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Constrained spin-dynamics description of random walks on hierarchical scale-free networks
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We study a random walk problem on the hierarchical network which is a scale-free network grown deter-
ministically. The random walk problem is mapped onto a dynamical Ising spin chain system in one dimension
with a nonlocal spin update rule, which allows an analytic approach. We show analytically that the character-
istic relaxation time scale grows algebraically with the total number of nddas T~N?* From a scaling
argument, we also show the power-law decay of the autocorrelation fur@gen~t~, which is the prob-
ability to find the Ising spins in the initial state aftert time steps, with the state-dependent nonuniversal
exponenta. It turns out that the power-law scaling behavior has its origin in a quasiultrametric structure of the
configuration space.
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[. INTRODUCTION the random walk motion is characterized by normal diffusion
which is characterized by a length scale that grows algebra-
Complex networks, as, for instance, represented by thially asé~t2in timet. The exponent 1/2 is universal, i.e.,

Internet, the social acquaintance network between individuit does not depend on the microscopic details of the lattice—
als, biological networks of interacting proteins, and othersthe only condition being that only nearest neighbor jumps on
(see Ref[1] for further examplels became recently a central a regularD-dimensional lattice are allowed. The autocorre-
research focus in statistical physics. In general a networkation function C(t) or the return probability to the initial
consists of a set of nodésites or verticesand a set of edges node int time steps decays algebraically@ét) ~t~°’2. On
(bonds or arcs connecting the nodes with one another. Arandom networks, on the other hand, the autocorrelation
system with many interacting degrees of freedom, e.g., comfunction shows a stretched-exponential decay G&)
puters, individuals, proteins, etc., or generally called agents, g-at* \ith B=1/3[14].
can be modeled by a network by identifying the agents as Random walks were also studied in the small-world net-

tlge Inodelsa and thi mrt]eracnor_l hbetween tlhemtas the ﬁdg%ork of Watts and Strogati2], which interpolates between
eal world networks have neither a regular structisuc regular networks and random networks by stochastically

as, for instance, periodic |attices or g”d graphs han a changing connections between nodes with a particular rewir-
fully random structurd2]. They rather display a broad dis- . py )
ing probabilitypyy. In essence a small-world network is ob-

tribution of the degree, where the degi€ef a node is the ned f | work with ed f fracti
number of neighbors connected to it. Some networks, th Aaned from a reguiar network with edges ot lractipy,
so-called scale-free network3)], display a power-law degree | em% replgcec: by shortcuts conneqtmg pairs of nodes se-
distribution P(K)~K~”, which is found in various disci- ected randomly. For nonzerpy,, an interesting crossover
istribution P(K) whieh 1S foun behavior is observedl5,16: A random walk obeys the scal-

plines. . )
The heterogeneous structure of scale-free networks has'39 law for regular networks for short t.'mesg 7, and then
at for the random networks for large times 7. The cross-

significant influence on thermodynamic or dynamic system§ s X _ o i
embedded into them. For instance, the natures of equilibriurfVe" ime scaler is determined by the time interval at which
[4] or nonequilibrium{5] phase transitions are quite different a random walker'hlts sﬁ{)rtcuts. Since the mean distance be-
from those observed in corresponding systems on reguldV€en shzortcuts Ig~py, the crossover time scales as
periodic lattices. In the present work we are interested in the=§°~ Py . Fort>r, it is numerically found that the auto-
nature of diffusive and relaxational dynamics performed by &orrelation function also shows a stretched-exponential de-
random walker in scale-free hierarchical netw¢&. As a  cay asC(t)~e*atﬁ with 8=1/3[17,18.
very recent application we note that in the context of peer- There has been a growing interest recently in the study of
to-peer computer networks random walk search strategiemndom walks on scale-free networKi,20. In this paper,
have been proposdd—9], in which a query message is for- we focus on random walks on a hierarchical network, which
warded to a randomly chosen neighbor at each step until thie a model for a scale-free network with a modular structure
desired objecitypically a particular data seis found. In  [6]. Unlike most scale-free network models it is a determin-
view of these algorithmic developments it appears thereforéstic network as those of Jureg al.[21] and Dorogovtseet
quite natural and important to study random walks on comaal. [22]. Due to its deterministic nature a number of charac-
plex networks. In addition, the random walk is a fundamentateristic structural features are known exa¢fg]. As we will
stochastic proceddl0] and turns out to be a useful tool in see in the following, we can study various properties of the
characterizing the structure of complex netwofks—13. random walk analytically. The analytic results will shed light
In regular networks of periodic lattices ID dimension, on the stochastic processes in general scale-free networks.
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12 11 Hereafter, we will usex for a dummy index from 0 tdV
10 —1, whiley from 1 toM -1, and we denote the tuple of
13 14
0 asO,,.

