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Critical properties of loop percolation models with optimization constraints
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We study loop percolation models in two and in three space dimensions, in which configurations of occupied
bonds are forced to form a closed loop. We show that the uncorrelated occupation of elementary plaquettes of
the square and the simple cubic lattice by elementary loops leads to a percolation transition that is in the same
universality class as the conventional percolation. In contrast to this, an optimization constraint for the loop
configurations, which then have to minimize a particular generic energy function, leads to a percolation
transition that constitutes a universality class for which we report the critical exponents. Implication for the
physics of solid-on-solid and vortex glass models are discussed.
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I. INTRODUCTION for the SOS mode[9,12,13 and the vortex glass model
[11,6]. We show that this difference does not affect the uni-
The percolation of loopgor closed stringsappears natu- versality.
rally in the context of liquid heliunT1,2], early universe The paper is organized as follows. In Sec. Il, we introduce
[3,4], high-temperature superconductdis,6], and elastic the models and the definition tfops(clusters. We describe
media [7-9], where loops represent world lines, cosmicthe mapping of our models to the SOS model and the vortex
strings, vortex loops and height contour loops, respectivelyglass model. In Sec. Ill we locate the percolation transition
In analogy to the characteristic size of a cluster in convenin each model and calculate the critical exponents using
tional site or bond percolatidri0], the typical diamete£ of finite-size scaling(FSS. Section IV concludes the paper
the loops diverges when approaching a critical point, thavith a summary and a discussion.
loop percolation transition. This transition shows power-law
behavior at the critical point, which is described by a set of
critical exponents that constitute a universality class. Il. MODELS
The elastic medium in two dimensiorf2D) and amor-
phous highT, superconductors in 3D can be described by Consider ad-dimensional hypercubic lattice—i.e., a
the solid-on-solid(SOS model [9] and the vortex glass square lattice in 2D or a simple cubic lattice in 3D—of linear
model[5,11], respectively, where the loop configurations aresizeL (L=7 in the 2D example in Fig.)with free boundary
obtained from the optimization of an energetic cost functionconditions. In the LP model the elementary plaguettes of the
subject to a divergencéor loop constraint. Recently, we lattice are occupied by elementary loops with a probability
analyzed[6] the loop statistics of vortex glass model and ;. [There are [—1)* elementary plaguettes in 2D and
found an unconventional percolation transition of vortex3L(L—1)? elementary plaguettes in 3DAn elementary
loops in the ground state as a function of the disordefoop consists of the four bonds belonging to an elementary
strengtho. A similar study in two dimensions, which is rel- plaquette plus a randomly chosen direction: either clockwise
evant to a disorder-driven transition in the SOS model, ha®r counterclockwise, both with probability 1/8ee Fig. 1
not been performed yet. When two adjacent plaquettes are occupied by elementary
In this paper we study these percolation transitions, nuloops of same orientation we cancel the occupation of the
merically. We show that an optimization constraint for thecommon bond as indicated in Fig. 1.
loop configurations, which have to minimize a particular ge- We can identify the resultingdirected bond configura-
neric energy function, plays the key role for an unconvendion of the LP model with a flown={n;,n,, ... ny},
tional percolation transition of vortex loops in the groundwheren; is an integer and/l is the number of bonds in the
state as a function of the disorder strengthTherefore, we lattice. We say than;=0 if bond i is not occupiedn;=
study two models with and without an optimization con- =1 if it is singly occupied in the positivénegative direc-
straint. Theloop percolation(LP) model without an optimi-  tion (positive and negative are defined by the introduction of
zation, in which each elementary plaquette of a square latticen appropriate coordinate system;=*2 if it is doubly
(in 2D) or on a simple cubic latticén 3D) is occupied with  occupied, etc. Thus, an elementary loGmg., in thexy
a probabilityp with an elementary loop, is shown to be in the plang can be represented by, ,=n,,1,=—Ny11y41=
same universality as the conventiomhtlimensional perco- —n,,,,=1 if oriented counterclockwise, as shown in Fig.
lation. In contrast to the LP model, tHeop Hamiltonian 1. The complete flom then can simply be thought of as the
(LH) model with an optimization leads to a percolation tran-sum of all elementary loops. Obviously, in this sum the flow
sition that constitutes a new universality class, for which wevariables on the common bonds of adjacent elementary loops
report the critical exponents. For simplicity we choose uni-cancel arithmetically. Moreover, the construction of this flow
form probability distributions for the disorder variables in via addition of elementary loops implies that on each site of
the LH model, which slightly differ from distributions used the lattice the number of ingoing arrows balances the number
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=0] for all bondsi and flow (or occupation valuesn. Such

