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Numerical study of the disorder-driven roughening transition in an elastic manifold
in a periodic potential

Jae Dong Noh and Heiko Rieger
Theoretische Physik, Universita¨t des Saarlandes, 66041 Saarbru¨cken, Germany

~Received 10 June 2002; published 19 September 2002!

We study the roughening transition of a (311)-dimensional elastic manifold, which is driven by the
competition between a periodic pinning potential and a random impurity potential. The elastic manifold is
modeled by a solid-on-solid-type interface model, and the universal properties of the transition from a flat
phase~for strong periodic potential! to a rough phase~for strong random potential! are investigated at zero
temperature using a combinatorial optimization algorithm technique. We find that the transition is acontinuous
one. Critical exponents are estimated numerically, and compared with analytic results and those for a periodic
elastic medium.
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Extended objects embedded in a higher-dimensio
space, such as polymers, magnetic flux lines, surfaces, i
faces, or domain walls, are commonly described by ela
models on large length scales, the so-called elastic manif
~EMs! @1#. If quenched disorder in the form of impurities o
other randomly distributed pinning centers is present, the
will be, even at low temperatures or in the absence of
thermal fluctuations, in a rough state. However, a perio
array of pinning potentials, like a background lattice pote
tial, increases the tendency of the EM to minimize their el
tic energy, i.e., to stay flat@2,3#. Both the mechanisms com
pete with each other, and by varying their relative strengt
roughening transition might emerge. The numerical inve
gation of such a scenario is the purpose of this paper.

Consider ad-dimensional EM in a (d11)-dimensional
medium with quenched impurities distributed random
Fluctuations of the shape of the EM are then described b
scalar displacement fieldf(r ) denoting a deviation from a
flat reference state in the (d11)th direction at eachrPRd;
@f(r ),r # refers to the (d11)-dimensional coordinate of a
EM segment. It is known that quenched disorder, no ma
how weak, destabilizes the flat phase ford,4 @4#. The
emerging disordered rough phase is characterized by a d
gent displacement correlation functionB(r )[^@f(r )
2f(0)2& with the distancer 5ur u, whose scaling property is
universal.

An example of the one-dimensional~1D! EM is a directed
polymer or a magnetic flux line in a disordered 2D plan
Using a mapping to the Kardar-Parisi-Zhang equation
surface growth, it is shown analytically that the displacem
correlation diverges algebraically as

B~r !;r 2z, ~1!

with the exactly known roughness exponentz52
3 ~Ref. @1#!.

For higher-dimensional EMs, analytic studies using a fu
tional renormalization group~FRG! method predict that the
rough phase is governed by a zero-temperature fixed p
which is also characterized by a power-law divergence
B(r ) as in Eq.~1! @5–7#. The roughness exponent is found
1063-651X/2002/66~3!/036117~6!/$20.00 66 0361
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be z50.2083e @5# or 2
9e @6# up to first order ine542d. A

recent study extends this result to second order ine with z
50.2083«10.0069«2 @7#. These values are in good agre
ment with numerical estimates obtained from exact grou
state calculations for (211)D and (311)D solid-on-solid-
type interface models@8,9#.

In addition to random impurities, also the structure of t
embedding medium can affect the large scale propertie
the EM. In particular, if the medium has acrystallinestruc-
ture, the EM is pinned by the disorder potential and by
periodic crystal potential, both effects competing with ea
other—the latter favoring a flat state while the former
rough one. Hence, the EM may undergo a phase transitio
a critical disorder-potential strength. Following a qualitati
perturbative scaling argument@3#, one can see that there ex
ists the disorder-driven roughening transition at nonzero
order strength for 2,d,4.

In 2D, the disorder potential is argued to dominate ov
the periodic potential marginally@2,3#. Consequently, the 2D
EM is believed to be rough at any disorder strength asym
totically beyond a certain length scale that diverges expon
tially with the inverse of a disorder strength. Some numeri
studies support such claim@10#. On the other hand, it ha
been reported that an Ising domain wall in a (211)D lattice
with bond dilution displays a roughening transition at a no
zero dilution probability@9#. It suggests that the type of dis
order might be important in the marginal 2D case~see also
discussions in Ref.@10#!.