The network growth rule implies the following.
222021 020001 424041 (a) The existence of connections with generation hub to
23 24 03 04 43 44 all mth generation peripheral nodes, more precisely in coor-

dinate language, nodes)(with x;=0 fori=1,... m and
32 31 Xm+1=Ym+17 0 are connected to the following nodes:
33 34 (- Ymr10m) = (- Yme10m—nYn' - - Y1) (1)

FIG. 1. The configuration and the coordinate representation OINith 1<n=m.

G, with M=5. The hub is represented with a filled square, and the Lo . .

peripheral nodes are with empty circles. _ (b) It implies the existence of connections bgtween pe-
ripheral nodes and lower level hubs plus connections to other

arPeripheral nodes within the same elementary unit; in coordi-

g nate language, a node)( with x;=y;#0 fori=1,...m

@ndXm.1=0 is connected to the following nodes:

The paper is organized as follows: In Sec. I, the hier
chical network model and the random walk is introduce
Our results for the scaling laws for the relaxation time an

the autocorrelation functions are presented in Sec. lll. These (---0Ym- - -Y2Y})
results are derived with the help of an exact mapping of the (R s (2
random walk problem to a constrained dynamics of an Ising (++-0¥m" - Yn+10n)

spin chain; the details of the mapping are described in Segyith yi#y; and I=sn=m.

work is similar to the diffusion in ultrametric space, which is Thjs stochastic process is defined by the following rules: The
elaborated in Sec. V. Finally we summarize our work inygiker at node and timet selects one of the neighbors iof
Sec. VL. to whichi is connected and jumps to this neighbor at time
t+1. Thus the transition probability for a jump from a node
Il. MODEL i to a nodej is given by w;; =A;;i/K;, whereA;; is the
. . . . .._adjacency matrix an&;=ZX;A;; is the degree of the node
Some biological networks which are scale-free exhibit & “1,ig stochastic process in discrete time is described by a
modular structure, which is not incorporated into most scale—master equation for the time evolutionRf(t), the probabil-
free network models. The hierarchical network has been proﬁy finding the walker at nodeand timet. IThé master equa-
posed as a model'for the scale-fr_ee ngtworks wi'th the moduﬁOn readsP;(t+1)=3, w; P:(t). Equivalently, defining the
lar structure{6]. It is constructed iteratively starting from a . vectodP(t))in]Pi(Jt){i) with |i) being the state in
segd(ﬁrst generatioh G, consisting of ahub gnd M—1) which the walker is at nodg one can rewrite the master
peripheral nodesThey are fully connected with each other. . -~ ~ .
It is useful to represent the hub and the peripheral nodes witfauation agP(t+1))=U[P(t)), whereU is the transition

the coordinates (0) andy), wherey is an integer £y  Operator whose elements and); = w;; .

<M [23] Nodes ingG, the network of theGth generation, In the infinite time limitt— o the probablllty distribution
are identified via coordinates that a@tuples of integers converges to the stationary state distribut®fi, which is
(X)=(Xg, - -+ Xq). given by P;"=K; /N with N=%,K; for the random walk on

From a given grapld,, the next generation netwogk,,;  arbitrary undirected network12]. In the hierarchical net-
is constructed by addingM —1) copies ofG, with their ~ work the degrees of all nodes are known exaggg]. For
peripheral nodes connected to the hub of the origifjal  instance, the hub has the largest degree
The original hub and the peripheral nodes in the copies be- . G G
come the hub and peripheral nodes @, ;, respectively. Kn=(M-=1)(M-2)"[(M-1)"-1]~(M-1)>, (3
Then, each node whose coordinate way i§ assigned to
(Ox) if it belongs to the originaljy or to (yx) with 1<y
<M if it belongs to theyth copy ofG,. So the hub hag, — (M
=0 for all n and a peripheral node hg,sqéo for all n. There Kp=(M-2+G). @

are M® nodes inGg, (M—1)® of which are peripheral The sum of all degrees is given by
nodes. Figure 1 shows the configuration and the coordinate

and the peripheral node has the degree

representation ofj, with M=5. The iteration can be re- N=(3M=-2)(M-1)MC 1-2(M-1)¢*1~MC. (5
peated indefinitely and the emerging network is scale-free for

