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Using a numerical implementation of a strong-disorder renormalization group, we study the low-energy,
long-distance properties of layers and bilayers of S=1/2 Heisenberg antiferromagnets with different types of
disorder: bond randomness, site dilution, and dimer dilution. Generally the systems exhibit an ordered and a
disordered phase separated by a phase boundary on which the static critical exponents appear to be independent
of bond randomness in the strong-disorder regime, while the dynamical exponent is a continuous function of
the bond disorder strength. The low-energy fixed points of the off-critical phases are affected by the actual
form of the disorder, and the disorder-induced dynamical exponent depends on the disorder strength. As the
strength of the bond disorder is increased, there is a set of crossovers in the properties of the low-energy
singularities. For weak disorder quantum fluctuations play the dominant role. For intermediate disorder non-
localized disorder fluctuations are relevant, which become localized for even stronger bond disorder. We also
present some quantum Monte Carlo simulation results to support the strong-disorder renormalization approach.
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I. INTRODUCTION

The two-dimensional �2D� spin-1 /2 Heisenberg anti-
ferromagnet has attracted abiding interest in recent years,
mainly motivated by its relation to high-temperature
superconductivity.1 According to the Mermin-Wagner
theorem,2 the Néel antiferromagnetic �AF� long-range order
in 2D can exist only at zero temperature, but even then it can
still be reduced by quantum fluctuations. It has been estab-
lished that at T=0 the AF order survives for several lattices,
such as for the square lattice. The ordered ground state is
accompanied by gapless low-energy excitations, which, ac-
cording to spin-wave theory3 and the nonlinear �-model
description,4 behave as

�Eq � L−zq, zq = 2, �1�

where L is the linear size of the system, zq is the dynamical
exponent, and the subscript q refers to quantum fluctuations.
The AF order in the ground state can be suppressed by in-
troducing frustration �e.g., with diagonal couplings in the
square lattice: the J1-J2 model�,5 by dimerizing the lattice,6

or by coupling two square lattices to form a bilayer.7–9 By
increasing these disordering effects, the AF order is reduced
progressively and will disappear at an order-disorder quan-
tum phase transition point.

In real materials impurities and other types of quenched
disorder are inevitably present or can be controlled by dop-
ing. Fluctuations due to quenched disorder can further desta-
bilize the AF order, resulting in disordered ground states and
random quantum critical points. Quasi-two-dimensional ma-
terials, such as La2CuO4 doped with Mg �or Zn� and K2CuF4

�or K2MnF4� doped with Mg, can be approximately de-
scribed by the 2D AF Heisenberg model with static nonmag-
netic impurities. In these systems a disorder-induced quan-
tum phase transition from Néel order to a disordered spin-
liquid phase was observed.10

Theoretical investigations of the disorder effects in 2D
Heisenberg antiferromagnets have been mainly restricted to
dilution effects. Quantum Monte Carlo �QMC� simulations
of the diluted square-lattice model showed that the AF
long-range order persists up to the classical percolation
point and the critical exponents are identical to those of
classical percolation for all S.11 In studies of the square-
lattice model with staggered dimers and dimer dilution, un-
usual critical properties were found; among others, at the
classical �bond� percolation point there is a critical line with
varying exponents.12 In the 2D bilayer Heisenberg antiferro-
magnet the random dimer dilution can be introduced by
randomly removing the interlayer bonds. In recent QMC
simulations,13–15 random quantum critical points with a uni-
versal dynamical exponent z�1.3 were deduced by varying
the ratio of the interlayer and intralayer couplings below the
percolation threshold.

In the presence of bond randomness, the low-energy prop-
erties of the above-mentioned 2D random models can be
studied by a strong-disorder renormalization group �RG�
approach,16 which was originally introduced by Ma, Das-
gupta, and Hu17 for the 1D random AF Heisenberg model. In
a detailed analysis of this RG procedure Fisher18 solved the
RG equations for the 1D model analytically and showed that
during renormalization the distribution of the couplings
broadens without limit, indicating that the RG flow goes to
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an infinite-randomness fixed point.19 Due to infinite random-
ness, approximations in the RG procedure are negligible and
the scaling behavior of the system—in both a dynamical and
static sense—is asymptotically exact. The ground state of the
1D model, the so-called random singlet state,20 consists of
effective singlet pairs and the two spins in a given singlet
pair can be arbitrarily far from each other. Renormalization
of the 1D model with enforced dimerization �with different
probability distributions of the even and odd couplings� leads
to a random dimer phase,21 which is a prototype of a quan-
tum Griffiths phase. The singular properties of the Griffiths
phase are controlled by a line of strong-disorder fixed points;
along this line, the disorder-induced dynamical exponent z
varies continuously with the strength of dimerization. The
dynamical exponent, calculated by the RG method, is pre-
sumably asymptotically exact; however, the static behavior,
such as the density profiles, is correct only up to the corre-
lation length in the system.

Variants of the strong-disorder RG method have been ap-
plied for various 1D and quasi-1D �spin ladder� random
Heisenberg models. In Heisenberg models with mixed ferro-
magnetic and antiferromagnetic couplings,22 during renor-
malization large spins are formed and the dynamical proper-
ties of these large-spin phases are different from the Griffith
phases; for example, the uniform magnetic susceptibility has
a Curie-like low-temperature behavior. The strong-disorder
RG method for more complicated geometries, such as in 2D,
can only be implemented numerically and the calculated dy-
namical exponent z is presumably approximate. However,
we expect that the qualitative form of the low-energy singu-
larities is correctly predicted by these investigations. In pre-
vious studies23 2D and 3D Heisenberg antiferromagnets with
and without frustration in the presence of bond disorder were
numerically studied for random coupling constants taken
from the Gaussian or from the boxlike distributions. In con-
trast to the 1D case, no infinite-disorder fixed point is ob-
served. Nonfrustrated models are shown to have a conven-
tional Griffiths-like random fixed point, whereas the
dynamical singularities of frustrated models are controlled
by large-spin fixed points.

