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Anomalous diffusion in aperiodic environments
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We study the Brownian motion of a classical particle in one-dimensional inhomogeneous environments
where the transition probabilities follow quasiperiodic or aperiodic distributions. Exploiting an exact corre-
spondence with the transverse-field Ising model with inhomogeneous couplings, we obtain many analytical
results for the random walk problem. In the absence of global bias the qualitative behavior of the diffusive
motion of the particle and the corresponding persistence probability strongly depend on the fluctuation prop-
erties of the environment. In environments with bounded fluctuations the particle shows normal diffusive
motion and the diffusion constant is simply related to the persistence probability. On the other hand, in a
medium with unbounded fluctuations the diffusion is ultraslow and the displacement of the particle grows on
logarithmic time scales. For the borderline situation with marginal fluctuations both the diffusion exponent and
the persistence exponent are continuously varying functions of the aperiodicity. Extensions of the results to
disordered media and to higher dimensions are also discussed.@S1063-651X~99!04402-5#

PACS number~s!: 64.60.2i, 66.30.Dn, 75.10.Nr, 05.50.1q
ha
nv
io
ot

em

he

er
ge
ca

t-
te
ie

ro
r

o-

in
are

or,
rk,
on
fu-

its
ally
d

by
-
lar
ro-
le.

and
ay

ing
lks,
dic
ely
riti-
ce-

d
he

ng
i-

g

I. INTRODUCTION

Brownian motion is perhaps the best understood stoc
tic process in classical physics in both homogeneous e
ronments and disordered media. The study of the diffus
problem in inhomogeneous environments is physically m
vated by transport processes~molecular diffusion, flow lines
in a porous medium, and electrical conduction! on the one
hand and the relaxational properties of disordered syst
~random magnets and spin glasses! on the other~see Refs.
@1,2#!.

In the presence of asymmetric transition rates, i.e., w
the probability per unit timewr ,r8 for a particle to jump from
site r to siter 8 is different fromwr8,r , the disorder strongly
modifies the behavior of the diffusive motion ind,2 dimen-
sions. In one space dimension, where the effect of disord
most pronounced, the diffusion is ultraslow and the avera
mean-square displacement grows on a logarithmic time s
@3#:

@^X2~ t !&#av; ln4t. ~1.1!

Another type of inhomogeneity is provided by fractal la
tices, either regular or random, such as percolation clus
in which the Brownian motion has been intensively stud
under the name ‘‘the ant in the labyrinth’’@4,5,2#. Also much
work has been devoted to the clarification of diffusion p
cesses in the presence of hierarchically distributed ene
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barriers @5,6#, a problem that is related to relaxation pr
cesses in disordered systems@7#.

In the present work we study the Brownian motion
inhomogeneous environments where the transition rates
asymmetric and distributed according to quasiperiodic
more generally, aperiodic rules. As a related earlier wo
one may mention an investigation of the Brownian moti
on the two-dimensional Penrose lattice, where normal dif
sive behavior has been found@8#. Here we mainly concen-
trate on one-dimensional aperiodic systems. Besides
mathematical interest, the present study is also physic
motivated since artificial multilayer systems with controlle
distributions of the atomic layers may now be grown
molecular beam epitaxy@9#. When particle transport has dif
ferent time scales for the motion parallel and perpendicu
to the layers, respectively, a one-dimensional diffusion p
cess perpendicular to the layers is, in principle, observab

The study of cooperative phenomena in quasiperiodic
aperiodic systems is an intensive field of research. One m
mention phase transitions and critical phenomena in Is
and other magnetic models, percolation, self-avoiding wa
etc. Aperiodic structures, which interpolate between perio
and random systems, may or may not influence qualitativ
the properties of a cooperative process. Concerning the c
cal behavior of aperiodic magnetic systems, a relevan
irrelevance criterion has been proposed@10,11#, which is an
extension of the well-known Harris criterion for disordere
systems@12#. The vast amount of exact results about t
critical properties of aperiodic quantum Ising chains@13–17#
and related aperiodically layered two-dimensional Isi
models@18# are all in accordance with this criterion. Aper

ed
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odicity may also change to second order a transition that i
first order in the pure system, as was demonstrated rece
in a numerical study@19#.

In the present work we show that a relevance-irreleva
criterion, similar to that of magnetic systems, can be form
lated for the Brownian motion, which is then checked agai
exact results obtained for different one-dimensional ap
odic environments.

The paper is organized as follows. In Sec. II we introdu
the basic notations and quantities~drift velocity, diffusion
constant, and persistence probability! and present the
relevance-irrelevance criterion for one-dimensional aperio
environments. In Sec. III an exact correspondence betw
the random walk~RW! and the transverse-field Ising mod
~TIM ! is presented in one dimension, which is then used
Sec. IV to obtain analytical results for irrelevant, releva
and marginal aperiodic environments. Our results are
tended to higher dimensions in Sec. V and discussed in
VI.

II. FORMALISM AND THE RELEVANCE-IRRELEVANCE
CRITERION

We consider a one-dimensional RW with nearest nei
bor hopping, characterized by transition probabilitieswi ,i 61
for a jump from sitei to site i 61. The time evolution of
Pi(t), the probability for the particle to be on sitei at timet,
is governed by the master equation

dPi

dt
5wi 21,i Pi 212~wi ,i 211wi ,i 11!Pi1wi 11,i Pi 11 .