M=3 with the degree distribution exponeny=1 A quantity of particular interest is the scaling law for the
+In M/In(M—1) [23]. relaxation timeT, which is the characteristic time scale for

The node connectivity is represented by the adjacencyhe approach of the probability distributid?(t) to the sta-
matrix A;; ; A;j=1 if a nodei is connected tg or O other-  tionary state distributiof?;” . Also of interest is the nature of
wise. The network is undirected, henég=A;; and the con- the relaxation dynamics, for which we consider the decay of
nectivity is easily described in terms of the coordind®3.  the autocorrelation function
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Cs(t)=(gUYS), (6) B. Autocorrelation function
To be specific we consider the autocorrelation functions

which is the overlap between a std® with itself aftert ~ for the following states: _

time steps. WhefiS)=|i), it reduces to the returning prob- (i) H is the state corresponding to the hub

ability of the random walker to the origifstarting nodgi IH)=|0g). (10)
aftert time steps. In the limit— o the autocorrelation func-

tion converges to a value determined by the stationary statdi) P is the state corresponding to the peripheral nodes
distributionP*. The scaling behavior d€4(t) for t<T will

be studied for various stat¢S). |P) >y, - Y- (11)
YG

Ill. RESULTS (i) A1 andA2 are the states

In this section we present our main results. They are de-
rived using the exact mapping of our random walk process AL)= ——— > |ya0ys0), (12
. . . ) h : (M=1)C2 y, 37 ...
onto a constrained dynamics of an Ising spin chain. Details
of the mapping and the derivations of the formulas deduced 1
from it and used in the present section are delegated to the |A2)= — o) > |---0ys0y) (13
following section. M=1)™ y1ys.

with zero and nonzero components alternating.
A. Relaxation time The stationary state probability distribution is determined

. . .. by the degree distribution. Since the degree of all nodes is
Consider the motion of the random walker located INi-|hown, it is easy to show that’~ « ¢, Pi~Gk~©, and

tially on a particular node, say (030201). The memory of thePXf PX2~(M/\/m)‘G in the largeG limit.

initial position will be lost when all components’s are The exponential decrease of the stationary state probabil-
flipped at least once, which defines the relaxation time scalgy ang the exponential increase of the relaxation time sug-
T. The node connectivity summarized in E¢B.and(2) tells  gests a power-law decay of the autocorrelation function in

us thatx; may flip only when allx;’s with j<i are equal to  time. Indeed, we find that the autocorrelation functions decay
0 (if x;=0) or all are not equal to Qif x;#0). Hence, the algebraically fort<T as

random walker should follow the path

1
(030201)—(030200)- (0302/,Y;) — (030000) Cu(t)~ o toH, (14
—(03y,4y3y5y1)—(000000)— (YeYsysY3sYsY1
1
to lose the memory of its initial state. Cp(t)~ G TR, (15
Each process requires a simultaneous flig cbmponents Y
from zero to nonzero values or vice versa, which may occur Car(D)=Cpp()~1", (16)

after many trials. For instance, the random walker at,, ... . _ ., 1 anda =In(MIWM—1)/Ink>1 with «
(0302/,y,) may hop to (030¢,0) or (030200 instead of to =M/(Mil).P Quite rerrfarkably, the decay exponent de-

(030000. When it jumps to a wrong node, s&380200, first  pends on the state—a manifestation of the fact that the net-
it should hop to a node (0393y;), and then try another work under consideration is not homogeneous. In addition to
hopping toward the destination. In this respect the dynamicghe power-law dependency i the functionsCp(t) and

we are considering is of a hierarchical nature. Utilizing thisC,(t) also decay as @ and 1G?, respectively, i.e., alge-
observation we will show in the following section that the praically with the number of generations in the network. So,
associated time scalg;: for the process increases exponen-the power-law decay in time is observed only in finite sys-
tially as 7,~[M/(M—1)]¢. We definex=M/(M—1) for  tems for the states! and P, since in the limitG— the

