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Chaos in the random field Ising model
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The sensitivity of the random field Ising model to small random perturbations of the quenched disorder is
studied via exact ground states obtained with a maximum-flow algorithm. In one and two space dimensions we
find a mild form of chaos, meaning that the overlap of the old, unperturbed ground state and the new one is
smaller than 1, but extensive. In three dimensions the rearrangements are marginal~concentrated in the well
defined domain walls!. Implications for finite temperature variations and experiments are discussed.
@S1063-651X~98!06710-5#
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The concept ofchaosin disordered systems refers to th
sensitivity of their equilibrium state~at finite temperatures!
or ground state~at zero temperature! with respect to infini-
tesimal perturbations. In spin glasses@1#, for instance, it is
well known that small changes of parameters like tempe
ture or external field cause a complete rearrangement o
equilibrium configuration@2,3#. This has experimentally ob
servable consequences like reinitialization of aging in te
perature cycling experiments@4#, and has also been invest
gated in numerous theoretical works@5#.

A slight random variation of the quenched disorder h
the very same effect on the ground state configurations.
though of similar origin, chaos with respect to temperat
changes is harder to observe than chaos with respect to
order changes@6#, and the latter phenomenon has been u
to quantify spin glass chaos in numerical investigations@3,7#.

This type of chaos was actually later discovered in
other, simpler random system, the directed polymer in a r
dom medium@8–10#, which is equivalent to a domain wall in
a random bond ferromagnet. The interface displacement
reaction to infinitesimal random changes of bond streng
obeys particular scaling laws with exponents related to
well-known interface roughness exponentx @9,10#.

In this paper we consider the random field Ising model@1#
and study, for the first time to our knowledge, the sensitiv
of its ground state with respect to small changes in the r
dom field configurations. It turns out that the emerging p
ture is very reminiscent of chaos in spin glasses and ran
interfaces. This statement is quantified by the following p
nomenological picture@3,9#.

Consider a random Ising system defined, for instance
the Hamiltonian

H52(̂
i j &

Ji j SiSj2(
i

hiSi , ~1!

whereSi561 are Ising spins,̂ i j & indicates nearest neigh
bor pairs on aD-dimensional lattice of, say, linear sizeL,
andJi j denote interaction strengths andhi local fields, both
quenched random variables obeying some distribution~con-
tinuous, in order to exclude ground state degeneracies!. The
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case when isJi j Gaussian~with mean zero and variance 1!
and hi50 is thespin glass~SG! model. The case whenJi j
>0, and hi50 is the random bond ferromagnetmodel
~RBFM!. The case whenJi j 5J, and hi is Gaussian~with
mean zero and variancehr! is the random field Ising mode
~RFIM!. In order to study the sensitivity of the ground sta
of these systems with respect to small changes in
quenched disorder, we can apply a random perturbation
amplituded!1 to any of the quenched random variables.
a consequence thenewground state will differ from the old
one.

The RFIM ground state changes when the domain str
ture changes~for purely ferromagnetic states this argume
does not work!. One can estimate when the two ground sta
will be uncorrelated, beyond a length scaleL* . This can be
found considering domain walls with an Imry-Ma@11# type
argument@3,9#: The energyEflip to flip droplets or domains
or excitations of sizeL scales likeLu, whereu is the energy
fluctuation exponent~u is denotedy in the SG context@3#; it
doesnot stand for the violation of hyperscaling exponent
the critical point of the RFIM@12#!. The energy change du
to the random perturbationErand scales likedLd/2, whered
5ds is the fractal dimension of the droplet’s surface in t
SG case,d5D21 is the interface dimension in the RBIM
and d5D in the RFIM case. The decorrelation takes pla
when Erand(L).Eflip(L), i.e., for L.L* ;d21/l, with l
5d/22u. In SG jargonL* is called the overlap length, an
l is denotedz, the chaos exponent@3,7#.

Two remarks are in order: first, as already pointed out
Refs. @9# and @10# for L,L* , the ground state is slightly
altered by the random perturbation. This is, however, an
fect of the interplay between elastic energy andErand. This
leads to displacements of the domain wall of sizeDx;dLa

with a5l1x, where x is the roughness exponent. Th
roughness exponent@13# and the energy fluctuation expone
u are related viau52x1D23 @9#.

