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Critical properties of loop percolation models with optimization constraints

Frank O. Pfeiffer and Heiko Rieger
Theoretische Physik, Universita¨t des Saarlandes, 66041 Saarbru¨cken, Germany

~Received 20 December 2002; published 19 May 2003!

We study loop percolation models in two and in three space dimensions, in which configurations of occupied
bonds are forced to form a closed loop. We show that the uncorrelated occupation of elementary plaquettes of
the square and the simple cubic lattice by elementary loops leads to a percolation transition that is in the same
universality class as the conventional percolation. In contrast to this, an optimization constraint for the loop
configurations, which then have to minimize a particular generic energy function, leads to a percolation
transition that constitutes a universality class for which we report the critical exponents. Implication for the
physics of solid-on-solid and vortex glass models are discussed.
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I. INTRODUCTION

The percolation of loops~or closed strings! appears natu-
rally in the context of liquid helium@1,2#, early universe
@3,4#, high-temperature superconductors@5,6#, and elastic
media @7–9#, where loops represent world lines, cosm
strings, vortex loops and height contour loops, respectiv
In analogy to the characteristic size of a cluster in conv
tional site or bond percolation@10#, the typical diameterj of
the loops diverges when approaching a critical point,
loop percolation transition. This transition shows power-l
behavior at the critical point, which is described by a set
critical exponents that constitute a universality class.

The elastic medium in two dimensions~2D! and amor-
phous high-Tc superconductors in 3D can be described
the solid-on-solid~SOS! model @9# and the vortex glass
model@5,11#, respectively, where the loop configurations a
obtained from the optimization of an energetic cost funct
subject to a divergence~or loop! constraint. Recently, we
analyzed@6# the loop statistics of vortex glass model a
found an unconventional percolation transition of vort
loops in the ground state as a function of the disor
strengths. A similar study in two dimensions, which is re
evant to a disorder-driven transition in the SOS model,
not been performed yet.

In this paper we study these percolation transitions,
merically. We show that an optimization constraint for t
loop configurations, which have to minimize a particular g
neric energy function, plays the key role for an unconve
tional percolation transition of vortex loops in the grou
state as a function of the disorder strengths. Therefore, we
study two models with and without an optimization co
straint. Theloop percolation~LP! model without an optimi-
zation, in which each elementary plaquette of a square la
~in 2D! or on a simple cubic lattice~in 3D! is occupied with
a probabilityp with an elementary loop, is shown to be in th
same universality as the conventionald-dimensional perco-
lation. In contrast to the LP model, theloop Hamiltonian
~LH! model with an optimization leads to a percolation tra
sition that constitutes a new universality class, for which
report the critical exponents. For simplicity we choose u
form probability distributions for the disorder variables
the LH model, which slightly differ from distributions use
1063-651X/2003/67~5!/056113~8!/$20.00 67 0561
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for the SOS model@9,12,13# and the vortex glass mode
@11,6#. We show that this difference does not affect the u
versality.

The paper is organized as follows. In Sec. II, we introdu
the models and the definition ofloops~clusters!. We describe
the mapping of our models to the SOS model and the vo
glass model. In Sec. III we locate the percolation transit
in each model and calculate the critical exponents us
finite-size scaling~FSS!. Section IV concludes the pape
with a summary and a discussion.

II. MODELS

Consider a d-dimensional hypercubic lattice—i.e.,
square lattice in 2D or a simple cubic lattice in 3D—of line
sizeL (L57 in the 2D example in Fig. 1! with free boundary
conditions. In the LP model the elementary plaquettes of
lattice are occupied by elementary loops with a probabi
p1. @There are (L21)2 elementary plaquettes in 2D an
3L(L21)2 elementary plaquettes in 3D.# An elementary
loop consists of the four bonds belonging to an element
plaquette plus a randomly chosen direction: either clockw
or counterclockwise, both with probability 1/2~see Fig. 1!.
When two adjacent plaquettes are occupied by elemen
loops of same orientation we cancel the occupation of
common bond as indicated in Fig. 1.

