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Random-bond Potts model in the largeg limit
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We study the critical behavior of thg-state Potts model with random ferromagnetic couplings. Working
with the cluster representation the partition sum of the model in the prdgeit is dominated by a single
graph, the fractal properties of which are related to the critical singularities of the random-Potts model. The
optimization problem of finding the dominant graph, is studied on the square lattice by simulated annealing and
by a combinatorial algorithm. Critical exponents of the magnetization and the correlation length are estimated
and conformal predictions are compared with numerical results.
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I. INTRODUCTION the random-field Ising mod€éRFIM) [13]. This mapping has
then been used to relate the phase diagram of the two prob-
The effect of quenched disorder at a first-order transitiolems and to deduce the tricritical exponents of the random-
point is comparatively less understood than the same phdéond Potts modelRBPM) at d>2 dimensions. However, in
nomena at a continuous transition point. In the latter casénhe largeq limit no direct calculation to study the critical
relevance-irrelevance criteria, such as the Harris criteriomehavior has yet been performed. In 2D the presently known
[1,2] can be used to decide upon the stability of the purgnformation is obtained via extrapolation of the results cal-
fixed point and also perturbation expansions are developegljated at finite values fay. From these estimates no special
[3] to treat the effect of weak disorder. If the transition in thetype of critical behavior is expected in the |argé|.rn|t For
pure system is of first order, neither a general relevance Crlexample the magnetization scaling dimensiog, seems to
terion nor a consistent perturbation expansion is known t@atyrate at a finite, nontrivial limiting valug14,15
apply around the discontinuity fixed point of the pure mOdel-Iimq_,mxm(q)~0.17—0.19. However, at this point one
One remarkable exception is the stability criterion by Aizen-should note on the presence of straffmgarithmio correc-
man and Wehf4] (based on an idea of Imry and Wors],  tjons in the form of 1/, see cf. Fig. 5 in Ref14].
see also by Hui and Berkg6]), which rigorously states that In the present paper we are going to perform a direct
in two dimensions(2D) any amount of quenched disorder jnyestigation of the critical behavior of the RBPM in the
will soften the first-order transition in the pure system into Alargeq limit. As will be shown, in that limit the thermal
continuous one. In 3D the same criterion predicts a crossovefyctyations are negligible and the calculation of the average
phenomenon, generally the transition stays discontinuous fqhermodynamical and correlation properties of the model is
weak disorder, whereas it turns to a second-order transitiogsfectively reduced to an optimization problem. Here the
for sufficiently strong disordef7]. _ _ _competition between ordering effects, originating from a ten-
Based on the above rigorous results intensive numericgjency to clustering, and disordering effects, due to energy
work has started to clarify the universality class of differentyain from quenched disorder, plays an important role in de-
disordered models, which have a discontinuous transition igermining the optimal structure. In two dimensions we per-
their pure form. In 2D most of the work has been devoted tGorm a numerical study based on simulated annealing and a
the g-state Potts model, for which the transition point i combinatorial algorithm, and also conformal aspects of the
known from self-duality also in its disordered versif8l, problem are investigated.
and in the pure model exact result by Baxi®f ensures a * The structure of the paper is the following. In Sec. Il we
first-order transition forg>4. Although early Monte Carlo introduce the random cluster representation of the Potts
(MC) simulations[ 10] left space for an interpretatidd 1] of ~ model and define the equivalent optimization problem
a g-independent superuniversal behavior in random SysttM@merging in the largerlimit. Results obtained from the so-
later extensive M(12] and transfer matrix13] calculations  |ytion of the optimization problem in different 2D geom-

consistently determined-dependent magnetic exponents, etries are presented in Sec. Il and discussed in Sec. IV.
whereas the correlation length exponentwas found to be

close to the pure Ising value,=1, for all g.

In the largeq limit thermal fluctu_atlons are reduce_d and_ Il. CLUSTER REPRESENTATION
as a consequence the pure model is soluble in any dimension IN THE LARGE

: - ) -q LMIT

and a perturbation expansion in powers af‘f/ can be per-
formed. In the same limit for the random model at the phase We consider they-state Potts model on @dimensional
transition point an effective interface Hamiltonian has beerhypercubic lattice with periodic boundary conditions defined
constructed and mapped onto the interface Hamiltonian oy the Hamiltonian
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H to the empty graph(V,d), with a value ofF.=N. At w,
T -2 Kijd(oi,09), (2.)  =-1/dN, whenF,=F,, there is phase coexistence, which
i means a sharp phase transition even in a finite system in the
whereo, areg-state Potts variabless{e {1, ... g} located limit of g—c. In the thermodynamic limit we hawe =0,

at lattice sites, the sum goes over all nearest neighbor pair®2nd the latent heat per site is givendy/N=1 in our units.