In the present paper we extend previous investigations of
2D random Heisenberg models in different directions. First,
we consider the strong disorder represented by a power-law
distribution of the couplings and study systematically the
variation of the dynamical singularities with the strength of
the bond disorder. In particular, we are interested in the lo-
calization properties of the low-energy excitations. Second,
we consider nonmagnetic impurities and study the combined
effect of bond disorder and site dilution. Our third direction
of study considers AF bilayers with bond disorder and ran-
domly removed interlayer dimers. Evidently, with vanishing
interlayer coupling this problem reduces to our second
model.

The paper is organized as follows. The models under in-
vestigation as well as their basic properties are presented in
Sec. II. The strong-disorder RG method and the properties of
the basic fixed points are shown in Sec. III. A description of
the QMC stochastic series expansion method, which is used
to support the strong-disorder RG approach, is given in Sec.
IV. Results of the critical properties as well as the Griffiths

singularities of different disordered Heisenberg AF models
are presented in Sec. V and discussed in Sec. VI.

II. MODELS AND PHASE DIAGRAMS

We start with the definition of the most general model
considered in this paper: the double-layer Heisenberg antifer-
romagnet with random dimer dilution �see Fig. 1� which is
described by the Hamiltonian

H = �
n=1,2

�
�i,j�

Ji,j�i� jSi,n · S j,n + �
i

Ki�iSi,1 · Si,2. �2�

Here Si,n is a spin-1 /2 operator at site i of the nth square
lattice layer. The antiferromagnetic planar �interlayer� cou-
pling constants Ji,j �Ki� are independently and identically dis-
tributed random variables. The dimer dilution at site i is rep-
resented by the variable �i, which is �i=0 with probability p
and �i=1 with probability 1− p.

To our knowledge, this model has so far only been studied
without bond disorder—i.e., Ki�K " i and Ji,j �J " i , j.
The schematic phase diagram of this model at zero tempera-
ture in terms of the coupling ratio g�K /J and dilution p is
shown in the plane D=0 in Fig. 2. The point at �g=0, p=0�
corresponds to two uncoupled nondiluted square-lattice AF
Heisenberg model and exhibits AF long-range order in its
ground state.24 At p=0 a finite interplane coupling, g�0,
causes a tendency for neighboring spins in the adjacent lay-
ers to form singlets and the AF order is therefore reduced. If
the coupling ratio exceeds some critical value, g�gc, the
system will undergo a quantum phase transition from an AF
state to a disordered state. This T=0 order-disorder transition
is expected to belong to the universality class of the 3D
classical Heisenberg model according to the �-model de-
scription by Chakravarty et al.4 Results of recent QMC simu-
lations are in accordance with this conjecture, and the critical
ratio is calculated as gc�2.5220.9,25

Along the horizontal axis of Fig. 2—i.e., with g=0 �and
D=0�—we have two uncoupled site-diluted Heisenberg AF
planes. Increasing dilution suppresses AF order progressively
and according to QMC results the quantum phase transition
takes place at the classical site-percolation threshold,26 pp
=0.407. Furthermore, the critical exponents are those of the
classical percolation transition.13 Now having both dilution,
p�0, and finite interlayer coupling, g�0, the phase bound-
ary gc�p� is monotonically decreasing with increasing

FIG. 1. �Color online� The diluted bilayer model. Solid circles
represent spins, and open circles indicate the removed dimers.
Neighboring spins in each plane interact with the coupling J, and
the interplane coupling is K.
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dilution.13,14 However, even at the percolation threshold
there is a finite critical coupling: gc�pp��gp�0.16, and this
fixed point, marked by B in Fig. 2, is found to control the
phase transition between the ordered and disordered phases
for p�0 and g�0.13,14 This fixed point is a conventional
random fixed point with power-law dynamical scaling and
universal exponents.15

In this paper we extend the space of parameters by intro-
ducing bond disorder, such that the intralayer and interlayer
couplings are independent and identically distributed random
variables taken from the distributions

��J� =
Jmax

−1/D

D
J−1+1/D, for 0 � J � Jmax,

��K� =
Kmax

−1/D

D
K−1+1/D, for 0 � K � Kmax, �3�

respectively. Here D2=var	ln J
=var	ln K
 measures the
strength of disorder �var	x
 stands for the variance of x� and
the control parameter is defined as g=Kmax/Jmax. Note that a
uniform distribution corresponds to D=1. In particular we
are interested in the properties of the phase diagram and the
singularities at the phase transitions as well as the form of
disorder-induced low-energy excitations in the different re-
gions.

III. STRONG-DISORDER RG METHOD
AND ITS FIXED POINTS

The strong-disorder RG method16 is an important tool to
study random quantum systems. Here we recapitulate the
basic ingredients of the method used for the 2D random
Heisenberg antiferromagnet.

