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Constrained spin-dynamics description of random walks on hierarchical scale-free networks
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We study a random walk problem on the hierarchical network which is a scale-free network grown deter-
ministically. The random walk problem is mapped onto a dynamical Ising spin chain system in one dimension
with a nonlocal spin update rule, which allows an analytic approach. We show analytically that the character-
istic relaxation time scale grows algebraically with the total number of nodesN as T;Nz. From a scaling
argument, we also show the power-law decay of the autocorrelation functionCs(t);t2a, which is the prob-
ability to find the Ising spins in the initial states after t time steps, with the state-dependent nonuniversal
exponenta. It turns out that the power-law scaling behavior has its origin in a quasiultrametric structure of the
configuration space.
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I. INTRODUCTION

Complex networks, as, for instance, represented by
Internet, the social acquaintance network between indivi
als, biological networks of interacting proteins, and oth
~see Ref.@1# for further examples!, became recently a centra
research focus in statistical physics. In general a netw
consists of a set of nodes~sites or vertices! and a set of edge
~bonds or arcs!, connecting the nodes with one another.
system with many interacting degrees of freedom, e.g., c
puters, individuals, proteins, etc., or generally called age
can be modeled by a network by identifying the agents
the nodes and the interaction between them as the ed
Real world networks have neither a regular structure~such
as, for instance, periodic lattices or grid graphs have! nor a
fully random structure@2#. They rather display a broad dis
tribution of the degree, where the degreeK of a node is the
number of neighbors connected to it. Some networks,
so-called scale-free networks@3#, display a power-law degre
distribution P(K);K2g, which is found in various disci-
plines.

The heterogeneous structure of scale-free networks h
significant influence on thermodynamic or dynamic syste
embedded into them. For instance, the natures of equilibr
@4# or nonequilibrium@5# phase transitions are quite differe
from those observed in corresponding systems on reg
periodic lattices. In the present work we are interested in
nature of diffusive and relaxational dynamics performed b
random walker in scale-free hierarchical network@6#. As a
very recent application we note that in the context of pe
to-peer computer networks random walk search strate
have been proposed@7–9#, in which a query message is fo
warded to a randomly chosen neighbor at each step unti
desired object~typically a particular data set! is found. In
view of these algorithmic developments it appears there
quite natural and important to study random walks on co
plex networks. In addition, the random walk is a fundamen
stochastic process@10# and turns out to be a useful tool i
characterizing the structure of complex networks@11–13#.

In regular networks of periodic lattices inD dimension,
1063-651X/2004/69~3!/036111~8!/$22.50 69 0361
e
-

s

rk

-
s,
s
es.

e

a
s
m

ar
e
a

r-
es

he

re
-
l

the random walk motion is characterized by normal diffusi
which is characterized by a length scale that grows alge
ically asj;t1/2 in time t. The exponent 1/2 is universal, i.e
it does not depend on the microscopic details of the lattic
the only condition being that only nearest neighbor jumps
a regularD-dimensional lattice are allowed. The autocorr
lation function C(t) or the return probability to the initia
node int time steps decays algebraically asC(t);t2D/2. On
random networks, on the other hand, the autocorrela
function shows a stretched-exponential decay asC(t)

;e2atb with b51/3 @14#.
Random walks were also studied in the small-world n

work of Watts and Strogatz@2#, which interpolates between
regular networks and random networks by stochastic
changing connections between nodes with a particular re
ing probabilitypW . In essence a small-world network is ob
tained from a regular network with edges of fractionpW
being replaced by shortcuts connecting pairs of nodes
lected randomly. For nonzeropW , an interesting crossove
behavior is observed@15,16#: A random walk obeys the scal
ing law for regular networks for short timest!t, and then
that for the random networks for large timest@t. The cross-
over time scalet is determined by the time interval at whic
a random walker hits shortcuts. Since the mean distance
tween shortcuts isj;pW

21 , the crossover time scales ast
;j2;pW

22 . For t@t, it is numerically found that the auto
correlation function also shows a stretched-exponential
cay asC(t);e2atb with b.1/3 @17,18#.

