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Stability of shortest paths in complex networks with random edge weights
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We study shortest paths and spanning trees of complex networks with random edge weights. Edges which do
not belong to the spanning tree are inactive in a transport process within the network. The introduction of
guenched disorder modifies the spanning tree such that some edges are activated and the network diameter is
increased. With analytic random-walk mappings and numerical analysis, we find that the spanning tree is
unstable to the introduction of disorder and displays a phase-transitionlike behavior at zero disorder strength
e=0. In the infinite network-size limitN— o), we obtain a continuous transition with the density of activated
edgesb growing like®~ ¢! and with the diameter-expansion coefficiahgrowing like Y ~ &2 in the regular
network, and first-order transitions with discontinuous jumpimndY at e=0 for the small-world(SW)
network and the BarakaAlbert scale-freg'SP) network. The asymptotic scaling behavior sets in when
>N., where the crossover size scalesNg~¢ 2 for the regular networkN.~exp(as ?) for the SW
network, andN .~ exp(a/ln le~2) for the SF network. In a transient regime wikh<N,, there is an infinite-
order transition with® ~Y ~exd — a/(¢?In N)] for the SW network and-exd — a/(¢2n N/In In N)] for the SF
network. It shows that the transport pattern is practically most stable in the SF network.
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[. INTRODUCTION field theories and strongly depends on the degree distribution
[7]. Stability of complex networks has also been studied
A network is a new paradigm to study complex systems inagainst a strong disorder such as a vertex dilufith-12.
many disciplines in sciendd,2]. A complex system consists When the fraction of diluted vertices increases, a network
of a large number of interacting units and the nature of thanay disintegrate into finite clusters undergoing a
interaction determines equilibrium and dynamical propertiepercolation-type transition. In this paper, we study the effect
of the system. Frequently, the simplifying assumption isof weak disorder on the transport properties of networks.
made that the units are arranged to form a simple pattern like Theshortest pattplays an important role for the transport
a regular lattice or to interact with all others as in a mean-within a network[13,14]. A path denotes a sequence of ver-
field theory. Recent studies, however, have revealed that thices, successive pairs of which are connected via edges. In
structure of complex systems is much riclige3]. In gen-  general there exist many paths connecting two given verti-
eral this structure is captured by a network which consists o€es. The shortest path is the one with minimum path length
vertices representing the units and edges connecting interacimong all the paths. The minimum path length is called a
ing vertex pairs. separationbetween the two vertices. Suppose one needs to
Complex networks exhibit so-called small-world phenom-send, e.g., a data packet from one computer to the other
ena: vertices are highly clustered and the average separatitimough the Internet. The shortest path provides an optimal
between vertices grows slowly with the total number of ver-path way since one would achieve a fastest transfer and save
tices. Watts and Strogaf3] introduced a small-worldSW) system resources. The shortest path is also important in
network as a model for these phenomena. It is obtained frorstudying an internal structure of a netwqds]. The separa-
a regular lattice with edges randomly rewired with probabil-tion can be used as a measure of intimacy between vertices.
ity p, . Later it was found that some complex networks haveThe number of shortest paths that pass through a vertex is
a power-law distributiorP4.((2)~z"” of the degree. The called the “betweenness” or “load[15,13,14,18 It reflects
degree of a vertex is the number edges incident upon it. Ththe importance of a vertex in mutual relationship or in trans-
class of networks with a power-law degree distribution isport. The load follows universal power-law distributions in
called the class of scale-fré&F networks and is found in scale-free networkgl3,14,18.
many areas including physics, computer science, biology, so- Consider shortest paths from a vertexalled thesource
ciology, etc(we refer readers to Reff2] for examples The  to all other vertices in a network. In an unweighted network
Barabai-Albert model[4] generates a SF networky £ 3) the length of a path is just the number of edges that it con-
growing via a preferential attachmentule [5]. Initially one  tains and shortest paths can simply be found using the
starts withZ, vertices and introduces a new vertex at each'breadth-first search algorithm[’17]. A subnetwork consist-
step (growing). It is then attached t& existing vertices, ing of all the shortest paths fromis the spanning treeT,
which are selected with probabilitynearly proportional to  which characterizes the optimal transport pattern. Figure 1
their degregpreferential attachment shows an example of a network and its spanning tree. It is
The discovery of these classes of networks triggered exeonvenient to represent the spanning tree by a diagram in
tensive research. Order-disorder phase transifiér$] and  which vertices are arranged hierarchically in the ascending
nonequilibrium phase transitio9] have been studied. In- order of their separation from the source. Then, the shortest
terestingly, the critical behavior is described well by mean-path to each vertex is given by a directed pathTan In

1063-651X/2002/6@)/0661278)/$20.00 66 066127-1 ©2002 The American Physical Society



J. NOH AND H. RIEGER PHYSICAL REVIEW E56, 066127 (2002

Ve and the minimum cost is denoted asdstance The path
Vo Ve length of the shortest path is called theparationof the two
v el W 1=1 vertices connected by it.