energy functions are relevant in the context of disordered

solid-on-solid modelgin 2D) [9,12,13 and vortex glasses

(in 3D) [11] since they determine their ground states. One

has to keep in mind that the loop conditi¢h) has to be

fulfiled—i.e., the optimization task consists in finding the
L minimum of Eq.(2) under the constrain{l).

For f;(n)=f(n) independent of the bond index the mini-
mum is trivial: n=0, i.e., no bond is occupied. Only if the
minima of local cost functions vary from bond index to bond
index in a nontrivial way, one can expect a nontrivial loop
configuration. We assume a random distribution of these
minima (at valuesb;) and restrict ourselves to a quadratic
form of f;(n) around these minimaf;(n;)=(n,—b;)?
which means that we study the loop configuratifins., oc-
cupied bond configurations that fulfill E¢L)] that minimize

FIG. 1. Configurationn of the loop percolation model on a
two-dimensional square lattice with system size 7.

of outgoing arrows(see Fig. 1 one says that this flow is
divergence free, HIZ (ni—by)?. (©)
Vn;=0. () The random variablesb; are uniformly distributedb;
) ) ) ) . €[—20,20] at a fixeddisorder strengthoe[0,1]. Here,
(The lattice-divergence operator is defined on each latticg,g probabilityp to occupy a bond depends on the disorder
site and sums simply all two-dimensional flow variables Ofstrengthcr. We refer to the LP modekith an optimization
the bonds connected to)it. , constraint of Hamiltoniaii3) as theloop Hamiltonianmodel.
In analogy to conventional bond percolation we are NOWeEqr the minimization of a free energpptimization we re-

going to define the clusters of a configuration of the LPgict 1o the calculation of the ground stafe=0) configu-
model: Two occupied bonds belong to the same cluster ifationn, which is a minimum cost flow problem that can be

they have one site in common. Thus, all bonds of the cluste§0|ved exactly in polynomial time with appropriate algo-
can be connected via a directed path along occupied bonggnms [14].

belonging to this cluster, which is analogous to conventional 114 physical motivation of studying models like EG)
bond percolation—up to the attributgrected This is actu-  nqer constraintl) is the following: In 2D, Hamiltoniar(3)

ally a slightly nontrivial observation—see Fig. 1 to exem- oc s, for instance, in the context of the SOS model on a
plify this statement—because an occupied directed bond caRjisordered substrafg—9]. The SOS representation of a 2D
not be traversed in the opposite direct_ion, but is a directiface is defined by integer height variahlgs: IN for each
consequence of the fact that a cluster is also a sum of e[gice sitek of a square lattice. The disordered substrate is

ementary loops. _ _ modeled via random offsets, e [0,1] for each lattice site,
The massn Of a cluster is the numbc_ar of o_ccupled bonOIS’such that the total height at lattice sités hy=u,+d,. The
where a bond with a flow n; counts|n;| times, i.e., has mass ;| energy of the surface is

m;=|n;|. A percolating cluster is a cluster spanning the en-
tire system(in at least one of the directions. This implies

— _ 2_ _ 2
that the cluster contains a directed path along its occupied HSOS_<k2|> (he—hy) _<k2|> (N —=biw)*, (4)
bonds from one side of the lattice to the opposite. In the
following we refer to the cluster just defined as a loop. where the sum runs over all nearest neighbor pairs of the

The representation of the configuration of directed occusquare lattice and we introduced the height differenugs
pied bonds as a flom is now used to define the LP model =uy,—u, and the offset differences,=d,—d,, which both
with an optimization constraint: In contrast to the stochastidive on the bonds rather than then the sites of the lattice. The
uncorrelatedoccupation of elementary loops in the LP model SOS Hamiltonian(4) is identical with Eq.(3) and as per
above, we now consider a different type of occupation ofdefinition the variables, satisfy constrain{1). Therefore
loops, which results from the minimization of an energythe SOS model on a disordered substrate is a physical repre-
function for a loop configuratiom, sentation of the LH model in 2D that we study here.