In 3D, the existence of a roughening transition was sho
in the studies using a Gaussian variational~GV! method@2#
and a FRG method@3,11#. In the GV study, the free energ
was calculated by approximating the Hamiltonian of the E
with a Gaussian. It leads to a conclusion that the transitio
of first order. On the other hand, the FRG study with a p
turbative expansion in the periodic potential strength and
e542d shows that the transition is continuous with a co
relation length exponentn51/(2Ae). To clarify this issue
we performed in this work a numerical study of the disord
driven roughening transition of the 3D elastic manifold in
crystal potential with quenched random impurities.
©2002 The American Physical Society17-1
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The EM is described by the Hamiltonian@3#

H5E ddr Fg2 U“f~r !U21VP@f~r !#1VR@f~r !,r #G , ~2!

where the first term represents a surface tension,VP(f)5
2V cosf represents the periodic lattice potential, a
VR(f,r ) the quenched random potential. Heref is measured
in units of a0/2p, with a0 the lattice constant of the crysta
For uncorrelated distribution of impurities,VR(f,r ) can be
taken as a random variable with mean zero and varia
given by

VR~f,r !VR~f8,r 8!5D2R~f2f8!d~r2r 8!, ~3!

with a parameterD for the disorder strength. Uncorrelate
distribution of impurities implies that the disorder correlati
function in the (d11)th direction is alsoshort ranged, i.e.,
R(f)5d(f).

It is interesting to note that the Hamiltonian in Eq.~2! can
also describe the so-calledperiodic elastic media~PEM! in a
crystal with quenched disorder@3#. A system of strongly in-
teracting particles or other objects, such as magnetic
lines in a type-II superconductor or a charge density in
solid, will order at low temperatures into a regular arrang
ment, namely, the flux line lattice or the charge density wa
respectively. Fluctuations either induced by thermal noise
by disorder induce deviations of the individual particles fro
their equilibrium positions. As long as these fluctuations
not too strong, an expansion of the interaction energy aro
these equilibrium configurations might be appropriate.
expansion up to second order leads to the surface-tens
like term as in Eq.~2!. In contrast to the EM, the PEM hav
their own periodicityl. It implies that the disorder potentia
VR(f,r ) should be a periodic function inf with the period-
icity p5l/a0 ~commensurability parameter!, even though
the impurities are distributed randomly. Hence, the disor
correlation function in Eq.~3! should be periodic:R(f
12pp)5R(f). In 3D, as a result of the periodicity, th
displacement correlation function forw[f/p diverges loga-
rithmically as^@w(r )2w(0)#2.2A ln r with a universal co-
efficient A.1.0 in the rough phase@12–14#. The periodic
elastic media also display a disorder-driven roughening tr
sition as a result of competition between the periodic pot
tial and the random potential. However, there is a slight c
troversy regarding the nature of the transition since
analytic FRG study@15# and a zero-temperature numeric
study @14# yield results that are not fully compatible.

We introduce a discrete solid-on-solid-type~SOS-type!
interface model for the elastic manifold whose continuu
Hamiltonian is given in Eq.~2!. Locally, the EM remains flat
in one of periodic potential minima atf52ph with integer
h. Due to fluctuations, some regions might shift to a differe
minimum with another value ofh to create a step~or domain
wall! separating domains. To minimize the cost of the ela
and periodic potential energy in Eq.~2!, the domain-wall
width must be finite, sayjo @3#. Therefore, if one neglect
fluctuations in length scales less thanjo , the continuous dis-
placement fieldf(r ) can be replaced by the integer heig
03611
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variable $hx% representing a (311)D SOS interface on a
simple cubic lattice with sitesxP$1, . . . ,L%3. The lattice
constant is of the orderjo and is set to unity. The energy o
the interface is given by the Hamiltonian

H5 (
^x,y&

J(hx ,x);(hy ,y)uhx2hyu2(
x

VR~hx ,x!, ~4!

where the first sum is over nearest neighbor site pairs. A
the coarse graining, the step energyJ.0 as well as the ran-
dom pinning potential energyVR becomes a quenched ran
dom variable distributed independently and randomly. N
that the PEM has the same Hamiltonian as in Eq.~4! with
random but periodicJ andVR in h with periodicityp @14#. In
this sense, the elastic manifold emerges as in the limip
→` of the periodic elastic medium.