The spanning tred ¢ of a disordered network can be

e A RNV Y e e '=2  found using the “Dijkstra algorithm17]: Divide all verti-

va  vg® ¥y e 1=3 ces into two setsS and its complemeng. Initially S={s}

B I and the source is assigned to a distance ldbgl=0 and a
z Vs I=4 separation label(s)=0. At each iteration, one selects an

optimal edgee* =[u*;v*] that has a minimum value of
FIG. 1. A network(left) and its spanning tregight) Ts. Verti-  d(u)+c([u;v]) among all edgeg=[u;v] with ue S and
ces inTg are arranged in the hierarchical order of the separdtion veS. Then. the vertex* gets the labelgl(v*)=d(u*)

The vertexv'e, and hence s, has Mofold degenerate shorte_st paths, +c([u*:v*]) andl(v*)=1(u*)+1 and a predecessor label
so T4 contains a loop. Dashed lines represent edges which do not . . — . .
belong toT.. pred@p*)=u*, and is shifted front to S The iteration ter-

minates when the s& is empty. The shortest path to each
general, the spanning tree does not have a tree structure.Mertex is then found by tracing the predecessor iteratively
there are degenerate shortest pafhg;ontains a loop. Some back tos. The distance and separation frato each vertex
edges do not belong td,. They do not contribute to any v are given byd(v) andI(v), respectively. The average
flow from or tos. separatiorD =[1/(N—1)]2, .4l (v) will be called adiam-
It has been assumed that all edges are equivalent havirgjer.
the same cost. However, a real network would be described In @ homogeneouge.g., regular network and a weakly
better with weighted edges. A weight of an edge may repredisordered network(e.g., SW network all vertices are
sent an access cost, a physical |ength, or an intimacy betwe@guivalent after an average over all disorder realizations. The
vertices[15,18. For example, edges between scientists indiameter is independent of the sourBe=D. In such cases
scientific collaboration networks may have weights whichwe select the sourcearbitrarily. On the other hand, the SF
depends on the number of coauthored pagéf. In a  network has a highly inhomogeneous structure. For the SF
weighted network, the path with the minimum number of network, we select thaub which has the largest degree as
edges is not necessarily an optimal one. In this work, wéhe sources since it plays the most important role in the
study disordered networks with randomly weighted edgedransporf13].
and investigate the effect of the disorder on the transport The spanning treds of a disordered network will be
pattern. The regular network, the SW netw¢®&, and the different from T? of the same network without disorder. If
Barabai-Albert SF networK4] are considered. This paper is the disorder has a continuous distribution, with probability 1,
organized as follows: In Sec. I, we define the shortest patfall shortest paths are uniquely determined. Therefbgdas
and the spanning tree in the disordered network. The disordex tree structure, Where§§ may have loops. Without loops,
modifies the shape of the spanning tree. The response is d§; consists of only K—1) edges. Moreover, a vertex may
scribed for the regular and SW networks in Sec. Il and forhave a shortest path that cannot be found1-g~l For ex-
the SF network in Sec. IV. We conclude in Sec. V. ample, a pathg,v;,vq,v5,v6) in @ network in Fig. 1 may be
a shortest path tog, so thatTg includes the edgévg;vg]

II. SHORTEST PATHS AND THE SPANNING TREE which does not belong tﬁg. Such an edge of ¢ that does

OF DISORDERED NETWORKS not belong toT? will be called anactivatededge. The disor-
der activates it to play a role in the transport. The activated
edge results in a drastic change in the shape of the spanning
tree and increases the network diameter. We quantify the
change by the density of disorder-induced activated edges
®, which is given by the number of activated edgesTin
divided by (N—1), and the diameter-expansion coefficient
Y =(Ds—D2)/D2 with D (D?) the diameter withwithout)
disorder. The activated edge emerges as a result of competi-
, ) o . tion between all paths connecting a vertex to the source. So
where7(e)’s are random variables distributed independentlynenyorks with different structures respond differently. In the
with distribution 7(7) (7(€)>—1). following section we will study the evolution of the spanning