further use. functionsC,, andCp vanish.
Therefore, the relaxation tim&, which is given byT
~3¢7,, scalesexponentiallywith G as IV.ISING SPIN CHAIN
T~ «C @) In this section, we explain the exact mapping of the ran-
' dom walk problem onto the constrained dynamics of an Ising
SinceN=M¢, the relaxation time scaledgebraically with spin chain.
N as A. Mapping
T~N?, (8) Using the coordinate representation of the nodes, one may
map the statgi) with a random walker at a node=(x) in
with the dynamic exponent G to a spin configurationx)=|xg, . . . X;) of an M-state
Potts spin chain of lengt®, wherex,e{0, ... M—1} de-
z=Ink/InM. 9 notes the state of the spin at sité=1, ... G) in the chain.
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A jump of the walker corresponds to a transition between
spin configuration. In this way the connection rules define
the time evolution of the spins.

In the context of spin dynamics, it is useful to define a
zero domainZD) and anonzero domaiiNZD); the ZD is a
domain of spins that are all in the zero state, b= X1
=...=xX;,,=0; and the NZD is one in which all spins are
in a nonzero state. In particular, a domain including the spin
X1 will be called aboundary domainThe node connectivity
imposes the constraint that spins outside the boundary dqg
main cannot flip in a given spin configuration. So it suffices - - - - - -
to consider the transition of spins in the boundary domain, FIG. 2. The configuration space of the Ising spin chain of length

: : : e . G=4. Solid (dashed lines with the arrow represent the transition
Equation(1) implies that spins in a boundary ZD evolve in
q . (1) imp . P m y with the probabilityd,, , (Pm.n), Wheremis the boundary domain
one time step according 10|0,) =211 1(2y .y |On-nYn ; :

size of a source state amdis the number of flipped spins. Self-
Sy )/Q with Q=3 (M—1)". On the other hand, loops from states with a boundary domain to themselves with

Eq. (2) implies that spins in a boundary NZD evolve weightspy are omitted. The parts inside the boxes withbeing
as ignored are equivalent to the configuration spacéefthe configu-
ration space has a hierarchical structure.
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with Q' =(M—2+m). A m
Note that the boundary domain size decreases in most cases. Ul=m= n§=:l Aol ~m-n* o) 29
It increases only when all spins in the boundary domain fIip.Where Prn=[(M—2)8,0+(1— 6,9 1/(M—2+m) and

The operatorU is symmetric under any permutation, Qmn=(M—1)"/=™ (M —1). Each spin state has a differ-
—Y, among nonzero spin states. Taking advantage of thent multiplicity factor, so the transition probabilitips, , and
symmetry, we restrict ourselves to the subspace which iqm]n are not uniform inn. Note that the spin up—doWn sym-
invariant under all such permutations. The subspace igetry is broken foM=3. It is restored foM =2, in which
spanned by the statée)=|og---01)=|oc)®---®|o1),  case the corresponding network is not scale-free.
whereo,= * and In Fig. 2, we illustrate a diagram of the configuration

1 Mot space of the spin chain of length=4 displaying the spin
|+>_ M—1 )/21 |y>,

(17) configurations and possible transitions between them. Quali-
tative features of the Ising spin dynamics are easily read off
1-)=|0) (18) from the diagram:(i) The configuration space has a tree

structure, if one ignores self-loops from the states with a
boundary domain to themselvep,(,# 0); (ii) the configu-
reation space has a hierarchical structure, that is, the configu-
ration space ofj; contains those dfis, with G’ <G as parts

For example, inG, with M=5 as shown in Fig. 1}——)
corresponds to the state with the walker at the hub, and th
states|+—), |—+), and|++) correspond to the states in

which the walker can be found with equal probability on
nodesl]’s, @’s, andO’s, respectively.

