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We study the Brownian motion of a classical particle in one-dimensional inhomogeneous environments
where the transition probabilities follow quasiperiodic or aperiodic distributions. Exploiting an exact corre-
spondence with the transverse-field Ising model with inhomogeneous couplings, we obtain many analytical
results for the random walk problem. In the absence of global bias the qualitative behavior of the diffusive
motion of the particle and the corresponding persistence probability strongly depend on the fluctuation prop-
erties of the environment. In environments with bounded fluctuations the particle shows normal diffusive
motion and the diffusion constant is simply related to the persistence probability. On the other hand, in a
medium with unbounded fluctuations the diffusion is ultraslow and the displacement of the particle grows on
logarithmic time scales. For the borderline situation with marginal fluctuations both the diffusion exponent and
the persistence exponent are continuously varying functions of the aperiodicity. Extensions of the results to
disordered media and to higher dimensions are also disc&H63-651X99)04402-5

PACS numbg(s): 64.60—i, 66.30.Dn, 75.10.Nr, 05.56.q

I. INTRODUCTION barriers[5,6], a problem that is related to relaxation pro-
cesses in disordered systefis.

Brownian motion is perhaps the best understood stochas- In the present work we study the Brownian motion in
tic process in classical physics in both homogeneous envinhomogeneous environments where the transition rates are
ronments and disordered media. The study of the diffusiomsymmetric and distributed according to quasiperiodic or,
problem in inhomogeneous environments is physically motimore generally, aperiodic rules. As a related earlier work,
vated by transport processg@solecular diffusion, flow lines  one may mention an investigation of the Brownian motion
in a porous medium, and electrical conducjiam the one  on the two-dimensional Penrose lattice, where normal diffu-
hand and the relaxationa! properties of disordered system§ye pehavior has been fouril]. Here we mainly concen-
(random magnets and spin glassea the other(see Refs. 416 on one-dimensional aperiodic systems. Besides its

[1'I2]).th f ric t i tes. | h mathematical interest, the present study is also physically
n the presence ol asymmetric transition rates, 1.6., Wnefl, i\ ateq since artificial multilayer systems with controlled
the probability per unit timev, ., for a particle to jump from distributions of the atomic layers may now be grown by

siter o siter ' 1 dnfferent ”O“?Wrur’ the (_jlso_rder s@rongly molecular beam epitaxj@]. When particle transport has dif-
modifies the behavior of the diffusive motiondi<2 dimen- . ; .
ferent time scales for the motion parallel and perpendicular

sions. In one space dimension, where the effect of disorder is the | tivel i ional diffusi
most pronounced, the diffusion is ultraslow and the average&0 € 1ayers, respectively, a one-dimensional ditfusion pro-

mean-square displacement grows on a logarithmic time scaESS Perpendicular to the layers is, in principle, observable.
[3]: The study of cooperative phenomena in quasiperiodic and

aperiodic systems is an intensive field of research. One may
[(X2(1))]ap~IN%t. (1. mention phase trgnsitions and critic_al phenomgn_a in Ising
and other magnetic models, percolation, self-avoiding walks,

Another type of inhomogeneity is provided by fractal lat- etc. Aperiodic structures, which interpo!ate between peri_odic
tices, either regular or random, such as percolation cluster&nd random systems, may or may not influence qualitatively
in which the Brownian motion has been intensively studiedthe properties of a cooperative process. Concerning the criti-
under the name “the ant in the labyrintti4,5,2. Also much ~ cal behavior of aperiodic magnetic systems, a relevance-
work has been devoted to the clarification of diffusion pro-irrelevance criterion has been propo$&a,11, which is an
cesses in the presence of hierarchically distributed energgxtension of the well-known Harris criterion for disordered
systems[12]. The vast amount of exact results about the
critical properties of aperiodic quantum Ising chaih8—17
*Permanent address: Institute for Theoretical Physics, Szegeand related aperiodically layered two-dimensional Ising
University, H-6720 Szeged, Hungary. models[18] are all in accordance with this criterion. Aperi-
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odicity may also change to second order a transition that is of
first order in the pure system, as was demonstrated recently
in a numerical study19].

In the present work we show that a relevance-irrelevance
criterion, similar to that of magnetic systems, can be formu-
lated for the Brownian motion, which is then checked agains
exact results obtained for different one-dimensional aperi-

N
Z Ine,, (2.4)

Z||—\

the drift velocity is zero for6=0, whereas for a small bias
su uch thatsN<1, the drift velocity is proportional t@&:

N N
: : 1
odic environments. -1
=6Dy, — .
The paper is organized as follows. In Sec. Il we introduce ¢ 0 N2 nZl 21 €nri€nizEni
the basic notations and quantitiédrift velocity, diffusion (2.5

constant, and persistence probabjlitand present the

relevance-irrelevance criterion for one-dimensional aperiodiéne can similarly calculate the diffusion constamtwhich
environments. In Sec. Il an exact correspondence betwedf the zero bias casé=0 is simply given by

the random walKRW) and the transverse-field Ising model

(TIM) is presented in one dimension, which is then used in D(6=0)=Do. (2.6
Sec. IV to obtain analytical results for irrelevant, relevant,
and marginal aperiodic environments. Our results are eXBefore analyzing the diffusive behavior of aperiodic walks

tended to higher dimensions in Sec. V and discussed in Sef/€ consider another quantity of interest, the persistence
VI, probability Pper(L,t), which is the probability that the

walker starting at site=1 does not cross its starting position

until time t. Here the length scale in the definition is set by

the presence of an adsorbing siteiatlL +1, thusw .,

=0. Due to this adsorbing site the persistence probability has
We consider a one-dimensional RW with nearest neigh2 finite long time limit lim_.Ppe/(L,t)=ppedL), which

bor hopping, characterized by transition probabilities.., ~ ¢an be expressed p81]

for a jump from sitei to sitei+1. The time evolution of

Il. FORMALISM AND THE RELEVANCE-IRRELEVANCE
CRITERION

L i -1
Pi(t), the probability for the particle to be on sitat timet, _ 1
is governed by the master equation PperL)= +§1 ]-1;[1 €] : 27
dp It is easy to see that, in the thermodynamic limit,

At Win P (Wi P W) Pt Wi 1Py lim__..Pper(L) = Pper Plays the role of an order parameter: It
(2.2 is nonvanishing fois>0 only. For the homogeneous system
with R=1 in Eq. (2.2
The transition probabilities are generally nonsymmetric.

Here we suppose that their ratio is given by ppom 1—e 1=, (2.8

Wi i1
Wit1j

—e=eR' 2.2 whereas at the critical point in a finite homogeneous system

pIOM(L,6=0)= — 2.9

where R>0 is the amplitude of the inhomogeneitiR€ 1
corresponds to the homogeneous lajtiaed the integer$;
are taken from an aperiodic or a quasiperiodic sequence. F® . (t)=lim__..P,e/(L,t) is the usual persistence probabil-
the sake of simplicity in the following we take;, ;;=w_ ity for an infinite system.
=1. Next we analyze the expressions of the basic quantities in
The aperiodic chain may be replaced by a periodic apEgs. (2.5 and(2.7). The qualitative behavior for angeri-
proximant of periodN such thate;= €, [20,10. The ape- odic systemi.e., whenN is finite, is the same in the vicinity
riodic system is recovered in the limit—oo. Exact expres- of the critical point: The diffusion constab, in Eq. (2.5) is
sions for the drift velocityvy and the diffusion constari®  finite and the persistence probability in E8.7) has a linear
obtained by Derrida for an arbitrary distribution of the tran- 5 or L ! dependence.
sition rateq 20] can then be used to treat the aperiodic case. For aperiodic systems, which are obtained in the liit
With our notations, the drift velocity of the aperiodic —o, one has to consider the products of the transition rates
model may be written as P (L) H —1€n+i=eXHAG(L)], where Ap(L)= EI 1IN €y
measures the fluctuations in the “energy landscape” when

L+1°

N 1 In g is related to the height of thigh energy barrier in an
1_nl;[1 €n activated diffusion process. Here we differentiate between
vg= N NN _ three possibilities.
1— H 6,1+£ 2 2 ~1 -1 1 _(l) For bounded fluctuationgn the transition rates, i.e.,
B \\ e ey €n+1€n+27 " Enti with a flat energy landscape, the produBtgL) stay finite at

(2.3)  the critical point, thus the diffusion constadt remains fi-
nite and the lineab dependence of the persistence probabil-
Defining the control parameter as ity is maintained. Thus this type of aperiodicityirselevant
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and the aperiodic Brownian motion keeps the same criticalhe relevant time scale of the problem is related to the in-

properties as the homogeneous one. verse of the largest nonzero eigenvalues and the dynamical
(i) For unbounded fluctuationén the transition rates, properties of the RW are connected to the scaling behavior of

when the energy landscape is rough, so thdt.)~L® with  the eigenvalues of the FP operator at the top of the spectrum.

a wandering exponerf2 >0, the product$?,(L) that appear Considering a large finite system of sizeunder a change of

in Egs.(2.5 and(2.7) are divergent at the critical point when the length scale by a factor of>1, such that.’=L/b, the

L—oo. Consequently, the diffusion constdd vanishes and eigenvalues at the top of the spectrum witkkL are ex-

the persistence probability displays a nonlineardepen- pected to transform as

dence. We conclude that an aperiodic environment with un-

bounded fluctuations is aelevant perturbationfor the Ae=D"N\y, (2.16

Brownian motion. As we show later, diffusion in a relevant ) . . .

aperiodic environment isltraslow, i.e., the mean-square dis- Wherey, is the scaling dimension of the gap. From Eq.