In a disordered network, minimum-cost pattplays the  {rees of the regular network and the small-world netw@ik
role of the shortest path in a pur@€ 0) network. For given

verticesu andv, the minimum-cost path is given by the one
with minimum path cost The path cost is defined as the sum
of all edge costs in the path. Without disordej(e) =0 for Consider a regular network consisting fvertices on a
all e], the path cost is equivalent to the path length and thene-dimensional ring, each of which is connected ugtto
minimum-cost path is the same as the shortest path. Hereafearest neighbors with undirected edges. The SW network is
ter, the minimum-cost path will be called the shortest pathpbtained by rewiring each edge with probabilgy (see Ref.

Consider a disordered undirected network. An eddpe-
tween two verticeau and v will be denoted ase=[u;v]
=[v;u]. To each edge a non-negative weight(e) is as-
signed which is called thedge cosbf e. Here we neglect all
system-dependent details and assume that

c(e)=1+ gy(e), (1)

IIl. SMALL-WORLD NETWORK
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. § b a . b . d(an) +c([an;bn])>d(by). 5
1 P By 1 1 1
b, &1 S ¢ 0. 21 b, ap b, ag When it is violated, the predecessor lof is a,, [a,;bn]

ap | 'ag ¢ b, ag bs ag becomes activated, arid, changes its shape.

b, a, /, by a, by a, We introduce now a random-walk interpretation of the
ac ¥ b bs ag b & recursion relation. DefineX(n)=d(a,)—n and Xg
a / b, a bt aa =d(b,)—n and insert it into Eq.4). Using Eq.(1), one
I o T obtains Xg(n)=Xg(n—1)+ 7([by_1;bs]); Xg(n) can be
e /’ b7 a7 b7 aray interpreted as the coordinate of a one-dimensional random
a; ¢ ¢bg ag bg ay=ag walker (walkerB) aftern jumps.Xa(n) is given by the mini-

mum of Xa(n—1)+7xn([a,-1;a,]) and Xg(h—1)
+75([b,_1;a,]). The first term also suggests tht(n) can
FIG. 2. A regular network witiz=2 in (@) and its spanning b€ interpreted as the coordinate of another random walker

trees without disorder irfb) and with disorder in(c) and (d). (¢  (walkerA) aftern jumps. But its motion is constrained: After

shows a spanning tree of tyjBeand(d) shows a spanning tree with €ach jump, one has to compare the current positioh @he

both segments of typa and typeB. Vertices in(b), (c), and(d) are  first term) with the position ofB [the second term Xg(n)

arranged in the hierarchical order in the separation from the source- O(g)], and take the minimum aX,(n). Therefore, one

s. Activated edges are represented by thick linegdin may assume a hard-core repulsion between two walkiees
interaction range fluctuates by an amoun@Qidfe)]. The in-

[3] for a detailed proceduyeExcept for extreme cases with equality in Eq. (5) can be rewritten asXg(n)—Xa(n)

p,=0 (regular network and p,=1 (random network the  <c([a,;b,])=1+0O(e), which imposes a constraint on the
SW network displays the small-world phenomdi®. We  random-walk motion.

(a) (b) (¢) (d)

introduce a quenched disorder in edge costs as in(Bq. It is convenient to introduc&r(n)=Xg(n)—Xa(n). It
with the disorder distribution can be interpreted as the coordinate of a one-dimensional
random walkerR in the presence of a fluctuatingflecting
i for —e<p<e wall at Xg=0(e) and a fluctuatingabsorbingwall at Xg
Fln)=1 2¢ (2 =1+0(e). At each time step, the walk& performs a jump
0 otherwise. of size 7' obeying the distribution Fg(7%')

=[dn[dnF(91) F(n2) 6(n' — m1+ m7). Hereafter, the
Disorder strength is controlled by the paramete(<1). boundary walls are assumed to be fixedXat=0 and Xy

First we focus on the regular networlp,&=0) with Z=2, =1. The fluctuations do not modify the scaling behavior of

which gives us a lot of insights. ® andY with a possible change in the coefficient of the
leading order term.

