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Stability of shortest paths in complex networks with random edge weights

Jae Dong Noh and Heiko Rieger
Theoretische Physik, Universita¨t des Saarlandes, 66041 Saarbru¨cken, Germany

~Received 22 August 2002; published 19 December 2002!

We study shortest paths and spanning trees of complex networks with random edge weights. Edges which do
not belong to the spanning tree are inactive in a transport process within the network. The introduction of
quenched disorder modifies the spanning tree such that some edges are activated and the network diameter is
increased. With analytic random-walk mappings and numerical analysis, we find that the spanning tree is
unstable to the introduction of disorder and displays a phase-transitionlike behavior at zero disorder strength
«50. In the infinite network-size limit (N→`), we obtain a continuous transition with the density of activated
edgesF growing likeF;«1 and with the diameter-expansion coefficientY growing likeY;«2 in the regular
network, and first-order transitions with discontinuous jumps inF andY at e50 for the small-world~SW!
network and the Baraba´si-Albert scale-free~SF! network. The asymptotic scaling behavior sets in whenN
@Nc , where the crossover size scales asNc;«22 for the regular network,Nc;exp(a«22) for the SW
network, andNc;exp(auln «u«22) for the SF network. In a transient regime withN!Nc , there is an infinite-
order transition withF;Y;exp@2a/(«2ln N)# for the SW network and;exp@2a/(«2ln N/ln ln N)# for the SF
network. It shows that the transport pattern is practically most stable in the SF network.

DOI: 10.1103/PhysRevE.66.066127 PACS number~s!: 89.75.2k, 05.10.2a, 75.10.Nr, 05.40.Fb
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I. INTRODUCTION

A network is a new paradigm to study complex systems
many disciplines in science@1,2#. A complex system consist
of a large number of interacting units and the nature of
interaction determines equilibrium and dynamical proper
of the system. Frequently, the simplifying assumption
made that the units are arranged to form a simple pattern
a regular lattice or to interact with all others as in a me
field theory. Recent studies, however, have revealed tha
structure of complex systems is much richer@1–3#. In gen-
eral this structure is captured by a network which consist
vertices representing the units and edges connecting inte
ing vertex pairs.

Complex networks exhibit so-called small-world pheno
ena: vertices are highly clustered and the average separ
between vertices grows slowly with the total number of v
tices. Watts and Strogatz@3# introduced a small-world~SW!
network as a model for these phenomena. It is obtained f
a regular lattice with edges randomly rewired with probab
ity pr . Later it was found that some complex networks ha
a power-law distributionPdeg(z);z2g of the degreez. The
degree of a vertex is the number edges incident upon it.
class of networks with a power-law degree distribution
called the class of scale-free~SF! networks and is found in
many areas including physics, computer science, biology,
ciology, etc~we refer readers to Ref.@2# for examples!. The
Barabási-Albert model@4# generates a SF network (g53)
growing via a preferential attachmentrule @5#. Initially one
starts withZ0 vertices and introduces a new vertex at ea
step ~growing!. It is then attached toZ existing vertices,
which are selected with probabilitylinearly proportional to
their degree~preferential attachment!.

The discovery of these classes of networks triggered
tensive research. Order-disorder phase transitions@6–8# and
nonequilibrium phase transitions@9# have been studied. In
terestingly, the critical behavior is described well by mea
1063-651X/2002/66~6!/066127~8!/$20.00 66 0661
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field theories and strongly depends on the degree distribu
@7#. Stability of complex networks has also been stud
against a strong disorder such as a vertex dilution@10–12#.
When the fraction of diluted vertices increases, a netw
may disintegrate into finite clusters undergoing
percolation-type transition. In this paper, we study the eff
of weak disorder on the transport properties of networks

Theshortest pathplays an important role for the transpo
within a network@13,14#. A path denotes a sequence of ve
tices, successive pairs of which are connected via edge
general there exist many paths connecting two given ve
ces. The shortest path is the one with minimum path len
among all the paths. The minimum path length is called
separationbetween the two vertices. Suppose one need
send, e.g., a data packet from one computer to the o
through the Internet. The shortest path provides an opti
path way since one would achieve a fastest transfer and
system resources. The shortest path is also importan
studying an internal structure of a network@15#. The separa-
tion can be used as a measure of intimacy between vert
The number of shortest paths that pass through a verte
called the ‘‘betweenness’’ or ‘‘load’’@15,13,14,16#. It reflects
the importance of a vertex in mutual relationship or in tran
port. The load follows universal power-law distributions
scale-free networks@13,14,16#.