(ij) of the lattice, andK;;>0 are reduced ferromagnetic Introducing disorder, such that;; can take randomly
couplings. Thed-dimensional hypercubic lattice corresponds Positive and negative values, the question arises, whether
to agrapr§=(V,E), whereV is the set of vertices, which is this trivial structure of the dominant graph persists at the

identical to the lattice sites, arilis the set of edges, which transition point, i.e., is there still a coexistence between two

is identical with the bonds between neighboring sites on thé)?hrtsr iOf ﬂ:ﬁ ?r,?QP’ otn% b?;]?g flrjllgl crcT:ngecr;[jed, r\:\éhﬁreasb th?\
lattice. In the random cluster representatj@f] the partition Other 1S emply 10 Study this probie ardy a acobse

: 13] have constructed the interface Hamiltonian, which is
sum of the modelZ, is expressed as a sum over all subset \ ’
UCE of the set of edgeér bonds as hen mapped onto that of the RFIM. This has lead to the

answer that fod>2 the effect of small disorder is irrelevant,
thus there is still phase coexistence and thus the transition is
z=2 gV [] vij (2.2 of first order, whereas id=2 the phase coexistence is de-
UcE (iyeyv stroyed by any amount of disorder, in accordance with Ai-
nman and Wehr exact result.
In the following we are going to consider the problem in
where the dominant graph has a nontrivial structure. In
particular we study théfractal) properties of the largest con-
nected cluster of5,, denoted byl". In the low-temperature
phase, T<T., I' is compact, thus the average number of
Vi) =g 2.3 ppints inT" is given by[nr]aVMNz L2, WhereL’ is the Iinear'
size of the square lattice and here and in the following
Then the contributions from the different graphsZoare [ - - lay denotes the average over the quenched disorder. In
expressed in powers of the high-temperature phase, foe>T., [nr], Stays finite
and defines the average correlation length, through
[np]la~ &2 At the transition point the average mass is ex-

wheren(U) denotes the number of connected clusters in thé®

subgraphG=(V,U) of G, consisting of all lattice sites but 5
the reduced set of bonds U, andv;; =eKii—1 is the Mayer
function for the couplingl;; . For the latter we use the pa-
rameterization

— F(U
Z_UQE q" (2.4 pected to scale as
with [npla~ LY, (2.7)
1 with an average mass exponeht 2 [17].
F(U)=n(U)+ >, a*Wii)' (2.5 The properties of[np],, are directly related to the
(ij)ey asymptotic behavior of the average spin-spin correlation

In the following we consider the largg-limit (gq— o), function, defined in the largg-limit as

where the partition sum is dominated by the leading term [C(N)]a=[(8(ai,0)))ay, (2.9
given by the maximum value fd¥,
where(- - -) denotes the thermal and spatial average over all
Fo=max,ce{F(U)}, (2.6)  pairs of sites andj with a distance. We use the fact that

correlations between two spins are generally zero, unless
where — F, corresponds to the free energy of the system uqhey belong to the same cluster, wh@fr)=1. In the case

to a prefactor of 1KTing)=const. Letus denote witdo the ot T<7_"whenT is a spanning cluster the probability,
subset ofE that gives the optimum in Eq(2.6), i.e., Fg P(L), that a spin belongs tol is given by P(L)
=F(Uo), and withG,=(V,U,) the correspondingominant  _j, 1 /N whereas the same probability for two spins is
graph Then the energetic contribution toF is due to the b 12 "From this follows, that the average correlations be-

pouplings in the dominant graph, whereas the entropic terMyeen two spins separated by a large distance of. is
is related to the number of connected parts. In what fOHOWSgiven by [C(r)]a=P(L)2=([n]a/N)% In the low-

we use the word graph when we mean the subgréph temperature phas&<T., where the average magnetization,

