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Numerical study of the disorder-driven roughening transition in an elastic manifold
in a periodic potential
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We study the roughening transition of a{3)-dimensional elastic manifold, which is driven by the
competition between a periodic pinning potential and a random impurity potential. The elastic manifold is
modeled by a solid-on-solid-type interface model, and the universal properties of the transition from a flat
phase(for strong periodic potentialto a rough phaséfor strong random potentighre investigated at zero
temperature using a combinatorial optimization algorithm technique. We find that the transiticonsraious
one. Critical exponents are estimated numerically, and compared with analytic results and those for a periodic
elastic medium.

DOI: 10.1103/PhysRevE.66.036117 PACS nun)er64.60.Cn, 68.35.Ct, 75.10.Nr, 02.60.Pn

Extended objects embedded in a higher-dimensionabe {=0.2083 [5] or 3¢ [6] up to first order ine=4—d. A
space, such as polymers, magnetic flux lines, surfaces, intefecent study extends this result to second ordes with ¢
faces, or domain walls, are commonly described by elastie=0.2083: +0.00622 [7]. These values are in good agree-
models on large length scales, the so-called elastic manifoldgent with numerical estimates obtained from exact ground-
(EMs) [1]. If quenched disorder in the form of impurities or state calculations for (21)D and (3+1)D solid-on-solid-
other randomly distributed pinning centers is present, the EMype interface modelEs,9).
will be, even at low temperatures or in the absence of any ' aqdition to random impurities, also the structure of the

thermal fluctuations, in a rough state. However, a periodiG,mpeqding medium can affect the large scale properties of
array of pinning potentials, like a background lattice poten-,. em. In particular, if the medium hascaystalline struc-

tial, increases the tendency of the EM to minimize their elass i - ;
tic energy, i.e., to stay flg2.3). Both the mechanisms com- ture, the EM is pinned by the disorder potential and by the

pete with each other, and by varying their relative strength Y eriodic crystal potential, both effects competing with each

roughening transition might emerge. The numerical investi-omer_the latter favoring a flat state while the former a

gation of such a scenario is the purpose of this paper. roug_h one. Hence, the E.M may undergo a phase tran§itic_>n at
Consider ad-dimensional EM in a ¢+ 1)-dimensional & critical .dlsorde'r—potentlal strength. Following a qualitative
medium with quenched impurities distributed randomly, Perturbative scaling argumef8], one can see that there ex-
Fluctuations of the shape of the EM are then described by ists the disorder-driven roughening transition at nonzero dis-
scalar displacement fieldp(r) denoting a deviation from a order strength for 2d<4.
flat reference state in thel¢-1)th direction at each e RY; In 2D, the disorder potential is argued to dominate over
[#(r),r] refers to the @+ 1)-dimensional coordinate of an the periodic potential marginalfy2,3]. Consequently, the 2D
EM segment. It is known that quenched disorder, no matteEM is believed to be rough at any disorder strength asymp-
how weak, destabilizes the flat phase fix4 [4]. The totically beyond a certain length scale that diverges exponen-
emerging disordered rough phase is characterized by a divet,ially_ with the inverse of a_disorder strength. Some nu_merical
gent displacement correlation functioB(r)=([¢(r)  Studies support such claif10]. On the other hand, it has
— ¢(0)?) with the distance =|r|, whose scaling property is bgen report_ed .that an Ising domain wall in &F(z)D lattice
universal. with b(_)nd_ dilution dl_s_plays a roughening transition at a non-
An example of the one-dimensiondD) EM is a directed Z€ero dllquon pro_bab|llty{9]._ It suggests_ that the type of dis-
polymer or a magnetic flux line in a disordered 2D plane.o.rder m_|ght .be important in the marginal 2D cdsee also
Using a mapping to the Kardar-Parisi-Zhang equation fordiScussions in Re{.10)).

surface growth, it is shown analytically that the displacement In 3D, the exi;tence ofa rqughening transition was shown
correlation diverges algebraically as in the studies using a Gaussian variatiof@V) method[2]

and a FRG methofi3,11]. In the GV study, the free energy
was calculated by approximating the Hamiltonian of the EM