Consider shortest paths from a vertexs, called thesource,
to all other vertices in a network. In an unweighted netwo
the length of a path is just the number of edges that it c
tains and shortest paths can simply be found using
‘‘breadth-first search algorithm’’@17#. A subnetwork consist-
ing of all the shortest paths froms is thespanning treeTs ,
which characterizes the optimal transport pattern. Figur
shows an example of a network and its spanning tree. I
convenient to represent the spanning tree by a diagram
which vertices are arranged hierarchically in the ascend
order of their separation from the source. Then, the shor
path to each vertex is given by a directed path onTs . In
©2002 The American Physical Society27-1
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J. NOH AND H. RIEGER PHYSICAL REVIEW E66, 066127 ~2002!
general, the spanning tree does not have a tree structu
there are degenerate shortest paths,Ts contains a loop. Some
edges do not belong toTs . They do not contribute to any
flow from or to s.

It has been assumed that all edges are equivalent ha
the same cost. However, a real network would be descr
better with weighted edges. A weight of an edge may rep
sent an access cost, a physical length, or an intimacy betw
vertices @15,18#. For example, edges between scientists
scientific collaboration networks may have weights wh
depends on the number of coauthored papers@15#. In a
weighted network, the path with the minimum number
edges is not necessarily an optimal one. In this work,
study disordered networks with randomly weighted ed
and investigate the effect of the disorder on the transp
pattern. The regular network, the SW network@3#, and the
Barabási-Albert SF network@4# are considered. This paper
organized as follows: In Sec. II, we define the shortest p
and the spanning tree in the disordered network. The diso
modifies the shape of the spanning tree. The response i
scribed for the regular and SW networks in Sec. III and
the SF network in Sec. IV. We conclude in Sec. V.

II. SHORTEST PATHS AND THE SPANNING TREE
OF DISORDERED NETWORKS

Consider a disordered undirected network. An edgee be-
tween two verticesu and v will be denoted ase5@u;v#
5@v;u#. To each edgee a non-negative weightc(e) is as-
signed which is called theedge costof e. Here we neglect all
system-dependent details and assume that

c~e!511h~e!, ~1!

whereh(e)’s are random variables distributed independen
with distributionF(h) (h(e).21).

In a disordered network, aminimum-cost pathplays the
role of the shortest path in a pure (h50) network. For given
verticesu andv, the minimum-cost path is given by the on
with minimumpath cost. The path cost is defined as the su
of all edge costs in the path. Without disorder@h(e)50 for
all e], the path cost is equivalent to the path length and
minimum-cost path is the same as the shortest path. He
ter, the minimum-cost path will be called the shortest pa

FIG. 1. A network~left! and its spanning tree~right! Ts . Verti-
ces inTs are arranged in the hierarchical order of the separatiol.
The vertexv6, and hencev5, has twofold degenerate shortest pat
so Ts contains a loop. Dashed lines represent edges which do
belong toTs .
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and the minimum cost is denoted as adistance. The path
length of the shortest path is called theseparationof the two
vertices connected by it.

The spanning treeTs of a disordered network can b
found using the ‘‘Dijkstra algorithm’’@17#: Divide all verti-
ces into two sets,S and its complementS̄. Initially S5$s%
and the source is assigned to a distance labeld(s)50 and a
separation labell (s)50. At each iteration, one selects a
optimal edgee* 5@u* ;v* # that has a minimum value o
d(u)1c(@u;v#) among all edgese5@u;v# with uPS and

vPS̄. Then, the vertexv* gets the labelsd(v* )5d(u* )
1c(@u* ;v* #) andl (v* )5 l (u* )11 and a predecessor lab
pred(v* )5u* , and is shifted fromS̄ to S. The iteration ter-
minates when the setS̄ is empty. The shortest path to eac
vertex is then found by tracing the predecessor iterativ
back tos. The distance and separation froms to each vertex
v are given byd(v) and l (v), respectively. The averag
separationDs5@1/(N21)#(vÞsl (v) will be called adiam-
eter.

In a homogeneous~e.g., regular! network and a weakly
disordered network~e.g., SW network!, all vertices are
equivalent after an average over all disorder realizations.
diameter is independent of the source,Ds5D. In such cases
we select the sources arbitrarily. On the other hand, the S
network has a highly inhomogeneous structure. For the
network, we select thehub which has the largest degree a
the sources since it plays the most important role in th
transport@13#.