One may regard the two-state variablas the Ising spin.
Then the random walk problem in the subspace reduces to

the ferromagnetically and antiferromagnetically ordere

il

Ising spin chain with a particular constrained dynamics. In.
fact, the states defined in the preceding section are equal it

g

(see Fig. 2

B. Boundary domain growth

The condition that only spins in a boundary domain may
p imposes severe constraint on the spin relaxation dynam-
s. In a given Ising spin configurationm;, may flip aftero
igns parallel to itg; may flip aftero; ando, align parallel

to it, and then, in generad;,, may flip after all spinsr,, with

states: n<m align parallel to it. In other words, the boundary do-

Hy=|—=---—=), (19 main size grows up ten in order to flipo,,. The boundary
IPy=|++---++) (20 domain growth is the essential mechanism in the spin relax-
' ation dynamics. In the language of a domain wall, a domain
ALY =]+ —+-), (21 wall at siten+1/2, i.e.,o,.1# 0y, plays a role of a dy-
namic barrier since it prevents spims, with m>n from
|[A2)=| - =4+ —+). (220 flipping.

Consider a spin configuration with a boundary domain of
The Ising spins evolve as follows: As in the Potts spinsizem. The size of the boundary domain increases only when
dynamics, only spins in the boundary domain may flip. Aall m spins inside the domain flip simultaneously. When
boundary domain= ) of up/down spins of sizen evolves  <m spins flip, the boundary domain size reduces.tdhen
in one time step according to the spin system should grow the boundary domain size up to
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Take a spin state with a boundary domaimotip spins as
in Fig. 3. It is connected to spin states with boundary do-
mains ofn down spins (=1, ... m—1) with the transition
probabilitiesp, ,, which leads to
|
®1 To =Pmm| 1+ 2 PmnTn +)- (26)
1 w1 . . .
Likewise, one also obtains that
® m—1
w w
2 k _ _ _
8 N T =l 1+ 2 Ao ) (27)
° °® n=1
- L . o Ly ~ After lengthy but straightforward calculations, the recursion
‘teee’ relations can be solved exactly to yield
T, =(3—-2M)+(3M—2) k™2, (29
FIG. 3. Treelike network. The shaded areas need not have a tree
structure as long as there is no overlap between different parts. TrT1+ =[(3M—2)/M] fM1oq (29)

m to return to the initial state and try another flip to increasse]co
the boundary domain size. It shows that the boundary growth”
process has a hierarchical nature, which is inherited from th?:1
hierarchical structure of the configuration space. '
We investigate the characteristic time scale associated o
with the boundary domain growth process. Due to the hier- C. Relaxation time
archical nature of the dynamics, we find that the time scale Consider an arbitrary spin configuratif) with | domain
satisfies a recursion relation. To be more specific, we conwalls at sites{m;+1/2, ... m+1/2' with m<m; for i
sider the mean first passage tin®IFPT) T~ (T,,").,  <j. The spin state has a boundary domain of sizeini-
which it takes to flip all spins in the boundary domainrof  tially. The spin system loses the memory of the initial state
up (down) spins simultaneously for the first time. Note that when all spins flip at least once. Note thag is the last spin
such time scales do not depend on spins outside the boungb flip. So, the characteristic relaxation time is given by the
ary domain, so they do not depend on the total chain lengtfime at whicho flips for the first time. It can flip when all
G. spins align ferromagnetically, which requires that spins
Before proceeding, we derive a useful formula for thegngmI align, which also requires that Spimslgml_l align,

MEPJ in atreelik%s':;uctlére. an;iqiarla nogeq_state) S and so on. Therefore the relaxation time is given by
which Is connected ta nodest; with 1=1, ... X. The tran- =EL:1T§;+T§+. For example, the relaxation time for a

sition probability fromsto t; is given byw;, and to itself by . o . -
g (see Fig. 3 By the treelike structure, we mean thatan ~ SPiN state+—++) is given byT=T, " +T3 "+ T, .

rm=2 and T; =M—-1 and T; "=1. Recall thatx
M/(M—1). The time scales increagxponentiallywith

be reached front; only throughs for all pairs ofi andj, no SinceT;,” increases exponentially m, the sum is domi-
matter how many loops there are in the shaded areas. Thefated by the last teriig ™ for all spin states. Therefore we
T;, the MFPT froms to t;, is given by conclude that the characteristic relaxation time averaged over
all states scales &~T¢ ~Tg ", which givesT~«©, i.e.,
Ti=w+ > (2+T)) wjo; the important formulas in Eq$7) and(8).
e