A. Regular network (p,=0) with Z=2 The random walkeR determines the shape of the span-

ning tree. If the walker does not touch either wallgt=0

or 1 at a momenn, then the predecessor af, (b,) isa,_ 1
(b,—1). When it bounces at the reflecting wall in stepa,
hasb, _; as its predecessor, and the spanning tree has a new
sub-branch, cfas, a4, anday in Fig. 2(c). If it collides with

the absorbing wall at step,, the inequality(5) is violated

and bno has an, as predecessor instead b,'ﬁo,l [see the

spanning tree in Fig. (&) which hasny=5].

A regular network withz=2 andN= 18 is shown in Fig.
2(a). We consider the shortest path from the sows.c@ith-
out disorder £ =0), the shortest path to, is unique. On the
other hand, there ane degenerate shortest pathsag. So
the spanning treé’g has a ladder shape with diagonal rungs
from b, to a,.; as shown in Fig. @) [19]. All edges
{[a,;b,]} are missing inT?.
ninglire:flgléezli?]zlfg:iir? aen r] 2': I[O borfi b ;(:]a l;# gullr:j tgg Srg?n The samg rangom—yvalk mapping can be established after
moved fromT. ConsequentlyT, has a tree shape with a 2" €49¢€any;bn ] is activated. If one interprets =a, as a
single branch forb,'s and with sub-branches faa,’'s, cf. ~ new source and redefineg=a,., andb,=b,., _;, the
Fig. 2(c). This shape will be denoted as a typetree. The distances frons’ to a; and b/, satisfy the same recursion
branching points are determined from recursion relations forelation as in Eqs(3) and (4) and the same constraint as in
the distancesl(a,) andd(b,), Eqg. (5) with a(b) replaced byb’ (a’). Thus, the spanning

. tree consists of a single branch #®f's and sub-branches for
d(an)=min{d(a,-1) +c([an-1;anD), d(by-1) b’’s. This shape will be denoted as a typesee Fig. ).

+c([by_1;a,])} 3) The creation of sub-branches and the switch into #xeee
b are described by the same random-walk mapping used for
d(bp)=d(by-1) +c([bp-1;by]). (4)  the typeB segment.

Combining the mappings for typ&-and typeB seg-
If d(an—1)tc([an—1;an])<d(b,-1)+c([b,-1;a,]), the ments, the shape of the whole spanning tree can be deter-
predecessor of, is a,_;, otherwise the predecessor is mined by the the random walkét in the presence of two
b,_1. The recursion relation®) and(4) holds if T has the  hard-core walls aKg=0 and 1. InitiallyXg(0)=0, and the
typeB structure, which is valid as long as wall at Xg=0 (1) is reflecting(absorbing. When the ab-

066127-3



J. NOH AND H. RIEGER PHYSICAL REVIEW E56, 066127 (2002

sorbing wall is aiXg=1 (0), thespanning tree has the type- 107y (o g
B (type-A) shape. The sub-branch emerges when the randon : ] .
walker collides with the reflecting wall. When it collides 10'
with the absorbing wall, the role of the two walls are ex- g
changed and the spanning tree switches its shape. Itis intel 10
esting to note that the random walks with two types of « :
boundary walls were used to find the exact ground states 0= 1ot
one-dimensional random-field Ising-spin chf2o]. e
The shape off is characterized by two length scalés 107k
andé,, see Fig. 2. The former characterizes the length of the : ]
sub-branch, and the latter the length of each tpex type- 10°F | ¥ W
B segment. They are given by the mean time scales betwee ; 0 025 05 ]
successive collisions with the reflecting wall and the absorb-  jg bt 2l el
ing wall, respectively. Thené; can be approximated as the 10 10
lifetime of the random walkeR, being at the origin initially, e N
in the presence of two absorbing wallsXt0 andX=1. FIG. 3. ®re in (@) and Yreg in (b) for the regular network
And &; is given by the mean lifetime of the random walker yith z=2 andN= 10000 (), 20 000 (), 40000 ¢ ), and 80 000
R, being at the origin initially, in the presence of two absorb-(A). The straight lines represent 0x24n (a) and 0.322 in (b).
ing walls atX==*1. The lifetime 7 of a random walker in  |nsets showZ dependence of the coefficients, (Prec=xse) and
the presence of absorbing boundary walls has been studied iy (Yrec=xye?).
various literatures. Here, we use the resutWgW, /o in
bREf- [31] Whef"eWR IEWL) is the disdtance from tffle rigi(nleftzj disorder, the spanning tréE] has aZ-leg ladder structure
oundary wall. Takin =o and Wg=1—¢ for an ith di j i a
Wom W =172 for ff,’WLand using o?=[d' 7 5}) 7'? rivc'?s?f}%mﬁéunrgesd'eizgzgfsgfflé 'r{ad’izg) el with
=22, we obtain thaté,=\32¢ ' and &=(3/2)s 2 —j . .7 Edgss{[u‘ vl with i #j do ﬁét belorqg toTOJ
Note that theO(e) fluctuation of the walls does not change When the disorder turns on, there emerge activated edges.
the scaling exponents, but may modify the coefficienfof  yntil one finds an activated edge, the distance to each vertex

