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Anomalous diffusion in disordered media and random quantum spin chains
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Using exact expressions for the persistence probability and for the leading eigenvalue of the Fokker-Planck
operator of a random walk in a random environment, we establish a fundamental relation between the statistical
properties of anomalous diffusion and the critical and off-critical behavior of random quantum spin chains.
Many exact results are obtained from this correspondence, including the space and time correlations of sur-
viving random walks and the distribution of the gaps of the corresponding Fokker-Planck operator. In turn we
derive analytically the dynamical exponent of the random transverse-field Ising spin chain in the Griffiths-
McCoy region.@S1063-651X~98!02010-8#

PACS number~s!: 05.50.1q, 64.60.Ak, 75.10.Nr
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Ultraslow dynamics is a common feature of low
dimensional systems with quenched disorder in particula
the vicinity of a critical point. One of the well known ex
amples in this respect is the one-dimensional diffusion p
cess in a random media, when, in the absence of an ave
drift dRW, the mean-square displacement grows very slo
like @1#

@^X2~ t !&#av; ln4t, ~1!

in contrast to the normal diffusive behavior^X2(t)&;t in the
homogeneous case. The diffusion process remains ano
lous for sufficiently small average drifts 0,dRW,dRW

1 ,
when the average displacement has an algebraic time de
dence

@^X~ t !&#av;tm, ~2!

where the exponent 0,m5m(dRW)<1 is a continuous
function of the drift@2#.

Another class of systems with ultraslow dynamical pro
erties is represented by random quantum spin chains at
low temperatures. For example, the asymptotic decay of
zero-temperature~imaginary time! autocorrelation function
G(t)5@^s i

x(t)s i
x&#av at the quantum critical point (d50) is

given by @3#

G~ t,d50!;@ ln t#22xm, ~3!

wherexm is the anomalous dimension of the average m
netization. Away from the critical point, in the Griffiths
McCoy region@4,5# with 0,d<dG the decay of the auto
correlations is of a power-law form

G~ t,d!;t21/z, ~4!

where the dynamical exponentz(d)>1 is a continuous func-
tion of the quantum control parameterd.

Comparing the basic dynamical properties of rand
walks in disordered environments and of random quan
PRE 581063-651X/98/58~4!/4238~4!/$15.00
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spin chains one can easily notice close similarities, wh
hold in both the critical and off-critical situations. A conne
tion between the critical properties of directed walks a
quantum spin chains has been known for quite some t
@6#. It was also demonstrated recently that many surpris
properties of the one-dimensional random transverse-fi
Ising model~RTIM!, a prototype of random quantum sp
chains, can be obtained very simply through random w
arguments@7#.

In this paper we go further and show that behind the si
larities observed before there is a deep connection betw
the statistical properties of anomalous diffusion and the c
cal and off-critical behavior of the RTIM. We demonstra
this relation by comparingexactexpressions for the random
walk ~RW! and that of the RTIM. In particular we show tha
the persistence probability of the RW and the surface m
netization of the RTIM have analogous forms and that
expressions for the leading eigenvalue of the Fokker-Pla
~FP! operator of the RW and the gap of the Hamiltonian
the RTIM are closely related to each other. We use then
correspondence to obtain exact relations for the two syste
among others we present analytical results about the dyn
cal exponentz(d) in Eq. ~4!.

We start by considering the one-dimensional rand
walk with nearest neighbor hopping, which is characteriz
by the transition probabilitieswi ,i 615w( i→ i 61) for a ran-
dom walker to jump from sitei to site i 61. Here we are
particularly interested in the general case, in which the tr
sition probabilities are not necessarily symmetric@8#, i.e.,
wi ,i 11Þwi 11,i . Moreover, the random walker is confined
a finite number of sitesi 51, . . . ,L. At the two ends of this
interval, i.e., ati 50 and i 5L11, we putadsorbing walls,
which is simply modeled by settingw0,15wL11,L50 ~i.e.,
the walker cannot jump back into the system once it h
landed on 0 orL11). The time evolution of the probability
distribution of the walkPi , j (t), which is the probability for
the walker to be at timet on site j once started at time 0 on
site i , is fully determined by the master equation
4238 © 1998 The American Physical Society
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d

dt
Pi~ t !5M•Pi~ t !. ~5!