~2.1!

The transition probabilities are generally nonsymmet
Here we suppose that their ratio is given by

wi ,i 11

wi 11,i
5e i5eRf i, ~2.2!

where R.0 is the amplitude of the inhomogeneity (R51
corresponds to the homogeneous lattice! and the integersf i
are taken from an aperiodic or a quasiperiodic sequence.
the sake of simplicity in the following we takewi 11,i5w←
51.

The aperiodic chain may be replaced by a periodic
proximant of periodN such thate i5e i 1N @20,10#. The ape-
riodic system is recovered in the limitN→`. Exact expres-
sions for the drift velocityvd and the diffusion constantD
obtained by Derrida for an arbitrary distribution of the tra
sition rates@20# can then be used to treat the aperiodic ca

With our notations, the drift velocity of the aperiod
model may be written as

vd5

12 )
n51

N

en
21

12 )
n51

N

en
211

1

N (
n51

N

(
i 51

N

en11
21 en12

21
•••en1 i

21

.

~2.3!

Defining the control parameter as
of
tly

e
-
t
i-

e

ic
en

n
,
x-
c.

-

.

or

-

e.

d5
1

N (
n51

N

ln en , ~2.4!

the drift velocity is zero ford50, whereas for a small bia
such thatdN!1, the drift velocity is proportional tod:

vd5dD0 ,
1

D0
5

1

N2 (
n51

N

(
i 51

N

en11
21 en12

21
•••en1 i

21 .

~2.5!

One can similarly calculate the diffusion constantD, which
in the zero bias cased50 is simply given by

D~d50!5D0 . ~2.6!

Before analyzing the diffusive behavior of aperiodic wal
we consider another quantity of interest, the persiste
probability Pper(L,t), which is the probability that the
walker starting at sitei 51 does not cross its starting positio
until time t. Here the length scaleL in the definition is set by
the presence of an adsorbing site ati 5L11, thuswL11,L
50. Due to this adsorbing site the persistence probability
a finite long time limit limt→`Pper(L,t)5pper(L), which
can be expressed as@21#

pper~L !5S 11(
i 51

L

)
j 51

i

e j
21D 21

. ~2.7!

It is easy to see that, in the thermodynamic lim
limL→`pper(L)5pper plays the role of an order parameter:
is nonvanishing ford.0 only. For the homogeneous syste
with R51 in Eq. ~2.2!

pper
hom512e21.d, ~2.8!

whereas at the critical point in a finite homogeneous sys

pper
hom~L,d50!5

1

L11
. ~2.9!

Pper(t)5 limL→`Pper(L,t) is the usual persistence probab
ity for an infinite system.

Next we analyze the expressions of the basic quantitie
Eqs. ~2.5! and ~2.7!. The qualitative behavior for anyperi-
odic system, i.e., whenN is finite, is the same in the vicinity
of the critical point: The diffusion constantD0 in Eq. ~2.5! is
finite and the persistence probability in Eq.~2.7! has a linear
d or L21 dependence.

For aperiodic systems, which are obtained in the limitN
→`, one has to consider the products of the transition ra
Pn(L)5) i 51

L en1 i5exp@Dn(L)#, where Dn(L)5( i 51
L ln en1i

measures the fluctuations in the ‘‘energy landscape’’ wh
ln ei is related to the height of thei th energy barrier in an
activated diffusion process. Here we differentiate betwe
three possibilities.

~i! For bounded fluctuationsin the transition rates, i.e.
with a flat energy landscape, the productsPn(L) stay finite at
the critical point, thus the diffusion constantD0 remains fi-
nite and the lineard dependence of the persistence probab
ity is maintained. Thus this type of aperiodicity isirrelevant
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and the aperiodic Brownian motion keeps the same crit
properties as the homogeneous one.

~ii ! For unbounded fluctuationsin the transition rates
when the energy landscape is rough, so thatDn(L);LV with
a wandering exponentV.0, the productsPn(L) that appear
in Eqs.~2.5! and~2.7! are divergent at the critical point whe
L→`. Consequently, the diffusion constantD0 vanishes and
the persistence probability displays a nonlineard depen-
dence. We conclude that an aperiodic environment with
bounded fluctuations is arelevant perturbation for the
Brownian motion. As we show later, diffusion in a releva
aperiodic environment isultraslow, i.e., the mean-square dis
placement grows on a logarithmic time scale, as for the S
model in Eq.~1.1!.

~iii ! In the borderline case, the wandering exponent of
environment isV50, thus fluctuations in the energy land
scape grow logarithmically. In thismarginal situationthe
products of the transition ratesPn(L) have a power lawL
dependence and the different physical quantities also dis
power law singularities. For this type ofanomalous diffusion
the drift velocity depends on the bias as

vd;dt, udu!1, ~2.10!

with t.1, whereas the mean square displacement grows

^X2~ t !&;tc, ~2.11!

with c,1. Finally, the persistence probability is in gene
characterized by algebraic singularities

pper;dx, Pper~ t !;t2Q. ~2.12!

