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Random-bond Potts model in the large-q limit
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We study the critical behavior of theq-state Potts model with random ferromagnetic couplings. Working
with the cluster representation the partition sum of the model in the large-q limit is dominated by a single
graph, the fractal properties of which are related to the critical singularities of the random-Potts model. The
optimization problem of finding the dominant graph, is studied on the square lattice by simulated annealing and
by a combinatorial algorithm. Critical exponents of the magnetization and the correlation length are estimated
and conformal predictions are compared with numerical results.
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I. INTRODUCTION

The effect of quenched disorder at a first-order transit
point is comparatively less understood than the same p
nomena at a continuous transition point. In the latter c
relevance-irrelevance criteria, such as the Harris criter
@1,2# can be used to decide upon the stability of the p
fixed point and also perturbation expansions are develo
@3# to treat the effect of weak disorder. If the transition in t
pure system is of first order, neither a general relevance
terion nor a consistent perturbation expansion is known
apply around the discontinuity fixed point of the pure mod
One remarkable exception is the stability criterion by Aize
man and Wehr@4# ~based on an idea of Imry and Wortis@5#,
see also by Hui and Berker@6#!, which rigorously states tha
in two dimensions~2D! any amount of quenched disord
will soften the first-order transition in the pure system into
continuous one. In 3D the same criterion predicts a crosso
phenomenon, generally the transition stays discontinuous
weak disorder, whereas it turns to a second-order trans
for sufficiently strong disorder@7#.

Based on the above rigorous results intensive numer
work has started to clarify the universality class of differe
disordered models, which have a discontinuous transitio
their pure form. In 2D most of the work has been devoted
the q-state Potts model, for which the transition point
known from self-duality also in its disordered version@8#,
and in the pure model exact result by Baxter@9# ensures a
first-order transition forq.4. Although early Monte Carlo
~MC! simulations@10# left space for an interpretation@11# of
a q-independent superuniversal behavior in random syste
later extensive MC@12# and transfer matrix@13# calculations
consistently determinedq-dependent magnetic exponen
whereas the correlation length exponent,n, was found to be
close to the pure Ising value,n I51, for all q.

In the large-q limit thermal fluctuations are reduced an
as a consequence the pure model is soluble in any dimen
and a perturbation expansion in powers of 1/q1/d can be per-
formed. In the same limit for the random model at the ph
transition point an effective interface Hamiltonian has be
constructed and mapped onto the interface Hamiltonian
1063-651X/2001/64~5!/056122~7!/$20.00 64 0561
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the random-field Ising model~RFIM! @13#. This mapping has
then been used to relate the phase diagram of the two p
lems and to deduce the tricritical exponents of the rando
bond Potts model~RBPM! at d.2 dimensions. However, in
the large-q limit no direct calculation to study the critica
behavior has yet been performed. In 2D the presently kno
information is obtained via extrapolation of the results c
culated at finite values forq. From these estimates no spec
type of critical behavior is expected in the large-q limit. For
example the magnetization scaling dimension,xm , seems to
saturate at a finite, nontrivial limiting value@14,15#
limq→`xm(q)'0.1720.19. However, at this point one
should note on the presence of strong~logarithmic! correc-
tions in the form of 1/lnq, see cf. Fig. 5 in Ref.@14#.

In the present paper we are going to perform a dir
investigation of the critical behavior of the RBPM in th
large-q limit. As will be shown, in that limit the therma
fluctuations are negligible and the calculation of the aver
thermodynamical and correlation properties of the mode
effectively reduced to an optimization problem. Here t
competition between ordering effects, originating from a te
dency to clustering, and disordering effects, due to ene
gain from quenched disorder, plays an important role in
termining the optimal structure. In two dimensions we p
form a numerical study based on simulated annealing an
combinatorial algorithm, and also conformal aspects of
problem are investigated.

The structure of the paper is the following. In Sec. II w
introduce the random cluster representation of the P
model and define the equivalent optimization proble
emerging in the large-q limit. Results obtained from the so
lution of the optimization problem in different 2D geom
etries are presented in Sec. III and discussed in Sec. IV.