Here Pi(t)5„Pi ,0(t),Pi ,1(t), . . . ,Pi ,L(t),Pi ,L11(t)…T and
the transition matrix or the Focker-Planck operator
(M ) i , j5wi , j for iÞ j and (M ) i ,i52( jwi , j , while the initial
condition isPi , j (0)5d i , j . The eigenvalue problem of the F
operator in Eq.~5! is defined by

M vk5lkvk, uk
T M5uk

Tlk ~6!

and all physical properties of the model can be expresse
terms of the left and right eigenvectorsuk and vk , respec-
tively, and the eigenvalueslk . For instance, the probabilitie
Pi , j (t) are given by

Pi , j~ t !5(
k

uk~ i !vk~ j !exp~lkt !. ~7!

With adsorbing boundaries the two leading eigenvalues
zero and the corresponding eigenvectors arev1( i )5dL11,i ,

u1~0!50, ~8!

u1~ i !5u1~1!F11(
j 51

i 21

)
l 51

j
wl ,l 21

wl ,l 11
G , i 52,3, . . . ,L11,

while for the other zero modev2( i )5v1(L112 i ) and simi-
larly u2( i )5u1(L112 i ). The value ofu1(1) in Eq. ~8! is
fixed by the normalization conditionu1(L11)51.

We consider first a quantity that has gained considera
interest recently in related models for anomalous diffus
@9,10#: the persistence probability Ppr(L,t), which is the
probability that a walker starting at sitei 51 does not cross
its starting point until timet. Working with adsorbing sites a
i 50 andi 5L11, we havePpr(L,t)5P1,L11(t) and its long
time limit ppr(L)5 limt→`Ppr(L,t) is simply given, via Eq.
~7!, by ppr(L)5u1(1)v1(L11), where we used the fact tha
there is no contribution from the second zero mode si
v2(L11)50. Now with Eq. ~8! we have the simpleexact
relation

ppr~L !5S 11(
i 51

L

)
j 51

i
wj , j 21

wj , j 11
D 21

. ~9!

Note thatppr(L) is the total fraction of walkers adsorbed b
the right wall (i 5L11) without ever having crossed th
starting point.

In a homogeneousmedium withwi ,i 115wi 11,i5const we
haveppr

hom5(L11)21, whereas in aninhomogeneousenvi-
ronment with symmetric transition probabilities wi ,i 11
5wi 11,i ,

ppr
sym~L !5F11(

i 51

L
w1,0

wi ,i 11
G21

}
D

L
, ~10!

where D5@L( i 51
L wi ,i 11

21 #21 is the diffusion constant@11#.
Thus the average persistence probability in the random s
in

re

le
n

e

-

metric case scales as@ppr
sym#av}@D#av/L, similarly to the ho-

mogeneous case. From here on we use@ #av to denote aver-
age over quenched disorder.

In the general case, withnonsymmetrictransition prob-
abilities, we define the control parameter

dRW5
@ ln w←#av2@ ln w→#av

var@ ln w←#1var@ ln w→#
, ~11!

where w→ (w←) stands for transition probabilities to th
right ~left!, i.e.,wi ,i 11 (wi ,i 21). For dRW,0 there is an av-
erage drift of the walk towards the adsorbing site ati 5L
11; therefore, the persistence will have a finite value in
large system limit limL→`@ppr(L,dRW)#av.0, whereas it
goes to zero fordRW>0.

Before we proceed with the analysis of the persiste
probability ~9! we derive a similar formula for the larges
nonzero eigenvalue of the FP operator, theabsolutevalue of
which we denote bylmin . According to the relation in Eq
~7! the time scalet r of the diffusion process is set byt r

;lmin
21 . It is technically easier to estimatelmin using mixed

boundary conditions, which will not, however, change t
scaling behavior oflmin : At i 50 we assume an adsorbin
wall as before, whereas ati 5L we impose a reflecting
boundary by setting formallywL,L1150. Now, due to differ-
ent symmetry of the problem there is only one zero mode
the FP operator and the second smallest eigenvalue in m
lus will be lmin . To determinelmin we use a perturbationa
method. First, we express the eigenvalue problem in Eq.~6!
as