B(r)~r?, (1)  with a Gaussian. It leads to a conclusion that the transition is

of first order. On the other hand, the FRG study with a per-

with the exactly known roughness exponért3 (Ref.[1]).  turbative expansion in the periodic potential strength and in
For higher-dimensional EMs, analytic studies using a funce=4—d shows that the transition is continuous with a cor-
tional renormalization groupFRG) method predict that the relation length exponent=1/(2+/¢). To clarify this issue
rough phase is governed by a zero-temperature fixed pointye performed in this work a numerical study of the disorder-
which is also characterized by a power-law divergence otiriven roughening transition of the 3D elastic manifold in a
B(r) as in Eq.(1) [5—7]. The roughness exponent is found to crystal potential with quenched random impurities.
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The EM is described by the Hamiltonigg] variable {h,} representing a (31)D SOS interface on a
simple cubic lattice with sitexe{1, ... L}%. The lattice
H= f ddr

24V B(N)]+ VR SN[, () constant is of the ordef, and is set to unity. The energy of
P ) )
where the first term represents a surface tensi{,¢) =

the interface is given by the Hamiltonian
—V cos¢ represents the periodic lattice potential, and HzE Jih, x)i(h ,y)|hx—hy|—2 Vgr(hy,X), 4
V(,r) the quenched random potential. Hefés measured o) / X
in units ofagy/27r, with a4 the lattice constant of the crystal.
For uncorrelated distribution of impuritie¥/z(¢,r) can be  where the first sum is over nearest neighbor site pairs. After
taken as a random variable with mean zero and variancthe coarse graining, the step enetyy0 as well as the ran-
given by dom pinning potential energyr becomes a quenched ran-
dom variable distributed independently and randomly. Note
VRr(,1)Vr(d',r')=D?R(p— ") 8(r—r"), (3) that the PEM has the same Hamiltonian as in &g.with
random but periodid andV in h with periodicityp [14]. In
with a parameteD for the disorder strength. Uncorrelated this sense, the elastic manifold emerges as in the Ipnit
distribution of impurities implies that the disorder correlation —« of the periodic elastic medium.
function in the @+ 1)th direction is alsshort rangedi.e., Here, we are interested only in the ground-state property.
R(¢)=5(¢). Since the prevalent RG picture suggests that the roughening
It is interesting to note that the Hamiltonian in E8) can  transition is described by a zero temperature fixed point
also describe the so-callgetriodic elastic medidPEM) ina  [3,11,17, one expects that our critical exponents are valid
crystal with quenched disordgB]. A system of strongly in-  for the finite temperature roughening transition as well. To
teracting particles or other objects, such as magnetic flutind the ground state, one maps the 3D SOS model onto a
lines in a type-ll superconductor or a charge density in gerromagnetic random bond Ising model in€3)D hyper-
solid, will order at low temperatures into a regular arrange-cubic lattice with antiperiodic boundary conditions in the
ment, namely, the flux line lattice or the charge density waveextra dimensiorj8] (for the three space directions one uses
respectively. Fluctuations either induced by thermal noise operiodic boundary conditions insteadThe antiperiodic
by disorder induce deviations of the individual particles fromboundary conditions force a domain wall into the ground-
their equilibrium positions. As long as these fluctuations arestate configuration of the (81)D ferromagnet. Note that
not too strong, an expansion of the interaction energy aroundubbles arenot present in the ground state. A domain wall
these equilibrium configurations might be appropriate. Anmay contain an overhang, which is unphysical in the inter-
expansion up to second order leads to the surface-tensioface interpretation. Fortunately, one can forbid overhangs, in
like term as in Eq(2). In contrast to the EM, the PEM have the Ising model representation using a technique described in
their own periodicity\. It implies that the disorder potential Ref.[8]. If the longitudinal and transverse bond strengths are
VRr(¢,r) should be a periodic function igh with the period-  assigned withl/2 andVg/2 occurring in Eq(4), respectively,
icity p=\/ay (commensurability paramedereven though this domain wall of the ferromagnet becomes equivalent to
the impurities are distributed randomly. Hence, the disordethe ground-state configuration of E¢f) for the interface
correlation function in Eq.(3) should be periodicR(¢  with the same energy. The domain wall with the lowest en-
+2mp)=R(¢). In 3D, as a result of the periodicity, the ergy is then determined exactly by using a combinatorial
displacement correlation function fgr= ¢/p diverges loga- optimization algorithm, a so-called maximum flow/minimum
rithmically as([ ¢(r) — ¢(0)]°=2AInr with a universal co- cost algorithm. This combinatorial optimization technique is
efficient A=1.0 in the rough phasgl2—14. The periodic howadays a standard in the study of disordered systems and
elastic media also display a disorder-driven roughening tranwe refer readers to Reff16] for a detailed review.
sition as a result of competition between the periodic poten- We performed the ground-state calculationloh<H hy-
tial and the random potential. However, there is a slight conpercubic lattices foL <32. H, the size in the extra direction,
troversy regarding the nature of the transition since aris taken to be larger than the interface width. Several distri-
analytic FRG study{15] and a zero-temperature numerical butions forJ andVg were studied, since the critical behavior
study[14] yield results that are not fully compatible. of a disordered system may depend on the choice of the
We introduce a discrete solid-on-solid-tyg80S-type  disorder distribution as in the random field Ising sys{érm.
interface model for the elastic manifold whose continuumHowever, our main numerical results do not depend on the
Hamiltonian is given in Eq(2). Locally, the EM remains flat  specific choice of the distribution. So we only present the
in one of periodic potential minima at=2h with integer  results for an exponential distribution fad>0, P(J)
h. Due to fluctuations, some regions might shift to a different=e~"%/J,, and uniform distribution for & Vg<Va,. The
minimum with another value df to create a stefor domain  disorder strength is controlled with the parametar
wall) separating domains. To minimize the cost of the elastic=Vax/Jo. Other distributions studied includbimodal, bi-
and periodic potential energy in E¢), the domain-wall moda) and (uniform, uniform distributions for ¢,Vg), and
width must be finite, say, [3]. Therefore, if one neglects gave identical estimates for the critical exponents.
fluctuations in length scales less th&n the continuous dis- The state of the interface is characterized by the wilith
placement fields(r) can be replaced by the integer height defined asW?=(h2),—(h,)3, where(...), denotes the
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FIG. 1. (a9 Wvs L in a log-log plot atA=8 and 10(strong
disordey. (b) £ vs 1L for the same values af as in(a). The solid
lines are least-squares fits to the fotiflL)=¢+aL . We obtain
{=0.21+0.01, and the resulting value bF=1.5>1 indicates that
the extrapolation is stable against statistical uncertainties.