The RG proceeds by eliminating at each step a term in the
Hamiltonian with the largest gap separating the ground state
and the first excited state. This decimation process generates
effective couplings between the remaining sites which are
calculated perturbatively. For a lattice with more complex
structure than a single chain, such as the bilayer antiferro-
magnet, the renormalized Hamiltonian contains effective
spins of arbitrary size with a complicated correlated network
and has both antiferromagnetic and ferromagnetic �F� cou-
plings. The RG procedure for this Hamiltonian thus consists
of two types of decimation rules, one for singlet formation
�for equal-size spins with an AF bond�, and one for cluster
formation �for all other cases�. Further details of the RG
procedure can be found in Refs. 22, 23, and 27.

As the RG procedure is iterated, the cutoff of the energy
gaps, denoted by 	, is gradually decreased. In the vicinity of
the low-energy fixed point 	*→0, the low-energy tail of the
distribution of the gaps for a large finite system of linear size
L follows the relation

P��,	,L� = LzP̃��

	
,
L−z

	
� � Lz��

	
�


� Lz�1+
��
, �4�

which defines the gap exponent 
. The energy scale and
length scale are related by 	�L−z with the disorder-induced
dynamical exponent z. Note that with the initial power-law
distribution of the couplings in Eq. �3� the initial gap expo-
nent is given by 
0=−1+1/D. At a conventional random
fixed point, we have 
 /
0=O�1�, while at an infinite-
disorder fixed point the distribution of the effective gaps
broadens without limit, indicating 
 /
0→�. If the low-
energy excitations are localized, then the gap distribution for
a fixed � is proportional to the volume of the system:
P�� ,	 ,L��Ld. From Eq. �4�, we obtain, in this case,

z = z� �
d

1 + 

; �5�

here, an exponent z� is defined. Note that at an infinite-
disorder fixed point the dynamical exponent z is formally
infinite.

Another characteristic feature of the fixed point is the
typical size of the effective cluster moment, Seff= �i±Si,
which is determined by the classical correlation of the spins
in the ground state, and the positive �negative� sign corre-
sponds to an F �AF� coupling. Seff is expected to scale as
Seff�Ld�. There are two types of fixed points concerning the
value of �: In some models the decimated spin pairs are
typically singlets or the size of the effective spins has a satu-
rated value, which yields �=0 in the low-energy limit; in
some models, mainly with frustration, large effective spins
are formed, and if ferromagnetic and antiferromagnetic cou-
plings are uncorrelated, one obtains22 �=1/2. This state is
called the large-spin phase.

FIG. 2. Schematic phase diagram of the dimer diluted bilayer
Heisenberg antiferromagnet, as a function of the coupling ratio g,
the fraction of the removed interplane dimers p, and the strength of
the bond disorder D. The disordered phase and the AF ordered
phase are separated by a critical surface, indicated by dashed lines,
which is located at p� pp and gc�p ,D�, where pp is the site-
percolation threshold. In the model without bond disorder, D=0,
there are two unstable fixed points, H and P, as well as a stable
bilayer fixed point B. In the diluted single layer g=0 with bond
disorder, the phase boundary is located at the percolation threshold
with universal static and strong-disorder-dependent dynamical criti-
cal exponents, indicated by the line of fixed points PD. In the AF-
ordered phase the dynamical exponent z is determined by quantum
fluctuations for weak disorder �indicated by a gray region at g=0�,
whereas z is D dependent for strong disorder.
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In the RG method static correlations can be measured by
considering the staggered ground-state correlation function
C�r� between two spins at distance r. This is defined as

C�r� � Cij = �ijSi · S j� , �6�

where ij = �−1�xi+yi+xj+yj and r is measured by one-norm dis-
tance �also known as the Manhattan distance�: r=rij �xi
−xj  + yi−yj. This choice was made for computational con-
venience; in the limit r→�, it yields the same asymptotic
behavior of C�r� as the one calculated with the Euclidean
distance r=��xi−xj�2+ �yi−yj�2. In our RG scheme, the cor-
relations of spin pairs, which form an effective spin at each
RG stage, are calculated by

�Si · S j� = �ik� jl�Sk
eff · Sl

eff� , �7�

where �ik�jl�= �Si�j� ·Sk�l�
eff � / �Sk�l�

eff 2� are the proportionality coef-
ficients for each spin. We assume zero correlation between
two spins that do not form an effective spin. After accumu-
lating the correlations between all decimated spin pairs, we
divide the correlation for a given distance r by 2rL2, which
corresponds to the number of pairs a one-norm distance r
apart. Here we note that the RG results for static correlations
are expected to be valid only in the vicinity of a �static�
critical point. Thus the calculated correlation functions for
the 2D problem are asymptotically correct only in the vicin-
ity of the phase boundary. As reported for the 1D case,28 the
RG method underestimates the correlations, but provides
quantitatively reliable decay behavior, which can be used to
estimate the exponent of the power-law decay of the corre-
lations at the phase boundary.

Within the RG study, thermodynamics can be understood
by stopping the RG procedure when the energy scale—i.e.,
the cutoff of energy gaps 	 in our case—reaches the thermal
energy at a given temperature T.18,20 At this scale, almost all
decimated spins are effectively frozen, while almost all re-
maining spins involve couplings which are much less than T
and hence can be regarded as free. The magnetic susceptibil-
ity per spin is then mainly given by the Curie contribution of
those remaining spins and is given by

��T� �
1

TLd�
i

nT

Si�Si + 1� , �8�

where the summation runs over all clusters left at the given
temperature T and Si is the �effective� spin moment. In the
low-temperature limit the susceptibility generally behaves as
a power law:

��T� � T−�. �9�

If during renormalization there is no large-spin formation—
i.e., �=0—then �=
 in the low-T limit, whereas in the large-
spin phase with �=1/2 there is a Curie-like dependence: �
=1. Singularities of the specific heat or the magnetization
can be calculated similarly; see Ref. 16.