placement grows on a logarithmic time scale, as for the Sindi?-16 the finite-size behavior of the eigenvaluag(L)

model in Eq.(1.2). ~L " follows, thus the time and length scales are rezlated
(iii) In the borderline case, the wandering exponent of théhrough t~L*. On the other hand, from Eq2.11) L

environment is2 =0, thus fluctuations in the energy land- ~t”, thus the diffusion exponent is given by

scape grow logarithmically. In thignarginal situationthe 5

products of the transition rate8,(L) have a power lan. y=—.

dependence and the different physical quantities also display Y

power law singularities. For this type ahomalous diffusion

the drift velocity depends on the bias as

(2.1

For relevant aperiodic environments, the leading eigenvalues
have a stretched exponential finite-size dependence, thus the
va~oT,  |8|=<1, (2.10  diffusion exponent is formally zero.
In the master equation formalism, the persistence prob-
with 7>1, whereas the mean square displacement grows likability P, (L,t) can be calculated by putting adsorbing sites
ati=0 andi=L+1. ThenPe(L,t)=P; (1), which in
(X*(t))~t, (2.1)  the larget limit is just the first component of the zero-mode
. ) ) o left eigenvectompe (L) =u,(1), asgiven by Eq.(2.7).
with ¢<<1. Finally, the persistence probability is in general

characterized by algebraic singularities Il CORRESPONDENCE BETWEEN THE RANDOM
- WALK AND THE ISING MODEL
~8, P ~179, 2.1
Pper™ o™ per )t 212 IN A TRANSVERSE FIELD

The critical exponents defined above are not independent. st we rewrite the eigenvalue problem of the FP opera-

Using results of Sec. Ill in Eq¢3.7) and(3.9), one can show 4, in Eq. (2.14 in terms of the components of the right
that the relevant time scateand the biass are related by eigenvectow,(i) as

t 1~vy6~68*"7. For the length scale, one hds~ug4t

~ 6L, These relations lead to the scaling laws Wi_qjo(i— 1) = (Wi j— 1+ Wi 4 D)vi(i) F Wi gjog(i+1)
2 2 =Nvk(i) (3.9
=—-1, x=-0, (2.13
4 4 and consider a finite system of sizg i.e., we setwq,

which evidently hold for normal diffusion withr= =y  ~ Wi+1L=0. Then we introduce the new variables

=1 and®=1/2. Thus two critical exponents are enough to
describe the behavior of the anomalous diffusion.

To obtain the characteristic quantities for relevant and " i 12
marginal environments one has to solve the master equation = o Wii+1 —ay| T1 Wij+1 3.2
(2.2), which amounts to solving the eigenvalue problem for R ! ' '
the transition matrix or Focker-Plan¢kP) operator

v(i)=ap(i),

Wit1j j=1 Wit
in terms of which the eigenvalue problem is transformed into
M v=Nok,  Ug M=ugky, (2.149
] ] (Wi—13Wi 1) Y20, (i = 1) = (Wi 1+ W 4 1) vk(i)
where the matrix elements take the fortd X; ;=w; ; for i

#j and M); ;= —3;w; ;. All the physical properties of the + (Wi Wi i) Y0 (i + 1) =N o), (3.3
model can be expressed in terms of the left and right eigen- ~
vectorsu, and vy, respectively, and the eigenvaluag, which is a real symmetric eigenvalue problemmT;;v(j)
which are nonpositive. For example, the probabify;(t) :)\Zk(i) with T;;=T;; . Consequently, the eigenvalueg of

that the walker starting dt=0 at sitei arrives on sitg at  the FP operator are real.

time t is given by Next we show that the eigenvalue problé&3) formally

appears in the free-fermion representation of the transverse-
_ ; ; field Ising spin chain, with coupling® and transverse fields
Pui(D =2 uioi) e, 219~ desoribed by the Hamilton?angz
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L-1

L A2=03(8%+ P, 3.9
HI—E JiO'iXO'iXH—Z hio?, (3.9 =vsl o) (39
=t =1 where g~ 1/N denotes the wave number corresponding to
the smallest excitation energy. Comparing the expression of
&he sound velocityw in Ref. [10] to Dy in Eq. (2.5, we

obtain another correspondence

whereo ando? are Pauli matrices at siteThe Hamiltonian
H can be transformed into a free-fermion model by standar
techniqueg22]:

vieDy. (3.10
H=2> Aw(mim—1/2). (35
K Taking the infinite periodic approximant limil—c, we

t . . o obtain the following important result: If in an environment
Here thes, (7)) are fermion creatiortannihilation opera-  he giffusion isnormal i.e., the diffusion constanD, is

tors and the excitation energy, is the solution of the ei- finjte, then the phase transition of the corresponding TIM
genvalue equation with inhomogeneous couplings is in tBmsager universality
, 2 2 _ , class On the other hand, if the diffusion @nomalousi.e.,
Jimahi 1 @u(i = 1)+ (I D) Pu(i) + iy (i+1) the diffusion exponent igy<1, then the phase transition of
= A2D,(i). (3.6 the TIM is not of Onsager typeln the marginal case the
k phase transition in the TIM is characterized by an anisotropy