One edge among@ edges in a row is activated when a from the source satisfies recursion relations
sub-branch appears only in the typesegment[see Fig.

1035

1/2

2(d)]. So, the activated-edge density is inversely proportional divh)= min {d(v)_y)+c([v)_ 50D} 8)
to gl! j=i, . z
17-1 1 The recursion relations are valid as long as
= oe— — 71: — . . . .
Prec(8)=7 7 & 22" © d(vh)+c([v! vl ) >d(v)) 9)

whereZ=2 and - 1)/Z is the fraction of the typék seg-  for all i#]. With the ma.ppingxi(n)zd(v‘n)—n, one can
ments. When the spanning tree changes its shape at a cert#erpretX;(n) as a coordinate of a random walkeraftern
vertex [cf. a5 in Fig. 2Ad)], its all descendent vertices in- Jumps[each jump has the distributiaf(7)]. Then, Eq.(8)
crease their separation from by 1. So, the diameter- implies a hard-core interaction between walkers Asa@an-

sider the hard-core interaction only betwegnandA, . ;. If
1,1, A; andA ., collide at stem, then the vertex;, takesv,, "
Yreo(e) =56 =58" (7). as its predecessor. Otherwise, , is the predecessor of, .

The constraint9) implies that the relative distance between

The results are valid in the asymptotic limit whet¢  all walkers should be |9135 chaanD(S), that is, [X; — X7|
>max( &) =&, which suggests the finite-size-scaling form =1. An activated edgga;, ;a;, | appears when this inequal-

Dreale,N)=N"Y2G,(eNY?) and Yreo(e,N) ity is violated in the f,+1)th step. Then, we can use the
=N"1Gy(eN¥?). The scaling functions behave &, (x) same random-walk mapping after a cyclic permutation
= xoX and Gy (x)=xyx? for x>1. The scaling behavior is (A, ... A,)—(A,, ... A,,A;), which continues repeat-

confirmed numerically. We compute both quantities for theedly. As in the case witd =2, the shape of the spanning tree
regular network withZ=2 and N=10000,...,8@00, is characterized by the length scalg the mean time scale
which were averaged over 200 samples. They are plotted ifor a collision between adjacent walkers, afid the mean
Fig. 3, where data collapse very well. From a least-squaresme scale for violating the constraifX, — X,|<1. The time
fitting we obtained thaty4,=0.24 andyy=0.32, which is  scales are approximately equal to those for the two-random-

close to the analytic result§) and (7). walker problem with a constraifX, — X,|<2/Z. With this
The extension to the regular networks wii>2 is  approximation, one gets,~(Ze) ! and £&,~(Zg) 2. Us-

straightforward. Vertices are labeled as,u, ... 7, ing ®reg=(Z—1)/Z%¢, and Y greg=1/Z£,, we finally ob-

vs,...05,...) starting from the sourcs. Then, without tain ®reg=xope® andY geg=xy&2 with Z dependent coef-
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approach an asymptotic saturation at any value @hdN
considered. The same feature is commonly observed at other
values ofZ andp,, and also forYgy. In what follows we
describe the response of the spanning tree with an effective
random-walk process and we will show that the origin of the
apparent threshold behavior is the presence of a well-defined
e-dependent crossover size in the network.