II. CLUSTER REPRESENTATION
IN THE LARGE- q LIMIT

We consider theq-state Potts model on ad-dimensional
hypercubic lattice with periodic boundary conditions defin
by the Hamiltonian
©2001 The American Physical Society22-1
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H

kT
52(̂

i j &
Ki j d~s i ,s j !, ~2.1!

wheres i areq-state Potts variables (s iP$1, . . . ,q% located
at lattice sitesi, the sum goes over all nearest neighbor pa
^ i j & of the lattice, andKi j .0 are reduced ferromagnet
couplings. Thed-dimensional hypercubic lattice correspon
to a graphḠ5(V,E), whereV is the set of vertices, which is
identical to the lattice sites, andE is the set of edges, which
is identical with the bonds between neighboring sites on
lattice. In the random cluster representation@16# the partition
sum of the model,Z, is expressed as a sum over all subs
U#E of the set of edges~or bonds! as

Z5 (
U#E

qn(U) )
( i j )PU

v i j , ~2.2!

wheren(U) denotes the number of connected clusters in
subgraphG5(V,U) of Ḡ, consisting of all lattice sites bu
the reduced set of bonds inU, andv i j 5eKi j 21 is the Mayer
function for the couplingKi j . For the latter we use the pa
rameterization

v i j 5q1/d1wi j . ~2.3!

Then the contributions from the different graphs toZ are
expressed in powers ofq,

Z5 (
U#E

qF(U) ~2.4!

with

F~U !5n~U !1 (
( i j )PU

S 1

d
1wi j D . ~2.5!

In the following we consider the large-q limit ( q→`),
where the partition sum is dominated by the leading te
given by the maximum value forF,

F05maxU#E$F~U !%, ~2.6!

where2F0 corresponds to the free energy of the system
to a prefactor of 1/(kTln q)5const. Let us denote withU0 the
subset ofE that gives the optimum in Eq.~2.6!, i.e., F0
5F(U0), and withG05(V,U0) the correspondingdominant
graph. Then the energetic contribution to2F0 is due to the
couplings in the dominant graph, whereas the entropic t
is related to the number of connected parts. In what follo
we use the word graph when we mean the subgraphG

5(V,U) of Ḡ defined by an edge subsetU.
In the pure system, withwi j 5w, the structure of the

dominant graphs in the different thermodynamic phases
trivial. Consider a lattice withN5Ld spins with fully peri-
odic boundary conditions, the number of bonds isdN. Then,
in the low-temperature phase withw.wc the fully connected
graph (V,E) is the dominant graph, thusF05Fc
5@dN(1/d1w)11#. On the other hand, in the high
temperature phase,w,wc , the dominant contribution is du
05612
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to the empty graph(V,B), with a value ofFe5N. At wc
521/dN, whenFc5Fe , there is phase coexistence, whic
means a sharp phase transition even in a finite system in
limit of q→`. In the thermodynamic limit we havewc50,
and the latent heat per site is given byDL/N51 in our units.

Introducing disorder, such thatwi j can take randomly
positive and negative values, the question arises, whe
this trivial structure of the dominant graph persists at
transition point, i.e., is there still a coexistence between t
parts of the graph, one being fully connected, whereas
other is empty? To study this problem Cardy and Jacob
@13# have constructed the interface Hamiltonian, which
then mapped onto that of the RFIM. This has lead to
answer that ford.2 the effect of small disorder is irrelevan
thus there is still phase coexistence and thus the transitio
of first order, whereas ind52 the phase coexistence is d
stroyed by any amount of disorder, in accordance with
zenman and Wehr exact results@4#.