The critical exponents defined above are not independ
Using results of Sec. III in Eqs.~3.7! and~3.9!, one can show
that the relevant time scalet and the biasd are related by
t21;vdd;d11t. For the length scale, one hasL;vdt
;d21. These relations lead to the scaling laws

t5
2

c
21, x5

2

c
Q, ~2.13!

which evidently hold for normal diffusion witht5c5x
51 andQ51/2. Thus two critical exponents are enough
describe the behavior of the anomalous diffusion.

To obtain the characteristic quantities for relevant a
marginal environments one has to solve the master equa
~2.1!, which amounts to solving the eigenvalue problem
the transition matrix or Focker-Planck~FP! operator

M vk5lkvk , uk
T M5uk

Tlk , ~2.14!

where the matrix elements take the form (M ) i , j5wi , j for i
Þ j and (M ) i ,i52( jwi , j . All the physical properties of the
model can be expressed in terms of the left and right eig
vectors uk and vk , respectively, and the eigenvalueslk ,
which are nonpositive. For example, the probabilityPi , j (t)
that the walker starting att50 at sitei arrives on sitej at
time t is given by

Pi , j~ t !5(
k

uk~ i !vk~ j !exp~lkt !. ~2.15!
al

-
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e

ay
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l
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d
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The relevant time scale of the problem is related to the
verse of the largest nonzero eigenvalues and the dynam
properties of the RW are connected to the scaling behavio
the eigenvalues of the FP operator at the top of the spectr
Considering a large finite system of sizeL, under a change o
the length scale by a factor ofb.1, such thatL85L/b, the
eigenvalues at the top of the spectrum withk!L are ex-
pected to transform as

lk85byllk , ~2.16!

where yl is the scaling dimension of the gap. From E
~2.16! the finite-size behavior of the eigenvalueslk(L)
;L2yl follows, thus the time and length scales are rela
through t;Lyl. On the other hand, from Eq.~2.11! L2

;tc, thus the diffusion exponent is given by

c5
2

yl
. ~2.17!

For relevant aperiodic environments, the leading eigenva
have a stretched exponential finite-size dependence, thu
diffusion exponent is formally zero.

In the master equation formalism, the persistence pr
ability Pper(L,t) can be calculated by putting adsorbing sit
at i 50 and i 5L11. ThenPper(L,t)5P1,L11(t), which in
the large-t limit is just the first component of the zero-mod
left eigenvectorpper(L)5u1(1), asgiven by Eq.~2.7!.

III. CORRESPONDENCE BETWEEN THE RANDOM
WALK AND THE ISING MODEL

IN A TRANSVERSE FIELD

First we rewrite the eigenvalue problem of the FP ope
tor in Eq. ~2.14! in terms of the components of the righ
eigenvectorvk( i ) as

wi 21,ivk~ i 21!2~wi ,i 211wi ,i 11!vk~ i !1wi 11,ivk~ i 11!

5lkvk~ i ! ~3.1!

and consider a finite system of sizeL, i.e., we setw0,1
5wL11,L50. Then we introduce the new variables

v~ i !5a i ṽ~ i !,

a i 115a i S wi ,i 11

wi 11,i
D 1/2

5a1S )
j 51

i
wj , j 11

wj 11,j
D 1/2

, ~3.2!

in terms of which the eigenvalue problem is transformed i

~wi 21,iwi ,i 21!1/2ṽk~ i 21!2~wi ,i 211wi ,i 11!ṽk~ i !

1~wi 11,iwi ,i 11!1/2ṽk~ i 11!5lkṽk~ i !, ~3.3!

which is a real symmetric eigenvalue problem( jTi j ṽk( j )
5l ṽk( i ) with Ti j 5Tji . Consequently, the eigenvalueslk of
the FP operator are real.

Next we show that the eigenvalue problem~3.3! formally
appears in the free-fermion representation of the transve
field Ising spin chain, with couplingsJi and transverse fields
hi , described by the Hamiltonian



ar

n

rre
E
a
o

ns

f
n

n

Re

al
y

o

to
n of

nt

IM

f

py

t

t is

t

e

en-
ior
el-
tion

al-

s,
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H52 (
i 51

L21

Jis i
xs i 11

x 2(
i 51

L

his i
z , ~3.4!

wheres i
x ands i

z are Pauli matrices at sitei. The Hamiltonian
H can be transformed into a free-fermion model by stand
techniques@22#:

H5(
k

Lk~hk
†hk21/2!. ~3.5!

Here thehk
† (hk) are fermion creation~annihilation! opera-

tors and the excitation energyLk is the solution of the ei-
genvalue equation

Ji 21hi 21Fk~ i 21!1~Ji 21
2 1hi

2!Fk~ i !1JihiFk~ i 11!

5Lk
2Fk~ i !. ~3.6!

Comparing Eqs.~3.6! and~3.3!, one can notice that they ca
be cast into the same form with the correspondences

Ji⇔~wi 11,i !
1/2,

hi⇔~wi ,i 11!1/2,

~3.7!

Fk~ i !⇔~21! i ṽk~ i !,

Lk
2⇔2lk .

Thus there is amathematical equivalencebetween the RW in
an inhomogeneous environment and the TIM with the co
sponding inhomogeneous couplings, as described in
~3.7!. One can, however, go further and show that there
severalphysical quantitiesthat are closely related in the tw
problems.