All edges that connect vertices at the same hierarchy level
in T2, as represented by dashed lines in the example in Fig.
4, are candidates for an activated edge. Focus on a pair of
verticesa andb with [a;b] ¢T2 in Fig. 4. They are descen-
dants of a common ancestst. The edgd a;b] belongs to
T, if a difference between costs of the two pattienoted by
thick lines from s’ to a and tob is larger than the edge cost
c([a;b])=1+n([a;b])=1+0(e), whereO(e) term can
be neglected. The probability with which this happens will
be denoted aR,.([a;b]). Letl(a,b) be the separation @t
andb to their common ancestar in T. Using Eq.(1), the

«(1—1/Z) and yy><Z, as estimated above. : .
We conclude that the quenched disorder is a relevant perat.h costs ?re given by a sumIQﬁ,p) independent random
variables #’s [plus I(a,b)]. So, with the common term

turbation to the spanning tree of the regular network. Usin : ! .
the random-walk mapping, we have shown that a finite fracgi(a’b) dlsdqarded_, thely Cag be mtelzlipreted as t():oo_rdmates of
tion of edges in the spanning tree are modified at nonzer V\;%ho?frhgmfiﬂz:zgath;agisot;?bL\JAtli?) r;(r;) am;(lat’([)a']tl)jg]piz

. ac ’

disorder strength. This fraction is linearly proportional to the . - g
disorder strengthdres~¢c. We have also shown that the then given by thg probability that the @stance betwegn two
andom walkers is larger than 1 aftejumps. Or equiva-

diameter-expansion coefficient is proportional to the squar N o
b prop q ently, it is given by the probability that a random walker

; 2
of the disorder strengt¥ rec™s", deviates from a starting position by a distance larger than 1
after | jumps, where each jump follows a distribution
8. Smallworld network Fr(n')=[dnaf 0o (1) F(n2) (0’ = 11+ 72). The prob-
Next we study the effect of the quenched disorder in theability distribution of the random walker aftésteps is given
SW network. Figure 4 shows an example of a SW networkoy ~ Pgy(x,1) = (27a2) = Y2 x*/(20%) with a?
and its spanning tre&’ without disorder £=0). The ran- = [d7’ 7'?Fxr(n')=2&%3. Therefore, one obtains
dom rewiring of edges randomize'l':ﬁ, too, which is not
suited for an exact description. Therefore we stddy,, and
Y s first numerically. We calculat@gy, in SW networks
with Z=4 andp,=0.2 and compare it witdb g in Fig. 5.
dg\w shows two noticeable feature§) At small &, Dgyy o 2.
appears to display a threshold behavior at a nonzero value ¥fhere erfck)=(2/\/m)fe™* is the complementary error

e. (i) ®sy has a strong size dependendes,, does not function. _ o
Now we make a mean-field-type approximation that each

02 , , : edgee ¢ Tg may be an activated edge independently. That is

FIG. 4. A small-world network(left) with N=40, Z=2, and
p,=0.1 and its spanning treég (right) without disorder. The
dashed lines indicate edges which do not belon@g‘co

ficients y¢ o< (1—1/Z) and yy=Z. The scaling exponents are
universal for allZ. We determine the coefficients sfande?
for ®regandY geg, respectively, numerically and plot them
as a function ofZ in the insets of Fig. 3. One sees tha

(10

L)
2eI(a,b)]’

Pact([a;b]) = erfc(

only true for the edge$e;=[a; ;b;]« T2} if the paths from
O D g (N=80000) A . .
O D, (N=20000) < a; andb; to their common ancestor do not overlap for dif-
0151 |o g, (N=40000) g ferent es. Otherwise, two probabilitiesP,.(e) and
A @, (N=80000) § q P.ci(e’) are not independent. &is activated, it modifies the
4 Dy (N=20000) o shape of the spanning tree and herigg(e’), and vice
o oaf |V Dsr (V240000) o =& . versa. The approximation would give the correct scaling be-
> @ (N=80000) o & 3 S .
i havior if the spanning tree would be random and self-
© § > 1 averaging. In the mean-field scheme, the activated-edge den-
0.05- © X A sity is proportional to the probability in Eg10) with 1(a,b)
O : :
o § g replaced by the average value, i.e., the diameter of the net-
o & % work Dg~In N [22],
P~ sppeoleoe®
0 01 02 0.3 0.4
€ a3
ds(N,e)=a,erfc] —— (11
) o g+yInN
FIG. 5. Activated-edge densities in the regular netwérkgg
with Z=4, the SW networld g, with Z=4 andp,=0.2, and the
SF network®gg with Z=Z,=4. with constantsy; , being independent of andN.
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100; T T T
4 [0 20000
10°F | O 40000
E[© 80000
2 |4 100000
10°E [q 200000
E | v 400000
10°F > 800000
= E
e L
16°F
10’%
10°F g R
F 1/(¢ [InN/InlnN])
-7 | | 1
10 03 0.6 0.9 12
e [In N/InnN]'"?