Here, we are interested only in the ground-state prope
Since the prevalent RG picture suggests that the roughe
transition is described by a zero temperature fixed po
@3,11,12#, one expects that our critical exponents are va
for the finite temperature roughening transition as well.
find the ground state, one maps the 3D SOS model on
ferromagnetic random bond Ising model in (311)D hyper-
cubic lattice with antiperiodic boundary conditions in th
extra dimension@8# ~for the three space directions one us
periodic boundary conditions instead!. The antiperiodic
boundary conditions force a domain wall into the groun
state configuration of the (311)D ferromagnet. Note tha
bubbles arenot present in the ground state. A domain wa
may contain an overhang, which is unphysical in the int
face interpretation. Fortunately, one can forbid overhangs
the Ising model representation using a technique describe
Ref. @8#. If the longitudinal and transverse bond strengths
assigned withJ/2 andVR/2 occurring in Eq.~4!, respectively,
this domain wall of the ferromagnet becomes equivalen
the ground-state configuration of Eq.~4! for the interface
with the same energy. The domain wall with the lowest e
ergy is then determined exactly by using a combinato
optimization algorithm, a so-called maximum flow/minimu
cost algorithm. This combinatorial optimization technique
nowadays a standard in the study of disordered systems
we refer readers to Ref.@16# for a detailed review.

We performed the ground-state calculation onL33H hy-
percubic lattices forL<32. H, the size in the extra direction
is taken to be larger than the interface width. Several dis
butions forJ andVR were studied, since the critical behavio
of a disordered system may depend on the choice of
disorder distribution as in the random field Ising system@17#.
However, our main numerical results do not depend on
specific choice of the distribution. So we only present t
results for an exponential distribution forJ.0, P(J)
5e2J/J0/J0, and uniform distribution for 0<VR<Vmax. The
disorder strength is controlled with the parameterD
[Vmax/J0. Other distributions studied include~bimodal, bi-
modal! and~uniform, uniform! distributions for (J,VR), and
gave identical estimates for the critical exponents.

The state of the interface is characterized by the widthW
defined asW25^hx

2&02^hx&0
2 , where ^ . . . &0 denotes the
7-2
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NUMERICAL STUDY OF THE DISORDER-DRIVEN . . . PHYSICAL REVIEW E66, 036117 ~2002!
spatial average in the ground state and•••̄ the disorder av-
erage.W2 is proportional to the spatial integral of the di
placement correlation function. We also measure a magn
zationlike quantity m[u^eiphx&0u. It is analogous to the
magnetization used as an order parameter for the roughe
transition of the PEM@14#. One expects thatm is nonzero in
the flat phase and vanishes in the rough phase. So it ca
used as an order parameter for the roughening transition

We first examine the power-law scaling behavior of t
width, W;Lz, in the rough phase at large disorder streng
of D58 and 10. Figure 1~a! shows the width average ove
1000–5000 disorder realizations forL54 –32. A curvature
in the log–log plot is clearly seen, and indicates that corr
tions to scaling are still rather strong. Nevertheless, we
estimate the roughness exponent by extrapolating an e
tive exponentz(L)5 ln@W(2L)/W(L)#/ln 2 to the limit L→`
by fitting it to a form z(L)5z1aL2b, see Fig. 1~b!. We
obtain

z50.2160.01. ~5!

This value is consistent with the previous analytical and
merical results@5–9#.

As the disorder strength decreases, the width also
creases and the interface eventually becomes flat belo
threshold~see Fig. 2!. The order parameter also shows
indication of a phase transition aroundD.4.0. Apparently,
the order parameter decreasescontinuously. Therefore, we
perform a scaling analysis assuming that the phase trans
is a continuous one. The critical pointDc can be determined
from the finite-size-scaling property of the order paramet

m~L,«!5L2b/nF~«L1/n!, ~6!

where«[D2Dc , andb~n! is the order parameter~correla-
tion length! exponent. The scaling functionF(x) has a lim-
iting behavior,F(x→0)5const, so that the order paramet
decays algebraically withL asm;L2b/n at the critical point.
It also behaves asF(x→2`);uxub, so thatm;u«ub for
D,Dc in the infinite system size limit. Consider the effe

FIG. 1. ~a! W vs L in a log-log plot atD58 and 10~strong
disorder!. ~b! z vs 1/L for the same values ofD as in~a!. The solid
lines are least-squares fits to the formz(L)5z1aL2b. We obtain
z50.2160.01, and the resulting value ofb.1.5.1 indicates that
the extrapolation is stable against statistical uncertainties.
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tive exponent @b/n#(L)52 ln@m(2L)/m(L)#/ln 2. It con-
verges to the value ofb/n at the critical point and deviate
from it otherwise asL increases. We estimate the critic
threshold as the optimal value ofD at which the effective
exponent approaches a nontrivial value. The plot for t
effective exponent is shown in Fig. 3. One can see that th
is a downward and an upward curvature forD,4.20 and
D.4.30, respectively. From this behavior, we estimate t
Dc54.2560.05 and

b

n
50.0760.03. ~7!