2ũ~ i !wi ,i 211ũ~ i 11!wi ,i 1152u~ i !lmin , ~12!

where wL,L1150 and ũ( i )5u( i )2u( i 21), i 51,2, . . . ,L,
in terms of the components of the left eigenvectoru[umin
andu(0)50. Then, keeping in mind that we are interested
situations whenlmin(L) is a rapidly vanishing function ofL,
we neglect the right-hand side of Eq.~12! and derive an
approximate expression for the left eigenvector from the fi
L21 equations of Eq.~12!. Using this result we obtain an
estimate forlmin from the last equation of Eq.~12!:

lmin.
ũ~L !

u~L !
wL,L215

u~1!

u~L !
wL,L21)

j 51

L21
wj , j 21

wj , j 11
, ~13!

which can be transformed into the final form by noticing th
u(1)/u(L)5ppr(L) in Eq. ~9!:

lmin;ppr~L !wL,L21)
j 51

L21
wj , j 21

wj , j 11
. ~14!

The scaling properties oflmin in Eq. ~14! as well as the
persistence probabilityppr(L) in Eq. ~9! now can easily be
derived by establishing a correspondence of these quan
with the energy gap and surface magnetization, respectiv
of the random transverse-field Ising model in one dimens
defined by the Hamiltonian

H52 (
i 51

L21

Jis i
xs i 11

x 2(
i 51

L

his i
z . ~15!
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Here thes i
x ,s i

z are Pauli matrices at sitei and theJi ex-
change couplings and thehi transverse fields are rando
variables. The RTIM in Eq.~15! has received much attentio
recently @12–14,3,15,7# and as was shown in@7# there are
simple expressions for the surface magnetizationms(L) as
well as for the gap of the HamiltonianD(L) of the RTIM in
terms of the couplings and fields. Comparing those with
results in Eqs.~9! and ~14!, we can set up the correspon
dences

wi ,i 11→Ji
2 ,

wi ,i 21→hi
2 ,

dRW→d, ~16!

ppr~L !→ms
2~L !,

lmin~L !→D2~L !,

m~dRW!→1„2z~d!….

Consequently, similar relations hold for the average qua
ties when the transition probabilities~or, equivalently, the
fields and the couplings! follow the same random modula
tion. In the following we use the correspondences in Eq.~16!
to derive results.

~i! At the critical pointwith dRW50, which corresponds
to Sinai’s walk@1#, the distribution of the leading eigenva
ues of the FP operator is very broad andlmin(L) scales ac-
cording to

lmin~L !;exp~2const3L1/2!, dRW50, ~17!

similarly to the analogous result for the energy gap of
RTIM @7#. Note that this scaling relation~17!, which is con-
sistent with the known relation between relevant time a
length scales@1#, L;(ln t)2, can be most easily demonstrate
by considering the probabilty distributionPL(ln lmin), which
is then expected to scale like

PL~ ln lmin!;L21/2p̃~ ln lmin /L1/2!, ~18!

as we confirmed numerically.
~ii ! The scaling behavior of the persistence probabi

~for zero drift dRW50) in Eq. ~9! follows also directly from
the analogous result for the surface magnetization@ms(L)#av
of the RTIM @7#. Here we just have to mention thatms(L) at
the critical point is not self-averaging and its average valu
dominated by therare events, which are ofO(1). From this
it follows that the same rare events determine the averag
ms

2(L), thus the scaling behaviors of@ms(L)#av and
@ms

2(L)#av are identical. Then, using the correspondence
Eq. ~16!, we have the exact result

@ppr~L !#av}L2u, u51/2, dRW50. ~19!

~iii ! In the noncritical situation withdRWÞ0 there is an
average drift of the walk towards the sitei 5L11 (i 50)
for dRW,0 (dRW.0). In the latter case, analogously to th
r

i-

e

d

is

of

in

surface magnetization of the RTIM@7#, the average persis
tence probability vanishes exponentially for large syst
sizes

@ppr~L !#av;exp~2L/j!, j;dRW
22, dRW.0. ~20!