First let us consider the persistence probabilitypper(L),
which is calculated with adsorbing boundary conditio
w0,15wL11,L50 as pper(L)5u1(1)v1(L11)
5ũ1(1)a1

21aL11ṽ1(L11)5@ ṽ1(L11)#2. Now using the
correspondences in Eq.~3.7!, the equivalent TIM withh0
5JL50 has a fixed spin ati 50, whereas the other end o
the chain ati 5L11 is free@23#. The surface magnetizatio
of the chain measured on thei 5(L11)th spin is given by
m̄s(L)5F1(L11) @23,24#, thus using Eq.~3.7! we have a
relation between the surface magnetization of the TIM a
the persistence probability of the RW:

@m̄s~L !#2⇔pper~L !. ~3.8!

We note that this relation has already been mentioned in
@21#.

Let us now analyze the relation between the energy sc
in the two problemslk andLk , respectively. First one ma
notice that, according to the last of Eqs.~3.7!, the eigenval-
ueslk of the FP operator are nonpositive, as they should
physical grounds.

For the periodic TIM with Ji5h and hi5hi 1N5he i
1/2,

the energy of low-lying modes, close to the critical pointd
50, is given by a perturbation calculation@10# as
d

-
q.
re

d

f.

es

n

Lk
2.vs

2~d21qk
2!, ~3.9!

whereqk;1/N denotes the wave number corresponding
the smallest excitation energy. Comparing the expressio
the sound velocityvs in Ref. @10# to D0 in Eq. ~2.5!, we
obtain another correspondence

vs
2⇔D0 . ~3.10!

Taking the infinite periodic approximant limitN→`, we
obtain the following important result: If in an environme
the diffusion is normal, i.e., the diffusion constantD0 is
finite, then the phase transition of the corresponding T
with inhomogeneous couplings is in theOnsager universality
class. On the other hand, if the diffusion isanomalous, i.e.,
the diffusion exponent isc,1, then the phase transition o
the TIM is not of Onsager type. In the marginal case the
phase transition in the TIM is characterized by an anisotro
exponent~or dynamical exponent! z.1, which describes the
finite-size scaling behavior of the gapLk;L2z for k!L.
According to Eq.~3.7!, z is related to the diffusion exponen
through

z⇔ 1

c
. ~3.11!

On the other hand, in the relevant case,Lk has a stretched
exponentialL dependence, thus the dynamical exponen
formally infinite.

Finally, we present a useful estimate for the smallest~in
absolute value! nonzero eigenvalue of the FP operatorlmin
by transforming a related result for the TIM@16,23#. Having
a large finite chain of lengthL with a reflecting boundary
condition ~BC! at i 51(w1,05w0,150) and adsorbing BC a
i 5L11(wL11,L50, wL,L11Þ0), then the leading finite-
size behavior oflmin(L) is connected to the product of th
persistence probabilities at the two ends of the chain as

lmin~L !.2pper~L ! p̄per~L !)
i 51

L

e i
21 , ~3.12!

where the persistence probability at siteL is given by

p̄per~L !5S 11 (
i 51

L21

)
j 51

i

eL2 j
21 D 21

, ~3.13!

whereaspper(L) is given by Eq.~2.7!, however, forL21
sites.

IV. DIFFUSION IN APERIODIC ENVIRONMENTS

Here we consider different one-dimensional aperiodic
vironments and study the corresponding diffusive behav
by analytical methods. As we mentioned before, the r
evance of the perturbation is connected to the fluctua
properties of the aperiodic environment.

To be more specific, we consider the behavior at critic
ity (d50) of the logarithm of the transition rates lnei , which
is related to the height of thei th energy barrier,Dei in an
activated diffusion process. When the global bias vanishee
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takes its critical valueec such that, according to Eq.~2.4!,

ec5R2r`, r`5 lim
L→`

nL /L, nL5(
i 51

L

f i , ~4.1!

wherer` is the asymptotic density of the perturbed tran
tion probabilities. Then the fluctuation of the energy lan
scape in a large system of sizeL is characterized by

D~L !5(
i 51

L

ln e i5nL ln R1L ln ec

5~nL2Lr`!ln R;LV ln R. ~4.2!

HereV is the wandering exponent of the aperiodic seque
@25#, which is easily obtained for aperiodic substitutional s
quences.

Working with a finite alphabetA, B, . . . , such that, via
subsitution,A→S(A), B→S(B), etc., the sequencef i in
Eq. ~2.2! is obtained by starting with one of the letters, ite
ating the substitution process, and finally replacing the let
by digits ~or groups of digits! 0 and 1. For a two-letter se
quence, one can directly proceed with substitutions on 0
1.

The fluctuation properties of a sequence can be dedu
from its substitution matrix with entriesni j giving the num-
bers of lettersi 5A,B, . . . in S( j )( j 5A,B, . . . ) @25#. The
wandering exponentV involves the two largest eigenvalue
in modulus of this matrix,m1 and m2 , and readsV
5 ln um2u/ln m1.

We now consider different environments associated w
specific aperiodic sequences. Environments with boun
(V,0), unbounded (V.0), and marginal (V50) fluctua-
tions are treated separately. Most of the results can be
tained by adapting the analytical methods developed for
aperiodic TIM, using the correspondences given in E
~3.7!, ~3.8!, ~3.10!, and~3.11!.