In 3D, Hamiltonian(3) is the strong screening limit of the

M vortex glass model for disordered superconductors
H=H{n}=2l fi(ny), (2 [11,15,18,
=
where the sum is over all bond®n ad-dimensional hyper- Hye= 2 (Ni—b)Gy(ri—r;)(nj—by), 5

cubic LY lattice with periodic boundary conditions. Here- "

with, we assume the energy function to be composed solelwhere the integer vortex variablese IN live in the bonds
of local termsf;(n) with f;(n)=0 and conveXi.e., f"(n)  of a simple cubic lattice and have to fulfill constraift)
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i o FIG. 2. FSS for the loop
5 Hamiltonian (LH) model in 2D
(top) and 3D(bottom). Plot of the
i percolation probabilityPPe"® (left)
o T D;gﬂ_@ and of the probabilityP,, for a

bond belonging to a percolating
loop (middle). The inset shows the
raw data.(Right) Plot of the aver-
age numben,, of loops of massn
per lattice bond atr,=0.458 in
2D and ato.=0.3129 in 3D, re-
spectively.

since they represent magnetic vortex lines that are divern the case of the log-log graph we restricted to data with
gence free. The real valued quenched random varidiles m>30 for the LP model andh>10 for the LH model inde-
e[ —20,20] are derived from the lattice curl of a random pendent ofL. The upper boundary of the cluster massvas

vector potential §=0 being the strength of the disorgler
The 3D vector; denotes the spatial positions of band the
lattice and the sum runs over all bond pairs of the latties
only nearest neighborsThe lattice propagato®, (R) has
the asymptotic formG, (R)=exp(—|R|/\)/|R|, whereX is
the screening length. In the strong screening lixait O only
the on-site repulsion survivg45] and gets

HCE°=Z (n—by)?, (6)

which is the LH(3) in 3D that we intend to study here.

Ill. RESULTS

We use adepth-first searchalgorithm known from com-
binatorial optimization{14] to identify the connected loops.

The number of realizations we used to get statistically aver-
aged data varied from 500 for the largest system size to

chosen depending dnand the dimensiod, in detail for the
largestL: m<2500 for the LP model anch<<500 in 2D and
m<150 in 3D for the LH model. The error bars for the
exponents from the log-log plot were determined by a least
square fit.

Figures 3 and 4 depict three typical loop configurations of
the LP and LH models around the critical threshold, respec-
tively, which clearly indicates a percolation phase transition
for both models.

A. Loop percolation (LP) model

First, we study the LP model and consider the probability
PPe'¢ that a loop percolates the system. Since we assume to
have only one typical length scale, which diverges at the
critical point like é~|p;—p1c 7, in a finite systenPPe'Cis
expected to scale like

PPET(L)~P[(py— p1c)L "] @)

20000 for the smallest system size. In the following the error

bars of our data are determined from the standard deviatiorrpys prere(L) is independent ol at py. and the data
Their values are smaller than the symbol size in the figuregyryes should intersect for different system sizeErom our
and are therefore omitted. The critical exponents as well agyy data in the inset of Fig. Beft) we locate the critical
the critical parameters have been chosen so that a good dgigint p, .= 0.4070+0.0005 in 2D andp,.=0.0793+0.0004
collapse for a restricted set of our data is obtained. In the, 3D, respectively. We plot the scaling assumpti@ in
case of the finite size scaling a restricted set of data Omltﬁ:ig. 5 (left) and estimate the inverse correlation length expo-

data, which are presumably outside the asymptotic scalingent 14=0.75+0.03 in 2D and T#=1.143+0.090 in 3D
regime, namely, data with values far from the critical point¢,om the pest data collapse at fixeg .