The spanning treeTs of a disordered network will be
different from Ts

0 of the same network without disorder.
the disorder has a continuous distribution, with probability
all shortest paths are uniquely determined. Therefore,Ts has
a tree structure, whereasTs

0 may have loops. Without loops
Ts consists of only (N21) edges. Moreover, a vertex ma
have a shortest path that cannot be found inTs

0 . For ex-
ample, a path (s,v1 ,v9 ,v8 ,v6) in a network in Fig. 1 may be
a shortest path tov6, so thatTs includes the edge@v8 ;v6#
which does not belong toTs

0 . Such an edge ofTs that does
not belong toTs

0 will be called anactivatededge. The disor-
der activates it to play a role in the transport. The activa
edge results in a drastic change in the shape of the span
tree and increases the network diameter. We quantify
change by the density of disorder-induced activated ed
F, which is given by the number of activated edges inTs
divided by (N21), and the diameter-expansion coefficie
Y5(Ds2Ds

0)/Ds
0 with Ds (Ds

0) the diameter with~without!
disorder. The activated edge emerges as a result of com
tion between all paths connecting a vertex to the source
networks with different structures respond differently. In t
following section we will study the evolution of the spannin
trees of the regular network and the small-world network@3#.

III. SMALL-WORLD NETWORK

Consider a regular network consisting ofN vertices on a
one-dimensional ring, each of which is connected up toZth
nearest neighbors with undirected edges. The SW netwo
obtained by rewiring each edge with probabilitypr ~see Ref.

,
ot
7-2
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STABILITY OF SHORTEST PATHS IN COMPLEX . . . PHYSICAL REVIEW E66, 066127 ~2002!
@3# for a detailed procedure!. Except for extreme cases wit
pr50 ~regular network! and pr51 ~random network!, the
SW network displays the small-world phenomena@3#. We
introduce a quenched disorder in edge costs as in Eq.~1!
with the disorder distribution

F~h!5H 1

2«
for 2«<h,«

0 otherwise.

~2!

Disorder strength is controlled by the parameter« (,1).
First we focus on the regular network (pr50) with Z52,
which gives us a lot of insights.

A. Regular network „prÄ0… with ZÄ2

A regular network withZ52 andN518 is shown in Fig.
2~a!. We consider the shortest path from the sources. With-
out disorder («50), the shortest path tobn is unique. On the
other hand, there aren degenerate shortest paths toan . So
the spanning treeTs

0 has a ladder shape with diagonal run
from bn to an11 as shown in Fig. 2~b! @19#. All edges
$@an ;bn#% are missing inTs

0 .
With infinitesimal disorder, all loops break up in the spa

ning tree. So either@an21 ;an# or @bn21 ;an# should be re-
moved fromTs . Consequently,Ts has a tree shape with
single branch forbn’s and with sub-branches foran’s, cf.
Fig. 2~c!. This shape will be denoted as a type-B tree. The
branching points are determined from recursion relations
the distancesd(an) andd(bn),

d~an!5min$d~an21!1c~@an21 ;an# !, d~bn21!

1c~@bn21 ;an# !%, ~3!

d~bn!5d~bn21!1c~@bn21 ;bn# !. ~4!

If d(an21)1c(@an21 ;an#),d(bn21)1c(@bn21 ;an#), the
predecessor ofan is an21, otherwise the predecessor
bn21. The recursion relations~3! and~4! holds if Ts has the
type-B structure, which is valid as long as

FIG. 2. A regular network withZ52 in ~a! and its spanning
trees without disorder in~b! and with disorder in~c! and ~d!. ~c!
shows a spanning tree of typeB and~d! shows a spanning tree wit
both segments of typeA and typeB. Vertices in~b!, ~c!, and~d! are
arranged in the hierarchical order in the separation from the so
s. Activated edges are represented by thick lines in~d!.
06612
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d~an!1c~@an ;bn# !.d~bn!. ~5!

When it is violated, the predecessor ofbn is an , @an ;bn#
becomes activated, andTs changes its shape.