Comparing Egs(3.6) and(3.3), one can notice that they can exponentor dynamical exponehtz>1, which describes the

be cast into the same form with the correspondences finite-size scaling behavior of the gap,~L"* for k<L.
According to Eq.(3.7), zis related to the diffusion exponent
Jie (W)Y through
hie (Wi +1)"2 Z@,l_ (3.12)
37 v
D (i) (—1) (i), On the other hand, in the relevant cadg, has a stretched
exponentialL dependence, thus the dynamical exponent is
A2s—\y. formally infinite.

Finally, we present a useful estimate for the smal(est

Thus there is anathematical equivalendgetween the Rw in  @bsolute valuenonzero eigenvalue of the FP operakgyi,
an inhomogeneous environment and the TIM with the correPY transforming a related result for the TIM6,23. Having
sponding inhomogeneous couplings, as described in E@ Iarg_e finite chgln of length with a reflecting poundary
(3.7. One can, however, go further and show that there aréondition(BC) ati=1(w;¢=wo;=0) and adsorbing BC at
severalphysical quantitieshat are closely related in the two 1=L+1(W 41, =0, w;1#0), then the leading finite-

problems. size behavior of\ ,;5(L) is connected to the product of the
First let us consider the persistence probabifify(L), persistence probabilities at the two ends of the chain as

which is calculated with adsorbing boundary conditions L

Wo =W 41, =0 as PpedL) =u(1)v,(L+1)

~ o -1
—Us(1)ay tay . 01(L+1)=[5,(L+1)]2. Now using the Aeinl )=~ Poer LPped L €7 (3.12

correspondences in E@3.7), the equivalent TIM withhg
=J, =0 has a fixed spin at=0, whereas the other end of where the persistence probability at dités given by
the chain ai =L+ 1 is free[23]. The surface magnetization

of the chain measured on thie= (L +1)th spin is given by _ e
m(L)=®,(L+1) [23,24, thus using Eq(3.7) we have a PpedL)=| 1+ ;1 jﬂl €@l 313
relation between the surface magnetization of the TIM and
the persistence probability of the RW: whereasp,e((L) is given by Eq.(2.7), however, forL—1
— 5 sites.
[ms(L)]“= PperL). 3.9
We note that this relation has already been mentioned in Ref. V. DIFFUSION IN APERIODIC ENVIRONMENTS

[21]. Here we consider different one-dimensional aperiodic en-
Let us now analyze the relation between the energy scalagronments and study the corresponding diffusive behavior

in the two problems\, and Ay, respectively. First one may by analytical methods. As we mentioned before, the rel-

notice that, according to the last of E¢8.7), the eigenval- evance of the perturbation is connected to the fluctuation

ues)\ of the FP operator are nonpositive, as they should omproperties of the aperiodic environment.

physical grounds. To be more specific, we consider the behavior at critical-
For the periodic TIM with J;=h andh;=h;,y=he"?, ity (6=0) of the logarithm of the transition ratesdn which

the energy of low-lying modes, close to the critical podht is related to the height of thigh energy barrierAg; in an

=0, is given by a perturbation calculati¢hO] as activated diffusion process. When the global bias vanishes,
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takes its critical values, such that, according to E2.4),

0= (4.9

InR 2
! RUZ_R 12
=R ", p.=limn /L, n=2 f, (4.1

Lo i=1 It is interesting to note thdd, does not depend on the value
of the irrational parameteap.
wherep., is the asymptotic density of the perturbed transi- The persistence probability in E€R.7) can also be evalu-

tion probabilities. Then the fluctuation of the energy land-ated analytically using the techniques of Re&X7] (see Ap-

scape in a large system of sikes characterized by pendix A). For small bias there is a lined@ dependence
- 1-1w InR
A(L)=i21 In€e=n_INR+LIne Ppe ) =R 5—7d, 0<d<1, (4.5
—(n.—Lp.)INR~L2InNR. (4.2)  Where the prefactor depends an

For the other end of the system, except for the first digit,

HereQ is the wandering exponent of the aperiodic sequencé“’_hiCh is irrelevant, the sequence, read from right to left, is
[25], which is easily obtained for aperiodic substitutional se-9iven by
quences.

i . - . i+ i+w—

Working with a finite alphabef, B, ..., such that, via fi= : 2w _|! w2 ! , (4.6)
subsitution,A—S(A), B—S(B), etc., the sequencé in ® w
Eq. (2.2 is obtained by starting with one of the letters, iter- __, . : o
ating the substitution process, and finally replacing the Ietterg\lhICh leads to the persistence probability
by digits (or groups of digits 0 and 1. For a two-letter se- o INR
iuence, one can directly proceed with substitutions on 0 and Pper(8)= R‘“”‘”;&, 0<6<1. 4.7

The fluctuation properties of a sequence can be deduced , ) ) e
from its substitution matrix with entries;; giving the num- One may notice a simple relation between the diffusion
bers of letters =A,B, ... in S(j)(j=A,B, ...) [25]. The constant and the persistence probabilities
wandering exponerf involves the two largest eigenvalues — _ 2
in modulus of this matrix,x; and w,, and readsQ Pper(8)Pper( ) =Dod", (4.8
:|n|/L2|/|n M1 . . . . .