In the following we are going to consider the problem
2D where the dominant graph has a nontrivial structure.
particular we study the~fractal! properties of the largest con
nected cluster ofG0, denoted byG. In the low-temperature
phase,T,Tc , G is compact, thus the average number
points inG is given by@nG#av}N5L2, whereL is the linear
size of the square lattice and here and in the follow
@•••#av denotes the average over the quenched disorde
the high-temperature phase, forT.Tc , @nG#av stays finite
and defines the average correlation length,j, through
@nG#av;j2. At the transition point the average mass is e
pected to scale as

@nG#av;Ldf , ~2.7!

with an average mass exponentdf,2 @17#.
The properties of@nG#av are directly related to the

asymptotic behavior of the average spin-spin correlat
function, defined in the large-q limit as

@C~r !#av5@^d~s i ,s j !&#av, ~2.8!

where^•••& denotes the thermal and spatial average over
pairs of sitesi and j with a distancer. We use the fact tha
correlations between two spins are generally zero, un
they belong to the same cluster, whenC(r )51. In the case
of T<Tc , when G is a spanning cluster the probability
P(L), that a spin belongs toG is given by P(L)
5@nG#av/N, whereas the same probability for two spins
P(L)2. From this follows, that the average correlations b
tween two spins separated by a large distance ofr 5L is
given by @C(r )#av.P(L)25(@nG#av/N)2. In the low-
temperature phase,T,Tc , where the average magnetizatio
@m#av, is defined as@m#av

2 5 limr→`@C(r )#av, we obtain

@m#av5 lim
L→`

@nG#av

L2
, T,Tc , ~2.9!

whereas at the critical point the average spin-spin corr
tions decay as a power

@C~r !#av;r 22xm, xm522df , T5Tc . ~2.10!
2-2
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Finally, in the high-temperature phase, where the aver
size ofG is finite the probability to have a connected clus
of size r is exponentially small, which leads to an avera
correlation function of the form@C(r )#av;exp(2r/j), for
r @j.

In the following we specify the form of the disorde
where we make use of the simplification that arises due
self-duality that holds under special conditions. According
the results by Kinzel and Domany@8# the random model is a
the critical point, if the distribution,P(w), of wi j is an even
function ofw, thusP(w)5P(2w). For convenience we us
the bimodal distribution,

P~w!5pd~w2v!1~12p!d~w1v!, ~2.11!

where the critical point is atp5pc51/2, whereas the re
duced temperature,t5(T2Tc)/Tc , can be expressed as

t52v~p21/2!, utu!1. ~2.12!

Generally we restrict ourselves to the range of disorder
rameterized as 0,v,1/2. We note that forv50 one recov-
ers the pure model, whereas forv.1/2 we are in the usua
percolation limit. Indeed, for the latter range of paramet
the dominant graph contains all the strong bonds, whe
the weak bonds are all absent.

III. METHODS AND RESULTS

According to the results presented in the previous sec
the solution of the RBPM in the large-q limit is equivalent to
an optimization problem with a nonlocal cost function giv
by Eq. ~2.5!. To find the dominant graph of the problem w
used standard approximative procedures. Most of the res
were obtained by the method of simulated annealing,
some calculations were performed by an approximative c
binatorial optimization algorithm.

In the procedure of simulated annealing a hypothet
temperature variable,Th , is introduced and, after thermal
zation, is lowered until the hopefully global minimum of th
cost function is reached. In practical applications we lowe
the temperature asTh51/(t20.5), in finite time stepst
51,2, . . . ,60, andchecked that the resulting configuratio
does not change after further cooling. At a fixed temperat
in the thermalization MC steps we generally used local ru
by creating or removing bonds, but sometimes we also c
sidered to move a full line of bonds. In order to arrive to t
global minimum several different starting configurations a
considered~at least three, sometimes several hundred!, and
the best final configuration was taken. In the investigatio
generallyL3L finite samples with linear size up toL524
were considered and periodic boundary conditions were u
in both directions. For smaller sizes the averaging was u
ally performed over 10 000 samples, whereas for larger s
we used several thousands of realizations.

Alternatively, for small v ~precisely for v,0.25) we
used a combinatorial optimization algorithm that yields
configuration that is close to the optimum but not necessa
equal to it. Actually the worst case bound for the ratio of t
value F0 of the optimal solutionU0 is to the valueF(U)
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configurationU that is found by the algorithm is only 2/3
which would be too bad for our purposes. However, in ty
cal cases the configurations produced by the algorithm
much closer, as we checked by comparison with the confi
rations generated by the simulated annealing method.
algorithm works as follows@18#.