D. Autocorrelation
+ 2 BT T )wjopw+--,

e In this section, we derive the scaling laws for the autocor-
bir#i

relation function C(t). It measures the strength of the
whereT/ .., denotes the MFPT frorty to sandT; is setto memory of the initial stat¢o) after timet. The spin system
zero. The first term corresponds to the transitiort;tin a  0Ses the memory as more and more spins fluctuate. Due to
single step, the second term to a round triptyia or staying the hierarchical nature of the spin dynamics, the spin fluc-
at s followed by the transition ta;, and so on. The infinite tuations grow from one boundary of the chain, namely, from

sum can easily be evaluated which yields o1. So, it is useful to define a length scaf¢t) which is
determined by the condition that,(t) = o-,(0) for n>¢ and

og(t)#0¢(0), where o(t) denotes the spin state at tirhe
All spins at sitesn< ¢ have flipped at least once up toFor
this reason, we will call those sites tiperturbed domain
The configuration space of the Ising spin chain has a treand ¢ the perturbed domain sizeRoughly speakingé(t) is
structure. So we can make use of the formula in 9. the maximum size of the boundary domain up to time

Ti=w !

1+, a)]-Tj’>. (25)

j#I
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FIG. 4. Numerical results foC,y(t) are represented by the FIG. 5. Numerical results foCp(t) and Cy(t) for different
symbol plots forM=2,3,4,5 in the Ising spin chain of length values ofG (as listed in the ins¢twith M=5. The solid lines have
=100. The solid lines have the slope given hyx (M) the slope—1.
=In(M/\YM —1)/In k. The inset shows the plot @f,; vs M.

) ) . ) The state does not contain any domain walls. So in the be-
First, consider the antiferromagnetically ordered statgjinning it evolves quickly creating domain walls into one of
|A1) defined in Eqs(12) and (21). One obtains the same states{| )} with 7=1, . .. G with the transition probability
results for the stat¢A2). It is the linear superposition of Pe.,~ 1/G, where|7) denotes a state with the domain wall at

(M —1)®” states, in which the random walker is located aty+1/2, i.e.,on, =+ anda, = —. After this, the boundary
nodes|---0y30y,), each of which has the degrée=M  domain growth takes place for eabh) independently. After
—1. Hence, its stationary state probability is given by a time scalet~ «¢, the spinsa- - - oy in the state|n=¢)

reach the stationary state with the probability for them to be
in the ferromagnetic up state being given By in Eq. (31)
with G replaced by, i.e., érp¢. Therefore the value of the
with the chain lengttG andr,=M/{M —1. autocorrelation function is given t@p(tg)~§r;§/G where
The statdA1) has the highest density of domain walls. In 1/G is the transition probability fromjP) to |7=¢). Elimi-
such a state, the perturbed domain grows by removing theating¢ usingt,~ ¢, we obtain the result in Eq15) in the
domain walls successively. So, the perturbed domain sizkeading order.
reachest after the time scale,~=,- T, "~ «*. Note that Analogously, the statéH) evolves into one of the states
the time scale, is of the same order of magnitude as the{|{)} with (=0, ... G, where|{) denotes a state with the
relaxation time scale of the spin chain of lengthlt implies ~ domain wall at{+1/2, i.e.,on.;=— ando,=+. In this
that the spinso,- - - oy in the perturbed domain are in the case, however, the transition probabilty .~ (M —1)¢in-
stationary state, while those spins outside the perturbed déreases exponentially with Hence we can ignore the other
mains are frozen at that time scale. TherefaBg(t,) is  States except for the state with-G, that is,|P). Therefore,
given by the stationary state probability for the antiferromag-the autocorrelation functiorCy(t) for |H) is given by
netic state in the chain of length that is,Cj, in Eq. (30)  Cp(t—2) multiplied by the transition probabilitpg,c from
with G replaced byé to yield Cay(t)~ra¢. Eliminatingé  |P) to [H), which results in Eq(14). _
in t; andCu;(t;), we obtain the power-law decay as written The scaling behavior o€p(t) and Cy(t) is also con-
in Eq. (16). firmed via the numerical simulations. In Fig. 5, we show a
We confirmed the analytical results with numerical simu-Plot of the autocorrelation function evaluated in the Ising
lations of the Ising spin chain. Starting from the initial state SPIn chain of lengttG=400 withM =5. AsG increases, the
|.--4+—+-), a stochastic time evolution is generated usingdeécay follows the power law ibwith the exponent-1. We
the transition rules in Eq$23) and(24) andCy(t) is mea- also checked that the po;/ver—law scaling regime overlaps in
sured and averaged over independent runs. In Fig. 4, th@€ plots ofGCp(t) andG“Cy(t) vst.
numerical results are presented. They are consistent with the It iS easy to generalize the argument for the autocorrela-
analytic results. tion function to an arbitrary stater) whose stationary state
For the ferromagnetic statéB), one can apply a similar Probability scales a®;~r~°. Since the perturbed domain
scaling argument with a little care. It is a linear superpositionsize grows in time ag~Int/ln «, the value ofC,(t) att
of (M —1)C states, in which the random walker is located on=* is given by the stationary state probability for the spin
peripheral nodes with degréd —1+G. So, its stationary configurationo,- - - o in the chain of length, i.e., C4(t
state probability is given by =% =r"¢. Eliminating £, one obtains thaC(t)~t ¢
with a state-dependent exponent=Inr/In x [24]. The sta-
tionary state distribution is determined by the degree distri-
Pp=(M-1+G)(M—1)®/N~Gk™°. (3D bution. Therefore, we conclude that the nonuniversaiigy,