=(V,U) of G defined by an edge subset [M].y, is defined agm]2,=lim,_.[C(r)].,, we obtain
In the pure system, witlw;;=w, the structure of the
dominant graphs in the different thermodynamic phases are o nrlay
trivial. Consider a lattice witiN=L¢ spins with fully peri- [m]a= L“m 2 T<T., 2.9

odic boundary conditions, the number of bondsd . Then,
in the Iow-tempgrature phase_wmh>wC thefully connected  \yhereas at the critical point the average spin-spin correla-
graph (V,E) is the dominant graph, thusFo=F; {ions decay as a power

=[dN(1/d+w)+1]. On the other hand, in the high-

temperature phase<w,, the dominant contribution is due [C(N)]a~T m  xp=2—-d;, T=T,. (2.10
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Finally, in the high-temperature phase, where the averageonfigurationU that is found by the algorithm is only 2/3,

size ofI" is finite the probability to have a connected clusterwhich would be too bad for our purposes. However, in typi-

of sizer is exponentially small, which leads to an averagecal cases the configurations produced by the algorithm are

correlation function of the form C(r) ], ~exp(=r/§), for  much closer, as we checked by comparison with the configu-

r>¢. rations generated by the simulated annealing method. The
In the following we specify the form of the disorder, algorithm works as follow$18].

where we make use of the simplification that arises due to For all sitesi leti,_, i,,, iy, andi, be its left, right,

self-duality that holds under special conditions. According tolower, and upper neighbor, respectively, and denoted with

the results by Kinzel and Domag] the random model is at (i), (iix4), (iiy-), and (i, ) the bondgedges between

the critical point, if the distributionP(w), of w;; is an even  these neighboring sites andThese constitute a minimal set

function ofw, thusP(w)=P(—w). For convenience we use of edges that, when removed fro cut the sitei from the
the bimodal distribution, rest of the graph. Let us denote them by

Pw)=psw=w)+(1-p)dwto), (211 B ={(ii (), (i o), (i) (i)} 3.

where the critical point is ap=p.=1/2, whereas the re- ) )
duced temperaturé= (T—T,)/T,, can be expressed as  and their weight

t=—w(p—1/2), [t|<1. 2.1 1
Generally we restrict ourselves to the range of disorder pa- e
rameterized as€ w<1/2. We note that foto=0 one recov- . . . .
ers the pure model, whereas for-1/2 we are in the usual The minimum cut between any two pairs of S|tesandj,
percolation limit. Indeed, for the latter range of parameterdl-€-+ the set of edges that has a minimum total wegid

the dominant graph contains all the strong bonds, whereaghose removal fronG cuts the graph into two disjoint sub-
the weak bonds are all absent. graphs, one containingand otherj) is then given either by

E; or E;, as long agw;;|<1/4, as one can easily convince
oneselves.
The idea of the algorithm is as follows. Obviously the
According to the results presented in the previous sectiomemoval of the edges contained in a minimum cut, such as in
the solution of the RBPM in the larggdimit is equivalentto  E; for all i, increases the number of components in the graph
an optimization problem with a nonlocal cost function givenby one, i.e., one wins one unit in the cost functe{U), Eq.
by Eg.(2.5. To find the dominant graph of the problem we (2.5). On the other hand, one losegE;) units and when
used standard approximative procedures. Most of the resuliacreasing the number of components of the gré&plone
were obtained by the method of simulated annealing, bushould keep this weight loss as small as possible. Therefore
some calculations were performed by an approximative comwe consider a collection of minimum cuts as possible candi-

binatorial optimization algorithm. dates of edge sets to be removed fr@m

In the procedure of simulated annealing a hypothetical [ gt the edge sets be ordered nondecreasing weight, such
temperature variableT,,, is introduced and, after thermali- hat W(E;)<W(E,)<---<w(E2) and define for allr

zation, is !ow_ered until the hopef_ully glob_al minimum ofthe =g 12 . .. L2the edge subsets

cost function is reached. In practical applications we lowered

the temperature a$,=1/(r—0.5), in finite time stepsr r

=1,2,...,60, ancchecked that the resulting configuration U =E\UE;, (3.3

does not change after further cooling. At a fixed temperature i=1

in the thermalization MC steps we generally used local rules

by creating or removing bonds, but sometimes we also conke., Uy=E, and with increasing successively edge sets of

sidered to move a full line of bonds. In order to arrive to thenondecreasing weight are substracted fremWhen doing

global minimum several different starting configurations arethis initially (i.e., for smallr) most of the time a site will be

consideredat least three, sometimes several hungradd isolated that has been connected before to a larger cluster and

the best final configuration was taken. In the investigationgherefore frequentlydepending on the weight of the sub-

