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Anomalous diffusion in disordered media and random quantum spin chains
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Using exact expressions for the persistence probability and for the leading eigenvalue of the Fokker-Planck
operator of a random walk in a random environment, we establish a fundamental relation between the statistical
properties of anomalous diffusion and the critical and off-critical behavior of random quantum spin chains.
Many exact results are obtained from this correspondence, including the space and time correlations of sur-
viving random walks and the distribution of the gaps of the corresponding Fokker-Planck operator. In turn we
derive analytically the dynamical exponent of the random transverse-field Ising spin chain in the Griffiths-
McCoy region.[S1063-651X%98)02010-9

PACS numbeps): 05.50+q, 64.60.Ak, 75.10.Nr

Ultraslow dynamics is a common feature of low- spin chains one can easily notice close similarities, which
dimensional systems with quenched disorder in particular ihold in both the critical and off-critical situations. A connec-
the vicinity of a critical point. One of the well known ex- tion between the critical properties of directed walks and
amples in this respect is the one-dimensional diffusion proguantum spin chains has been known for quite some time
cess in a random media, when, in the absence of an averags]. |t was also demonstrated recently that many surprising
drift Srw, the mean-square displacement grows very slowlyproperties of the one-dimensional random transverse-field
like [1] Ising model(RTIM), a prototype of random quantum spin

LX) a1, o chains, can be obtained very simply through random walk

argumentg7].
in contrast to the normal diffusive behavigt2(t))~t in the In this paper we go further and show that behind the simi-

homogeneous case. The diffusion process remains anomiities observed before there is a deep connection between
lous for sufficiently small average drifts <OSgw< S5y the statistical properties of anomalous diffusion and the criti-

when the average displacement has an algebraic time depeff! and off-critical behavior of the RTIM. We demonstrate
dence this relation by comparingxactexpressions for the random

walk (RW) and that of the RTIM. In particular we show that
[(X(D))]av~t*, (2)  the persistence probability of the RW and the surface mag-
netization of the RTIM have analogous forms and that the
where the exponent Ou=pu(drw)<1 is a continuous expressions for the leading eigenvalue of the Fokker-Planck
function of the drift[2]. _ . (FP) operator of the RW and the gap of the Hamiltonian of
Another class of systems with ultraslow dynamical prop-the RTIM are closely related to each other. We use then this
erties is represented by random quantum spin chains at vegyrespondence to obtain exact relations for the two systems;

low temperatures. For. example, the asymptotic decay_ of thg{mong others we present analytical results about the dynami-
zero-temperaturdimaginary time autocorrelation function cal exponent() in Eq. (4)

G(t)=[(a](t) o) ]a at the quantum critical pointg=0) is We start by considering the one-dimensional random
given by[3] walk with nearest neighbor hopping, which is characterized
G(t,6=0)~[Int] m, 3) by the transition probabilitie; j.,=w(i—i*x1) for a ran-
dom walker to jump from sité to sitei+1. Here we are
wherex,, is the anomalous dimension of the average magp_a_rticularly in_t«_ar_ested in the general case, in which t_he tran-
netization. Away from the critical point, in the Griffiths- Sition probabilities are not necessarily symme{i, i.e.,
McCoy region[4,5] with 0< 8< ¢ the decay of the auto- Wi,i+1#Wit1,- Moreover, the random walker is confined to

correlations is of a power-law form a finite number of sites=1, ... L. At the two ends of this
interval, i.e., ai=0 andi=L+1, we putadsorbing walls
G(t,8)~t" 17, (4)  which is simply modeled by setting/,;=w 1, =0 (i.e.,

the walker cannot jump back into the system once it has
where the dynamical exponer(ts)=1 is a continuous func- landed on 0 ot +1). The time evolution of the probability
tion of the quantum control parametér distribution of the walkP; ;(t), which is the probability for
Comparing the basic dynamical properties of randonthe walker to be at timé on sitej once started at time 0 on
walks in disordered environments and of random quantunsitei, is fully determined by the master equation
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d metric case scales @p,; |a,*[D]a/L, similarly to the ho-
aﬁi(t):ﬂ'gi(t)' 5 mogeneous case. From here on we [ugg, to denote aver-
age over quenched disorder.
Here Pi(t)=(P;o(t),P;1(t), ... P L(1),P; 11(t)T and In the general case, withonsymmetridransition prob-