IV. QUANTUM MONTE CARLO METHOD

A. Description of the method

Here we use the QMC stochastic series expansion �SSE�
method within a directed loop framework introduced by Syl-
juåsen and Sandvik in Ref. 29. Starting with a general
Heisenberg Hamiltonian with random exchanges J�b�, we
can rewrite it as a sum over diagonal and off-diagonal opera-
tors:

H = − �
b=1

Nb

J�b�	H1,b − H2,b
 , �10�

where b denotes a bond connecting a pair of interacting spins
(i�b� , j�b�), Nb is the total number of bonds,

H1,b = C − Si�b�
z Sj�b�

z �11�

is the diagonal part, and the off-diagonal part is given by

H1,b =
1

2
	Si�b�

+ Sj�b�
− + Si�b�

− Sj�b�
+ 
 �12�

in the basis ����= �S1
z ,S2

z , . . . ,SL
z ��. The constant C which

has been added to the diagonal part ensures that all nonvan-
ishing matrix elements are positive. The SSE algorithm con-
sists in Taylor expanding the partition function Z=Tr�e−�H�
up to some power M which is adapted during the simula-
tions in order to ensure that all the elements of order higher
than M in the expansion do not contribute. So

Z = �
�

�
SM

�n�M − n�!
M! ����

i=1

M

J�bi�Hai,bi��� , �13�

where SM denotes a sequence of operator indices,

SM = 	a1,b1
,	a2,b2
, . . . ,	aM,bM
 , �14�

with ai=1,2, corresponds to the type of operator �diagonal or
not� and bi=1,2 , . . . ,Nb is the bond index. A Monte Carlo
configuration is therefore defined by a state �� and a se-
quence SM. Of course, a given operator string does not con-
tain M operators of type 1 or 2, but only n; so in order to
keep constant the size of SM, M−n unit operators H0,0=1
have been inserted in the string, taking into account all the
possible ways of insertions. The starting point of a simula-
tion is given by a random initial state �� and an operator
string containing M unit operators 	0,0
1 , . . . , 	0,0
M. The
first step is the diagonal update which consists in exchanging
unit and diagonal operators at each position p
	0,0
p↔ 	1,bi
p in SM with Metropolis acceptance prob-
abilities

P	0,0
p→	1,b
p
= min�1,

J�b�Nb����p�H1,b��p��
M − n

� , �15�

P	1,b
p→	0,0
p
= min�1,

M − n + 1

J�b�Nb����p�H1,b��p��
� . �16�

During the “propagation” from p=1 to p=M, the “propa-
gated” state
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��p�� � �
i=1

p

Hai,bi
�� �17�

is used and the number of nonunit operators n can vary at
each index p. The following step is the off-diagonal update,
also called the loop update, carried out at n fixed. Its purpose
is to substitute 	1,bi
p↔ 	2,bi
p in a nonlocal manner but in
a cluster-type update. At the SU�2� AF point, the algorithm is
deterministic because one can build all the loops in a single
way.29 One MC step is composed of one diagonal and off-
diagonal updates. Measurement of physical observables is
started after a suitable number of equilibration steps in which
also M is adapted.

B. Monte Carlo measurement issues

The precise determination of physical observables using
QMC simulations suffers obviously from statistical errors
since the number of MC steps is finite. As we deal with
disordered spin systems, fluctuations between different real-
izations of the disorder are another source of errors. How-
ever, one can use a relatively small number of MC steps for
each disorder realization �typically �100 at each tempera-
ture� since for the strong disorders considered here, the varia-
tion between different realizations produces larger error bars
than statistical errors. Then we need to perform a disordered-
samples average over a significant number of realization:
typically we use 103 realizations.

In order to study the low-temperature properties, we use
the �-doubling strategy introduced by Sandvik11 to acceler-
ate the cooling of the system during a QMC simulation. Such
a scheme is a very powerful tool because it allows one to
reach extremely low temperatures rather rapidly and reduces
considerably equilibration times in the MC simulation. The
procedure is quite simple to implement, and its basic ingre-
dient consists in carrying out simulations at successive in-
verse temperatures �n=2n, n=0,1 , . . . ,nmax. Starting with a
given disorder realization at n=0 we perform a small number
of equilibration steps, Neq, followed by Nm=2Neq measure-
ment steps. At the end of the measurement process, � is
doubled �i.e., n→n+1�, and in order to start with an “almost
equilibrated” MC configuration, the starting sequence used is
the previous SM doubled—i.e.,

S2M = 	a1,b1
, . . . ,	aM,bM
	aM,bM
, . . . ,	a1,b1
 .

�18�

V. NUMERICAL RESULTS

In practice we started with a finite system of linear size L
�up to L=64� with periodic boundary conditions for each
single layer and decimated the bonds and spins successively
by the RG procedure until there is only one effective spin
cluster �or one spin singlet� surviving. The static character-
istics of the system, in particular in the vicinity of the phase
boundaries, can be deduced from the average spin-spin cor-
relation function. On the other hand, the form of the dynami-
cal singularities can be obtained from the temperature depen-

dence of the uniform susceptibility and from the distribution
of the first energy gaps corresponding to the energy scale of
the last decimation step. From the histogram of the gaps we
have extracted the gap exponent 
 and the dynamical expo-
nent z, as discussed in Sec. III. Depending on the size of the
system we have considered 1000–10 000 disorder realiza-
tions.

For the single layer we also compare the RG results with
QMC simulations performed at finite temperature on 32
�32 square lattices and averaged over 1000 disorder realiza-
tions.