The second remark concerns the RFIM case: forD<2 the
concept of a macroscopic domain wall fails, and the abo
considerations can only be transferredcum grano salis. This
means that they are sensible only forL!j;exp(2hr

2/A), the
typical size of domains in the two-dimensional~2D! RFIM
@14,15#.
4284 © 1998 The American Physical Society
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In three dimensions the situation is different: The conc
of a domain wall is well defined, and we obtain, with th
estimate for the roughness exponentx5 2

3 @13# and, conse-
quently,u5 4

3 , the resultl5 1
6 , i.e. L* ;d21/6. The typical

displacement of a domain wall thus is, as above,Dx;La,
with a5 2

3 for L!L* anda5 5
6 for L@L* .

If we take the above arguments to be serious for
RFIM in two dimensions, the overlap lengthL* turns out to
be formally infinite~since withu51 one hasl50!, where
one of course has to be careful due to logarithmic correcti
to the energyEflip . Thus the mechanism by which rearrang
ments take place is due to the interplay between elastic
ergy andErand. Moreover, in the 2D RFIM, the typical dis
placement of domain walls should scale asDx;dL for L
!j, sincea5l1x51. As a consequence the correlation
overlap between the old unperturbed ground stateSi and the
new oneSi8(d),

q5
1

LD (
i

SiSi8~d!, ~2!

behaves like 12q;La21, and thereforeq should be of or-
der O(1), depending on the probability with which doma
wall displacements occur.

In what follows we present results of exact ground st
calculations for 1D spin chains and for 2D systems. We
a random field distribution and a perturbation distributi
that have a constant probability density between2D andD
and 2d/2 and d/2, respectively, and setJi j 51. Figure 1
shows an example of a large 2D ground state (L5320) with
the two spin orientations shown in white and gray, resp
tively, and theflippedspins in black. There are two feature
one should note. First, the size of the system is larger t
the critical length scale needed for ground state breakup,
the magnetization is practically zero. Second, the flipp
spins form a number of clusters of varying size, that seem
concentrate on thecluster boundariesof the original ground
state.

Figure 2 shows what happens as one sweeps the
strength~D!. In arbitrary dimensions, the limitD→` goes

FIG. 1. A ground state plus the perturbation-induced chang
The original spin orientations are indicated in grey forSi511 and
white for Si521. The flipped spins are indicated in black.L
5320, D52, andd50.1 ~see text!.
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over to a site percolation problem, i.e., the local RF orien
tion gives the spin state at a site. In that limit the overlapq is
determined by the probability of the applied perturbationd to
change the orientation. For somewhat smaller fieldsq be-
comes smaller, in an apparently linear fashion, asD changes.
In the 1D case the overlap is not sensitive to the system
above a certain threshold inD, below which the overlap
quickly increases to unity again, which indicates a typic
domain size. The overlap seems to become ad-dependent
constant in the thermodynamic limit and forD→0.

This 1D behavior can be understood as follows. For s
plicity let us assume that the first spin is fixed to be up, i
S0511. Then the total random field energy at siten is given
by Hr5( i 51

n hi in the unperturbed system, andHn85Hn

1Dn with Dn5( i 51
n d i , in the perturbed one. Ifhi andd i are

independently distributed variables with zero mean and v
ancehr5@hi

2#av and d r5@d i
2#av, respectively, the variable

Hn and Dn are ~for n@1! Gaussian with mean zero an
variancenhr andnd r , respectively. The probability distribu
tion P(Hn ,Hn8) is simply given by

P~Hn ,Hn8!5E dD r P~Hn!P~Dn!d~Hn1Dn2Hn8!.

s.

FIG. 2. ~a! ~Top! Scaling of the overlap parameter with rando
field strength for the 1D spin chain.~b! ~Bottom! Scaling of the
overlap in two dimensions for the system sizesL540, 80, 160, 240,
and 320, and ford50.1.
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Now the total RF fluctuationsHn andHn8 produce domains if
their magnitude is large enough to overcome the ferrom
netic coupling: suppose thatSi511 and Hi.2J for
i 51,...,n ~i.e., a plus domain!, but Hn11,2J; then Sn11
will be flipped, i.e.,Sn11521, and a new~minus! domain
starts. For large enough typical domain sizes the total
fluctuations become large: one can neglectJ and assume tha
only the signs ofHn andHn8 determine the ground state~note
that this is different from the high field regionhn@J, in
which the local random fieldshi dominate!. Thus the prob-
ability of Sn andSn8 being equal is given by

p~Sn5Sn8!5E dHndHn8P~Hn ,Hn8!u~HnHn8!, ~3!

whereu is the step function. A straightforward calculatio
yields p(Sn5Sn8)512(1/p)d r /hr1O(d2). For the data
shown in Fig. 1~a!, in which hr

25D2/3 and d r
25d2D2/12

with d50.1, we have d r /hr50.05 and henceq521
12p(Sr5Sr8)'0.97, agreeing roughly with the numeric
results forhr→0 in the limit L→`.