the transiion matrix or the Focker-Planck operator isabilities, we define the control parameter
(M); j=w; fori#j and M); ;=—2;w; ;, while the initial nw. T [Inw_]
condition isP; ;(0)=&; ;. The eigenvalue problem of the FP W= Ay —lav
operator in Eq(5) is defined by vaflnw_]+vafinw_,]

1D

wherew_, (w_) stands for transition probabilities to the
right (left), i.e.,w; 11 (W i—1). For Spy<O0 there is an av-

d all phvsical . f th del b q erage drift of the walk towards the adsorbing sitei at
and all physical properties of the model can be expresse N1, therefore, the persistence will have a finite value in the

terms of the left and right eigenvectoug andv,, respec- T .
large system limit lip_,.[pp(L,dgw)]a>0, whereas it
tively, and the eigenvalues, . For instance, the probabilities goes to zero fodgy=0.

Pi j(t) are given by Before we proceed with the analysis of the persistence
probability (9) we derive a similar formula for the largest
P, i(t)= S ui)ve()expng). (7) ~ nonzero eigenvalue of the FP operator, dbsolutevalue of
k which we denote by ,;,. According to the relation in Eq.
(7) the time scalet, of the diffusion process is set by
With adsorbing boundaries the two leading eigenvalues are.) 1 . It is technically easier to estimate,;, using mixed

M oe=Nwe Ug M=Ugh ®

zero and the corresponding eigenvectorswai@) = o .1, , boundary conditions, which will not, however, change the
scaling behavior oh ,;,: At i=0 we assume an adsorbing
u,(0)=0, (8  wall as before, whereas at=L we impose a reflecting

_ boundary by setting formallw, | .,=0. Now, due to differ-
W1 ent symmetry of the problem there is only one zero mode of
1+ E H W , 1=23,...L+1, the FP operator and the second smallest eigenvalue in modu-
=1 Wi+ . ) )
lus will be \ ;. To determine\ ,,;, we use a perturbational
method. First, we express the eigenvalue problem in(gq.
as

uy(i)=uy(1)

while for the other zero mode,(i)=v,(L+1—i) and simi-
larly u,(i)=us(L+1—1i). The value ofu;(1) in Eqg.(8) is
fixed by the normalization condition;(L+1)=1.

We consider first a quantity that has gained considerable
interest recently in related models for anomalous dlffusmn
[9,10]: the persistence probability B(L,t), which is the
probability that a walker starting at site=1 does not cross
its starting point until time. Working with adsorbing sites at

i=0andi=L1, we havePp(L,{) =Py, .4(1) andits long neglect the right-hand side of E¢L2) and derive an

time limit p,(L)=lim_.Py(L,t) is simply given, via Eq. X . . '
approximate expression for the left eigenvector from the first
(7). by pp(L) =uy(1)vy(L+1), where we used the fact that L—1 equations of Eq(12). Using this result we obtain an

there is no contribution from the second zero mode S'nceesnmate for\ y, from the last equation of Eq12):
vo(L+1)=0. Now with Eq.(8) we have the simpl&xact min a
relation

—U(DW; 1 UG+ D)W 1= — U min,  (12)

wherew_  ,=0 andu(i)=u(i)—u(i—-1), i=1,2,...L,
in terms of the components of the left elgenveojlc-# Umin
andu(0)=0. Then, keeping in mind that we are interested in
situations wher (L) is a rapidly vanishing function df,

u(L) u(l1)