In what follows, we present the phase diagram of the
system and the properties of the different bond-randomness-
driven phase transitions. The dynamical properties of the or-
dered and disordered phases are discussed afterwards.

A. Phase diagram and critical properties

Our main results are summarized in the schematic phase
diagram of the system depicted in Fig. 2. It contains two
phases: the ordered AF phase and the disordered paramag-
netic phase. The phase transition between these two phases is
controlled by several fixed points as shown in the phase dia-
gram. The fixed points located at D=0, denoted by H, B, and
P in Fig. 2, had already been carefully studied by QMC
simulations.9,13–15 The measured critical exponents at these
fixed points are shown in Table I, along with the results for
D�0 obtained from our study.

We first consider the fixed points �PD� at the percolation
threshold p= pp for g=0. Figure 3 shows the average spin-
spin correlation function Cav�r� at g=0 for different dilution
p and for strong bond randomness, D=3 �D=10�. From p
� pp to p� pp the decay of Cav�r� in the log-log plot changes
from an upward to a downward curvature; the decay of
Cav�r� does not show significant differences between D=3
and D=10. The lack of monotonicity in C�r� for p=0.125
and p=0.33, far below pp, observed in Fig. 3 may be caused
by the fact, as pointed out before, that the application of the
RG method for calculating correlation functions is reliable
only near the phase transition, where the correlation length is
large. To have a closer look at the vicinity of the percolation

TABLE I. Critical exponents at the fixed points of the bilayer
Heisenberg antiferromagnet with random dimer dilution and bond
disorder; see Fig. 2. H: nonrandom bilayer �classical 3D Heisenberg
model� �Ref. 30�. P: diluted single layer �classical 2D percolation�
�Ref. 31�. 0B: dimer diluted bilayer �Ref. 15�. PD: diluted single
layer with bond disorder. In the last rows critical exponents mea-
sured at two general points of the critical surface are presented.

Fixed point Position �g , p ,D� � /� z �

H �Ref. 30� �gc ,0 ,0� 0.51 1 0.70

P �Ref. 31� �0, pp ,0� 5/48 91/48 4/3

B �Ref. 15� �gp , pp ,0� 0.56 1.31 1.16

PD �0, pp ,D�0� 0.50 �3.2D

�1.2,0.33,0.7� 0.56 1.36

�7.5�10−4 ,0.33,3� 0.80 5.13
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threshold, we have calculated the correlation functions
Cav�L /2� for different system sizes, as shown in Fig. 4. Con-
sidering the systematic underestimation of the correlations
by the RG scheme that we use, we have not deduced the
staggered magnetization from the extrapolations of Cav�L /2�;
nevertheless, the decay behavior of Cav�L /2� implies that the
order-disorder transition point p* may occur close to the per-
colation threshold pp. Indeed the algebraic decay Cav�L�
�L−2�/� at p= pp indicates a reasonable scenario that the
transition point p* coincides with the percolation threshold
pp, as suggested by accurate QMC studies by Sandvik11 for
the D=0 case. The estimated decay exponent 2� /�
=1.01�7� is found to be the same for stronger disorder with
D=10; see the inset of Fig. 4. Note that this decay exponent

is much larger than 2� /�=0.21 for D=0. From this, one
might suspect that the percolating cluster is no longer or-
dered in the presence of strong bond randomness.32 To de-
cide unambitiously whether AF long-range order persists up
to pp also for D�0 and whether the percolating cluster is
ordered, a careful MC study along the lines of Ref. 11 is
definitely warranted.33 For p= pp, we have also studied the
dynamical exponents. Unlike the decay exponent of Cav�r�,
which is D independent, the dynamical exponent z� obtained
from the slope of the gap distribution is found to depend
linearly on the strength of the disorder in the large D region:
z�3.2D, as shown in Fig. 5. For weak bond disorder D
�1, instead, we find that z� approaches the value z=91/48
for the D=0 case.

Now we turn to the phase boundary for finite bilayer cou-
pling g�0. At a given p� pp and a fixed D, we calculated
the average spin-spin correlations Cav�r� for different values
of the bilayer coupling g. As illustrated in Fig. 6 for p
=0.33, we find that the decay behavior of Cav�r� changes its
characteristic from the one for the AF-ordered phase to the
one for the disordered phase as a critical value of gc is tra-
versed. For weak bond disorder D=0.7, the critical coupling
is located around gc=1.2 and we note that the decay expo-
nent of the critical correlation, 2� /��1.12, is approximately
the same as for D=0. For strong bond disorder D=3, the
phase boundary shifts to a very small value of gc
�0.000 75 with the critical exponent 2� /��1.6. The ex-
tremely small value of gc, which decreases even with D,
makes the investigation of the D dependence of the critical
exponents difficult. From our results for Cav�r� up to D=5,
the decay exponent � /� appears to be D independent for a
given p in the strong-disorder regime, while it varies with the
dilution p. To locate the critical bilayer coupling gc we also
made use of the results for the dynamical exponent z�; cf.
Fig. 7 for p=0, p=0.125 and 0.33. As g is increased, the
dynamical exponent is approximately independent of the
value of g, but jumps to another g-independent value around
the transition point. For weak bond disorder, such as D
=0.7 for p=0.33, we find z��1.36, which is close to the

FIG. 3. �Color online� Log-log plot of the average spin-spin
correlation function at g=0 measured for a L=64 lattice with bond
randomness D=3 and D=10 �inset� for different site dilutions p.
The data are scaled to unity at r=1. For p� pp the curves show
downward curvature, indicating a faster decay than a power law
characteristic of the disordered phase, while for p� pp the curves
bend upward.