generallyL X L finite samples with linear size up to=24  straced edges=(U) will increase, as desired. These are the

were considered and periodic boundary conditions were useiial configurations for our optimization problem and we take

in both directions. For smaller sizes the averaging was usuthe best solution among them, i.&J* such thatF(U*)

ally performed over 10 000 samples, whereas for larger sizes maxF(U,)|r=0,1, ... L?}. It can be shown[18] that

we used several thousands of realizations. F(U*)/F(U,p)=2/3, whereU,, is the exact optimal solu-
Alternatively, for small w (precisely for w<0.25) we tion of Eg. (2.6). With the combinatorial optimization

used a combinatorial optimization algorithm that yields amethod we could treat larger finite systemigp to 128

configuration that is close to the optimum but not necessarily< 128), than by simulated annealing and the number of con-

equal to it. Actually the worst case bound for the ratio of thefigurations we used were between 10000 and 1000 for

value F, of the optimal solutionU, is to the valueF(U) smaller and larger systems, respectively.

Ill. METHODS AND RESULTS
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o HHEAH N est cluster at the critical point of the RBPM at=0.4 for different
g ] ;1@" I'LETji J-‘-L:i_ finite systems. A data collgpse is obtained with an average mass
o _r'q FEB:LE‘ exponent ofd;~1.8. In the inset the same quantity is plotted for
- HHE o 31|'EF‘+ 1Bz L] percolation, whenw>1/2 andd,=91/48.
(W _;: o m _E:E:ll:ﬁ::;%, 1 :| : =
& o AP e Ty that we take the scaling combination /L%, which corre-

©=0.4 ©>0.5 sponds to the form in E42.7). In Fig. 2 we present a scaling
plot of the reduced cluster-size distribution, where a data
FIG. 1. Typical optimal configurations for different valueswof collapse can be obtained with an average mass exponent of
calculated with the same disorder realization figj(= * w). d;~1.8.
We note that the points, corresponding to the smallest
system, deviate more from the hypothetical scaling curve,
First, we tested the relative accuracy of the two methodsvhich can be attributed to the effect of the finite length scale,
by comparing the value of the obtained cost functidhg, .. In the inset of Fig2 a similar scaling plot is presented in
for different finite sizes. As a general tendency simulatedthe percolation region, i.e., fav>1/2, where the fractal di-
annealing has given lower, thus better estimates, but the relaension of percolatiofi20], d,=91/48 is used. The scaling
tive difference folL <16 was very small, less then 0.4%. For curves foro<1/2 andw>1/2 look different. For the RBPM
the largest system we studied by simulated annealing, the distribution is broad and there is a considerable weight
=24, the relative difference has increased to about 0.6%. Wor small clusters, whereas for percolation the distribution is
shall later analyze consequences of the inaccuracy of thgingle peaked without a relevant small cluster contribution.
min-cut method in the magnetic properties of the RBPM. In  Next we calculate the average density of the largest con-
the following illustration we present results that are obtainechected clustef,n;],,/L?, from the size dependence of which
by the more accurate simulated annealing method. the average mass exponedy,in Eq. (2.7) and the magneti-
Typical optimal configurations for different values of  zation exponentx,, in Eq. (2.10 follows. In Fig. 3 we have
calculated with the same disorder realization forplotted[ny],,/L? for different finite sizes in a log-log scale,
wij(=*w) are presented in Fig. 1. The position of the using different values of the disorder parameter,In this
strong bonds \{;; = + ) can be obtained from the optimal figure, besides the results obtained by simulated annealing,
configuration forw>1/2, since in percolation only these also points calculated by the approximatein-cut optimi-
bonds are occupied. As seen in the figure for smaller disordezation algorithm are presented. As seen the min-cut algo-
parameter the optimal graph looks to be more compactithm works satisfactory for small systeniss<16, when the
whereas for stronge® the optimal configurations are very difference in the cost-functions calculated by the two meth-