“1
A min= u(L)WLL 1= u(l) WLL 1H W”+1’ (13
i

ppr(l—

L i -1
Wij -1
1+, [] —H- ) : E) _ | | -
i=1j=1Wjj+1 which can be transformed into the final form by noticing that
. . u(1)/u(L)=pp(L) in Eq. (9):
Note thatp,(L) is the total fraction of walkers adsorbed by

the right wall (=L+1) without ever having crossed the

starting point. Nmin~ Ppr L)W - 1H : (14)

Wi
In ahomogeneousedium withw; ;. =w;_ ;= const we Lir1

h 1
havepy™=(L+1)"", whereas in arinhomogeneousnvi- The scaling properties of,,;, in Eq. (14) as well as the
ronment with symmetric transition probabilities w; ;. persistence probabilitp,(L) in Eq. (9) now can easily be
=Witijs derived by establishing a correspondence of these quantities
with the energy gap and surface magnetization, respectively,

L— 1

-1
of the random transverse-field Ising model in one dimension
sy —
Por (L)= 1+21 w; |+J 1T 10 gefined by the Hamiltonian
L
whereD=[LXh _aWi ~L.17% is the diffusion constanf11]. H=— E J_ngixﬂ_z hyo?. (15)

Thus the average persistence probability in the random sym-
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Here theo] ,o{ are Pauli matrices at siteand theJ; ex- 0.5
change couplings and thie transverse fields are random
variables. The RTIM in Eq(15) has received much attention 04
recently[12—14,3,15,7 and as was shown ifi7] there are 2
simple expressions for the surface magnetizatinglL) as = 03¢}
well as for the gap of the Hamiltoniak(L) of the RTIM in ='7.1
terms of the couplings and fields. Comparing those with our %, 02}
results in Eqs(9) and (14), we can set up the correspon- &
dences |
Wi,i+1—>~]i2, 0 | 0.01 01, 1 10
. . . . ‘t/L )
Wi i_1—h?, 0 05 1 15 2 25 3 35
’ Int/L"2
Srw— 6, (16) FIG. 1. Scaling plot of the time-dependent survival probability
Po(L,t) according to Eq(23) for the asymmetric hopping model
ppr(L)ng(L), with a uniform distribution of hopping rate@veraged over 0O
samples The inset shows the corresponding scaling plot for the
)\min(L)*’Az(L)’ homogeneous case.
w( Spw) — 1(22( 6)). surface magnetization of the RTIW¥], the average persis-

tence probability vanishes exponentially for large system

Consequently, similar relations hold for the average quanti-Slzes

ties when the transition probabilitig€er, equivalently, the - _ —s=2
fields and the couplingsfollow the same random modula- [Pp(L)Ja~exp=LIE)., &~ Opiun  Orw=0. (20
tion. In the following we use the correspondences in@@  |f the average drift of the walk is towards the adsorbing site
to derive results. ati=L+1 and thusdgy<0, there is a nonvanishing infinite

(i) At the critical pointwith &gy=0, which corresponds system size limit of the persistence probabiligimilarly to
to Sinai's walk[1], the distribution of the leading eigenval- the existence of a finite average surface magnetization of the
ues of the FP operator is very broad angi,(L) scales ac- RTIM [7))
cording to

lim [ppd L) Jav~ (= )PP, Srw<0, (21)
Amin(L)~exp(—constk LY?),  $gp=0, 17 Lo

similarly to the analogous result for the energy gap of theW'th Bpr=1, which is approached via an exponential size

RTIM [7]. Note that this scaling relatiofi7), which is con- dependence. The corresponding correlation length is again

- - _ _2 . . .
sistent with the known relation between relevant time and?'Ve" by£~(=drw) *, similarly to the caségy>0 in Eq.
length scale1], L~ (Int)2 can be most easily demonstrated (20). Thus we can conclude that correlations defined on per-

by considering the probabilty distributid® (In A), which ?]Iesrtﬁ':t walks are characterized by the average critical expo-
is then expected to scale like