FIG. 4. �Color online� A plot of the average spin-spin correlation
function for different system sizes L near the percolation threshold
p= pp for D=3. The power-law decay at p= pp gives the decay
exponent 2� /�=1.01, as indicated by the solid line. The inset
shows the correlation for D=10 at p= pp with the decay exponent
2� /�=1.02.

FIG. 5. �Color online� Disorder dependence of the z� exponent
at the percolation threshold �at the line of fixed points PD in Table
I� in a log-log plot. The slope of the straight line is unity.
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value found for the case without bond disorder.15 For strong
disorder, in which case the RG approach is expected to be
more appropriate, the dynamical exponent increases with D,
which is a tendency already noticed for g=0.

To summarize our numerical findings we indicate two dif-
ferent regimes of the phase transition. For weak bond disor-
der the static critical exponent � /� as well as the dynamical
exponent z� seems to coincide with the values for the case
without bond disorder. For strong bond disorder the critical
coupling gc is reduced to a very small value and the static
exponent approaches a D-independent, but dilution-
dependent value, whereas the dynamical exponent at the
transition point depends �linearly� on the strength of the bond
randomness. The position of the order-disorder transition for
a single layer �corresponding to g=0� is located at the per-
colation threshold. Along the line of PD fixed points, the
exponent � /� deviates from the value for D=0, but seems to

be D independent, while the dynamical exponent exhibits a
linear dependence on D in the large-D limit.

B. Griffiths singularities in the ordered phase

As discussed in the preceding subsection, the random
dimer diluted bilayer antiferromagnet exhibits AF order, pro-
vided p� p* and the bilayer coupling is sufficiently small.
The order-disorder transition point p= p* appears to agree
with p= pp. The low-energy fixed points governing the Grif-
fiths singularities in the ordered phase are of different types
in the specific regions. These fixed points are in turn an
effective singlet for p=0 and g=0 �single layer without site
dilution�, a large-spin fixed point for 0� p� pp and g=0
�single layer with site dilution�, and an effective singlet for
0� p� pc and 0�g�gc �bilayer with dimer dilution�. In the
following we study these different cases separately.

1. Two-dimensional undoped antiferromagnet

We start by discussing the results for the two-dimensional
random Heisenberg model, which corresponds to g=0 and
p=0. A recent numerical study34 suggested that the AF order
in this region vanishes only in the limit of infinite bond ran-
domness. In our preliminary study23 we showed that the low-
energy fixed point of the model is conventional; however, the
dependence on the strength of disorder was not investigated
extensively. Here we calculate the gap exponent 
 and the
related exponent z� defined in Eq. �5�, as well as the dynami-
cal exponent z, as a function of the disorder strength D. The
gap exponent 
 is obtained from the slope of the distribution
of the log gaps in the small-gap limit, whereas the dynamical
exponent is determined from the optimal scaling collapse of
the curves according to Eq. �4� as illustrated in Fig. 8. For
localized excitations the scaling curve is conjectured35 from
extreme-value statistics to be described by the Fréchet
distribution36

P̃1�u� =
d

z
ud/z−1exp�− ud/z� , �19�

with d=2 and u=u0Lz�, where u0 is a nonuniversal constant.

FIG. 6. �Color online� The in-plane average spin-spin correlations of the double-layer AF model versus r in log-log plots for bond
randomness D=0.7 �left� and D=3 �right� for different values of the bilayer coupling at p=0.33 for L=48. The data are scaled to unity at
r=1. We observe a crossover from an upward curvature through a power-law decay to a downward curvature. The order-disorder transition
point gc�1.2 shows an asymptotically linear dependence in the large-r regime with a slope 2� /��1.12�4� �indicated by a dashed line�
which is approximately the same as for g=0. For D=3 the transition point shifts to a very small value of gc=0.000 75 and the critical
exponent is estimated as 2� /��1.60�4�.

FIG. 7. Variation of the gap exponent with the coupling ratio g
for weaker �left� and stronger �right� bond disorder for different
values of the dimer dilution. Note that in the ordered phase g�gc as
well as in the disordered phase g�gc, z� is approximately indepen-
dent of g. For weaker bond disorder there is a jump at the transition
point g=gc and the dynamical exponent is close to the value z�gc�
�1.3 at the fixed point B for D=0 case, which is denoted by a
dashed line. For strong disorder �right� the transition point is lo-
cated at a very small g so that it cannot be identified in the figure.
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Both z and z� have an approximately linear D dependence
in the strong-disorder region �D�3� as shown in Fig. 9,
while no significant disorder dependence �
�0.7� is found
for weak disorder.23 The exponents z and z� are found to be
identical only for quite strong disorder D�7. This indicates
that the low-energy excitations are localized only in the
strong-disorder regime.

We note that the vanishing energy gaps calculated by the
RG approach are solely induced by disorder. However, quan-
tum fluctuations also induce vanishing gaps which are char-
acterized by a dynamical exponent zq=2; see Eq. �1�. The
true dynamical exponent is then given by ztrue=max�zq ,z�, so
that ztrue=zq=2 for weak randomness D�3.