We introduce now a random-walk interpretation of t
recursion relation. DefineXA(n)[d(an)2n and XB
[d(bn)2n and insert it into Eq.~4!. Using Eq. ~1!, one
obtains XB(n)5XB(n21)1h(@bn21 ;bn#); XB(n) can be
interpreted as the coordinate of a one-dimensional rand
walker~walkerB) aftern jumps.XA(n) is given by the mini-
mum of XA(n21)1h(@an21 ;an#) and XB(n21)
1h(@bn21 ;an#). The first term also suggests thatXA(n) can
be interpreted as the coordinate of another random wa
~walkerA) aftern jumps. But its motion is constrained: Afte
each jump, one has to compare the current position ofA ~the
first term! with the position ofB @the second term.XB(n)
1O(«)], and take the minimum asXA(n). Therefore, one
may assume a hard-core repulsion between two walkers@the
interaction range fluctuates by an amount ofO(«)]. The in-
equality in Eq. ~5! can be rewritten asXB(n)2XA(n)
,c(@an ;bn#)511O(«), which imposes a constraint on th
random-walk motion.

It is convenient to introduceXR(n)[XB(n)2XA(n). It
can be interpreted as the coordinate of a one-dimensi
random walkerR in the presence of a fluctuatingreflecting
wall at XR5O(«) and a fluctuatingabsorbingwall at XR
511O(«). At each time step, the walkerR performs a jump
of size h8 obeying the distribution FR(h8)
[*dh1*dh2F(h1)F(h2)d(h82h11h2). Hereafter, the
boundary walls are assumed to be fixed atXR50 and XR
51. The fluctuations do not modify the scaling behavior
F and Y with a possible change in the coefficient of th
leading order term.

The random walkerR determines the shape of the spa
ning tree. If the walker does not touch either wall atXR50
or 1 at a momentn, then the predecessor ofan (bn) is an21
(bn21). When it bounces at the reflecting wall in stepn, an
hasbn21 as its predecessor, and the spanning tree has a
sub-branch, cf.a3 , a4, anda7 in Fig. 2~c!. If it collides with
the absorbing wall at stepn0, the inequality~5! is violated
and bn0

has an0
as predecessor instead ofbn021 @see the

spanning tree in Fig. 2~d! which hasn055].
The same random-walk mapping can be established a

an edge@an0
;bn0

# is activated. If one interpretss85an0
as a

new source and redefinesan85an1n0
and bn85bn1n021, the

distances froms8 to an8 and bn8 satisfy the same recursio
relation as in Eqs.~3! and ~4! and the same constraint as
Eq. ~5! with a(b) replaced byb8 (a8). Thus, the spanning
tree consists of a single branch fora8’s and sub-branches fo
b8’s. This shape will be denoted as a typeA, see Fig. 2~d!.
The creation of sub-branches and the switch into type-A tree
are described by the same random-walk mapping used
the type-B segment.

Combining the mappings for type-A and type-B seg-
ments, the shape of the whole spanning tree can be d
mined by the the random walkerR in the presence of two
hard-core walls atXR50 and 1. InitiallyXR(0)50, and the
wall at XR50 (1) is reflecting~absorbing!. When the ab-

ce
7-3
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J. NOH AND H. RIEGER PHYSICAL REVIEW E66, 066127 ~2002!
sorbing wall is atXR51 (0), thespanning tree has the type
B ~type-A) shape. The sub-branch emerges when the ran
walker collides with the reflecting wall. When it collide
with the absorbing wall, the role of the two walls are e
changed and the spanning tree switches its shape. It is i
esting to note that the random walks with two types
boundary walls were used to find the exact ground state
one-dimensional random-field Ising-spin chain@20#.

The shape ofTs is characterized by two length scalesj1
andj2, see Fig. 2. The former characterizes the length of
sub-branch, and the latter the length of each type-A or type-
B segment. They are given by the mean time scales betw
successive collisions with the reflecting wall and the abso
ing wall, respectively. Then,j1 can be approximated as th
lifetime of the random walkerR, being at the origin initially,
in the presence of two absorbing walls atX50 andX51.
And j2 is given by the mean lifetime of the random walk
R, being at the origin initially, in the presence of two abso
ing walls atX561. The lifetimet of a random walker in
the presence of absorbing boundary walls has been studi
various literatures. Here, we use the resultt5WRWL /s2 in
Ref. @21# whereWR (WL) is the distance from the right~left!
boundary wall. TakingWL5s and WR512s for j1 and
WR5WL51/2 for j2, and using s2[*dh8F(h8)h82

5 2
3 «2, we obtain thatj1.A3/2 «21 and j25(3/2)«22.

Note that theO(«) fluctuation of the walls does not chang
the scaling exponents, but may modify the coefficient ofj1.