spatial average in the ground state and the disorder av-
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tive exponent [ B/v](L)= —In[m(2L)/m(L)}/In 2.
verges to the value gB/v at the critical point and deviates
from it otherwise asL increases. We estimate the critical

FIG. 2. The interface widtlia) and the order parametéb) as
functions ofA atL=4, 8, 16, and 32. They are obtained from the
disorder average over 3000—20 000 samples.

It con-

erage.W? is proportional to the spatial integral of the dis- threshold as the optimal value @f at which the effective
placement correlation function. We also measure a mag”eté'xponent approaches a nontrivial value. The plot for this

zationlike quantitym=|(e'™)|. It is analogous to the effective exponent is shown in Fig. 3. One can see that there
magnetization used as an order parameter for the roughening a downward and an upward curvature 4.20 and

transition of the PEM14]. One expects thahis nonzero in

the flat phase and vanishes in the rough phase. So it can be — 4 25+ 0.05 and

used as an order parameter for the roughening transition.

We first examine the power-law scaling behavior of the
width, W~L¢, in the rough phase at large disorder strengths
of A=8 and 10. Figure (B) shows the width average over
1000-5000 disorder realizations for=4-32. A curvature
in the log—log plot is clearly seen, and indicates that correcs
tions to scaling are still rather strong. Nevertheless, we ca
estimate the roughness exponent by extrapolating an effe
tive exponentZ(L) = In[W(2L)/W(L)}/In 2 to the limitL—oo
by fitting it to a form /(L)=¢+aL°, see Fig. tb). We
obtain

{=0.21+0.01. (5)
This value is consistent with the previous analytical and nu
merical result§5-9].

As the disorder strength decreases, the width also de-
creases and the interface eventually becomes flat below a
threshold(see Fig. 2 The order parameter also shows an
indication of a phase transition aroudd=4.0. Apparently,
the order parameter decreassmtinuously Therefore, we
perform a scaling analysis assuming that the phase transition
is a continuous one. The critical poiat, can be determined
from the finite-size-scaling property of the order parameter:

(6)

wheree=A—A., andB(v) is the order parametécorrela-
tion length exponent. The scaling functiafi(x) has a lim-
iting behavior,/(x— 0)=const, so that the order parameter
decays algebraically with asm~L ~#'* at the critical point.
It also behaves ag(x— —x)~|x|#, so thatm~|e|? for

m(L,e)=L" P FeL™),

(B/v]
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0.07=0.03.