For all sitesi let i x2 , i x1 , i y2 , andi y1 be its left, right,
lower, and upper neighbor, respectively, and denoted w
( i i x2), (i i x1), (i i y2), and (i i y1) the bonds~edges! between
these neighboring sites andi. These constitute a minimal se
of edges that, when removed fromḠ cut the sitei from the
rest of the graph. Let us denote them by

Ei5$~ i i x2!,~ i i x1!,~ i i y2!,~ i i y1!% ~3.1!

and their weight

w~Ei !5 (
( i j )PEi

S 1

2
1wi j D . ~3.2!

The minimum cut between any two pairs of sites,i and j,
~i.e., the set of edges that has a minimum total weightand

whose removal fromḠ cuts the graph into two disjoint sub
graphs, one containingi and otherj ) is then given either by
Ei or Ej , as long asuwi j u,1/4, as one can easily convinc
oneselves.

The idea of the algorithm is as follows. Obviously th
removal of the edges contained in a minimum cut, such a
Ei for all i, increases the number of components in the gra
by one, i.e., one wins one unit in the cost functionF(U), Eq.
~2.5!. On the other hand, one losesw(Ei) units and when
increasing the number of components of the graphG one
should keep this weight loss as small as possible. There
we consider a collection of minimum cuts as possible can
dates of edge sets to be removed fromḠ.

Let the edge sets be ordered nondecreasing weight,
that w(E1)<w(E2)<•••<w(EL2) and define for all r
50,1,2, . . . ,L2 the edge subsets

Ur5E\ ø
i 51

r

Ei , ~3.3!

i.e., U05E, and with increasingr successively edge sets o
nondecreasing weight are substracted fromE. When doing
this initially ~i.e., for smallr ) most of the time a site will be
isolated that has been connected before to a larger cluste
therefore frequently~depending on the weight of the sub
straced edges! F(U) will increase, as desired. These are t
trial configurations for our optimization problem and we ta
the best solution among them, i.e.,U* such thatF(U* )
5max$F(Ur)ur50,1, . . . ,L2%. It can be shown@18# that
F(U* )/F(Uop)>2/3, whereUop is the exact optimal solu-
tion of Eq. ~2.6!. With the combinatorial optimization
method we could treat larger finite systems~up to 128
3128), than by simulated annealing and the number of c
figurations we used were between 10 000 and 1000
smaller and larger systems, respectively.
2-3
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A. Results at the critical point

First, we tested the relative accuracy of the two meth
by comparing the value of the obtained cost functions,F0,
for different finite sizes. As a general tendency simula
annealing has given lower, thus better estimates, but the
tive difference forL<16 was very small, less then 0.4%. F
the largest system we studied by simulated annealingL
524, the relative difference has increased to about 0.6%.
shall later analyze consequences of the inaccuracy of
min-cut method in the magnetic properties of the RBPM.
the following illustration we present results that are obtain
by the more accurate simulated annealing method.

Typical optimal configurations for different values ofv
calculated with the same disorder realization
wi j (56v) are presented in Fig. 1. The position of th
strong bonds (wi j 51v) can be obtained from the optima
configuration for v.1/2, since in percolation only thes
bonds are occupied. As seen in the figure for smaller diso
parameter the optimal graph looks to be more comp
whereas for strongerv the optimal configurations are ver
close to each other. This fact is a consequence of the p
ence of a finite length scale in the problem. As shown in
Appendix for smallv the system behaves uniformly up to
length scale,l c , which is estimated as

l c;S 1

2v D 2

. ~3.4!

To observe the true asymptotic behavior in the RBPM c
culation the system size should be larger than this valueL
. l c(v), therefore we restricted ourselves to not too smalv
values.