One edge amongZ edges in a row is activated when
sub-branch appears only in the type-A segment@see Fig.
2~d!#. So, the activated-edge density is inversely proportio
to j1,

FREG~«!5
1

Z

Z21

Z
j1

21.
1

A24
«, ~6!

whereZ52 and (Z21)/Z is the fraction of the type-A seg-
ments. When the spanning tree changes its shape at a ce
vertex @cf. a5 in Fig. 2~d!#, its all descendent vertices in
crease their separation froms by 1. So, the diameter
expansion coefficient is inversely proportional toj2,

YREG~«!5
1

Z
j2

215
1

3
«2. ~7!

The results are valid in the asymptotic limit whereN
@max(j1,j2)5j2, which suggests the finite-size-scaling for
FREG(«,N)5N21/2GF(«N1/2) and YREG(«,N)
5N21GY(«N1/2). The scaling functions behave asGF(x)
.xFx andGY(x).xYx2 for x@1. The scaling behavior is
confirmed numerically. We compute both quantities for t
regular network with Z52 and N510 000, . . . ,80000,
which were averaged over 200 samples. They are plotte
Fig. 3, where data collapse very well. From a least-squa
fitting we obtained thatxF.0.24 andxY.0.32, which is
close to the analytic results~6! and ~7!.

The extension to the regular networks withZ.2 is
straightforward. Vertices are labeled as (s,v1

1 , . . . ,v1
Z ,

v2
1 , . . . ,v2

Z , . . . ) starting from the sources. Then, without
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disorder, the spanning treeTs
0 has aZ-leg ladder structure

with diagonal rungs. Each leg (i 51, . . . ,Z) consists of ver-
tices $vn

i %. The predecessors of a nodevn11
i are vn

j with j
5 i , . . . ,Z. Edges$@vn

i ;vn
j #% with iÞ j do not belong toTs

0 .
When the disorder turns on, there emerge activated ed
Until one finds an activated edge, the distance to each ve
from the source satisfies recursion relations

d~vn
i !5 min

j 5 i , . . . ,Z
$d~vn21

j !1c~@vn21
j ;vn

i # !%. ~8!

The recursion relations are valid as long as

d~vn
i !1c~@vn

i ;vn
j # !.d~vn

j ! ~9!

for all iÞ j . With the mappingXi(n)5d(vn
i )2n, one can

interpretXi(n) as a coordinate of a random walkerAi aftern
jumps @each jump has the distributionF(h)]. Then, Eq.~8!
implies a hard-core interaction between walkers, soAi can-
not overtakeAj ’s with j . i . Effectively, it suffices to con-
sider the hard-core interaction only betweenAi andAi 11. If
Ai andAi 11 collide at stepn, then the vertexvn

i takesvn21
i 11

as its predecessor. Otherwise,vn21
i is the predecessor ofvn

i .
The constraint~9! implies that the relative distance betwee
all walkers should be less than 11O(«), that is, uX12XZu
&1. An activated edge@an0

1 ;an0

Z # appears when this inequa

ity is violated in the (n011)th step. Then, we can use th
same random-walk mapping after a cyclic permutat
(A1 , . . . ,AZ)→(A2 , . . . ,AZ ,A1), which continues repeat
edly. As in the case withZ52, the shape of the spanning tre
is characterized by the length scalej1, the mean time scale
for a collision between adjacent walkers, andj2, the mean
time scale for violating the constraintuX12XZu&1. The time
scales are approximately equal to those for the two-rand
walker problem with a constraintuX12X2u&2/Z. With this
approximation, one getsj1;(Z«)21 and j2;(Z«)22. Us-
ing FREG5(Z21)/Z2j1 and YREG51/Zj2, we finally ob-
tain FREG.xF«1 andYREG.xY«2 with Z dependent coef-

FIG. 3. FREG in ~a! and YREG in ~b! for the regular network
with Z52 andN510 000 (s), 20 000 (), 40 000 (L), and 80 000
(n). The straight lines represent 0.24x in ~a! and 0.32x2 in ~b!.
Insets showZ dependence of the coefficientsxF (FREG.xF«) and
xY (YREG.xY«2).
7-4
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STABILITY OF SHORTEST PATHS IN COMPLEX . . . PHYSICAL REVIEW E66, 066127 ~2002!
ficientsxF}(121/Z) andxY}Z. The scaling exponents ar
universal for allZ. We determine the coefficients of« and«2

for FREG andYREG, respectively, numerically and plot them
as a function ofZ in the insets of Fig. 3. One sees thatxF

}(121/Z) andxY}Z, as estimated above.
We conclude that the quenched disorder is a relevant

turbation to the spanning tree of the regular network. Us
the random-walk mapping, we have shown that a finite fr
tion of edges in the spanning tree are modified at nonz
disorder strength. This fraction is linearly proportional to t
disorder strength,FREG;«. We have also shown that th
diameter-expansion coefficient is proportional to the squ
of the disorder strength,YREG;«2.