If the average drift of the walk is towards the adsorbing s
at i 5L11 and thusdRW,0, there is a nonvanishing infinite
system size limit of the persistence probability~similarly to
the existence of a finite average surface magnetization of
RTIM @7#!

lim
L→`

@ppr~L !#av;~2dRW!bpr, dRW,0, ~21!

with bpr51, which is approached via an exponential si
dependence. The corresponding correlation length is a
given byj;(2dRW)22, similarly to the casedRW.0 in Eq.
~20!. Thus we can conclude that correlations defined on p
sistent walks are characterized by the average critical ex
nents

u51/2, n52, bpr51, ~22!

which satisfy the scaling relationbpr5un.
~iv! The time-dependent persistence probabilityPpr(L,t)

introduced above is simply given byPpr(L,t)5P1,L11(t)
5(kuk(1)vk(L11)exp(lkt). In the random, asymmetric
case one expects the scaling relation

@Ppr~L, ln t !#av5b2u@Ppr~L/b, ln t/b1/2!#av ~23!

when lengths are rescaled by a factorb.1 and the relation
in Eqs. ~1! or ~17! between time and length scales is use
Now taking b5L in the limit t→`, we recover the exac
result in Eq.~19!; on the other hand, withb5(ln t)2 we have
in the large system limit an ultraslow deca
limL→`@Ppr(L,t)#av;(ln t)21.

In the intermediate situation with lnt;L1/2 we have~with
b5L) the finite size scaling form @Ppr(L,t)#av

;L21/2p̄(ln t/L1/2), with limy→`p̄(y)5const, in contrast to

Ppr
hom(L,t);L21p̄̄(t/L2) in the homogeneous case. In Fig.

FIG. 1. Scaling plot of the time-dependent survival probabil
Ppr(L,t) according to Eq.~23! for the asymmetric hopping mode
with a uniform distribution of hopping rates~averaged over 105

samples!. The inset shows the corresponding scaling plot for
homogeneous case.
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we show the corresponding scaling plot for numerically g
erated results for finite systems that confirm this scaling p
ture.

~v! Away from the critical pointwe reach the region o
anomalous diffusion, which is equivalent to the Griffith
McCoy phase of the RTIM. The relevant energy sc
lmin(L) @D(L) for the RTIM# has a power-law scaling be
havior

lmin~L !;L21m~dRW!, D;L2z~d! ~24!

and according to Eq.~16! the two exponentsm and 1/z cor-
respond to each other. At this point we use the result that
value ofm is known exactly from the time dependence of t
average displacement of the walk in Eq.~2! in the form @2#

F S w→
w←

D mG
av

51. ~25!

Essentially this follows from the observation that for a
independent identically distributed random variablesx the
distributionP(l) of l5x1x2x3•••, which is reminiscent of
Eq. ~14!, has an algebraic singularity atl50, P(l)
}l211m with m given by @xm#av51; see@16#.

Consequently, we obtain for the dynamical exponentz of
the RTIM in the Griffiths-McCoy phase the implicit equatio

F S J

hD 1/zG
av

51. ~26!

Note that for any distribution ofJ andh one obtains imme-
diately the result 1/z52d1O(d2), with d!1 as in Eq.~11!,
as has been observed earlier@12,13,7#. However, the exac
result~26! is not restricted tod!1, but is valid in the whole
Griffiths-McCoy region. For example, for the uniform distr
bution
au

rc
a

a
C

-
-

e

e

p~J!5Q~12J!Q~J!, r~h!5h0
21Q~h02h!Q~h!,

the dynamical exponent is given by the solution of the eq
tion

z ln~12z22!52 ln h0 ~522d!. ~27!

The relation~27! is indeed satisfied by the numerical es
mates forz reported in@13,15,7#.

To summarize, in this paper we have revealed a fun
mental relation between the anomalous diffusion of rand
walks in disordered environments and the slow dynamics
criticality and in the Griffiths-McCoy region of the random
transverse Ising chain. With this analogy at hand we w
able to derive a number of exact results for both syste
Many applications of the above-mentioned analogy are
vious: There is an enormous number ofexactresults for vari-
ous quantities of random walks in random one-dimensio
environments and most probably many of them can be
rectly transferred to corresponding quantities of rand
quantum spin chains near the quantum critical point. It
mains a subject of future research to study how far th
relations carry over to higher dimensions.
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