A. Aperiodic environments with bounded fluctuations

1. Quasiperiodic (Fibonacci) environment

Quasiperiodic lattices can be generated in several dif
ent ways, among others by the well known cut-and-proj
method. Here we use the following algebraic definition fo
one-dimensional quasiperiodic sequence:

f i511F i

vG2F i 11

v G , ~4.3!

where@x# is the integer part ofx andv.1 is irrational.
The Fibonacci sequence can be generated by the sub

tion rule 0→010, 1→01 @26# starting with 0. When read
from left to right, it corresponds to Eq.~4.3! with v5(A5
11)/2 the golden mean.

The sequence in Eq.~4.3! and the corresponding quas
periodic environment, as defined in Eq.~2.2!, have bounded
fluctuations since the wandering exponent in Eq.~4.2! is V
521. Consequently, the diffusion constantD0 in Eq. ~2.5!
is finite. As shown in Appendix A, it can be expressed
closed form using the methods of Ref.@10# as
-
-

e
-

rs

d

ed

h
d

b-
e
.

r-
t

itu-

D05S ln R

R1/22R21/2D 2

. ~4.4!

It is interesting to note thatD0 does not depend on the valu
of the irrational parameterv.

The persistence probability in Eq.~2.7! can also be evalu-
ated analytically using the techniques of Ref.@27# ~see Ap-
pendix A!. For small bias there is a lineard dependence

pper~d!5R121/v
ln R

R21
d, 0,d!1, ~4.5!

where the prefactor depends onv.
For the other end of the system, except for the first di

which is irrelevant, the sequence, read from right to left,
given by

f i5F i 1v

v2 G2F i 1v21

v2 G , ~4.6!

which leads to the persistence probability

p̄per~d!5R2111/v
ln R

12R21
d, 0,d!1. ~4.7!

One may notice a simple relation between the diffus
constant and the persistence probabilities

pper~d! p̄per~d!5D0d2, ~4.8!

which is valid for any value of the irrational parameterv.

2. Thue-Morse sequence

The binary Thue-Morse sequence@28# is generated by the
substitutions 0→01 and 1→10, leading to
0110100110010110 . . . . The wandering exponent isV5
2`, thus the sequence has bounded fluctuations. Co
quently, the diffusion constant is finite and, as shown in A
pendix A, can be calculated along the lines of@10# as

D05S 2

R1/41R21/4D 4

. ~4.9!

The persistence probability is linear for small bias and
given by

pper~d!5S 2

R1/41R21/4D 2

d, ~4.10!

in agreement with the result of Ref.@13#, when properly
translated. Since the Thue-Morse sequence is reflection s
metric, the persistence probability is the same at both end
the system,pper(d)5 p̄per(d), so that the relation in Eq
~4.8! is again fulfilled.

Analyzing the results obtained for environments w
bounded fluctuations we are led to the following conclusio

~i! Predictions of the relevance-irrelevance criterion a
fully satisfied: The diffusion constant is finite and the critic
exponents (t5c5x51) take the same values as in hom
geneous environments.
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~ii ! In both examples, the diffusion constantD0 is invari-
ant under the transformationR→1/R. This is in agreemen
with the fact thatD0(R) is maximal for the homogeneou
system, i.e., atR51.

~iii ! For symmetric sequences the persistence probabil
pper and p̄per are equal, whereas for asymmetric sequen
they satisfy the relationpper(R)5 p̄per(1/R).

B. Aperiodic environments with unbounded fluctuations

The aperiodic environments display unbounded fluct
tions when the wandering exponentV.0. Consequently, the
diffusion constant in Eq.~2.5! vanishes in the infinite peri
odic approximant limit and the persistence probability in E
~2.7!, like the surface magnetization in the TIM, has
anomalous behavior.

To obtain a qualitative picture for the behavior of the R
in such an environment, we estimate the leading eigenv
of the FP operatorlmin in a finite system of sizeL, taking
into account that the relevant time scale of the proces
given by t;lmin

21 .
According to Eq.~3.12!, the size dependence oflmin for a

sequence with unbounded fluctuations is primarily de
mined by the product) i 51

L21e i
21;exp(2const3LV). Thus, at

criticality, the leading eigenvalue has a stretched exponen
size dependence

lmin;exp~2const3LV!. ~4.11!

This implies an ultraslow diffusion process, which tak
place on a logarithmic time scale

^X2~ t !&;~ ln t !2/V. ~4.12!

In a random environment, withV51/2, Eq. ~4.12! corre-
sponds to the Sinai diffusion in Eq.~1.1!. Next we consider
the persistence probabilitypper and analyze its properties fo
an exactly solvable environment with unbounded fluct
tions.

Rudin-Shapiro environment: Persistence probability

The Rudin-Shapiro sequence@28# is obtained via substi-
tutions on pairs of digits 00→0001, 01→0010, 10→1101,
and 11→1110 such that starting on 00, one generates
sequence 0001001000011101 . . . . Thewandering exponen
of the sequenceV51/2 is the same as for a random env
ronment.