We now consider different environments associated withWhICh is valid for any value of the irrational parameter

specific aperiodic sequences. Environments with bounded
(2<0), unbounded @ >0), and marginal Q =0) fluctua- ) )
tions are treated separately. Most of the results can be ob- The binary Thue-Morse sequeri@8] is generated by the
tained by adapting the analytical methods developed for théubstitutions ~ 6-01 ~ and 10, leading to

aperiodic TIM, using the correspondences given in Eqs01101001100101. .. . Thewandering exponent i$)=
(3.7, (3.9, (3.10, and (3.11). —o, thus the sequence has bounded fluctuations. Conse-

quently, the diffusion constant is finite and, as shown in Ap-
pendix A, can be calculated along the lineq 8] as

5 4
) . 4.9

Rl/4+ R~ 1/4

2. Thue-Morse sequence

A. Aperiodic environments with bounded fluctuations

1. Quasiperiodic (Fibonacci) environment b
0=

Quasiperiodic lattices can be generated in several differ-
ent ways, among others by the well known cut-and-project _ o . _
method. Here we use the following algebraic definition for aThe persistence probability is linear for small bias and is

one-dimensional quasiperiodic sequence: given by
i i+1 ?
i i
fi=1+ o ol (4.3 pper(é): W 0, (4.10
where[x] is the integer part ok and w>1 is irrational. in agreement with the result of Ref13], when properly

The Fibonacci sequence can be generated by the substitiianslated. Since the Thue-Morse sequence is reflection sym-
tion rule 0—010, 1—01 [26] starting with 0. When read metric, the persistence probability is the same at both ends of
from left to right, it corresponds to Eq4.3) with w=(/5  the system,pye(6) =Ppe 6), SO that the relation in Eq.
+1)/2 the golden mean. (4.9 is again fulfilled.

The sequence in Ed4.3) and the corresponding quasi-  Analyzing the results obtained for environments with
periodic environment, as defined in Eg.2), have bounded bounded fluctuations we are led to the following conclusions.
fluctuations since the wandering exponent in E42) is ) (i) Predictions of the relevance-irrelevance criterion are
= —1. Consequently, the diffusion constddy in Eq. (2.5  fully satisfied: The diffusion constant is finite and the critical
is finite. As shown in Appendix A, it can be expressed inexponents t= = y=1) take the same values as in homo-
closed form using the methods of REL0] as geneous environments.
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(i) In both examples, the diffusion constddy is invari- Pper— €XP( — consiX LY, (4.19
ant under the transformatidR— 1/R. This is in agreement
with the fact thatDy(R) is maximal for the homogeneous which goes to zero in the infinite-size limit.
system, i.e., aR=1. Reading the sequence from the other end amounts to ex-
(ii ) For symmetric sequences the persistence probabilitieshanging the digits 1 and 0, which is equivalent to the trans-
Poer andpye are equal, whereas for asymmetic sequence e Lt e ont has very dfferent prop
they satisfy the relatioppe(R) = ppe(1/R). erties for the two ends of the chain: While it stays finite at
o _ ) _ one end, it vanishes at the other. At this point one may ask
B. Aperiodic environments with unbounded fluctuations how the persistence probability behaves if the system starts
The aperiodic environments display unbounded fluctuaat an arbitrary positionalong the sequence. One can answer
tions when the wandering exponedt-0. Consequently, the by using the correspondences in Sec. lll and the known re-
diffusion constant in Eq(2.5) vanishes in the infinite peri- Sults for the surface magnetization of the Rudin-Shapiro TIM
odic approximant limit and the persistence probability in Eq.[29]. Typically, i.e., with probability one, the critical point
(2.7), like the surface magnetization in the TIM, has anpersistence vanishes, as in £¢.14. However, there is a
anomalous behavior. fraction of starting points, the so-calledre events p;e
To obtain a qualitative picture for the behavior of the RW ~L ~©a, for systems of siz&, where the persistence prob-
in such an environment, we estimate the leading eigenvalu@bility is finite p,,=O(1), as in Eq.(4.13. Then theaver-
of the FP operatok i, in a finite system of siz&, taking  age persistencewhich is obtained by averaging over the
into account that the relevant time scale of the process istarting positions, scales as the probability of the rare events,
given byt~ k. thus
According to Eq(3.12), the size dependence ®f;;, for a P
sequence with unbounded fluctuations is primarily deter- [PperL)Jav~Prare(L) ~L " "2, (4.19
mined by the produdii}_;'e; *~exp(—constx L®). Thus, at
criticality, the leading eigenvalue has a stretched exponenti
size dependence

here[ ],, denotes an average over the starting position.