We have also calculated the uniform magnetic susceptibil-
ity as a function of the temperature, which is shown in Fig.
10 for different disorder strengths. Both RG and QMC re-

sults are shown, and they display an excellent agreement. For
strong bond randomness, the low-T susceptibility exhibits a
power-law temperature dependence as given in Eq. �9� and
the exponent � is disorder dependent �see Table II�. The same
behavior of the magnetic susceptibility has been found for
the antiferromagnetic spin-1 /2 ladders.37 Note, however, that
the QMC results, shown in the right panel of Fig. 10, display
a slow saturation of � when T→0 �at least for D�5� which
is not a finite-size effect38 but a signature of a tendency to-
wards Néel ordering at T=0.34

Finally, we note that effective spins with size larger than
1/2 are formed during the RG procedure because of the gen-
eration of F couplings. In the low-energy limit, the overall
strength of the F couplings, however, becomes much weaker
than that of the AF couplings, which leads to the disappear-
ance of large effective spins and the singlet ground state.
This agrees with the Marshall’s theorem39 which states that
the ground state of a bipartite AF Hamiltonian with equal-
size sublattices is a total spin singlet.

2. Two-dimensional antiferromagnet with site dilution

The low-energy behavior of the site-diluted Heisenberg
antiferromagnet is controlled by a large-spin fixed point,
which is different from the undoped case where the last deci-
mated pair of spins is an effective singlet. The situation is
similar to that of antiferromagnetic spin-1 /2 ladders with
random site dilution. In this case Sigrist and Furusaki40 ar-
gued that if two vacancies are in the same sublattice, the
ground state is no longer a singlet; thus, there are effective
spins of size larger than 1/2. This has been verified by nu-
merical strong-disorder RG calculations.41 In the 2D site-
diluted case we also observed in our numerical RG calcula-
tion that the energy gap associated with an effective F
coupling may become the largest gap to be decimated at
some stage of the RG, especially in the low-energy regime.
This will then lead to the formation of large effective spins as
described in Sec. III.

We calculated the average size of the effective spin at the
last decimation step �Seff� for various dilution concentrations
�p=0.125 and 0.33 and at pp� and system sizes L. In the
ordered phase, below the percolation threshold, p� pp, the
average spin size is found to increase linearly with the sys-
tem size:

�Seff� � L , �20�

which is demonstrated in Fig. 11. This result agrees with the
scenario for the large-spin phase, as discussed below Eq. �5�.
At the percolation threshold the same argument leads to
�Seff��Ldf/2, with df =91/48 being the fractal dimension of
the percolation cluster.31

A hallmark of the large-spin phase is the universal tem-
perature dependence of some thermodynamic quantities; in
particular, the disorder-averaged uniform susceptibility given
in Eq. �9� shows a Curie-like behavior at low temperatures.
This is checked in Fig. 12 in which the susceptibility ob-
tained from both RG and QMC simulations is plotted for
different strengths of the bond randomness and dilution con-
centrations. For not too strong bond disorder the agreement
with the Curie law is good, while for strong bond disorder

FIG. 8. �Color online� A scaling plot of the log-energy gaps for
the 2D antiferromagnet with strong bond randomness D=8 ob-
tained from 10 000 samples for each size. The gap exponent 
�
−0.64 follows from the slope at small energy gaps, and the dynami-
cal exponent z�5.5 is determined by the fit parameter in Eq. �4�.
Note that the relation in Eq. �5� is satisfied, implying that the low-
energy excitations are localized. The solid line represents the
Fréchet distribution given in Eq. �19�.

FIG. 9. �Color online� Variation of the disorder-induced dynami-
cal exponent z and the exponent z� with the bond randomness
strength D at g=0 and p=0 in a log-log plot. Note that the depen-
dence for D�3 is approximately linear and the values of z and z� fit
well for D�7, indicating that the low-energy excitations are
localized.
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this agreement is observed only for very low temperatures.
Note that in the undoped regime the susceptibility exponent
� is a continuous function of the disorder; see Fig. 10.

From the distributions of the low-lying energy gaps, we
obtained the dynamical exponent z and the gap exponent 
.
Unlike for the undoped model, the exponents z and z�
=2/ �1+
� in general do not agree with each other for 0
� p� pp, even in the regime of strong bond disorder. This
indicates that low-energy excitations are not localized due to
the formation of large spins. Figure 13 presents the exponent
z� as a function of p for D=3 and D=10. For a given bond
disorder, the exponent varies continuously with p in the or-
dered phase �p� pp�, while going approximately to a con-
stant in the disordered phase �p� pp�. We remind the reader
that to obtain the true dynamical exponent ztrue one should
also consider the effect of quantum fluctuations and thus
ztrue=max�zq ,z� in the ordered phase.

3. Double-layer Heisenberg antiferromagnet

In the presence of random bilayer couplings g�0, the
low-energy properties of the ordered phase are controlled by
an effective singlet, for both p=0 and 0� p� pc, which in
turn is the same as for the single-layer undoped model; see
Sec. V B 1. Indeed, we observed similar low-energy proper-
ties. The dynamical exponent z and the exponent z� are dis-
order dependent, but vary only weakly with the bilayer cou-
pling g; see Fig. 7. z and z� are identical only for strong

enough disorder, when the low-energy excitations are ex-
pected to be localized. The average uniform susceptibility
has a disorder-dependent low-temperature behavior, and the
exponent � corresponds to the gap exponent 
.

C. Griffiths singularities in the disordered phase

The disordered phase of the system is divided into two
parts with different low-energy properties.

�i� Above the percolation threshold p� pp and g=0 the
spins form only finite connected clusters. As a consequence
the average effective spin has a finite value, as shown in Fig.
11 for p=0.42. Due to the unpaired spins in the isolated
connected spin clusters, the average uniform susceptibility is
Curie like �see Fig. 12 for p=0.5�. The dynamical exponent z
and the gap exponent 
 depend approximately linearly on

FIG. 11. �Color online� Variation of the disorder-averaged spin
size �Seff� with the linear system size L in a log-log plot for different
site dilutions p at D=3 for the single-layer antiferromagnet g=0.
For p� pp the spin size follows �Seff��L, indicated by the dashed
lines, whereas at p= pp the asymptotic power for large system sizes
agrees with 91/96.