The 2D behavior is depicted in Fig. 2 ford50.1. The
number of simulations is 10 000 forL540 and 80, 4000 for
L5160, 1000 forL5240, and 500 forL5320. The generic
behavior of the overlap is as for the 1D chain:q(D) is
roughly linear until the regime of small fields (D<2), after
which it seems to saturate to ad-dependent valueq(d). The
crossovers~increase ofq with decreasingD! are due to the
ground state breakup mechanism. For small systems
ground state is ferromagnetic, except for a limited numbe
domains of the opposite spin orientation. The decrease inq is
caused by the effect of the ground state becoming more
more uniform~magnetizationumu→1!. Otherwise the behav
ior strongly resembles the 1D case.

The thermodynamic behavior of the overlap is also visi
in the statistics of overlap distributions. Figure 3 shows h
the probability distributionP(q) of q behaves with varying
system size and forD51.8 ~the data are the same as pr
sented in Fig. 2!. For all systemsP(q) is peaked atq51, but

FIG. 3. Probability distributions of the overlapq for D51.8 for
the system sizesL540, . . . ,320. The inset shows the standard d
viations of the overlap pdf’s forD51.4, 1.6, 1.8, 2, and 2.4.
g-

F

he
f

nd

e

as L is increased a peak appears in the distribution, res
bling a Gaussian. The inset of Fig. 3 shows the stand
deviation dq of P(q) for varying D as a function of the
system sizeL. Except for the by now standard crossover f
small L andD, we observe that the width of the distributio
decreases, which signals that in the thermodynamic lim
P(q) approaches ad-function-like sharp distribution. The
crossover exponentc, defined withdq;L2c, seems to be
exactly 1 (c51).

The mechanism by whichq is determined is illustrated in
Fig. 4. The size distribution of flipped clustersn(s) con-
verges withL to a power law,n;s21.6, with a cutoff that
depends very weakly if at all onL. This has to be so for the
overlap not to diverge to zero in the thermodynamic lim
since one can write 12q as an integral overn(s): an
L-dependent cutoff would imply thatq would decrease con
tinuously.

Finally, in Fig. 5, we demonstrate that 12q;d for small
d. This follows from the scaling arguments presented for
RFIM domain walls and the 1D RF chain.

FIG. 4. Cluster size distributions of clusters of flipped spins
d50.1, L540, 160, and 320, andD52.

FIG. 5. Dependence of the overlapq on the perturbation
strengthd for weak and strong magnitudes~D!, L580.
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In this paper we have considered the stability of the r
dom field Ising model to small perturbations. Unlike in sp
glasses, it turns out that the RFIM ground state shows a w
form of chaos, similar to directed polymers or random bo
Ising model domain walls. The overlapq attains its value
from fluctuations of the domain walls, in both one and tw
dimensions. Thus the ground state stays almost intact.
ground state domains are robust against external pertu
tions since, most likely, the field excess of a domain is
tensive ((hi;V). For the RFIM in three dimensions, th
prediction of the domain wall scaling argument is thatq
should converge to unity since the domain wall displacem
exponenta here is5

6 : the displacement of a domain wall o
large enough length scales isDx;La, and therefore 12q
}La21→0. Moreover, in both limitshr /J→0 and hr /J
→`; i.e., deep in the ferromagnetic phase and deep in
paramagnetic phase, it is trivial thatq→1.

One would like to extend the argumentation to change
temperature, as is common for spin glasses and rand
bond-type directed polymers. In spin glasses chaos is
mately linked to the nonequilibrium correlation lengt
which gives rise to measurable consequences in, e.g.,
perature cycling experiments that measure the out-of-ph
susceptibility. Here, however, repeating the scaling argum
ys
,

-

ak
d

he
a-
-

nt

e

in
m-
ti

m-
se
nt

of the domain wall for temperature changes results in a
placement exponent which does not produce any exten
changes in the overlap. In two dimensions the predicted o
come is simply that of a random walk (Dx;L1/2). In other
words, assuming that typical valleys in the energy landsc
are separated by an energy given by the energy fluctua
exponent gives completely different results for temperat
and ground state chaos than for random bond disorder.
discussion is intimately related to coarsening and aging
the RFIM; one should note that so far, to our knowledg
there have been no simulation results that address these
tions directly.

Note added in proof.Recently we became aware of tem
perature cycling experiments in a random field system@16#,
where indications for the~partial! reinitialization of aging
have been reported. These are probably not caused by
otic rearrangements of domain walls, but originate from
existence of slow and fast domains~see@16#!.
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