We can identify the resulting~directed! bond configura-
tion of the LP model with a flown5$n1 ,n2 , . . . ,nM%,
whereni is an integer andM is the number of bonds in the
lattice. We say thatni50 if bond i is not occupied,ni5
61 if it is singly occupied in the positive~negative! direc-
tion ~positive and negative are defined by the introduction
an appropriate coordinate system!, ni562 if it is doubly
occupied, etc. Thus, an elementary loop~e.g., in thexy
plane! can be represented bynx,y5nx11,y52nx11,y115
2nx,y1151 if oriented counterclockwise, as shown in Fi
1. The complete flown then can simply be thought of as th
sum of all elementary loops. Obviously, in this sum the flo
variables on the common bonds of adjacent elementary lo
cancel arithmetically. Moreover, the construction of this flo
via addition of elementary loops implies that on each site
the lattice the number of ingoing arrows balances the num
©2003 The American Physical Society13-1
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of outgoing arrows~see Fig. 1!: one says that this flow is
divergence free,

“ni50. ~1!

~The lattice-divergence operator is defined on each lat
site and sums simply all two-dimensional flow variables
the bonds connected to it.!

In analogy to conventional bond percolation we are n
going to define the clusters of a configuration of the
model: Two occupied bonds belong to the same cluste
they have one site in common. Thus, all bonds of the clu
can be connected via a directed path along occupied bo
belonging to this cluster, which is analogous to conventio
bond percolation—up to the attributedirected. This is actu-
ally a slightly nontrivial observation—see Fig. 1 to exem
plify this statement—because an occupied directed bond
not be traversed in the opposite direction, but is a dir
consequence of the fact that a cluster is also a sum o
ementary loops.

The massm of a cluster is the number of occupied bond
where a bondi with a flow ni countsuni u times, i.e., has mas
mi5uni u. A percolating cluster is a cluster spanning the e
tire system~in at least one of thed directions!. This implies
that the cluster contains a directed path along its occup
bonds from one side of the lattice to the opposite. In
following we refer to the cluster just defined as a loop.

The representation of the configuration of directed oc
pied bonds as a flown is now used to define the LP mod
with an optimization constraint: In contrast to the stochas
uncorrelatedoccupation of elementary loops in the LP mod
above, we now consider a different type of occupation
loops, which results from the minimization of an ener
function for a loop configurationn,

H5H$n%5(
i 51

M

f i~ni !, ~2!

where the sum is over all bondsi on ad-dimensional hyper-
cubic Ld lattice with periodic boundary conditions. Here
with, we assume the energy function to be composed so
of local termsf i(n) with f i(n)>0 and convex@i.e., f 9(n)

FIG. 1. Configurationn of the loop percolation model on
two-dimensional square lattice with system sizeL57.
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>0] for all bondsi and flow ~or occupation! valuesn. Such
energy functions are relevant in the context of disorde
solid-on-solid models~in 2D! @9,12,13# and vortex glasses
~in 3D! @11# since they determine their ground states. O
has to keep in mind that the loop condition~1! has to be
fulfilled—i.e., the optimization task consists in finding th
minimum of Eq.~2! under the constraint~1!.

For f i(n)5 f (n) independent of the bond index the min
mum is trivial: n50, i.e., no bond is occupied. Only if th
minima of local cost functions vary from bond index to bon
index in a nontrivial way, one can expect a nontrivial loo
configuration. We assume a random distribution of the
minima ~at valuesbi) and restrict ourselves to a quadrat
form of f i(n) around these minima:f i(ni)5(ni2bi)

2,
which means that we study the loop configurations@i.e., oc-
cupied bond configurations that fulfill Eq.~1!# that minimize

H5(
i

~ni2bi !
2. ~3!

The random variablesbi are uniformly distributedbi
P@22s,2s# at a fixeddisorder strengthsP@0,1#. Here,
the probabilityp to occupy a bond depends on the disord
strengths. We refer to the LP modelwith an optimization
constraint of Hamiltonian~3! as theloop Hamiltonianmodel.
For the minimization of a free energy~optimization! we re-
strict to the calculation of the ground state (T50) configu-
ration n, which is a minimum cost flow problem that can b
solved exactly in polynomial time with appropriate algo
rithms @14#.