In the critical situation, the persistence probability can
exactly calculated using the methods of@14# and the corre-
spondence in Eq.~3.8!. One obtains completely different be
haviors for R.1 and R,1: ~i! For R.1, the persistence
probability remains finite for an infinite system at criticalit

pper512
R1/2

12R1/21R
, ~4.13!

thus the transition in the persistence properties isdiscontinu-
ousas the biasd changes sign;~ii ! for R,1, the persistence
probability has an anomalous size dependence at the cr
point,
es
s

-

.

ue

is

r-
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e

e

al

pper;exp~2const3L1/2!, ~4.14!

which goes to zero in the infinite-size limit.
Reading the sequence from the other end amounts to

changing the digits 1 and 0, which is equivalent to the tra
formation R→1/R. Thus the persistence probability of th
critical Rudin-Shapiro environment has very different pro
erties for the two ends of the chain: While it stays finite
one end, it vanishes at the other. At this point one may
how the persistence probability behaves if the system st
at an arbitrary positioni along the sequence. One can answ
by using the correspondences in Sec. III and the known
sults for the surface magnetization of the Rudin-Shapiro T
@29#. Typically, i.e., with probability one, the critical poin
persistence vanishes, as in Eq.~4.14!. However, there is a
fraction of starting points, the so-calledrare events prare
;L2Qav, for systems of sizeL, where the persistence prob
ability is finite pper5O(1), as in Eq.~4.13!. Then theaver-
age persistence, which is obtained by averaging over th
starting positions, scales as the probability of the rare eve
thus

@pper~L !#av;prare~L !;L2Qav, ~4.15!

where @ #av denotes an average over the starting positi
The same scenario remains valid for other aperiodic
quences with unbounded fluctuations. Translating exact
sults for the TIM@29# into the RW language, the persisten
exponentQav is connected to the wandering exponentV of
the sequence via

Qav512V. ~4.16!

To summarize, the diffusion process in an aperiodic envir
ment with unbounded fluctuations is anomalous:~i! The av-
erage displacement grows logarithmically in time and~ii ! the
persistence probability isnot self-averaging; its averaged de-
pendence involves the fluctuation exponentV of the envi-
ronment.

C. Aperiodic environments with marginal fluctuations

Aperiodic environments with marginal fluctuations a
characterized by a wandering exponentV50. The critical
behavior of the TIM with marginally aperiodic couplings
nonuniversal and several critical exponents vary conti
ously with the strength of the aperiodic perturbation. Fro
the correspondences presented in Sec. III, it follows that
diffusive behavior of the RW in this type of environment
also anomalous. Generally, the diffusion constantD0 van-
ishes and both the diffusion exponentc5c(R),1 and the
persistence exponentx5x(R).1 are continuous functions
of the asymmetry parameterR.

For aperiodic environments with marginal fluctuation
the scaling behavior of the eigenvalues of the FP operato
the top of the spectrum can be obtained exactly by a ren
malization group~RG! transformation, as introduced for th
TIM in Ref. @15#, later applied to different sequences in@16#
and generalized in@17#.

The essence of the method is a decimation procedure
that, after one step, a fraction 1/b of the original lattice sites
are left. The master equation for the renormalized system
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be cast into the same form as the original one, provide
finite set of appropriate new parameters are introduced
the original equation~parameter space!. The linearized trans-
formation at the fixed point corresponding tol* 50 gives
the gap exponentyl as indicated in Eq.~2.16!. To construct
explicitly the RG equations, we refer to the related work
the TIM in Refs.@15–17#. The same type of RG procedur
can be used to calculate the persistence exponent, but
can also simply deduce it from a finite-size-scaling analy
of Eq. ~2.7! at criticality, as shown in Appendix B for a
specific sequence. In the following we present results tra
lated from Refs.@15,16# for several environments with mar
ginal fluctuations.

1. Period-doubling environment

Using the substitutions 0→01 and 1→00 and starting
with 0, one generates the period-doubling sequence@30#
0100010101000100 . . . , which, apart from the last digit, is
symmetric and has a vanishing wandering exponent. The
fusion exponent in the period-doubling environment is giv
by

c5
ln 2

ln~R1/61R21/6!
, ~4.17!

whereas the persistence exponents, which are the sam
both ends due to symmetry, read

x5x̄5
ln~R1/61R21/6!

ln 2
, ~4.18!

as shown in Appendix B.

2. Paper-folding environment

The paper-folding sequence can be generated by a re
rent folding of a sheet of paper@28#. It corresponds to the
two-letter substitutions 00→0010, 11→0111, 10→0110,
and 01→0011. Starting with 00 one arrives a
0010011000110110 . . . . This environment has the sam
(R↔1/R) type of asymmetry as for the Rudin-Shapiro s
quence, if one forgets the last, irrelevant, digit. The wand
ing exponent vanishes.

The diffusion exponent in the paper-folding environme
is

c5
ln 2

ln~R1/41R21/4!
. ~4.19!

The persistence exponents are different at the two ends o
system and are given by

x5
ln~11R21/2!

ln 2
, x̄5

ln~11R1/2!

ln 2
. ~4.20!

3. Hierarchical environment

Here we consider the Huberman-Kerszberg hierarch
environment@31#, where the positionsi of the digits f i sat-
isfy the relation

i 52 f i~2l 11!, l 50,1,2, . . . , ~4.21!
a
to
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thus the sequence starts as 0102010301020104 . . . . Thedif-
fusion problem in the same environment with symmet
transition rates has already been studied before@6#.

