 1, 2, 3, 4, 5
�different symbols from top to bottom�. Dashed lines are quadratic
fits. Error bars are smaller than symbol sizes.
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robust against bond randomness: Both the staggered magne-
tization and the spin stiffness get reduced exponentially with
�, but vanish only in the limit of infinite randomness. These
observations suggest a reduced relevance of disorder effects
on quantum Heisenberg models in dimensions D�1. Indeed,
and in contrast to the Ising model in a transverse field, where
the disorder is relevant also for D�1,32,33 the infinite ran-
domness fixed point is unstable in XY and Heisenberg AFMs
for D�2.19 This result of a renormalization group study is
confirmed here for the Heisenberg case on a square lattice. It
would be interesting to achieve an analytical understanding
of the exponential decay we obtained for both the order pa-
rameter and the spin stiffness. In an earlier study, performed
for a similar random-exchange AFM, a finite critical disorder
strength was found to destroy Néel order and to drive the
system into a paramagnetic phase.34 Based on simulations
using significantly larger system sizes at essentially zero
temperature, we conclude on the absence of any such finite

critical disorder strength. We furthermore expect a similar
robustness of Néel-ordered GSs of quantum AFMs on other
bipartite lattices, such as the honeycomb lattice. In contrast,
for the case of a triangular lattice the interplay between ran-
domness and frustration is expected to destroy the ordered
GS of the pure case,35 and drive the system into a spin-glass
phase for strong bond disorder.19 Finally, the question arises,
how the excitation spectrum and finite temperature properties
are affected by bond disorder. Preliminary results36 indicate
that upon increasing the disorder strength, the character of
the low-energy excitations changes from extended spin
waves to localized spin-cluster flips.

We acknowledge valuable discussion with A. Sandvik,
Y.-C. Lin, and F. Iglói. The research of N.L. was supported
by NSERC of Canada, and the numerical simulations were
carried out on the WestGrid network and at NIC Jülich.
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