Note that the effective exponent varies withL even at the
estimated critical point, which implies that corrections
scaling are not negligible for system sizes up toL532. For
that reason our numerical results forDc andb/n have rather
large error bars, and one may need larger system sizes
better precision. The exponentsb and n could also be ob-
tained from the scaling analysis using Eq.~6!. We fix the
values ofDc andb/n to the values obtained before and va
n to have an optimal data collapse. We obtain

FIG. 2. The interface width~a! and the order parameter~b! as
functions ofD at L54, 8, 16, and 32. They are obtained from th
disorder average over 3000–20 000 samples.

FIG. 3. The effective exponent@b/n#(L) for different values of
D as a function of 1/L. The broken line is a guide for the eye, whic
separates the curves with a downward bending (D,Dc) from those
with an upward bending (D.Dc).
7-3
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JAE DONG NOH AND HEIKO RIEGER PHYSICAL REVIEW E66, 036117 ~2002!
n51.460.2, ~8!

and the corresponding scaling plot is shown in Fig. 4.
The order-parameter scaling property shows that

roughening phase transition is acontinuous transition,
though the exponentb.0.1 is very small, as opposed to th
results of the GV study@2# predicting a first-order transition
The transition nature becomes more transparent by loo
at the probability distributionP(m) of the magnetization
near the critical point. We measured the distribution from
histogram of the magnetization of 3000 samples withL
532, which is shown in Fig. 5. We do not observe a doub
peak structure inP(m), which would appear for a first-orde
transition at any values ofD. Instead, there is a single pea
that shifts continuously towards zero asD increases. We did
not observe any double-peak structure in the distribution
the width, either. Therefore, we conclude that the roughen
transition is the continuous transition.

We note that this behavior is reminiscent of the thre
dimensional random field Ising model~RFIM! @18#, where
also a very small order parameter exponent is found. T
causes an extremely weak system size dependence an
transition appears to be discontinuous in the order param
although the system is indeed critical and the correlat
length diverges. However, as has been pointed out in R

FIG. 4. Scaling plot ofmLb/n vs u«uL1/n with «5D24.25,
b/n50.07, andn51.4.

FIG. 5. Histograms for the probability distributionP(m) of the
magnetization atL532.
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@19# the magnetization of anindividual sample shows dis-
continuous jumps close to the transition when~for a fixed
field distribution! the coupling strength is varied~however,
the sample-averaged magnetization is smooth!. Since in the
3D RFIM the maximum jump does not vanish even in t
infinite-size limit, some objection against the continuity
the phase transition has been raised@19#. Since we find also
a small order parameter exponent—and because of s
model specific similarities between the 3D RFIM and t
system we study here—we now want to check the jump s
statistics, too.

For a given realization ofJ andVR in Eq. ~4!, we measure
the order parameter and its jumps when changingVR with a
global factor. The interface may undergo two types of int
mittences. The average height^h& may jump with a vanish-
ing overlap of the interface configurations before and a
the jump~meaning that the whole manifold is in a new p
sition, uncorrelated with the previous one!; or a large
domain-type excitation may appear with only a small chan
in ^h&. The intermittent behavior of (111)D and (211)D
interfaces were studied in great detail in Ref.@10#. Here we
want to study how the interface at a given average he
roughens, therefore we only take into account the doma
type excitations with the change in̂h& less than one-half
when measuring the jump of the order parameter.

We calculate the order parameter in the interval 3<D
<7 with spacing 0.02. Figure 6 shows the probability dist
bution of maximumvalues of the jumpdm in 1000;5000
samples of sizesL54, 6, 8, 12, 16. The inset shows th
averaged value. It is nonzero, but becomes smaller as
system size increases except for the case ofL54. The decay
is very slow, nevertheless we could fit the data forL>6 to a
form dm;L20.16, as can be seen in the inset. It suggests t
the order parameter jump vanishes in the infinite-size lim
and the smallness of the estimated exponent 0.16 is com
ible with our small estimate for the order parameterb.