A>4.30, respectively. From this behavior, we estimate that

@)

Note that the effective exponent varies witheven at the
Bstimated critical point, which implies that corrections to
%'caling are not negligible for system sizes up_te 32. For

that reason our numerical results g and 8/v have rather
large error bars, and one may need larger system sizes for
better precision. The exponengsand v could also be ob-
tained from the scaling analysis using ). We fix the
values ofA; and B8/ v to the values obtained before and vary

v to have an optimal data collapse. We obtain

1/L

A <A, in the infinite system size limit. Consider the effec- with an upward bendingX>A.).
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FIG. 3. The effective exponeh/v](L) for different values of
A as a function of 1.. The broken line is a guide for the eye, which
separates the curves with a downward bendihg () from those
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FIG. 6. Order parameter jump distribution. The inset shows the
plot of the averaged value vsL1in the log-log scale. The solid line
has a slope of 0.16.

FIG. 4. Scaling plot ofmL?” vs |e|LY” with e=A—4.25,
Blv=0.07, andv=1.4.

v=1.4+0.2, (8)  [19] the magnetization of amdividual sample shows dis-
continuous jumps close to the transition whior a fixed
and the corresponding scaling plot is shown in Fig. 4. field distribution the coupling strength is variethowever,

The order-parameter scaling property shows that théhe sample-averaged magnetization is smpdéince in the
roughening phase transition is eontinuous transition, 3D RFIM the maximum jump does not vanish even in the
though the expone8=0.1 is very small, as opposed to the infinite-size limit, some objection against the continuity of
results of the GV studj2] predicting a first-order transition. the phase transition has been raiged]. Since we find also
The transition nature becomes more transparent by looking small order parameter exponent—and because of some
at the probability distributionP(m) of the magnetization model specific similarities between the 3D RFIM and the
near the critical point. We measured the distribution from asystem we study here—we now want to check the jump size
histogram of the magnetization of 3000 samples with statistics, too.
=32, which is shown in Fig. 5. We do not observe a double- For a given realization of andVy in Eq. (4), we measure
peak structure ifP(m), which would appear for a first-order the order parameter and its jumps when chany/agvith a
transition at any values af. Instead, there is a single peak global factor. The interface may undergo two types of inter-
that shifts continuously towards zero Asincreases. We did Mmittences. The average heiglity may jump with a vanish-
not observe any double-peak structure in the distribution offg overlap of the interface configurations before and after
the width, either. Therefore, we conclude that the rougheninge jump(meaning that the whole manifold is in a new po-
transition is the continuous transition. sition, uncorrelated with the previous oneor a large

We note that this behavior is reminiscent of the three-domain-type excitation may appear with only a small change
dimensional random field Ising mod&RFIM) [18], where in (h). The intermittent behavior of (£1)D and (2+1)D
also a very small order parameter exponent is found. Thigterfaces were studied in great detail in Rgf0]. Here we
causes an extremely weak system size dependence and tiant to study how the interface at a given average height
transition appears to be discontinuous in the order parameté&pughens, therefore we only take into account the domain-
although the system is indeed critical and the correlatiodype excitations with the change ifh) less than one-half

length diverges. However, as has been pointed out in Refvhen measuring the jump of the order parameter.
We calculate the order parameter in the intervat 8

30 <7 with spacing 0.02. Figure 6 shows the probability distri-
—A=40 bution of maximumvalues of the jumpsm in 1000~ 5000
3 20 ifﬁ samples of sizek =4, 6, 8, 12, 16. The inset shows the
< 10k —- A4 averaged value. It is nonzero, but becomes smaller as the

- A=48 system size increases except for the cade-oft. The decay
is very slow, nevertheless we could fit the datalfer6 to a
form sm~L %1€ as can be seen in the inset. It suggests that

— A=50 the order parameter jump vanishes in the infinite-size limit,
~ St~ | .. A=52 and the smallness of the estimated exponent 0.16 is compat-
E -—-A=54 ible with our small estimate for the order parameger
. -- A=56 We also studied the scaling of the width at the critical