leN(M_l)GIZJrl/NNr;G (30)
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distance&. Hence, the autocorrelation function at time
~t,is given byC(t§)~B‘f. Eliminating & one obtains that
the autocorrelation function decays algebraically G&)
~t~* with a=InB/(A—InB). The power-law decay is valid
for A>InB, while the dynamics is unstable far<In B. At
the marginal case, a stretched exponential defdy)

~e~ (B may occur when the transition probability de-
creases aw/(d)~d~Ye” ("B with the hierarchical distance
1 23 45 6 7 8 91011 12 13 14 15 16 [25,26.

Comparing the phenomenology, it is clear that the diffu-
sion in the hierarchical network is essentially the same as the

. Pltrametric diffusion. In both processes, the relaxation takes
state dependengef the decay exponent is a consequence o . : . . .
place by overcoming dynamic barriers successively and in-

wgrkbroad distribution of the degree in the underlying net'creasing associated length scale. The length scale corre-

sponds to the perturbed domain sigé)~Int/In x in the
former, and to the hierarchical distancgt)~Int/In(A
V. ULTRAMETRIC DIEEUSION —In B) in the latter. The length scale grows logarithmically in
time, which is a consequence of the exponential increase of
In the preceding sections it turned out that the origin forihe dynamical barrier height.
the power-law decay of the autocorrelation functions is the Note, however, that the diffusion in the hierarchical net-
hierarchical organization of the configuration space; theyork is not the ultrametric diffusion in a strict sense since
spins(or the random walkgrovercome the dynamic barriers the yltrametric relations are not valid. The configuration
;uccessively expanding the number of_ accessit_)le_ configurapace of the Ising spin system has a tree structure aith
tions. We note that this phenomenon is very similar to theyerticescorresponding to physical states. The ultrametricity
one Qbservgd in the diffusion in an uItra_met_rlc S.pEQE_ZQ- would hold only if vertices at the bottom hierarchy would
In this section, we compare ultrametric diffusion with the represent physical states, see Figs. 2 and 6. Such a difference

FIG. 6. Ultrametric space of 16 states.

random walk problem we have studied in this paper. does not modify the ultrametric nature of the relaxation from
Consider a dynamical system withN states a  the state$Al) and|A2), which are located at the end branch
=1,2,... N. The system in stata may perform transitions i the configuration space. On the other hand, the relaxations

to any other statd with a transition probabilityw,,. One  from |H) and|P), which are in the center of the configura-
can define the distance between two state,gs 1Aw,p and  tion space tree, are influenced by the nonultrametricity. It is
thus provide the state space with a metric. If the transitioneflected in theG 1 and G2 factors in the autocorrelation
probabilities satisfy the relation Wh,=<sup(1iac;1Mpe)  functionsCp(t) and Cy(t), respectively. Pseudoultrametric
for all a b, andc, the corresponding metric is called an giffusion is also observed for the random walks on a tree
ultrametricand the state space is an ultrametric space.  structure[27] and on the one-dimensional lattice with hier-