We also studied the scaling of the width at the critic
point. One might expect that the width at the critical po
scales asW;Lz8 with a new roughness exponentz8 differ-
ent fromz.0.21 for the rough interface. We plot the effe
tive exponentz5 ln@W(2L)/W(L)#/ln 2 near the critical point
in Fig. 7~a!. One observes that this effective exponent do

FIG. 6. Order parameter jump distribution. The inset shows
plot of the averaged value vs 1/L in the log-log scale. The solid line
has a slope of 0.16.
7-4
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NUMERICAL STUDY OF THE DISORDER-DRIVEN . . . PHYSICAL REVIEW E66, 036117 ~2002!
not extrapolate to a nonzero value@for comparison see Fig
1~b!#. Instead, it decreases rapidly asL grows, which sug-
gests rather a logarithmic scaling (W2.A ln L), at the critical
point, as in the case of the periodic elastic medium@14#. To
investigate such a possibility, we measure the prefactoA
[@W2(2L)2W2(L)#/ ln 2 for this logarithmic scaling. They
are also plotted in Fig. 7~b!, that shows a clear threshol
behavior. It decreases~increases! for D,4.25~.4.25! and re-
mains constant (A.0.03) atD54.25, which was estimate
as the critical point from the order parameter scaling ana
sis. These facts consistently suggest that the interface w
scales logarithmically at the critical point:

W2.0.03 lnL. ~9!

The result of the logarithmic scaling of the width at the cri
cal point agrees well with that of the FRG study@11#.

Our numerical results raise an interesting question. I
recent work@14#, we found that the disorder-driven roughe
ing transition of the PEM appears to be independent of
commensurability parameterp @14#. As mentioned before
the elastic manifold can be seen as thep→` limit of the
PEM. Based on this observation, one might speculate tha
roughening transitions of both systems belong to the sa
universality class. Although thep→` limit of the PEM
could also belong to a different universality class, the n
merical results are compatible with the roughening transit
in the EM and the PEM belonging to the same universa
class. For the EM, we obtainb/n.0.07, n.1.4, and A
.0.03(W2.A ln L at the critical point!, while for the PEM
@14# we gotb/n.0.05,n.1.3, andA.0.018. Although these
values are very close to each other, a final conclusion co
not be drawn yet due to the rather strong correction to fin
size scaling observed in our study of the EM. So we have
leave this issue as an open question.

FIG. 7. ~a! Effective exponent for the power-law behavior
W;Lz. ~b! Prefactor in the logarithmic scaling ofW2.A ln L.
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The critical exponent values that we find for the roughe
ing transition of the~311!D elastic manifold are close to th
corresponding exponent values of the 3D RFIM, whi
might suggest that both models belong to the same uni
sality class. Indeed, there is a special case of the mo
considered here, which is exactly equivalent to the
RFIM, namely, the casep52 of the PEM if there is no
disorder inJ in Eq. ~4! @14#. The spin and interface configu
rations in the RFIM and the PEM, respectively, can
mapped onto each other via the relationSx5eiphx. However,
the EM corresponds to thep→` limit of the PEM with
quenched disorder inJ. Consequently, the Hamiltonian i
Eq. ~4! is not invariant under the global shifth→h1n for
any integern. The absence of this symmetry~which is
present in the aforementioned case that is exactly equiva
to the 3D RFIM! makes it improbable that the~311!D EM
and the 3D RFIM belong to the same universality cla
Moreover, we find that the critical exponents of the EM
not depend upon the choice of the disorder distribution, a
the magnetization jump of individual samples vanishes
system size goes to infinity. In contrast to this, the critic
behavior of the 3D RFIM appears to be nonuniversal w
respect to the disorder distribution@17,19# and the magneti-
zation jump of individual samples does not vanish in t
infinite-size limit @19#.

In summary, we have studied the (311)D elastic mani-
fold in a crystal with quenched random impurities. We ha
investigated numerically the disorder-driven roughen
transition at zero temperature using an exact combinato
optimization algorithm technique. The transition turns out
be continuous with the critical exponentsb/n.0.07 and
n.1.4. For a given disorder potential configuration, the ord
parameter shows a discrete jump for finite size-systems w
varying its strength. However, the jump vanishes in the in
nite system size limit. We also found thatW2 scales logarith-
mically with the system sizeL at the critical point, in con-
trast to the power-law scaling in the rough phase. Our res
do not agree with the scenario proposed in Ref.@2# that the
roughening transition should be first order. Instead, they
in a qualitative agreement with those of FRGe-expansion
study in Ref.@11#, which predicts a continuous roughenin
transition and a logarithmic divergence ofW2 at the critical
point. However, there is a significant discrepancy betwe
the values of the critical exponents obtained numerically a
analytically, which was also observed in the study of t
PEM @14#.
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motivated us to check the jump size statistics. This work
been financially supported by the Deutsche Forschung
meinschaft~DFG!.
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