. ~-A=58 point. One might expect that the width at the critical point
038 1 scales asV~L¢" with a new roughness exponeft differ-

ent from ¢=0.21 for the rough interface. We plot the effec-

FIG. 5. Histograms for the probability distributid®(m) of the  tive exponent=In[W(2L)/W(L)]/In 2 near the critical point
magnetization ab = 32. in Fig. 7(a). One observes that this effective exponent does
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04 - - 0.06 . - The critical exponent values that we find for the roughen-
(a) (b) ing transition of thg3+1)D elastic manifold are close to the
03k | ] corresponding exponent values of the 3D RFIM, which
' 0.04} J might suggest that both models belong to the same univer-
sality class. Indeed, there is a special case of the models
s 02 1= i?\?\‘*gk% ; considered here, which is exactly equivalent to the 3D
0-04.15 % RFIM, namely, the cas@=2 of the PEM if there is no
I é'__gigg | 0% T disorder inJ in Eq. (4) [14]. The spin and interface configu-
01 &7 430 | rations in the RFIM and the PEM, respectively, can be
4435 mapped onto each other via the relat®p=e' ™. However,
0 L ! 0 ! ! the EM corresponds to thp—o limit of the PEM with

quenched disorder id. Consequently, the Hamiltonian in
Eqg. (4) is not invariant under the global shift—h-+n for

any integern. The absence of this symmetryhich is
present in the aforementioned case that is exactly equivalent
to the 3D RFIM makes it improbable that th@+1)D EM

not extrapolate to a nonzero val{fer comparison see Fig. and the 3D RFIM belong to the same universality class.
1(b)]. Instead, it decreases rapidly Bsgrows, which sug- Moreover, we find that the critical exponents of the EM do
gests rather a logarithmic scaling/f=A InL), at the critical not depend upon the choice of the disorder distribution, and
point, as in the case of the periodic elastic medjud]. To  the magnetization jump of individual samples vanishes as
investigate such a possibility, we measure the prefadtor System size goes to infinity. In contrast to this, the critical
=[W?(2L)—W?(L)]/In 2 for this logarithmic scaling. They behavior of the 3D RFIM appears to be nonuniversal with
are also plotted in Fig. (B), that shows a clear threshold respect to the disorder distributi¢h7,19 and the magneti-
behavior. It decreasédsicreasesfor A<4.25>4.25 and re-  zation jump of individual samples does not vanish in the
mains constantA=0.03) atA=4.25, which was estimated infinite-size limit[19].

as the critical point from the order parameter scaling analy- In summary, we have studied the{3)D elastic mani-
sis. These facts consistently suggest that the interface widtleld in a crystal with quenched random impurities. We have

FIG. 7. (a) Effective exponent for the power-law behavior of
W~L¥. (b) Prefactor in the logarithmic scaling ®?=AInL.

scales logarithmically at the critical point: investigated numerically the disorder-driven roughening
transition at zero temperature using an exact combinatorial
W?2=0.03InL. (9)  optimization algorithm technique. The transition turns out to

o ) ) _. be continuous with the critical exponen@»=0.07 and

The result of the logarithmic scaling of the width at the criti- ,—1 4 For a given disorder potential configuration, the order
cal point agrees well with that of the FRG stud]. parameter shows a discrete jump for finite size-systems when

Our numerical results raise an interesting question. IN §arying its strength. However, the jump vanishes in the infi-
recent work 14], we found that the disorder-driven roughen- njte system size limit. We also found thag scales logarith-
ing transition of the PEM appears to be independent of theyicaliy with the system sizé at the critical point, in con-
commensurability parametqy [14]. As mentioned before, a5t 1o the power-law scaling in the rough phase. Our results
the elastic manifold can be seen as e« limit of the 45 not agree with the scenario proposed in R2f.that the
PEM. Based on this observation, one might speculate that thg,,ghening transition should be first order. Instead, they are
roughening transitions of both systems belong to the samg, g qualitative agreement with those of FR@&expansion
universality class. Although th@—o limit of the PEM  gy,qy in Ref.[11], which predicts a continuous roughening
could also belong to a different universality class, the nUyansition and a logarithmic divergence R at the critical
_merlcal results are compatible Wlth the roughening Fransm_orboint_ However, there is a significant discrepancy between
in the EM and the PEM belonging to the same universalityihe yalues of the critical exponents obtained numerically and

class. Fc;r the EM, we obtai/»=0.07, »=1.4, andA  gnaiyiically, which was also observed in the study of the
=0.03W*=AInL at the critical point, while for the PEM  pgp[14].

[14] we gotB/v=0.05,r=1.3, andA=0.018. Although these

values are very close to each other, a final conclusion could We thank J. P. Bouchaud for a stimulating discussion that
not be drawn yet due to the rather strong correction to finitemotivated us to check the jump size statistics. This work has
size scaling observed in our study of the EM. So we have tdeen financially supported by the Deutsche Forschungsge-
leave this issue as an open question. meinschaftDFG).
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