and data for small system sizés To quantify the “good-

ness” of these fits, we used an appropriate cost func8on

To get a second critical exponent we consider the prob-
ability P, that a bond belongs to the percolating loop, i.e.,

[17], yvhose m_ini_mum value should be close to unity whenha order parameter, which is expected to obey
the fit is statistically acceptable. For example, from the

analysis of the order parametey, of the LH model, see Fig.
2, we achieve®(o,1/v,B/v)~1.33 in 2D and 1.25 in 3D.

P..(L)~L #"P[(py— p1c)LY"]. 8)
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FIG. 3. Typical loop configu-
rations of the LP model around
the critical pointp,.~0.41 in 2D
(top) for L=50 andp;,~0.08 in
3D (bottom for L=8. In 2D the
different loops are marked by dif-
ferent gray scales (colors,
whereas in 3D all loops are black
except for the percolating loop,
which is marked by light gray
(red).

éd
Y
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Figure 5(middle) shows the raw daténse) and the plot of wherer is the Fisher exponefi0,1§. Since we assume the
the scaling law(8) with B/»=0.104+0.020 in 2D andB/v  usual scaling relations of conventional percolation to be
=0.49+0.02 in 3D, so as to achieve the best data collapsevalid [10], we also expect a combination of them to be valid,
From thev above we determing shown in Table I. i.e., the hyperscaling relation

At the critical pointp.; the average numbaer,, of finite

loops of massn per lattice bond scales like = 2— pl(dv) (10)
1-p6/(dv)’
Nm(L,p1=pP1c)~m 7, 9 whered is the spatial dimension. From the fit of the data of
1 T T T T T 10 T T T r
1 i
08 10 \ -
0.8 70.6 4 %&\ L;256
107 ¢ \ — L=512
o 04 | K \ L-1024
AL p: jtjs L-16 107 ¢
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FIG. 4. Typical loop configurations of the loop HamiltonidéhH) model in the ground stateT&0) around the critical pointr,
~0.46 in 2D (top) for L=50 ando.~0.31 in 3D (bottom for L=16. In 2D and 3D all loops are black except for the percolating loop,
which is marked by light grayred).
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FIG. 5. Finite-size scalin¢FS9 for the LP model in 2D0top) and 3D(bottom): plot of the percolation probabiliti?P¢' (left) and of the
probability P, for a bond belonging to a percolating logmiddle). The inset shows the raw dat®ight) Plot of the average numbaer, of
loops of massn per lattice bond ap,.=0.407 in 2D and ap;.=0.0793 in 3D, respectively.

nn(L) atpe in Fig. 5 (right) we getr depicted in Table I. mg

This is consistent with the value obtained by putting the p.(L)= 2 MnNy,(L;p1=P1c), (11
m=4

abover and g into Eq. (10), i.e., 7=2.05+0.05 in 2D and

7=2.20+0.06 in 3D.

To determine the critical probabilitp. that a bond is

occupied, we calculate

TABLE |. Comparison of the critical thresholds and critical exponents for conventional bond percolation, the loop per¢bRtion

model, and the loop Hamiltoniafi.H) model.

wherem, is the largest finite loop. We plgt.(L) versus 1L

as depicted in Fig. 6 and extragt from the limit L —oo.

Conventional Conventional bond LH LP LP with singly
percolation[10] percolation[22] occupied bonds
2D Pe 0.5927460 and 1/2 0.5000+0.0004 0.18%:0.005 0.65@:0.005 0.576@:0.005
P1c 0.4070+0.0005 0.548%0.0005
o 0.458+0.001
PP ¢(p,) 0.70+0.02 0.59-0.02 0.64:0.02 0.67-0.02
v 4/3=13 1.33+0.05 3.33:0.30 1.33:0.05 1.33:0.04
5/36=0.138 0.139+0.030 1.86:0.35 0.138:0.027 0.139:0.007
T 2.45+0.05 2.05-0.10
3D Pc 0.3116% and 0.24881% 0.2489+0.0002 0.019& 0.0005 0.2820.005 0.2670.005
P1c 0.0793-0.0004 0.0992 0.0005
o 0.3129+0.0005
PPe"(pe) 0.63+0.02 0.34-0.02 0.53-0.02 0.54-0.02
v 0.875 0.875:0.070 1.05-0.05 0.875-0.070 0.875:0.070
B 0.417 0.43%0.04 1.4:0.1 0.43£0.04 0.42:0.04
T 2.85+0.05 2.19-0.05