B. Small-world network

Next we study the effect of the quenched disorder in
SW network. Figure 4 shows an example of a SW netw
and its spanning treeTs

0 without disorder («50). The ran-
dom rewiring of edges randomizesTs

0 , too, which is not
suited for an exact description. Therefore we studyFSW and
YSW first numerically. We calculateFSW in SW networks
with Z54 andpr50.2 and compare it withFREG in Fig. 5.
FSW shows two noticeable features:~i! At small «, FSW
appears to display a threshold behavior at a nonzero valu
«. ~ii ! FSW has a strong size dependence.FSW does not

FIG. 4. A small-world network~left! with N540, Z52, and
pr50.1 and its spanning treeTs

0 ~right! without disorder. The
dashed lines indicate edges which do not belong toTs

0 .

FIG. 5. Activated-edge densities in the regular networkFREG

with Z54, the SW networkFSW with Z54 andpr50.2, and the
SF networkFSF with Z5Z054.
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approach an asymptotic saturation at any value of« and N
considered. The same feature is commonly observed at o
values ofZ and pr , and also forYSW. In what follows we
describe the response of the spanning tree with an effec
random-walk process and we will show that the origin of t
apparent threshold behavior is the presence of a well-defi
«-dependent crossover size in the network.

All edges that connect vertices at the same hierarchy le
in Ts

0 , as represented by dashed lines in the example in
4, are candidates for an activated edge. Focus on a pa
verticesa andb with @a;b#¹Ts

0 in Fig. 4. They are descen
dants of a common ancestors8. The edge@a;b# belongs to
Ts if a difference between costs of the two paths~denoted by
thick lines! from s8 to a and tob is larger than the edge cos
c(@a;b#)511h(@a;b#)511O(«), where O(«) term can
be neglected. The probability with which this happens w
be denoted asPact(@a;b#). Let l (a,b) be the separation ofa
andb to their common ancestors8 in Ts

0 . Using Eq.~1!, the
path costs are given by a sum ofl (a,b) independent random
variables h ’s @plus l (a,b)]. So, with the common term
l (a,b) discarded, they can be interpreted as coordinate
two one-dimensional random walkers afterl (a,b) jumps.
Each jump follows the distributionF(h). Pact(@a;b#) is
then given by the probability that the distance between t
random walkers is larger than 1 afterl jumps. Or equiva-
lently, it is given by the probability that a random walke
deviates from a starting position by a distance larger tha
after l jumps, where each jump follows a distributio
FR(h8)5*dh1*h2F(h1)F(h2)d(h82h11h2). The prob-
ability distribution of the random walker afterl steps is given
by PRW(x,l )5(2ps2l )21/2e2x2/(2s2l ) with s2

[*dh8h82FR(h8)52«2/3. Therefore, one obtains

Pact~@a;b# !5erfcS A3

2«Al ~a,b!
D , ~10!

where erfc(x)[(2/Ap)*x
`e2x2

is the complementary erro
function.

Now we make a mean-field-type approximation that ea
edgee¹Ts

0 may be an activated edge independently. Tha
only true for the edges$ei5@ai ;bi #¹Ts

0% if the paths from
ai and bi to their common ancestor do not overlap for d
ferent ei ’s. Otherwise, two probabilitiesPact(e) and
Pact(e8) are not independent. Ife is activated, it modifies the
shape of the spanning tree and hencePact(e8), and vice
versa. The approximation would give the correct scaling
havior if the spanning tree would be random and se
averaging. In the mean-field scheme, the activated-edge
sity is proportional to the probability in Eq.~10! with l (a,b)
replaced by the average value, i.e., the diameter of the
work Ds; ln N @22#,

FSW~N,«!.a1erfcS a2

«Aln N
D ~11!

with constantsa1,2 being independent of« andN.
7-5
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The scaling function behaves as erfc(x).12(2/Ap)x for

small x. So, in the asymptotic limit whereN@Nc.ea2
2«22

,
the activated-edge density is a constant (FSW.a1) in the
infinite (N→`) network for all values of«Þ0. Therefore,
the spanning tree of the SW network undergoes a discont
ous transition at«5«c50 in the asymptotic limit, which is
contrasted to the continuous transition in the regular n
work.