A. Results at the critical point

2

close to each other. This fact is a consequence of the presds is also very small. For larger sizes, however, which are
ence of a finite length scale in the problem. As shown in thébeyond the possibilities of simulated annealing, the error of
Appendix for smallw the system behaves uniformly up to a the optimization algorithm increases. Based on the results
length scale|., which is estimated as presented in Fig. 3 the min-cut method tends to generate a
compact clustem the large system limit. Therefore we used
|~ (i 3.4 the min-cut method only for limited sizes, which are anyhow
¢ 2w ' manageable by the simulated annealing method, although
with much longer computational time.
To observe the true asymptotic behavior in the RBPM cal- Returning to the average density in Fig. 3 one can observe
culation the system size should be larger than this value, that for the disorder parameter in the RBPM range, i.e., 0
>1.(w), therefore we restricted ourselves to not too small <w<1/2, the points fall on nearly parallel straight lines hav-
values. ing a slope of-2+d;=—0.2, whered;=1.8 corresponds to
Next we analyze the distribution of the largest connectedhe value we used in the scaling plot of the reduced cluster-
cluster,I'. Inspecting the structure of a typical optimal graph size distribution in Fig. 2. The slope of the same line calcu-
in Fig. 1 we arrive to the conclusion thétis a fractal, so lated in the percolation regime, with>0.5 is significantly
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TABLE II. Numerical estimates for the average magnetization

0 ' w04 @
L 8?8'323 9 A exponentx,,, using the correlation length-exponent relation in Eq.
e min-cut @=0.245 A (3.6) for different widths,L,, .
0.2 ﬁ \‘\A\__ percolation A
> ™ A
= : N Xm
-
g ol | w L,=2 L,=3 L,=4 L,=5
B T ] 0.400 0.26®)  0.1664)  0.1655  0.1636)
0.423 0.2671) 0.1685) 0.1672) 0.1636)
061 0.452 0.2661)  0.1704)  0.1692)  0.1636)
1 2 3 4 5

where the correlation IengtELW, for large widths asymptoti-

FIG. 3. Size dependence of the average density of the Iargeila"y behaves as

connected cluster at different values of the disorder parameter

calculated by simulated annealing and by the approximative opti- L
mization (min-cud algorithm. Note that the min-cut method has a £ = w_ (3.6
systematic error for larger systems. The slope of the cusydey W 27X

different 0<w<0.5 is approximately identical and indicated by a
straight line withs=—0.2, but this slope differs from that of per- [N practical calculations we used strips of widthg,= 2, 3,
colation, which corresponds >0.5, and the related straight line 4, and 5, and with such a lengths that in the calculated cor-
hass= —5/48, the typical error of the simulated annealing methodrelation function the exponential decay in E§.5 does not
is indicated by the error bar, whereas the error for percolation iseem to change by further increase of the length. Generally
smaller than the size of the symbol. we went at least up to a length of 64 sites, which has then
limited the available widthsl.,,. The calculated exponents
different, itis —2+d,=—0.1, whered, is close to the frac- for some values of the disorder parameter are given in
tal dimension of 2D percolation. Table II.
The estimates of the magnetization scaling dimension, As seen in Table Il the size dependencexgfis very
Xm, iN EQ.(2.10 at different disorder parametes, are sum-  weak forL,=>3 and the extrapolated value Bf,~0.17 is
marized in Table I. practically independent of the form of the disorder. This es-
As seen in Table | the average magnetization exponentimate is compatible with the previous one obtained by
Xm, IS approximately independent of the disorder parametefinite-size scaling. The fact, that this latter result lies close to
for 0<w<1/2, and its value is within the range of, the lower bound of the finite-size scaling one is probably due
~0.17-0.19. This is in agreement with the estimates obto the confluent singularity of the percolation fixed point,
tained by extrapolating the results calculated at fimjte  which is quite strong in the region ab’'s we used in the
[14,15, thus the two limits seem to be interchangeable. Thecalculation on strips.
apparent variation ok, with o can be attributed to cross- We have also calculated the central charge of the confor-
over effects. Atw=0 the pure system transition, whereas atmal anomaly,c, from the finite-size correction to the free
w=1/2 the percolation fixed point is going to perturb the energy per width
value of effective, finite-size-dependent exponents.

The average magnetization exponeqt, has been calcu- wc 4
lated by another method, which is based on conformal in- fo(Lw) =fo(*)— W+O(|—W )s (3.7
variance[19]. Here we use the result, that in a long strip of w

width, L,,, and with periodic boundary conditions the aver-

age correlation function along the strip decays exponentiall)‘/\'Ith the result

[<0-|0-|+u>]av exp( U/gLW)a (3.5 12| t=g ;
g L=12 O
TABLE I. Scaling exponentx,,, of the average magnetization I e L=16 &
for different disorder parametes. The last row withw>0.5 cor- 'j 1} L=24 A
responds to normal percolation where the exact value),is 5/48 E &
=0.104. <
08 | *
® Xm g
0.2 0.18%30) 0.6 T R
0.25 0.18816) -0.5 t?_ 0.5
0.31 0.16%15)
0.4 0.17813 FIG. 4. Scaling plot of the finite-size average magnetization in
>0.5 0.1032) the vicinity of the critical point, for a disorder parameter=0.4.