&Conventional site percolation.
PConventional bond percolation.
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FIG. 6. Plot of the critical probabilityp.(L) vs inverse system
size 1L in 2D and in 3D for the conventional bond percolation
model, the LP model, and the loop HamiltonidrH) model.

In addition to the results presented so far, we found that
the mean numbeNP¢'® of percolating loops per sample in
the finite system can be described by a smeared step function
with an upper boundariNP¢'°=1, as known from conven-
tional percolation10]. When we define the mass; of an
occupied bond to bem;=1 even for|n;|>1, the critical
scaling behavior remains unchanged and the critical prob-
ability becomesp,=0.565+0.005 in 2D andp.=0.266
+0.005 in 3D, respectively. We also studied the case where
the algorithm detects the loops along oriented paths, and
found the same results, as expected from what we said

PHYSICAL REVIEW B7, 056113 (2003
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above.

B. Loop Hamiltonian (LH) model

For loop Hamiltonian(3) we perform analogous data
analysis. From the intersection of thedependent curves of
PPE'S(L) in the inset of Fig. 2(left) we locate the critical
disorder strength ato.=0.458-0.001 in 2D and o

FIG. 7. Plot of the mean numb&P¢'® of percolating loops for
the loop Hamiltonian(LH) model in 2D(top) and 3D (bottom).

NPe(L)~N[ (o — o)L, (12
and estimate the sameas above from the best data collapse,
see Fig. 7.

The mean numbeXPe'® of percolating loops per sample

=0.3129+0.0005 in 3D, respectively. From the finite-size can become larger than one slightly above the critical point

scaling behavior of the percolation probabilRy¢" [similar
to Eq. (7)] we get 1#=0.30+0.05 in 2D and #=0.95
+0.05 in 3D. The resulting exponentare given in Table I.
In 2D we find a valuev= 3.3+ 0.3, which is rather large.

Figure 2(middle) shows the plot of the raw data &,
(insed and its scaling law similar to Eq8) with B/v
=0.55+0.05 in d and B/v=1.30+0.05 in 3D. From thes
above we determing in Table I.

In Fig. 2 (right) we plot the loop distributiom,(L) vs the
massm at the critical pointo, and determine- by a power-
law fit, which gives the values shown in Table I. Franand
B above we get via the hyperscaling relatid) the Fisher
exponent7=2.38+0.17 in 2D and7=2.76:0.26 in 3D,

o in contrast to conventional percolation, where only one
percolating cluster exists fgr>p.. The appearance of sev-
eral percolating loops can possibly be related to the fact that
the loop density in the LH model at, is much smaller than

in the LP model, as can be seen from comparison of typical
loop configurationgcf. Figs. 3 and %4 Moreover, the maxi-
mum of NP®'¢(L) seems to increase with increasibgFrom

our data we could not determine the behavior of the maxi-
mum of NP®'9(L) in the thermodynamic limit. — <o, in par-
ticular whether it converges to a constant or diverges. We
also checked &-dependent power-law behavior HP€"(L)
similar to Eq.(8) with a new critical exponent (instead of

B) and foundx/»=0.01+0.01 in 2D andx/»=0.15+0.02

which are consistent with the values from the power-law fitin 3D, i.e.,x close to zero.

within the error bars.

In Fig. 7 we plot the mean numb&P¢'® of percolating
loops per sample. The different curvesN#€'(L) intersect
at the same critical point, found for PP¢'® above. Similar
to the scaling law oNES[C (L) in conventional percolation
[10], we expectNPE'S(L) to obey

Finally, we calculate the probability.(L) that a bond is
occupied analogous to Eq11)] for differentL at the critical
point o, as shown in Fig. 6 and extragi, as the average
value, see Table I.