The physical motivation of studying models like Eq.~3!
under constraint~1! is the following: In 2D, Hamiltonian~3!
occurs, for instance, in the context of the SOS model o
disordered substrate@7–9#. The SOS representation of a 2
surface is defined by integer height variablesukPIN for each
lattice sitek of a square lattice. The disordered substrate
modeled via random offsetsdkP@0,1# for each lattice site,
such that the total height at lattice siten is hk5uk1dk . The
total energy of the surface is

HSOS5 (
^k,l &

~hk2hl !
25 (

^k,l &
~nkl2bkl!

2, ~4!

where the sum runs over all nearest neighbor pairs of
square lattice and we introduced the height differencesnkl
5uk2ul and the offset differencesbkl5dk2dl , which both
live on the bonds rather than then the sites of the lattice.
SOS Hamiltonian~4! is identical with Eq.~3! and as per
definition the variablesnkl satisfy constraint~1!. Therefore
the SOS model on a disordered substrate is a physical re
sentation of the LH model in 2D that we study here.

In 3D, Hamiltonian~3! is the strong screening limit of the
vortex glass model for disordered superconduct
@11,15,16#,

HVG5(
i , j

~ni2bi !Gl~r i2r j !~nj2bj !, ~5!

where the integer vortex variablesniPIN live in the bonds
of a simple cubic lattice and have to fulfill constraint~1!
3-2
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FIG. 2. FSS for the loop
Hamiltonian ~LH! model in 2D
~top! and 3D~bottom!. Plot of the
percolation probabilityPperc ~left!
and of the probabilityP` for a
bond belonging to a percolating
loop ~middle!. The inset shows the
raw data.~Right! Plot of the aver-
age numbernm of loops of massm
per lattice bond atsc50.458 in
2D and atsc50.3129 in 3D, re-
spectively.
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since they represent magnetic vortex lines that are di
gence free. The real valued quenched random variablebi
P@22s,2s# are derived from the lattice curl of a rando
vector potential (s>0 being the strength of the disorder!.
The 3D vectorr i denotes the spatial positions of bondi in the
lattice and the sum runs over all bond pairs of the lattice~not
only nearest neighbors!. The lattice propagatorGl(R) has
the asymptotic formGl(R)}exp(2uRu/l)/uRu, wherel is
the screening length. In the strong screening limitl→0 only
the on-site repulsion survives@15# and gets

HVG
l→05(

i
~ni2bi !

2, ~6!

which is the LH~3! in 3D that we intend to study here.

III. RESULTS

We use adepth-first searchalgorithm known from com-
binatorial optimization@14# to identify the connected loops
The number of realizations we used to get statistically av
aged data varied from 500 for the largest system size
20 000 for the smallest system size. In the following the er
bars of our data are determined from the standard devia
Their values are smaller than the symbol size in the figu
and are therefore omitted. The critical exponents as wel
the critical parameters have been chosen so that a good
collapse for a restricted set of our data is obtained. In
case of the finite size scaling a restricted set of data om
data, which are presumably outside the asymptotic sca
regime, namely, data with values far from the critical po
and data for small system sizesL. To quantify the ‘‘good-
ness’’ of these fits, we used an appropriate cost functioS
@17#, whose minimum value should be close to unity wh
the fit is statistically acceptable. For example, from t
analysis of the order parameterP` of the LH model, see Fig
2, we achievedS(sc,1/n,b/n)'1.33 in 2D and 1.25 in 3D.
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In the case of the log-log graph we restricted to data w
m.30 for the LP model andm.10 for the LH model inde-
pendent ofL. The upper boundary of the cluster massm was
chosen depending onL and the dimensiond, in detail for the
largestL: m,2500 for the LP model andm,500 in 2D and
m,150 in 3D for the LH model. The error bars for th
exponents from the log-log plot were determined by a le
square fit.

Figures 3 and 4 depict three typical loop configurations
the LP and LH models around the critical threshold, resp
tively, which clearly indicates a percolation phase transit
for both models.