he same scenario remains valid for other aperiodic se-
quences with unbounded fluctuations. Translating exact re-
N min~ €Xp( —const< L2). (4.17  sults for the TIM[29] into the RW language, the persistence
exponent®,, is connected to the wandering exponéhof

This implies an ultraslow diffusion process, which takesthe sequence via

place on a logarithmic time scale 0, -1-0. (4.16
(xz(t)>~(lnt)2’9. (4.12 To summarize, the diffusion process in an aperiodic environ-

In a random environment, witll=1/2, Eq. (4.12 corre- g‘rzgtevéiit Qp:;%g?ﬁggte gr(];l\lljvguljc?gt:r?tirisi ? ;:E/Tr? I,[CI)(:ET&:;;\Q

sponds to the Sinai d|ff_q5|on in EqL.1). Next we con_S|der persistence probability isot self-averagingits averaged de-
the persistence probability,e, and analyze its properties for endence involves the fluctuation exponéhtof the envi-
an exactly solvable environment with unbounded fluctual P

: ronment.
tions.
Rudin-Shapiro environment: Persistence probability C. Aperiodic environments with marginal fluctuations
The Rudin-Shapiro sequen¢28] is obtained via substi- Aperiodic environments with marginal fluctuations are

tutions on pairs of digits 060001, 010010, 16-1101, charaqterized by a wa}ndering.exponémf 0..The cri_tical .
and 111110 such that starting on 00, one generates thgehaw.or of the TIM with marg]nally aperiodic coupllngs.ls
sequence 000100100001110 . . Thewandering exponent nonumv_ersal and several critical exponents vary continu-
of the sequenc€ =1/2 is the same as for a random envi- ously with the strength of the aperiodic perturbation. From
ronment. the correspondences presented in Sec. lll, it follows that the
In the critical situation, the persistence probability can bediffusive behavior of the RW in this type of environment is
exactly calculated using the methods[a#] and the corre- @S0 anomalous. Generally, the diffusion constagtvan-
spondence in Eq3.8). One obtains completely different be- ishes and both the diffusion exponept= ¢/(R)<1 and the
haviors forR>1 andR<1: (i) For R>1, the persistence Persistence exponent=yx(R)>1 are continuous functions

probability remains finite for an infinite system at criticality, Of the asymmetry paramet& _ _ _
For aperiodic environments with marginal fluctuations,

the scaling behavior of the eigenvalues of the FP operator at
E— (4.13  the top of the spectrum can be obtained exactly by a renor-
1-RY24+R malization group(RG) transformation, as introduced for the

TIM in Ref. [15], later applied to different sequenced 6]

thus the transition in the persistence propertiedissontinu-  and generalized if17].
ousas the biass changes sign(ii) for R<1, the persistence The essence of the method is a decimation procedure such
probability has an anomalous size dependence at the criticéthat, after one step, a fractionbléf the original lattice sites
point, are left. The master equation for the renormalized system can

pperzl_
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be cast into the same form as the original one, provided #hus the sequence starts as 010201030102010. Thedif-
finite set of appropriate new parameters are introduced intéusion problem in the same environment with symmetric
the original equatioriparameter spageThe linearized trans- transition rates has already been studied beféte

formation at the fixed point corresponding X =0 gives In the nonsymmetric case the diffusion exponent is
the gap exponent, as indicated in Eq(2.16). To construct

explicitly the RG equations, we refer to the related work on In2

the TIM in Refs.[15—17. The same type of RG procedure (4.22

¥= 12, p-12)°
can be used to calculate the persistence exponent, but one In(R¥*+R™7%)

can also simply deduce it from a finite-size-scaling analysis ) )

of Eq. (2.7) at criticality, as shown in Appendix B for a The persistence e_xponents are different at the two ends of the

specific sequence. In the following we present results transsystem and are given by

lated from Refs[15,16 for several environments with mar-

ginal fluctuations. _In(1+R™YH)  — In(1+R) 4.23
X"z 0 X T2 '

1. Period-doubling environment

Using the substitutions 201 and 1-00 and starting One can also easily solve the diffusion problem for general-
with 0, one generates the period-doubling sequelr&® ized hierarchical environments following the solution of the
01000101010001D. . . , which, apart from the last digit, is corresponding TIM in Ref{16].
symmetric and has a vanishing wandering exponent. The dif- To summarize, the diffusion in marginally aperiodic en-
fusion exponent in the period-doubling environment is givenvironments is anomalous. Both the diffusion expongrnd

by the persistence exponen;ts; are continuous functions of
the parameteR. However, they satisfy the scaling relation
In2
= (4.17
16 p-1/6 — 2
+
In(R™+R™) X(R)+X(RI= s, (424
whereas the persistence exponents, which are the same at
both ends due to symmetry, read which is a consequence of E@.12).
. In(Rl/6+ R*l/ﬁ)
X=X~ T In2 (4.18 V. RELEVANCE-IRRELEVANCE CRITERION