0=12, v=2, By=1, (22
PLN A i) ~ L™ YD (IN N i/ L), (18)
which satisfy the scaling relatiof, = 6v.
as we confirmed numerically. (iv) The time-dependent persistence probabiRty(L,t)
(i) The scaling behavior of the persistence probabilityintroduced above is simply given bl (L,t)=Pq 1(t)
(for zero drift Sgy=0) in Eq. (9) follows also directly from  =Z,u,(1)v(L+1)exppt). In the random, asymmetric

the analogous result for the surface magnetizdtiog(L)],,  case one expects the scaling relation

of the RTIM[7]. Here we just have to mention thai,(L) at _y o

the critical point is not self-averaging and its average value is [PpL,Int)]ay=b"[Pp(L/b,Int/b")]5, (23
dominated by theare eventswhich are ofO(1). From this

it follows that the same rare events determine the average
mg(L), thus the scaling behaviors ofmg(L)],, and
[m2(L)].y are identical. Then, using the correspondences i
Eq. (16), we have the exact result

C\)/\men lengths are rescaled by a fachor 1 and the relation
in Egs. (1) or (17) between time and length scales is used.
Now takingb=L in the limit t—o, we recover the exact
Nesult in Eq.(19); on the other hand, witb=(Int)> we have
in the large system limit an ultraslow decay
lim_o[PpdL,t) T~ (IN) 7™

In the intermediate situation with tR-LY? we have(with
b=L) the finite size scaling form [P,(L,t)]a
~L~Yp(IntL¥?), with lim,_..p(y)=const, in contrast to

[PpL)]aL ™%, 6=1/2, Srw=0. (19

(iii) In the noncritical situation withSg# 0 there is an
average drift of the walk towards the siteL+1 (i=0) A
for Spw<<0 (Srw>0). In the latter case, analogously to the PB?”‘(L,t)~L*1p(t/L2) in the homogeneous case. In Fig. 1
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we show the corresponding scaling plot for numerically gen-
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7(J)=0(1-3)0(J), p(h)=hy'O(hy—h)B(h),

erated results for finite systems that confirm this scaling pic-

ture.
(v) Away from the critical pointwe reach the region of

anomalous diffusion, which is equivalent to the Griffiths-

the dynamical exponent is given by the solution of the equa-

McCoy phase of the RTIM. The relevant energy scale

Amin(L) [A(L) for the RTIM] has a power-law scaling be-
havior

)\mm(L)NLflu(éRw), A~ 249 (24)

and according to Eq16) the two exponentg and 1% cor-

(=—26). (27)

zIn(1—=z"2?)=—Inh,

The relation(27) is indeed satisfied by the numerical esti-

respond to each other. At this point we use the result that thenates forz reported in[13,15,7.

value of i is known exactly from the time dependence of the

average displacement of the walk in E) in the form[2]

(29

To summarize, in this paper we have revealed a funda-
mental relation between the anomalous diffusion of random
walks in disordered environments and the slow dynamics, at
criticality and in the Griffiths-McCoy region of the random
transverse Ising chain. With this analogy at hand we were
able to derive a number of exact results for both systems.

Essentially this follows from the observation that for any Many applications of the above-mentioned analogy are ob-

independent identically distributed random variab¥eshe
distribution P(\) of N =X;X>X3- - -, which is reminiscent of
Eq. (14), has an algebraic singularity at=0, P(\)
«N"1T# with u given by[x*],,~=1; see[16].

Consequently, we obtain for the dynamical exporeat
the RTIM in the Griffiths-McCoy phase the implicit equation

(G

Note that for any distribution ad andh one obtains imme-
diately the result =25+ O(§%), with <1 as in Eq(11),
as has been observed earlié2,13,7. However, the exact
result(26) is not restricted tad< 1, but is valid in the whole
Griffiths-McCoy region. For example, for the uniform distri-
bution

=1.

av

(26)

vious: There is an enormous numbereafctresults for vari-
ous quantities of random walks in random one-dimensional
environments and most probably many of them can be di-
rectly transferred to corresponding quantities of random
quantum spin chains near the quantum critical point. It re-
mains a subject of future research to study how far these
relations carry over to higher dimensions.
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