In the nonsymmetric case the diffusion exponent is

c5
ln 2

ln~R1/21R21/2!
. ~4.22!

The persistence exponents are different at the two ends o
system and are given by

x5
ln~11R21!

ln 2
, x̄5

ln~11R!

ln 2
. ~4.23!

One can also easily solve the diffusion problem for gene
ized hierarchical environments following the solution of t
corresponding TIM in Ref.@16#.

To summarize, the diffusion in marginally aperiodic e
vironments is anomalous. Both the diffusion exponentc and
the persistence exponentsx,x̄ are continuous functions o
the parameterR. However, they satisfy the scaling relation

x~R!1x̄~R!5
2

c~R!
, ~4.24!

which is a consequence of Eq.~3.12!.

V. RELEVANCE-IRRELEVANCE CRITERION
IN HIGHER DIMENSIONS

The relevance-irrelevance criterion of Sec. II can be g
eralized for ad-dimensional environment, where the no
symmetric transition rateswr ,r8 are perfectly correlated in
d2D dimensions. Thus they vary inD<d dimensions and
the fluctuations are characterized by a wandering expon
V.

In our considerations the basic role is played by the d
placement probabilityP(L), which measures the fraction o
walks that have moved to a distanceL from their starting
position during timet;L2, which is the characteristic time
scale for a homogeneous medium. In a one-dimensional
mogeneous environment with a weak uniform bias 0,du
5 ln(w← /w→)!L21, the displacement probability in the un
favorable direction isPu(L);exp(2const3duL), thus ex-
ponentially small.

In the absence of a global bias, an inhomogeneous~ran-
dom or aperiodic! environment does not generally favor a n
displacement of the particle. However, due to the fluct
tions in the transition rates, the motion can be effectiv
biased locally. We now estimate the effective force or av
age local biasd(L) inside a domainUL of linear sizeL.
First, generalizing the expression in Eq.~4.2!, we calculate
the accumulated value of ln(wr ,r8 /wr8,r) in the domain as

D~L !5 (
rPUL

ln~wr ,r8 /wr8,r !; ln RLDV. ~5.1!

Then the averaged local bias along the inhomogeneous
rections is given by
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d~L !;
D~L !

LD ;L2D~12V!. ~5.2!

Thus the displacement probability, in analogy with the u
form case, is given by

P~L !;exp@2const3d~L !L#;exp@2const3L12D~12V!#.
~5.3!

Now, depending on the sign of the exponent

f512D~12V!, ~5.4!

the behavior of the displacement probability and, con
quently, the diffusion properties are different.

~i! For f,0, i.e., forV,121/D, the displacement prob
ability has no exponential size dependence, thus one ha
same type of diffusive behavior as for homogeneous syst
with zero bias. Consequently, the environment does
modify the normal diffusive motion of the particle and ther
fore this type of perturbation isirrelevant.

~ii ! On the other hand, forf.0, i.e., forV.121/D, the
displacement probability decays exponentially withLf, thus
this type of environment isrelevantfor the diffusive proper-
ties. The relation between the relevant time scalet, which is
proportional to the characteristic number of steps neede
have a displacementL, and the length scaleL is obtained as

t;P~L !21;exp~const3L2D~12V!11!. ~5.5!

Thus the mean square displacement, which is proportiona
L2, grows on a logarithmic scale as

^X2~ t !&;~ ln t !2/[12D~12V!] . ~5.6!

~iii ! The borderline casef50 corresponds to the mar
ginal situation where theL dependence in the exponential
Eq. ~5.3! can be logarithmic, leading to nonuniversal diff
sive behavior, as observed in Sec. IV for one-dimensio
systems.

We note that the above relevance-irrelevance criterio
in complete agreement with the exact results we obtai
above ford5D51 . For example, Eqs.~4.12! and ~5.6! co-
incide in this case. On the other hand, in the case of unifo
disorder withd5D and V51/2, the borderline dimension
predicted by Eq.~5.4! is d* 52, which is in agreement with
the results of RG investigations@32#.

VI. DISCUSSION

In this paper we have studied the scaling properties of
Brownian motion in inhomogeneous environments where
transition rates are asymmetric and their variation follo
some quasiperiodic, aperiodic, or hierarchical rules. It
been shown that the diffusive motion of a particle in su
environments can be anomalous and a relevance-irrelev
criterion has been formulated, which allows one to pred
the different scenarios. In one dimension, we have obtai
many exact results that all are in agreement with the abo
mentioned relevance-irrelevance criterion. In these o
dimensional calculations, we have made use of an e
mathematical correspondence between the master equ
of the RW and the eigenvalue problem for the energy of
-
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free-fermionic excitations of an inhomogeneous TIM. Th
correspondence has been exploited to obtain relations
tween different physical quantities in the two problems. T
analytical results previously obtained for the TIM have be
translated into exact results for the diffusion problem.