A. Loop percolation „LP… model

First, we study the LP model and consider the probabi
Pperc that a loop percolates the system. Since we assum
have only one typical length scale, which diverges at
critical point likej;up12p1cu2n, in a finite systemPperc is
expected to scale like

Pperc~L !; P̄@~p12p1c!L
1/n#. ~7!

Thus, Pperc(L) is independent ofL at p1c and the data
curves should intersect for different system sizesL. From our
raw data in the inset of Fig. 5~left! we locate the critical
point p1c50.407060.0005 in 2D andp1c50.079360.0004
in 3D, respectively. We plot the scaling assumption~7! in
Fig. 5 ~left! and estimate the inverse correlation length exp
nent 1/n50.7560.03 in 2D and 1/n51.14360.090 in 3D
from the best data collapse at fixedp1c .

To get a second critical exponent we consider the pr
ability P` that a bond belongs to the percolating loop, i.
the order parameter, which is expected to obey

P`~L !;L2b/nP̄@~p12p1c!L
1/n#. ~8!
3-3
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FIG. 3. Typical loop configu-
rations of the LP model around
the critical pointp1c'0.41 in 2D
~top! for L550 andp1c'0.08 in
3D ~bottom! for L58. In 2D the
different loops are marked by dif
ferent gray scales ~colors!,
whereas in 3D all loops are blac
except for the percolating loop
which is marked by light gray
~red!.
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e
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Figure 5~middle! shows the raw data~inset! and the plot of
the scaling law~8! with b/n50.10460.020 in 2D andb/n
50.4960.02 in 3D, so as to achieve the best data collap
From then above we determineb shown in Table I.

At the critical pointpc1 the average numbernm of finite
loops of massm per lattice bond scales like

nm~L,p15p1c!;m2t, ~9!
05611
e.

wheret is the Fisher exponent@10,18#. Since we assume th
usual scaling relations of conventional percolation to
valid @10#, we also expect a combination of them to be val
i.e., the hyperscaling relation

t5
22b/~dn!

12b/~dn!
, ~10!

whered is the spatial dimension. From the fit of the data
op,

FIG. 4. Typical loop configurations of the loop Hamiltonian~LH! model in the ground state (T50) around the critical pointsc

'0.46 in 2D ~top! for L550 andsc'0.31 in 3D ~bottom! for L516. In 2D and 3D all loops are black except for the percolating lo
which is marked by light gray~red!.
3-4
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FIG. 5. Finite-size scaling~FSS! for the LP model in 2D~top! and 3D~bottom!: plot of the percolation probabilityPperc ~left! and of the
probability P` for a bond belonging to a percolating loop~middle!. The inset shows the raw data.~Right! Plot of the average numbernm of
loops of massm per lattice bond atp1c50.407 in 2D and atp1c50.0793 in 3D, respectively.
he

nm(L) at pc1 in Fig. 5 ~right! we gett depicted in Table I.
This is consistent with the value obtained by putting t
aboven andb into Eq. ~10!, i.e., t52.0560.05 in 2D and
t52.2060.06 in 3D.

To determine the critical probabilitypc that a bond is
occupied, we calculate
05611
pc~L !5 (
m54

mL

mnm~L;p15p1c!, ~11!

wheremL is the largest finite loop. We plotpc(L) versus 1/L
as depicted in Fig. 6 and extractpc from the limit L→`.
n
TABLE I. Comparison of the critical thresholds and critical exponents for conventional bond percolation, the loop percolatio~LP!
model, and the loop Hamiltonian~LH! model.