IN HIGHER DIMENSIONS

as shown in Appendix B. The relevance-irrelevance criterion of Sec. Il can be gen-

eralized for ad-dimensional environment, where the non-
symmetric transition ratess, ., are perfectly correlated in
The paper-folding sequence can be generated by a recu— D dimensions. Thus they vary iB<d dimensions and
rent folding of a sheet of papgR8]. It corresponds to the the fluctuations are characterized by a wandering exponent
two-letter substitutions 060010, 11-0111, 16-0110, Q.
and 01-0011. Starting with 00 one arrives at In our considerations the basic role is played by the dis-
0010011000110M. .. . This environment has the same placement probability?(L), which measures the fraction of
(R—1/R) type of asymmetry as for the Rudin-Shapiro se-walks that have moved to a distantefrom their starting
quence, if one forgets the last, irrelevant, digit. The wanderposition during timet~L?, which is the characteristic time

2. Paper-folding environment

ing exponent vanishes. scale for a homogeneous medium. In a one-dimensional ho-
The diffusion exponent in the paper-folding environmentmogeneous environment with a weak uniform bias &),
is =In(w._/w_)<L™1, the displacement probability in the un-
favorable direction isP (L) ~exp(~consX §,L), thus ex-
In2 ponentially small.

(4.19 In the absence of a global bias, an inhomogendcas-

dom or aperiodigenvironment does not generally favor a net
The persistence exponents are different at the two ends of ttiisplacement of the particle. However, due to the fluctua-

Y= m(leJr R—1/4) :

system and are given by tions in the transition rates, the motion can be effectively
biased locally. We now estimate the effective force or aver-
In(1+R" Y3 _ In(1+RY) age local biass(L) inside a domainU, of linear sizel.
X= In2 rXT In2 ' (4.20 First, generalizing the expression in Eg.2), we calculate

the accumulated value of Wy, /w,. ) in the domain as
3. Hierarchical environment

Here we consider the Huberman-Kerszberg hierarchical A(L)= D) In(w,  /w,, )~In RLP, (5.1
environment 31], where the positions of the digitsf; sat- rel,

isfy the relation
Then the averaged local bias along the inhomogeneous di-

i=2fi(21+1), 1=0,12..., (4.2)  rections is given by
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A(L) free-fermionic excitations of an inhomogeneous TIM. This
5(L)”T”|—_D(1_m- (5.2 correspondence has been exploited to obtain relations be-
tween different physical quantities in the two problems. The
Thus the displacement probability, in analogy with the uni-analytical results previously obtained for the TIM have been
form case, is given by translated into exact results for the diffusion problem.
1-D(L-0) At this point we note that there is another model of sta-
P(L)~exd —consx &(L)L]~exd —cons L . tistical physics, thalirected walk which is also closely con-
(5.3 nected to the TIM. As was shown in RéfL5], the scaling
Now, depending on the sign of the exponent properties of the directed walk are connected to the eigen-
values of Eq(3.6) at thetop of the spectrumThus the three
¢=1-D(1-Q), (5.9 problems(lsing model, random walk, and directed wgalce
. ) B inherently related; the complete solution of any of those con-
the behavior _of t_he dlsplacgment probablhty and, consetyins the necessary information about the properties of the
quently, the diffusion properties are different. two others. In particular, one single RG transformation de-

(i) For¢<0, i.e., forQ<1—1/D, the displacement prob- s¢yineg the scaling properties of the three models: The fixed
ability has no exponential size dependence, thus one has t int atA =0 for the TIM governs the critical properties of

same type OT diffusive behavior as for hor_nogeneous syste Re Ising model and that of the Brownian motion, whereas
with zero bias. Consequently, the environment does no '