The simplest example of an ultrametric space is reprezrchically distributed dynamic barrief28].
sented by a rooted tree generated as follows: We start from a

single vertex at théxth hierarchy and brancB vertices in VI. SUMMARY
the next R—1)th hierarchy. Each of them branches ifgo
vertices. It is repeated until one has=BR vertices at the In summary, we have studied the random walk problem

zeroth or bottom level. One then associates the vertices at th the hierarchical network. The random walk problem on

bottom level with theN states. The transition probabilities the network ofN=M€® nodes is mapped to a specially con-

between two states are assignedug=e 9%, whereA>0 strained dynamics of M-state Potts spin chain of leng@

is a constant and is thehierarchical distancdetween them, Using the symmetry property, it is further mapped to a spe-

namely the hierarchy level of their common ancestor at theially constrained dynamics of an Ising spin chain. From the

lowest level. It is easy to see that the transition probabilitiestnalysis of the MFPT, it is shown that the characteristic re-

satisfy the ultrametric relation, and thus an ultrametric spacéaxation time scales a6~ «®~N? with k=M/(M —1) and

of N states is obtained. As an example, we illustrate in Fig. &=In «/In M. It is also shown that the autocorrelation func-

the rooted tree witlR=4 andB=2 for an ultrametric space tion decays algebraically in time &,(t)~t™ %o for t<T

of N=16 states. In this example, two states 1 and 7 have theith a nonuniversa(i.e., state-dependergxponentx,,. The

common ancestors at the hierarchy lelied 3 and 4, hence power-law scaling behavior is closely related to the ultramet-

wy =e 34, while wy g=e~ %4, ric diffusion. The exponent is given hy,=Inr/In « for a
The autocorrelation function can be calculated exactlystate o whose stationary state probability ﬁsﬁ~r;G. The

see, e.g., Ref25]. The exact result is also understood with a stationary state probability is determined from the degree of

simple scaling argument. Suppose that the system is in #he corresponding nodes in the network. The broad distribu-

statea initially. Since the transition probability to a state at tion of the degree gives rise to the nonuniversaliyate

the hierarchical distancgis given byw=e “¢ and there are  dependencyof the decay exponent.

O(B?) such states, it takes~(Be *¢)~! time steps for The power-law decay of the autocorrelation functions ap-

the system to reach one of the states within the hierarchicgdears in marked contrast to the stretched-exponential decay
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in random networkg14] and in the small-world networks network reduces to that on the tree structure. In general, it is
[16]. In order to investigate the origin of the emergence ofnot knowna priori whether such a mapping exists for an
the power-law scaling, we have also studied the randorarbitrary network. It would be interesting to study the ran-
walks on the hierarchical networks wittd=2. At M=2,  dom walk problem on general networks in order to scrutinize
the hierarchical network is not scale-free anymore. Neverthethe robustness of the power-law scaling behavior and the

less, we can use the same mapping to the Ising spin systegfect of the scale-free degree distribution on the relaxation
with the configuration space of the same tree structure. Sgynamics. Such work is actually in progress.

we can obtain the scaling behaviors of the relaxation fime  ~ \ye note that the very slow relaxation dynamics of the

using Eqs(26) and(27), and of the autocorrelation function |sjng chain representation of the random walk problem on
using thle same scaling arguments: The relaxation time scalgge hjerarchical network is due to the severe constraints of
asT~G"“~N’, and the autocorrelation functions decay al-the dynamics imposed by the restrictions for possible transi-
gebraically in time with theuniversal(state-independenex-  tions. Constrained dynamics in otherwider instance, ther-
ponent, i.e.ay=ap=as=1. ForM=2, the corresponding  modynamically very simple models lead quite frequently to
spin dynamics has the spin up-down symmetry. Sg(t) 3 slow orglassydynamics[29], for which reason kinetically
and Cp(t) decay in the same way a€u(t)=Cp(t)  constrained models are often used as models for the dynam-
~1t~!/G with the same dependency GnFinally, the scaling ics in glasses and spin glasses. It is interesting to note that
behavior of the relaxation time and the autocorrelation funcsych a model also occurs in the context of diffusion in com-
tions was confirmed numerically. plex networks as we have demonstrated in this work.
Comparing the results favl =2 andM>2, we conclude
that the power-law scaling behavior of the relaxation time
and the autocorrelation functions has its origin in the tree ACKNOWLEDGMENTS
structure of the spin configuration space as shown in Fig. 2.
We also conclude that the nonuniversality of the decay ex- This work was supported by the Deutsche Forschungsge-
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