Conventional Conventional bond LH LP LP with singly
percolation@10# percolation@22# occupied bonds

2D pc 0.5927460a and 1/2b 0.500060.0004 0.18960.005 0.65060.005 0.57060.005
p1c 0.407060.0005 0.548560.0005
sc 0.45860.001

Pperc(pc) 0.7060.02 0.5960.02 0.6460.02 0.6760.02
n 4/351.3̄ 1.3360.05 3.3360.30 1.3360.05 1.3360.04

b 5/3650.138̄ 0.13960.030 1.8060.35 0.13860.027 0.13960.007

t 2.4560.05 2.0560.10
3D pc 0.31161a and 0.248814b 0.248960.0002 0.019860.0005 0.28260.005 0.26760.005

p1c 0.079360.0004 0.099260.0005
sc 0.312960.0005

Pperc(pc) 0.6360.02 0.3460.02 0.5360.02 0.5460.02
n 0.875 0.87560.070 1.0560.05 0.87560.070 0.87560.070
b 0.417 0.4360.04 1.460.1 0.4360.04 0.4260.04
t 2.8560.05 2.1960.05

aConventional site percolation.
bConventional bond percolation.
3-5
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F. O. PFEIFFER AND H. RIEGER PHYSICAL REVIEW E67, 056113 ~2003!
In addition to the results presented so far, we found t
the mean numberNperc of percolating loops per sample i
the finite system can be described by a smeared step fun
with an upper boundaryNperc51, as known from conven
tional percolation@10#. When we define the massmi of an
occupied bondi to be mi51 even foruni u.1, the critical
scaling behavior remains unchanged and the critical pr
ability becomespc50.56560.005 in 2D andpc50.266
60.005 in 3D, respectively. We also studied the case wh
the algorithm detects the loops along oriented paths,
found the same results, as expected from what we
above.

B. Loop Hamiltonian „LH … model

For loop Hamiltonian~3! we perform analogous dat
analysis. From the intersection of theL-dependent curves o
Pperc(L) in the inset of Fig. 2~left! we locate the critical
disorder strength atsc50.45860.001 in 2D and sc
50.312960.0005 in 3D, respectively. From the finite-siz
scaling behavior of the percolation probabilityPperc @similar
to Eq. ~7!# we get 1/n50.3060.05 in 2D and 1/n50.95
60.05 in 3D. The resulting exponentn are given in Table I.
In 2D we find a valuen53.360.3, which is rather large.

Figure 2 ~middle! shows the plot of the raw data ofP`

~inset! and its scaling law similar to Eq.~8! with b/n
50.5560.05 in 2d andb/n51.3060.05 in 3D. From then
above we determineb in Table I.

In Fig. 2 ~right! we plot the loop distributionnm(L) vs the
massm at the critical pointsc and determinet by a power-
law fit, which gives the values shown in Table I. Fromn and
b above we get via the hyperscaling relation~10! the Fisher
exponentt52.3860.17 in 2D andt52.7660.26 in 3D,
which are consistent with the values from the power-law
within the error bars.

In Fig. 7 we plot the mean numberNperc of percolating
loops per sample. The different curves ofNperc(L) intersect
at the same critical pointsc found for Pperc above. Similar
to the scaling law ofNconv.

perc (L) in conventional percolation
@10#, we expectNperc(L) to obey

FIG. 6. Plot of the critical probabilitypc(L) vs inverse system
size 1/L in 2D and in 3D for the conventional bond percolatio
model, the LP model, and the loop Hamiltonian~LH! model.
05611
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Nperc~L !;N̄@~s2sc!L
1/n#, ~12!

and estimate the samen as above from the best data collaps
see Fig. 7.

The mean numberNperc of percolating loops per sampl
can become larger than one slightly above the critical po
sc in contrast to conventional percolation, where only o
percolating cluster exists forp.pc . The appearance of sev
eral percolating loops can possibly be related to the fact
the loop density in the LH model atsc is much smaller than
in the LP model, as can be seen from comparison of typ
loop configurations~cf. Figs. 3 and 4!. Moreover, the maxi-
mum ofNperc(L) seems to increase with increasingL. From
our data we could not determine the behavior of the ma
mum ofNperc(L) in the thermodynamic limitL→`, in par-
ticular whether it converges to a constant or diverges.
also checked aL-dependent power-law behavior ofNperc(L)
similar to Eq.~8! with a new critical exponentx ~instead of
b) and foundx/n50.0160.01 in 2D andx/n50.1560.02
in 3D, i.e.,x close to zero.