In all considered ground state configurations of loop
Hamiltonian (3) we found a bond to be empty or singly

056113-6
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occupied only. Due to this observation we also
investigated—besides the study presented this paper—a
modified LP model, in which a plaquette is allowed to be
occupied withp, if and only if the amount of the resulting
flow nis|n;|<1. Here, the algorithm checked each plaquette
to be occupied or not in positional order. Note that this oc-
cupation process depends on the algorithmic order of occu-
pying plaquettes in the system. Again, we found the same
critical exponents as known from conventional percolation, - ' ) .
but a different critical probability; . _ loop percolation (LP) model gg:‘;’;g}'ig:ar'nﬂ;eel

We also studied the two-dimensional LH model with a
different probability distribution functio®(b;), whereb; is FIG. 8. Schematic mapping of the loops in the LP moieft)
given by a sum of two uniformly distributed random num- onto sites(filled circles in the conventional site percolation model
bers out of 0,20]. This corresponds to the SOS model on awith next nearest neighbofsight; see text
disordered substrate, which has been stu@i@iZ] only at
o=1/2 yet. For this probability distribution function we get consisting of two and four occupied sites oridaia) square
the same critical exponents as found above, but with a diflattice of sizeL—1, Fig. 8(right). The resulting clusters of
ferent critical point ato.=0.395+0.005, i.e., p.=0.34 sites are clusters of finite extended objects suck-mers in
+0.02. This implies that our study is relevant to describe aRef. [19], which show the same universal behavior at the
disorder-driven flat—to—super-rough phase transition, nopéercolation transition as conventional site percolafibl.
studied in literature yet. Also we found that the nontrivial orientation of the loops in

Closely related to the SOS model is the two-dimensionathe LP model is irrelevant for the universality class. We ex-
model of a random elastic medium with contour loops, forpect that this also holds for higher spatial dimensidngth
which Zeng et al. found [13] the geometrical exponents the same critical dimensiosh,= 6 as for conventional perco-
Blv=d—d;=0.54+0.01 and r=2.32-0.01 at o=1/2. lation[10,20.

These exponents agree with the critigdb=0.55+0.05 and For the LH model, Eq(3), we found evidence for an
7=2.38+0.17 we found here at,~0.458. unconventional universality class of percolation in 2D and
3D; the exponents are listed in Table I. In 2D, we obtained a
IV. SUMMARY rather large correlation length exponent 3.3+ 0.3, which

possibly indicates an infinite critical exponent far—«
We studied two loop percolation models, numerically: inknown from the Kosterlitz-Toules$KT) phase transition
the LP model the loop configuration resulted from an uncor{21]. On the other hand, since our Hamiltoni&®) has no
related unbiased random occupation of elementary directedy, a KT transition can be ruled out. Indeed, from applying
plaguettes, while in the LH model the loop configurationa KT form of finite-size scaling to our data, we could not find
appeared according to the Boltzmann weight of a particulaany acceptable data collapse.

microscopic model al =0, i.e., from an optimization con- It would be interesting to study the universal behavior of
;tralnt(l) of a Hamiltonian(3). Our results are summarized the pure(i.e., o=0) LH model(3) for finite temperatureg.
in Table I. In 3D, such a thermal-driven loop percolation phase transi-

We found that in 2D and 3D the LP model belongs to thetion has been studigd] for a different model.
universality class of the conventionddond or sit¢ percola-

tion [1_0]. A plausible explanat_ion for this observation is the ACKNOWLEDGMENTS
following: We map an occupie@empty plaguette onto an
occupied(empty) site on an appropriate lattice. Figure 8 il-  We thank Jae Dong Noh for fruitful discussions and

lustrates the mapping in 2d: the two loops on a square latticetimulating ideas. This work was supported financially by the
of system size., Fig. 8 (left), are mapped onto two clusters Deutsche ForschungsgemeinschH&fEG).
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