FIG. 6. Scaling plot ofbgy vs £(In N)*2 according to Eq(11). FIG. 7. Scaling plot of &g vs e(InN/inInN)*2 for the
The inset shows that kh=a-+b/In N for fixed values ofs, follow- Barabai-Albert  networks  with Z=Z,=2 and N
ing Eqg. (12). The straight lines are obtained from a least-square=20000, ..., 8M000. Inset shows a plot ofdge vs
fitting. 1/(£?[In N/In In NJ) in semilog scale.

The scaling function behaves as exfp 1— (2/\/m)x for ~ considered above increase the separatiory §g shows the
>l . ; ; .
smallx. So, in the asymptotic limit wherbisN,=e®* 2’ same scaling behavior aBg,,, which we also confirmed

the activated-edge density is a constafg(,~ «;) in the numerically.
infinite (N—o) network for all values ok +#0. Therefore, .
the spanning tree of the SW network undergoes a discontinu- V- BARABA SI-ALBERT SCALE-FREE NETWORK

ous transition ak=e.=0 in the asymptotic limit, which is In this section we study the response of the spanning tree
contrasted to the continuous transition in the regular netys 5 SE network to the quenched disorder. We consider the
work. , , _ __Barabai-Albert (BA) network with the degree-distribution
The asymptotic behavior sets in szlein2 the network size I$xponenty=3 [4]. Among all vertices, the hub which has
bigger than the crossover sidg=e™“2° . It grows very the largest degree plays an important role in the SF network
fast ase goes to zero. For instance, whes=0.1 with a,  [13]. So we consider the spanning tree of the BA network
=1, only SW networks withN>N,=10" are in the with the hub as the sourc&g is measured for the BA
asymptotic region, which is improbable in any real networks.network withZ,=Z=4, and compared wit g and® gy
So, the behavior in the nonasymptotic regime is more imporin Fig. 5. ® ¢ behaves similarly tabg,.
tant in practice. Using erf(x():(l/\/;)()e*)(2 for x>1, we Though the SF network is different from the SW network
obtain that in many aspects, its spanning tree also has a random struc-
ture. Thus, we expect that the scaling behaviobgf can be
explained with the same mean-field-type approximation as
(12) dgy. Under the approximation, each edge that does not be-
long to Tg may be activated independently. Then, the mean
density of the activated edges is obtained by replakiagh)
in Eq. (10) with the diameter of the network. Recently, it was

for N<N¢. It has an essential singularity at=0 and in- ound that the scale-free network is ultrasmall in diameter
creases continuously and extremely slowly. Therefore, th%

spanning tree of finite SW networks undergoes an infinite[23)- In particular, fory=3 (y: the degree-distribution ex-
order transition at=0. ponenj the Q|am_eter scalt_as &A~InN/IninN, e, with a
Numerical data are in good agreement with the mean-fiel ouble-logarithmic correction to the SW scalibg~InN. It
results. In Fig. 6, we plotbgy, as a function of the scaling eads us fo conclude that
variablee In N. Data at different values o collapse onto a o
single curve, which supports the scaling form in Etf). In =g’ -2
the inset, we ploth gy at given values o against 1/InN for Psr alerfc( eVInN/Inln N) 13
N=100, ...,8@000 in the semilog scale. We observe that
the data align along straight lines, which support the result irwith constantsy; and a; .
Eqg. (12). Extrapolating the straight lines to the limit M This scaling form is indeed supported by our numerical
—oo, we obtained thag\ys converge tow,=0.25. data. In Fig. 7, we plotbge for the BA network withZ
In the regular network, an activated edge may or may not=Z,=2 as a function of the scaling variabég/In N/InIn N,
increase the separation of vertices from the source, whichnd obtain a good data collapse. Though the double-
leads to the different scaling behaviors ®fzes~¢ and logarithmic correction is very weak, the data do not collapse
Yres~e2. However, in the SW network, all activated edgesat all without it. We note that the data also scale well with a

aeVInN [{ ag

S expg —
CL’Z\/; 82|n N
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scaling variables (In N)Y4 however, we presume that this is quenched disorder than the regular network. However, the
accidental since the ratio between Klin InN) and (InN)¥2  asymptotic scaling behavior emerges only when the network
remains almost constant up =80 0000. The inset in Fig. Size is larger than the crossover sidg. It grows asNg
7 shows that Inbg is linear in /2N N/InInN). It implies ~ ~€Xplez ?) for the SW network andN.~exp(elin zle )
that the scaling function has the essential singularity as ifO" the BA network with a positive constartase vanishes.
Eq. (12). The same scaling behavior is observed universally>INC€ the crossover size grows extremely fast gpes to
for other values oZ=Z,=3 and 4, and also fo¥ g. zero, _the behav_lor in the transient regime wIt_hé N, is