The asymptotic behavior sets in when the network siz

bigger than the crossover sizeNc.e2a2
2«22

. It grows very
fast as« goes to zero. For instance, when«50.1 with a2
.1, only SW networks withN@Nc.1043 are in the
asymptotic region, which is improbable in any real networ
So, the behavior in the nonasymptotic regime is more imp
tant in practice. Using erfc(x).(1/Apx)e2x2

for x@1, we
obtain that

FSW.
a1«Aln N

a2Ap
expF2

a2
2

«2ln N
G ~12!

for N!Nc . It has an essential singularity at«50 and in-
creases continuously and extremely slowly. Therefore,
spanning tree of finite SW networks undergoes an infin
order transition at«50.

Numerical data are in good agreement with the mean-fi
results. In Fig. 6, we plotFSW as a function of the scaling
variable«Aln N. Data at different values ofN collapse onto a
single curve, which supports the scaling form in Eq.~11!. In
the inset, we plotFSW at given values of« against 1/lnN for
N5100, . . . ,800000 in the semilog scale. We observe th
the data align along straight lines, which support the resu
Eq. ~12!. Extrapolating the straight lines to the limit lnN
→`, we obtained thatFSW’s converge toa1.0.25.

In the regular network, an activated edge may or may
increase the separation of vertices from the source, wh
leads to the different scaling behaviors ofFREG;« and
YREG;«2. However, in the SW network, all activated edg

FIG. 6. Scaling plot ofFSW vs «(ln N)1/2 according to Eq.~11!.
The inset shows that lnF.a1b/ln N for fixed values of«, follow-
ing Eq. ~12!. The straight lines are obtained from a least-squ
fitting.
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considered above increase the separation. SoYSW shows the
same scaling behavior asFSW, which we also confirmed
numerically.

IV. BARABÁ SI-ALBERT SCALE-FREE NETWORK

In this section we study the response of the spanning
of a SF network to the quenched disorder. We consider
Barabási-Albert ~BA! network with the degree-distribution
exponentg53 @4#. Among all vertices, the hub which ha
the largest degree plays an important role in the SF netw
@13#. So we consider the spanning tree of the BA netwo
with the hub as the source.FSF is measured for the BA
network withZ05Z54, and compared withFREG andFSW
in Fig. 5. FSF behaves similarly toFSW.

Though the SF network is different from the SW netwo
in many aspects, its spanning tree also has a random s
ture. Thus, we expect that the scaling behavior ofFSF can be
explained with the same mean-field-type approximation
FSW. Under the approximation, each edge that does not
long to Ts

0 may be activated independently. Then, the me
density of the activated edges is obtained by replacingl (a,b)
in Eq. ~10! with the diameter of the network. Recently, it wa
found that the scale-free network is ultrasmall in diame
@23#. In particular, forg53 (g: the degree-distribution ex
ponent! the diameter scales asD; ln N/ln ln N, i.e., with a
double-logarithmic correction to the SW scalingD; ln N. It
leads us to conclude that

FSF5a18erfcS a28

«Aln N/ ln ln N
D ~13!

with constantsa18 anda28 .
This scaling form is indeed supported by our numeri

data. In Fig. 7, we plotFSF for the BA network withZ
5Z052 as a function of the scaling variable«Aln N/ln ln N,
and obtain a good data collapse. Though the doub
logarithmic correction is very weak, the data do not collap
at all without it. We note that the data also scale well with

e

FIG. 7. Scaling plot of FSF vs «(ln N/ln ln N)1/2 for the
Barabási-Albert networks with Z5Z052 and N
520 000, . . . ,800000. Inset shows a plot of FSF vs
1/(«2@ ln N/ln ln N#) in semilog scale.
7-6



is

.

al

th

o

n

F
io

d
p

a
a

t
om
r
in

th

tre
in
wi
r
rm
t

t-
h
l

he
th

the
ork

us

at-
inst
ost

et-

f a

ize

s
ize
are

the

size

test
ntly,
rks
-

m to

he
of
on.

s.
che

STABILITY OF SHORTEST PATHS IN COMPLEX . . . PHYSICAL REVIEW E66, 066127 ~2002!
scaling variable«(ln N)1/4, however, we presume that this
accidental since the ratio between (lnN/ln ln N) and (lnN)1/2

remains almost constant up toN580 0000. The inset in Fig
7 shows that lnFSF is linear in 1/(«2ln N/ln ln N). It implies
that the scaling function has the essential singularity as
Eq. ~12!. The same scaling behavior is observed univers
for other values ofZ5Z053 and 4, and also forYSF .