modify the normal diffusive motion of the particle and there—t € f|xeq point at the top of the spectrum is connected to the
fore this type of perturbation isrelevant properties of the directed walk. o .
(i) On the other hand, fop>0, i.e., forQ>1—1/D, the _ Next one can show that the parametrization of the transi-
displacement probability decays exponentially with, thus ~ tion probabilitiesw;. ;=1 below Eq.(2.2), does not affect
this type of environment iselevantfor the diffusive proper- the conclusions of the paper. The relevance-irrelevance cri-
ties. The relation between the relevant time s¢atehich is  terion in Sec. Il is evidently unaffected by this restriction and
proportional to the characteristic number of steps needed tim the marginal situation the nonuniversal exponepisg,
have a displacemerit and the length scale is obtained as and ¢ are also insensitive to this parametrization. For the
. CD(-0)+1 persistence exponents it follows from the fact that in Egs.
t~P(L) "~exp(cons L ). (5.9 (2.7 and(3.13 only the ratio of the transition rates appears.
Thus the mean square displacement, which is proportional t(l%rom Eq.(4.24 or, more generally from the reIaudB.lZ?,
L2, grows on a logarithmic scale as the same conclusllon is reached for _the exponenftThis
result can be obtained also by analyzing the structure of the
(X2(t))~(Int)211-DA-)] (5.6) systematic RG technique of RéL7].
The properties of the Brownian motion in a relevant ape-
(iii) The borderline caseb=0 corresponds to the mar- riodic environment are in many respects similar to those in
ginal situation where thé dependence in the exponential of disordered media. In the critical situation, i.e., in the absence
Eq. (5.3 can be logarithmic, leading to nonuniversal diffu- of global bias, the diffusion is ultraslow in both cases and the
sive behavior, as observed in Sec. IV for one-dimensionatorresponding relationd.l) and(4.12 are analogous. In the
systems. off-critical situation, however, there is an important differ-
We note that the above relevance-irrelevance criterion ignce between the diffusive properties in the two environ-
in complete agreement with the exact results we obtainedents. In a disordered media for small enough global bias,
above ford=D=1 . For example, Eqg4.12 and(5.6) co- such as &< 6<§, , the diffusive motion of the particle is
incide in this case. On the other hand, in the case of uniforranomalous and the average displacement of the walker
disorder withd=D and Q=1/2, the borderline dimension grows as a power lay(X(t))],,~t*, with a §-dependent
predicted by Eq(5.4) is d* =2, which is in agreement with exponent 6 (8)<1 [33]. This regime is in complete cor-

the results of RG investigatio82]. respondence with the Griffiths-McCoy phase of the random
transverse-field Ising spin chaii2l]. As shown very re-
VI. DISCUSSION cently in Ref[34], this anomalous diffusion regime is absent

_ ] ) ) for relevant aperiodic environments.
In this paper we have studied the scaling properties of the

Brownian motion in inhomogeneous environments where the
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APPENDIX A: DIFFUSION CONSTANT
AND PERSISTENCE PROBABILITY FOR THE
FIBONACCI AND THUE-MORSE ENVIRONMENTS

Using Eq.(4.2), the expression for the diffusion constant

Dy in Eg. (2.5 can be rewritten at criticality as

1 1 N N i
o —n—i —f
Do Nzgliglec jlle i
1 N N
= —2 E 2 Rgn79n+i, (Al)
whereg;=n;—ip., . Similarly, the persistence probability in

Eq. (2.7) is given at criticality by

L

=1+ R 9.
i=1

1
pper('—)

For the aperiodic environments, in the linht—o and
L>1, respectively, the powers & in Egs. (Al) and (A2)
can be replaced by their averaged values.

(i) For the Fibonacci sequencg,+ 1/w is the fractional
part of (+1)/w, which is uniformly distributed ovefr0,1]
for w irrational. Thus, in the limiN—<, the average in Eq.
(A1) can be replaced by an integral

1 1 1
—=f Rgdgf R™9%g,
Do Jo 0

which leads to the result given in E@t.4). In the same way,
for the persitence probability, EgA2) can be rewritten as

(A2)

(A3)

1
= |_R1’wj0 R~ 9g, (A4)

Pper

which is evaluated in Eq(4.5 using the correspondence

betweens andL !
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ity 1/2 and g,;,,=*1/2, each with probability 1/4. Then
considering the different parity combinations forandi in

Eqg. (Al), one obtains the expressi¢h.9). In the same way,
Eq. (A2) leads to Eq(4.10 for the persistence probability.

APPENDIX B: FINITE-SIZE SCALING CALCULATION
OF THE PERSISTENCE EXPONENT FOR THE PERIOD-
DOUBLING ENVIRONMENT

For the period-doubling sequenck,; =
=0, so that

1_fi and f2i+l

i
n2i:n2i+1:k21 fa=i—n (B1)

On a system with sizel4, one has
4L

:S4L(e,R):1+__§)l e R (B2)

Pper(4L)

and, splitting the sum into odd and even parts,
2L 2L-1

Sy (e, R)=1+e 1+ e @R Mt > e 27IR M1
=1 i=1

2L 2L—-1

=1+e 1+ (?R) R+ 1D (?R)'RM
i=1 i=1

=(1+e 1S, (?R,R1). (B3)

Iterating one step further, the last relation in EB3) leads
to

Si(e,R)=(1+e H(1+e 2R HS(e*R,R). (B4)
At the critical pointe,=R ™3 this gives
Su(€c,R)=(RY+R )25 (¢ ,R). (BY)

(i) For the Thue-Morse sequence, the average can be sim-

ply performed by noticing that,; _;+f,=1, 01 and 10 ap-
pearing with the same probability, thgg, =0 with probabil-

Sinceppe,~ 6¥~L X, one immediately recovers the persis-
tence exponent given in E¢4.18).
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