At this point we note that there is another model of s
tistical physics, thedirected walk, which is also closely con-
nected to the TIM. As was shown in Ref.@15#, the scaling
properties of the directed walk are connected to the eig
values of Eq.~3.6! at thetop of the spectrum. Thus the three
problems~Ising model, random walk, and directed walk! are
inherently related; the complete solution of any of those c
tains the necessary information about the properties of
two others. In particular, one single RG transformation d
scribes the scaling properties of the three models: The fi
point atL50 for the TIM governs the critical properties o
the Ising model and that of the Brownian motion, where
the fixed point at the top of the spectrum is connected to
properties of the directed walk.

Next one can show that the parametrization of the tran
tion probabilities,wi 11,i51 below Eq.~2.2!, does not affect
the conclusions of the paper. The relevance-irrelevance
terion in Sec. II is evidently unaffected by this restriction a

in the marginal situation the nonuniversal exponentsx,x̄,
and c are also insensitive to this parametrization. For t
persistence exponents it follows from the fact that in E
~2.7! and~3.13! only the ratio of the transition rates appea
From Eq.~4.24! or, more generally from the relation~3.12!,
the same conclusion is reached for the exponentc. This
result can be obtained also by analyzing the structure of
systematic RG technique of Ref.@17#.

The properties of the Brownian motion in a relevant ap
riodic environment are in many respects similar to those
disordered media. In the critical situation, i.e., in the abse
of global bias, the diffusion is ultraslow in both cases and
corresponding relations~1.1! and~4.12! are analogous. In the
off-critical situation, however, there is an important diffe
ence between the diffusive properties in the two enviro
ments. In a disordered media for small enough global b
such as 0,d,d1 , the diffusive motion of the particle is
anomalous and the average displacement of the wa
grows as a power law@^X(t)&#av;tm, with a d-dependent
exponent 0,m(d),1 @33#. This regime is in complete cor
respondence with the Griffiths-McCoy phase of the rand
transverse-field Ising spin chain@21#. As shown very re-
cently in Ref.@34#, this anomalous diffusion regime is abse
for relevant aperiodic environments.
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APPENDIX A: DIFFUSION CONSTANT
AND PERSISTENCE PROBABILITY FOR THE

FIBONACCI AND THUE-MORSE ENVIRONMENTS

Using Eq.~4.1!, the expression for the diffusion consta
D0 in Eq. ~2.5! can be rewritten at criticality as

1

D0
5

1

N2 (
n51

N

(
i 51

N

ec
2n2 i )

j 51

i

R2 f j 1n

5
1

N2 (
n51

N

(
i 51

N

Rgn2gn1 i, ~A1!

wheregi5ni2 ir` . Similarly, the persistence probability i
Eq. ~2.7! is given at criticality by

1

pper~L !
511(

i 51

L

R2gi. ~A2!

For the aperiodic environments, in the limitN→` and
L@1, respectively, the powers ofR in Eqs. ~A1! and ~A2!
can be replaced by their averaged values.

~i! For the Fibonacci sequence,gi11/v is the fractional
part of (i 11)/v, which is uniformly distributed over@0,1#
for v irrational. Thus, in the limitN→`, the average in Eq
~A1! can be replaced by an integral

1

D0
5E

0

1

RgdgE
0

1

R2gdg, ~A3!

which leads to the result given in Eq.~4.4!. In the same way,
for the persitence probability, Eq.~A2! can be rewritten as

1

pper
5LR1/vE

0

1

R2gdg, ~A4!

which is evaluated in Eq.~4.5! using the correspondenc
betweend andL21.

~ii ! For the Thue-Morse sequence, the average can be
ply performed by noticing thatf 2i 211 f 2i51, 01 and 10 ap-
pearing with the same probability, thusg2i50 with probabil-
ac

s.

.

m-

ity 1/2 and g2i 11561/2, each with probability 1/4. Then
considering the different parity combinations forn and i in
Eq. ~A1!, one obtains the expression~4.9!. In the same way,
Eq. ~A2! leads to Eq.~4.10! for the persistence probability.

APPENDIX B: FINITE-SIZE SCALING CALCULATION
OF THE PERSISTENCE EXPONENT FOR THE PERIOD-

DOUBLING ENVIRONMENT

For the period-doubling sequence,f 2i512 f i and f 2i 11
50, so that

n2i5n2i 115 (
k51

i

f 2k5 i 2ni . ~B1!

On a system with size 4L, one has

1

pper~4L !
5S4L~e,R!511(

i 51

4L

e2 iR2ni ~B2!

and, splitting the sum into odd and even parts,

S4L~e,R!511e211(
i 51

2L

e22iR2n2i1 (
i 51

2L21

e22i 21R2n2i 11

511e211(
i 51

2L

~e2R!2 iRni1e21 (
i 51

2L21

~e2R!2 iRni

.~11e21!S2L~e2R,R21!. ~B3!

Iterating one step further, the last relation in Eq.~B3! leads
to

S4L~e,R!5~11e21!~11e22R21!SL~e4R,R!. ~B4!

At the critical pointec5R21/3 this gives

S4L~ec ,R!5~R1/61R21/6!2SL~ec ,R!. ~B5!

Sincepper;dx;L2x, one immediately recovers the persi
tence exponent given in Eq.~4.18!.
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@16# F. Iglói, L. Turban, D. Karevski, and F. Szalma, Phys. Rev.

56, 11 031~1997!.
@17# J. Hermisson, U. Grimm, and M. Baake, J. Phys. A30, 7315

~1997!.
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