The scaling exponents we used herexge=0.177 andv=1.
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FIG. 6. A connected cluster with a steplgdoints on the top of

FIG. 5. Schematic RG phase diagram of the 2D RBPM with -
a straight surface.

varying strength of bimodal disordes, For details see the text.
two nontrivial fixed points, DIS and PERC. The singular
0.51(1) properties of the TR can be quite unusual, since the corre-
“In2 (3.8 sponding optimal graph is highly degenerate. The possible
configurations include all that interpolate between that of the
This is compatible with previous estimafé5] c=0.5/n2, RBPM and that of normal percolation.

c=0.741)=

which is obtained by finitet extrapolation. The behavior of the system at the fixed-point DIS, which
is the subject of the present paper, is strongly dominated by
B. Results outside the critical point disorder effects, whereas thermal fluctuations seem to be

. o negligible. Similar, disorder dominated critical behavior oc-
We close our paper by an investigation of the averager in random quantum spin chains, where analytical results
magnetization[m(L,t) ]ay, in the vicinity of the critical  gre availabl§21-23, and also in 2D random quantum fer-
point. In the scaling region, defined ai|"=0O(1), wherev romagnetg24]. Whether exact results can be obtained also

is the critical exponent of average correlations, the averaggy the 2D RBPM in the larget limit will be seen in future
magnetization is expected to behave as research.

[m(L,t)Ja="L " *mm(L]t|"), 3.9 ACKNOWLEDGMENTS

wherem(y) is some scaling function. The calculated mag-  F.l. is grateful to J-C. Angked’Auriac and L. Turban for
netizations at different finite size and temperature theruseful discussions. This work has been supported by a
should collapse to the same scaling function, provided th&erman-Hungarian exchange prograDAAD-MOB), by
correct critical exponentss,,, and v are used. In Fig. 4 we the Hungarian National Research Fund under Grant No.
show the result of such a scaling plot, where we used,, =~ OTKA TO023642, TO25139, TO34183, MO28418, and
as found approximately in finitg-calculations, whereas for M36803, and by the Ministry of Education under Grant No.
X, We used our previous estimate obtained through finiteFKFP 87/2001.

size scaling at the critical point. The data collapse in Fig. 4 is

satisfactory, however, to obtain a precise estimate @me APPENDIX: LENGTH SCALE
needs to extend the calculations for larger systems. IN THE SMALL DISORDER LIMIT
Here we estimate the sizk,0f a step, which is situated at
IV. DISCUSSION the top of a straight surface of a connected cluster, see Fig. 6.

Using the bimodal distribution in Eq2.11) the existence of

In this paper the critical behavior of the Potts model with ; )
bap the step is connected to the condition

nonfrustrated, random couplings is studied in the lagge-

limit. We have shown how the calculation of the free-energy 21-1
and the correlation functions of the RBPM can be mapped > —+Wi) >, (A1)
onto an optimization problem, which is then studied by =112

simulated annealing and by an approximate combinatorial _ . o .
optimization algorithm. Working with the bimodal distribu- wherew; =+« with the same probability, or equivalently
tion in Eq.(2.11) our results are compatible with the renor- 21 1
malization group(RG) phase diagram drawn in Fig. 5. > P>, (A2)
The pure systems fixed point, situatedwat O, is unstable =1 20
against any weak disorder, thus the critical behavior in the, 1, P,
range of 0<w<0.5 is controlled by the disordered fixed '
point (DIS). Our numerical calculation indeed indicate a uni-
versality with respect of the strength of disorder. Increasin
the disorder ovetn=0.5 we reach the region of attraction of
the normal percolation, and the corresponding fixed point
(PERQ is located atw=o. Our RG phase diagram is com- le~
pleted by introducing a repulsive tricritical fixed point, TR,
at w=0.5, which separates the regions of attraction of theas given in Eq(3.4).

==+1. For largel the probability distribution of the
sum in the left-hand side of EqA2) is Gaussian, with a
variance ofy2l—1. Consequently the average size of the
gstep,lc, scales with a smalb as

1 2
) ; (A3)

2w
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