Next we analyze the distribution of the largest connec
cluster,G. Inspecting the structure of a typical optimal gra
in Fig. 1 we arrive to the conclusion thatG is a fractal, so

FIG. 1. Typical optimal configurations for different values ofv
calculated with the same disorder realization forwi j (56v).
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that we take the scaling combinationnG /Ldf , which corre-
sponds to the form in Eq.~2.7!. In Fig. 2 we present a scalin
plot of the reduced cluster-size distribution, where a d
collapse can be obtained with an average mass expone
df'1.8.

We note that the points, corresponding to the smal
system, deviate more from the hypothetical scaling cur
which can be attributed to the effect of the finite length sca
l c . In the inset of Fig. 2 a similar scaling plot is presented i
the percolation region, i.e., forv.1/2, where the fractal di-
mension of percolation@20#, dp591/48 is used. The scaling
curves forv,1/2 andv.1/2 look different. For the RBPM
the distribution is broad and there is a considerable we
for small clusters, whereas for percolation the distribution
single peaked without a relevant small cluster contributio

Next we calculate the average density of the largest c
nected cluster,@nG#av/L2, from the size dependence of whic
the average mass exponent,df in Eq. ~2.7! and the magneti-
zation exponent,xm in Eq. ~2.10! follows. In Fig. 3 we have
plotted@nG#av/L2 for different finite sizes in a log-log scale
using different values of the disorder parameter,v. In this
figure, besides the results obtained by simulated annea
also points calculated by the approximate~min-cut! optimi-
zation algorithm are presented. As seen the min-cut a
rithm works satisfactory for small systems,L<16, when the
difference in the cost-functions calculated by the two me
ods is also very small. For larger sizes, however, which
beyond the possibilities of simulated annealing, the error
the optimization algorithm increases. Based on the res
presented in Fig. 3 the min-cut method tends to genera
compact clusterin the large system limit. Therefore we use
the min-cut method only for limited sizes, which are anyho
manageable by the simulated annealing method, altho
with much longer computational time.

Returning to the average density in Fig. 3 one can obse
that for the disorder parameter in the RBPM range, i.e.
,v,1/2, the points fall on nearly parallel straight lines ha
ing a slope of221df.20.2, wheredf.1.8 corresponds to
the value we used in the scaling plot of the reduced clus
size distribution in Fig. 2. The slope of the same line calc
lated in the percolation regime, withv.0.5 is significantly

FIG. 2. Scaling plot of the reduced size distribution of the la
est cluster at the critical point of the RBPM atv50.4 for different
finite systems. A data collapse is obtained with an average m
exponent ofdf'1.8. In the inset the same quantity is plotted f
percolation, whenv.1/2 anddp591/48.
2-4
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different, it is221dp.20.1, wheredp is close to the frac-
tal dimension of 2D percolation.

The estimates of the magnetization scaling dimens
xm , in Eq.~2.10! at different disorder parameter,v, are sum-
marized in Table I.

As seen in Table I the average magnetization expon
xm , is approximately independent of the disorder parame
for 0,v,1/2, and its value is within the range ofxm
'0.17–0.19. This is in agreement with the estimates
tained by extrapolating the results calculated at finiteq’s
@14,15#, thus the two limits seem to be interchangeable. T
apparent variation ofxm with v can be attributed to cross
over effects. Atv50 the pure system transition, whereas
v51/2 the percolation fixed point is going to perturb t
value of effective, finite-size-dependent exponents.

The average magnetization exponent,xm , has been calcu
lated by another method, which is based on conformal
variance@19#. Here we use the result, that in a long strip
width, Lw , and with periodic boundary conditions the ave
age correlation function along the strip decays exponenti

@^s is i 1u&#av;exp~2u/jLw
!, ~3.5!

FIG. 3. Size dependence of the average density of the lar
connected cluster at different values of the disorder parametev,
calculated by simulated annealing and by the approximative o
mization ~min-cut! algorithm. Note that the min-cut method has
systematic error for larger systems. The slope of the curves,s, for
different 0,v,0.5 is approximately identical and indicated by
straight line withs520.2, but this slope differs from that of per
colation, which corresponds tov.0.5, and the related straight lin
hass525/48, the typical error of the simulated annealing meth
is indicated by the error bar, whereas the error for percolatio
smaller than the size of the symbol.