FIG. 10. Disorder average uniform susceptibility ��T� as a function of temperature T for various disorder strengths D at g= p=0. Left
panel: RG results. From the low-temperature regime �T�10−2� the exponent � is estimated as �=0.36 for D=3, �=0.60 for D=5, �
=0.71 for D=7, and �=0.77 for D=10. For all cases studied, the temperature dependence deviates from Curie-like 1/T behavior indicated
by the dashed line. Right panel: QMC results obtained on systems of 32�32 spins. The exponent � is estimated in a range of T� 	T* ,1
 as
�=0.37 for D=3 �T*�0.02�, �=0.45 for D=3.5 �T*�0.01�, �=0.52 for D=4 �T*�0.01�, �=0.61 for D=5 �T*�0.002�, and �=0.81 for
D=10 �T*�0.0001�.

TABLE II. Exponent � of the divergence of the uniform suscep-
tibility for various disorder strengths D for p=g=0. Comparison
between RG and QMC estimates.

D �RG �QMC

3 0.36 0.37

5 0.60 0.61

10 0.77 0.81
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the bond disorder D; they exhibit, however, no significant
dependence on p, as shown in Fig. 13.

�ii� Above the critical bilayer coupling g�gc�p ,D�, the
ground state is an effective singlet and in accordance with
this the low-temperature uniform susceptibility is character-
ized by a nonuniversal exponent �. For p� pp, there is an
infinite cluster and the low-energy physics is governed by
rare finite regions which are locally ordered. The low-energy
excitations connected to these regions are thus expected to be
localized, provided the bond disorder is sufficiently strong.
This is illustrated in Fig. 14 in which the scaling collapse of
the energy gap distribution is obtained for z=z� in accor-
dance with Eq. �4�. For p� pp, the connected spin clusters
are finite and isolated. Therefore the low-energy excitations
are also localized.

VI. SUMMARY AND DISCUSSION

In this paper we have studied the effect of strong bond
disorder on the low-energy, long-distance properties of

Heisenberg antiferromagnetic layers and bilayers with site
and dimer dilution. In particular we are interested in the
structure of the phase diagram and the form of the critical
singularities as well as the properties of the Griffiths singu-
larities.

In a single layer an order-disorder transition is found and
the position of the transition point p* appears to be indepen-
dent of bond disorder strength D. This order-disorder transi-
tion appears to coincide with the percolation threshold p
= pp. However, on the basis of our numerical data we cannot
strictly exclude the possibility that AF order is already de-
stroyed for p� pp—i.e., below the percolation threshold.
Furthermore, the decay of the average spin-spin correlation
function at the percolation threshold p= pp shows a power-
law form with a strong-D-independent exponent 2� /� at p
= pp; this decay exponent is much smaller than the known
exponent 2� /�=10/48 for D=0. The dynamical exponent z

FIG. 12. �Color online� Temperature depen-
dence of the uniform susceptibility per size for a
diluted single layer, g=0, in log-log plots for
various dilution concentrations p and for different
bond random strength D=3 �left� and D=10
�right�. The Curie-like 1/T behavior is indicated
by straight lines. Both RG �upper panels� and
QMC �lower panels� are shown.

FIG. 13. The gap exponent 
 in the diluted single-layer antifer-
romagnet �g=0� for different dilutions and bond disorder. Note that
in the disordered phase, above the percolation threshold p� pp, the
gap exponent is practically independent of the dilution.

FIG. 14. �Color online� A finite-size scaling plot of the distribu-
tion of the logarithm of the energy gap for the double-layer antifer-
romagnet with a bilayer coupling g=1, bond randomness D=8, and
dimer dilution concentration p=0.125. The dynamical exponent z
and the slop �−1−
� of small energy gaps agree well with the
relation z=2/ �1+
�, implying localized energy gaps.
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of the diluted single layer is found to be a continuously in-
creasing function of the disorder D. Here we note that in the
limit of infinite D the fixed point becomes an infinite disor-
der fixed point with z→� so that the RG method is expected
to be asymptotically exact with increasing D, as well sup-
ported by comparing with QMC results.

In the dimer-diluted bilayer with g�0, weak disorder is
found not to modify the static critical exponent � /� as well
as the dynamical exponent z, which are—within the error
bars—the same as one measures at the fixed point B. On the
other hand, for strong bond disorder the critical bilayer cou-
pling is reduced to a very small value and both the static and
dynamical exponents are different than for weak disorder.
While the static exponent approaches a D-independent lim-
iting value, the dynamical exponent shows a linear D depen-
dence.

Considering the Griffiths singularities the low-energy
fixed point of the RG is found to depend on the specific form
of the disorder. For example, the nondiluted single layer �g
= p=0� transforms into an effective singlet and the diluted
single layer �g=0, 0� p� pp� into a large spin, whereas the

dimer-diluted bilayer also transforms into an effective sin-
glet. In each case the disorder-induced dynamical exponent
is found D dependent for sufficiently large D. For smaller
values of D the true dynamical exponent is determined by
quantum fluctuations, so that in this region disorder can in-
fluence only the corrections to scaling. The low-energy exci-
tations are found to be nonlocalized for weak bond disorder
as well as in the large-spin phase and become localized only
for substantially large disorder.
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