Finally, we calculate the probabilitypc(L) that a bond is
occupied@analogous to Eq.~11!# for differentL at the critical
point sc as shown in Fig. 6 and extractpc as the average
value, see Table I.

In all considered ground state configurations of lo
Hamiltonian ~3! we found a bond to be empty or singl

FIG. 7. Plot of the mean numberNperc of percolating loops for
the loop Hamiltonian~LH! model in 2D~top! and 3D~bottom!.
3-6
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CRITICAL PROPERTIES OF LOOP PERCOLATION . . . PHYSICAL REVIEW E67, 056113 ~2003!
occupied only. Due to this observation we al
investigated—besides the study presented this pape
modified LP model, in which a plaquette is allowed to
occupied withp1 if and only if the amount of the resulting
flow n is uni u<1. Here, the algorithm checked each plaque
to be occupied or not in positional order. Note that this o
cupation process depends on the algorithmic order of oc
pying plaquettes in the system. Again, we found the sa
critical exponents as known from conventional percolati
but a different critical probabilityp1c .

We also studied the two-dimensional LH model with
different probability distribution functionP(bi), wherebi is
given by a sum of two uniformly distributed random num
bers out of@0,2s#. This corresponds to the SOS model on
disordered substrate, which has been studied@9,12# only at
s51/2 yet. For this probability distribution function we ge
the same critical exponents as found above, but with a
ferent critical point at sc50.39560.005, i.e., pc50.34
60.02. This implies that our study is relevant to describ
disorder-driven flat–to–super-rough phase transition,
studied in literature yet.

Closely related to the SOS model is the two-dimensio
model of a random elastic medium with contour loops,
which Zeng et al. found @13# the geometrical exponent
b/n5d2df50.5460.01 and t52.3260.01 at s51/2.
These exponents agree with the criticalb/n50.5560.05 and
t52.3860.17 we found here atsc'0.458.

IV. SUMMARY

We studied two loop percolation models, numerically:
the LP model the loop configuration resulted from an unc
related unbiased random occupation of elementary dire
plaquettes, while in the LH model the loop configurati
appeared according to the Boltzmann weight of a particu
microscopic model atT50, i.e., from an optimization con
straint ~1! of a Hamiltonian~3!. Our results are summarize
in Table I.

We found that in 2D and 3D the LP model belongs to t
universality class of the conventional~bond or site! percola-
tion @10#. A plausible explanation for this observation is th
following: We map an occupied~empty! plaquette onto an
occupied~empty! site on an appropriate lattice. Figure 8
lustrates the mapping in 2d: the two loops on a square la
of system sizeL, Fig. 8 ~left!, are mapped onto two cluster
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consisting of two and four occupied sites on a~dual! square
lattice of sizeL21, Fig. 8 ~right!. The resulting clusters o
sites are clusters of finite extended objects such ask-mers in
Ref. @19#, which show the same universal behavior at t
percolation transition as conventional site percolation@10#.
Also we found that the nontrivial orientation of the loops
the LP model is irrelevant for the universality class. We e
pect that this also holds for higher spatial dimensionsd with
the same critical dimensiondc56 as for conventional perco
lation @10,20#.

For the LH model, Eq.~3!, we found evidence for an
unconventional universality class of percolation in 2D a
3D; the exponents are listed in Table I. In 2D, we obtaine
rather large correlation length exponentn53.360.3, which
possibly indicates an infinite critical exponent forL→`
known from the Kosterlitz-Touless~KT! phase transition
@21#. On the other hand, since our Hamiltonian~3! has no
XY, a KT transition can be ruled out. Indeed, from applyi
a KT form of finite-size scaling to our data, we could not fin
any acceptable data collapse.

It would be interesting to study the universal behavior
the pure~i.e., s50) LH model~3! for finite temperaturesT.
In 3D, such a thermal-driven loop percolation phase tran
tion has been studied@5# for a different model.
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FIG. 8. Schematic mapping of the loops in the LP model~left!
onto sites~filled circles! in the conventional site percolation mod
with next nearest neighbors~right; see text!.
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