TABLE I. Scaling exponent,xm , of the average magnetizatio
for different disorder parameter,v. The last row withv.0.5 cor-
responds to normal percolation where the exact value isxm

p 55/48
50.104.

v xm

0.2 0.185~30!

0.25 0.188~16!

0.31 0.165~15!

0.4 0.178~13!

.0.5 0.103~2!
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where the correlation length,jLw
, for large widths asymptoti-

cally behaves as

jLw
5

Lw

2pxm
. ~3.6!

In practical calculations we used strips of widths,Lw52, 3,
4, and 5, and with such a lengths that in the calculated c
relation function the exponential decay in Eq.~3.5! does not
seem to change by further increase of the length. Gener
we went at least up to a length of 64 sites, which has th
limited the available widths,Lw . The calculated exponent
for some values of the disorder parameter are given
Table II.

As seen in Table II the size dependence ofxm is very
weak for Lw>3 and the extrapolated value ofxm.0.17 is
practically independent of the form of the disorder. This e
timate is compatible with the previous one obtained
finite-size scaling. The fact, that this latter result lies close
the lower bound of the finite-size scaling one is probably d
to the confluent singularity of the percolation fixed poin
which is quite strong in the region ofv ’s we used in the
calculation on strips.

We have also calculated the central charge of the con
mal anomaly,c, from the finite-size correction to the fre
energy per width

f 0~Lw!5 f 0~`!2
pc

6Lw
2

1O~Lw
23!, ~3.7!

with the result

st

ti-

is

TABLE II. Numerical estimates for the average magnetizati
exponent,xm , using the correlation length-exponent relation in E
~3.6! for different widths,Lw .

xm

v Lw52 Lw53 Lw54 Lw55

0.400 0.263~9! 0.166~4! 0.165~5! 0.163~6!

0.423 0.267~1! 0.168~5! 0.167~2! 0.163~6!

0.452 0.266~1! 0.170~4! 0.169~2! 0.163~6!

FIG. 4. Scaling plot of the finite-size average magnetization
the vicinity of the critical point, for a disorder parameterv50.4.
The scaling exponents we used here arexm50.177 andn51.
2-5
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c50.74~1!5
0.51~1!

ln 2
. ~3.8!

This is compatible with previous estimate@15# c.0.5/ln 2,
which is obtained by finite-q extrapolation.

B. Results outside the critical point

We close our paper by an investigation of the avera
magnetization,@m(L,t)#av, in the vicinity of the critical
point. In the scaling region, defined asLutun5O(1), wheren
is the critical exponent of average correlations, the aver
magnetization is expected to behave as

@m~L,t !#av5L2xmm̃~Lutun!, ~3.9!

wherem̃(y) is some scaling function. The calculated ma
netizations at different finite size and temperature th
should collapse to the same scaling function, provided
correct critical exponents,xm and n are used. In Fig. 4 we
show the result of such a scaling plot, where we usedn51,
as found approximately in finite-q calculations, whereas fo
xm we used our previous estimate obtained through fin
size scaling at the critical point. The data collapse in Fig. 4
satisfactory, however, to obtain a precise estimate onn one
needs to extend the calculations for larger systems.

IV. DISCUSSION

In this paper the critical behavior of the Potts model w
nonfrustrated, random couplings is studied in the largq
limit. We have shown how the calculation of the free-ener
and the correlation functions of the RBPM can be mapp
onto an optimization problem, which is then studied
simulated annealing and by an approximate combinato
optimization algorithm. Working with the bimodal distribu
tion in Eq. ~2.11! our results are compatible with the reno
malization group~RG! phase diagram drawn in Fig. 5.