The SF network shares the same scaling behavior with
SW network with the scaling variable«(ln N/ln ln N)1/2. The
spanning tree of the SF network undergoes a discontinu
transition in the asymptotic regime:FSF andYSF in the in-
finite SF networks jump from zero at«50 to finite values as
the disorder turns on. The asymptotic behavior sets in o
whenN@Nc;exp(auln «u«22) with a positive constanta. In
the transient regime withN!Nc , the spanning tree of the S
networks undergoes a continuous infinite-order transit
with the essential singularity inFSF andYSF at «50. Note
that the crossover sizeNc of the SF network grows much
faster than that of the SW network. Therefore, we conclu
that the scale-free network has the most stable transport
tern.

V. CONCLUSION

In a network the shortest paths between vertices play
important role. The optimal transport pattern from or to
vertexs is characterized by the spanning treeTs , a set of all
shortest paths. We have investigated the response of
spanning tree of complex networks to a quenched rand
ness in edge costs, and found that the quenched disorde
relevant perturbation. As the disorder turns on, the spann
tree evolves with a finite fraction of edges modified and
network diameter expands.

For the regular network, the shape of the spanning
can be described exactly using the random-walk mapp
The spanning tree undergoes a continuous transition
FREG;« and YREG;«2 with « the disorder strength. Fo
the SW and SF networks, we obtain the scaling fo
F(«,N)5F̃(«D1/2) where D is the network diameter. I
scales asD; ln N in the SW network andD; ln N/ln ln N in
the BA network@23#. The diameter-expansion coefficient sa
isfies the same scaling form. The scaling function approac
a constant as its argumentx5«D1/2→`. It has the essentia
singularity, F̃(x);exp(2ax22) with a positive constanta,
asx→0. Therefore,F andY have adiscontinuousjump at
«50 in infinite-size SW and SF networks. It shows that t
SW network and the SF network are more affected by
ev
d
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quenched disorder than the regular network. However,
asymptotic scaling behavior emerges only when the netw
size is larger than the crossover sizeNc . It grows asNc
;exp(a«22) for the SW network andNc;exp(auln «u«22)
for the BA network with a positive constanta as« vanishes.
Since the crossover size grows extremely fast as« goes to
zero, the behavior in the transient regime withN!Nc is
more important in practice. In contrast to the discontinuo
jump whenN@Nc , F at N!Nc grows continuously and
very slowly with the essential singularity at«50. Numeri-
cally we obtained thatF,1027 for «&0.1 up to N
5800 000.Therefore, we conclude that the transport p
tern in finite SW and SF networks is extremely robust aga
the quenched disorder. In particular, the SF network is m
stable.

The interesting scaling behavior of the SW and SF n
works can be explained within a mean-field picture.F andY
are proportional to the probability that a displacement o
random walker with diffusion constantO(«2) is larger than 1
afterD, the network diameter, time steps. The crossover s
is determined from the condition«2D(Nc).1, and the span-
ning tree is very stable against the disorder as long aN
!Nc . So, the exponential divergence of the crossover s
Nc and hence the extreme stability of the spanning tree
the direct consequence of the small worldness, i.e.,D(N)
; ln N @22# andD(N); ln N/ln ln N @23#, for the small-world
and the scale-free network, respectively. The diameter of
SF networks with 2,g,3 scales asD(N); ln ln N @23# and
within the mean-field picture one expects the crossover
of these networks to scale likeNc;exp@exp(2a«22)#.

Another consequence of the disorder is that the shor
path from one vertex to the other becomes unique. Rece
it has been reported that the load distribution in SF netwo
follows a power-law distribution with the universal load
distribution exponenth.2.2 or 2.0@13,16#. Phenomenologi-
cally, the SF networks with degenerate shortest paths see
haveh.2.2 @13,16#, whereas those without or only a few
degenerate shortest paths seem to haveh.2.0 @14,16#. It
would be interesting to study the load distribution in t
disordered SF networks, which will shed light on the role
the degeneracy on the universality of the load distributi
This work is in progress.
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