The SF network shares the same scaling behavior with thB1OTe important in practice. In contrast to the discontinuous
SW network with the scaling variable(In N/InInN)¥2. The ~ Jump whenN>Nc, & at N<N. grows continuously and
spanning tree of the SF network undergoes a discontinuolery slowly with the essential s_|;1gular|ty at=0. Numeri-
transition in the asymptotic regimégr and Y g in the in-  Cally we obtained thatd<10"" for £=<0.1 up to N
finite SF networks jump from zero at=0 to finite values as =800 000.Therefore, we conclude that the transport pat-
the disorder turns on. The asymptotic behavior sets in onlyem in finite SW and SF networks is extremely robust against
whenNs N, ~exp(e|In els~2) with a positive constant. In the quenched disorder. In particular, the SF network is most
the transient regime witN<N_, the spanning tree of the SF_Stable. _ _ _
networks undergoes a continuous infinite-order transition 1N€ intéresting scaling behavior of the SW and SF net-
with the essential singularity i andY sz ate =0. Note works can pe explained within g.mean-fleld _plctulbeandY
that the crossover sizl, of the SF network grows much &r€ proportional to the probability that a displacement of a
faster than that of the SW network. Therefore, we concludé@ndom walker with diffusion constaf(s<) is larger than 1

that the scale-free network has the most stable transport paiiter D, the network diameter, time steps. The crossover size
tern. is determined from the conditias?D(N.)=1, and the span-

ning tree is very stable against the disorder as londgNas
V. CONCLUSION <N.. So, the exponential diverg_ence of the crossover size
N. and hence the extreme stability of the spanning tree are
In a network the shortest paths between vertices play athe direct consequence of the small worldness, DgN\)
important role. The optimal transport pattern from or to a~InN[22] andD(N)~In N/InIn N [23], for the small-world
vertexs is characterized by the spanning tieg a set of all  and the scale-free network, respectively. The diameter of the
shortest paths. We have investigated the response of tH&F networks with 2 y<3 scales a®(N)~InInN[23] and
spanning tree of complex networks to a quenched randonmwithin the mean-field picture one expects the crossover size
ness in edge costs, and found that the quenched disorder iathese networks to scale liké.~exgexp(— as2)].
relevant perturbation. As the disorder turns on, the spanning Another consequence of the disorder is that the shortest
tree evolves with a finite fraction of edges modified and thepath from one vertex to the other becomes unique. Recently,
network diameter expands. it has been reported that the load distribution in SF networks
For the regular network, the shape of the spanning treéollows a power-law distribution with the universal load-
can be described exactly using the random-walk mappingdistribution exponeny=2.2 or 2.0[13,16]. Phenomenologi-
The spanning tree undergoes a continuous transition witbally, the SF networks with degenerate shortest paths seem to
Oreg~e and Ygee~e? with & the disorder strength. For have »=2.2 [13,16, whereas those without or only a few
the SW and SF networks, we obtain the scaling formdegenerate shortest paths seem to hawe2.0 [14,16. It
®(e,N)=d(¢DY) where D is the network diameter. It would be interesting to study the load distribution in the
scales a® ~In N in the SW network and~InN/InInN in  disordered SF networks, which will shed light on the role of
the BA network[23]. The diameter-expansion coefficient sat- the degeneracy on the universality of the load distribution.
isfies the same scaling form. The scaling function approachebhis work is in progress.
a constant as its argumexit= eDY?— . It has the essential
singularity, ® (x) ~exp(—ax~?) with a positive constant,
asx—0. Therefore® andY have adiscontinuougump at We would like to thank B. Kahng for useful discussions.
=0 in infinite-size SW and SF networks. It shows that theThis work has been financially supported by the Deutsche
SW network and the SF network are more affected by thd=orschungsgemeinscha®FG).
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