The pure systems fixed point, situated atv50, is unstable
against any weak disorder, thus the critical behavior in
range of 0,v,0.5 is controlled by the disordered fixe
point ~DIS!. Our numerical calculation indeed indicate a un
versality with respect of the strength of disorder. Increas
the disorder overv50.5 we reach the region of attraction o
the normal percolation, and the corresponding fixed po
~PERC! is located atv5`. Our RG phase diagram is com
pleted by introducing a repulsive tricritical fixed point, TR
at v50.5, which separates the regions of attraction of

FIG. 5. Schematic RG phase diagram of the 2D RBPM w
varying strength of bimodal disorder,v. For details see the text.
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two nontrivial fixed points, DIS and PERC. The singul
properties of the TR can be quite unusual, since the co
sponding optimal graph is highly degenerate. The poss
configurations include all that interpolate between that of
RBPM and that of normal percolation.

The behavior of the system at the fixed-point DIS, whi
is the subject of the present paper, is strongly dominated
disorder effects, whereas thermal fluctuations seem to
negligible. Similar, disorder dominated critical behavior o
cur in random quantum spin chains, where analytical res
are available@21–23#, and also in 2D random quantum fe
romagnets@24#. Whether exact results can be obtained a
for the 2D RBPM in the large-q limit will be seen in future
research.
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APPENDIX: LENGTH SCALE
IN THE SMALL DISORDER LIMIT

Here we estimate the size,l, of a step, which is situated a
the top of a straight surface of a connected cluster, see Fi
Using the bimodal distribution in Eq.~2.11! the existence of
the step is connected to the condition

(
i 51

2l 21 S 1

2
1wi D. l , ~A1!

wherewi56v with the same probability, or equivalently

(
i 51

2l 21

pi.
1

2v
, ~A2!

with pi561. For largel the probability distribution of the
sum in the left-hand side of Eq.~A2! is Gaussian, with a
variance ofA2l 21. Consequently the average size of t
step,l c , scales with a smallv as

l c;S 1

2v D 2

, ~A3!

as given in Eq.~3.4!.

FIG. 6. A connected cluster with a step ofl points on the top of
a straight surface.
2-6



hy

od
ch

e

v

,

ot

een
ume
totic

-

ys.

RANDOM-BOND POTTS MODEL IN THE LARGE-q LIMIT PHYSICAL REVIEW E 64 056122
@1# A.B. Harris, J. Phys. C7, 1671~1974!.
@2# J.T. Chayes, L. Chayes, D.S. Fisher, and T. Spencer, P

Rev. Lett.57, 2999~1986!.
@3# A.W.W. Ludwig, Nucl. Phys. B285, 97 ~1987!; 330, 639

~1990!; A.W.W. Ludwig and J.L. Cardy,ibid. 330, 687~1990!;
Vl. Dotsenko, M. Picco, and P. Pujol,ibid. 455, 701 ~1995!;
M.A. Lewis, Europhys. Lett.43, 189 ~1998!.

@4# M. Aizenman and J. Wehr, Phys. Rev. Lett.62, 2503~1989!.
@5# Y. Imry and M. Wortis, Phys. Rev. B19, 3580~1979!.
@6# K. Hui and A.N. Berker, Phys. Rev. Lett.62, 2507~1989!.
@7# For a recent numerical study about the 3D random-Potts m

see C. Chatelain, B. Berche, W. Janke, and P.E. Ber
e-print cond-mat/0103377.

@8# W. Kinzel and E. Domany, Phys. Rev. B23, 3421~1981!.
@9# R.J. Baxter, J. Phys. C6, L445 ~1973!.

@10# S. Chen, A.M. Ferrenberg, and D.P. Landau, Phys. Rev. L
69, 1213 ~1992!; Phys. Rev. E52, 1377 ~1995!; S. Wiseman
and E. Domany,ibid. 51, 3074~1995!.

@11# M. Kardar, A.L. Stella, G. Sartoni, and B. Derrida, Phys. Re
E 52, R1269~1995!.

@12# M. Picco, Phys. Rev. Lett.79, 2998~1997!; C. Chatelain and
B. Berche, ibid. 80, 1670 ~1998!; Phys. Rev. E58, R6899
~1998!; 60, 3853~1999!; G. Palágyi, C. Chatelain, B. Berche
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