There has been a growing interest recently in the stud
random walks on scale-free networks@19,20#. In this paper,
we focus on random walks on a hierarchical network, wh
is a model for a scale-free network with a modular struct
@6#. Unlike most scale-free network models it is a determ
istic network as those of Junget al. @21# and Dorogovtsevet
al. @22#. Due to its deterministic nature a number of chara
teristic structural features are known exactly@23#. As we will
see in the following, we can study various properties of
random walk analytically. The analytic results will shed lig
on the stochastic processes in general scale-free networ
©2004 The American Physical Society11-1
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The paper is organized as follows: In Sec. II, the hier
chical network model and the random walk is introduce
Our results for the scaling laws for the relaxation time a
the autocorrelation functions are presented in Sec. III. Th
results are derived with the help of an exact mapping of
random walk problem to a constrained dynamics of an Is
spin chain; the details of the mapping are described in S
IV. We also find that a random walk on a hierarchical n
work is similar to the diffusion in ultrametric space, which
elaborated in Sec. V. Finally we summarize our work
Sec. VI.

II. MODEL

Some biological networks which are scale-free exhibi
modular structure, which is not incorporated into most sca
free network models. The hierarchical network has been p
posed as a model for the scale-free networks with the mo
lar structure@6#. It is constructed iteratively starting from
seed~first generation! G1 consisting of ahub and (M21)
peripheral nodes. They are fully connected with each othe
It is useful to represent the hub and the peripheral nodes
the coordinates (0) and (y), where y is an integer 1<y
,M @23#. Nodes inGG , the network of theGth generation,
are identified via coordinates that areG tuples of integers
(x)5(xG , . . . ,x1).

From a given graphGg , the next generation networkGg11
is constructed by adding (M21) copies ofGg with their
peripheral nodes connected to the hub of the originalGg .
The original hub and the peripheral nodes in the copies
come the hub and peripheral nodes ofGg11, respectively.
Then, each node whose coordinate was (x) is assigned to
(0x) if it belongs to the originalGg or to (yx) with 1<y
,M if it belongs to theyth copy ofGg . So the hub hasxn
50 for all n and a peripheral node hasxnÞ0 for all n. There
are MG nodes inGG , (M21)G of which are periphera
nodes. Figure 1 shows the configuration and the coordin
representation ofG2 with M55. The iteration can be re
peated indefinitely and the emerging network is scale-free
M>3 with the degree distribution exponentg51
1 ln M/ln(M21) @23#.

The node connectivity is represented by the adjace
matrix Aji ; Aji 51 if a nodei is connected toj or 0 other-
wise. The network is undirected, henceAi j 5Aji and the con-
nectivity is easily described in terms of the coordinates@23#.

FIG. 1. The configuration and the coordinate representation
G2 with M55. The hub is represented with a filled square, and
peripheral nodes are with empty circles.
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Hereafter, we will usex for a dummy index from 0 toM
21, while y from 1 to M21, and we denote them tuple of
0 as0m .

The network growth rule implies the following.
~a! The existence of connections ofmth generation hub to

all mth generation peripheral nodes, more precisely in co
dinate language, nodes (x) with xi50 for i 51, . . . ,m and
xm115ym11Þ0 are connected to the following nodes:

~•••ym110m!↔~•••ym110m2nyn•••y1! ~1!

with 1<n<m.
~b! It implies the existence of connections between p

ripheral nodes and lower level hubs plus connections to o
peripheral nodes within the same elementary unit; in coo
nate language, a node (x) with xi5yiÞ0 for i 51, . . . ,m
andxm1150 is connected to the following nodes:

~•••0ym•••y1!↔H ~•••0ym•••y2y18!

~•••0ym•••yn110n!
~2!

with y18Þy1 and 1<n<m.
We study a discrete time random walk on the netwo

This stochastic process is defined by the following rules: T
walker at nodei and timet selects one of the neighbors ofi
to which i is connected and jumps to this neighbor at tim
t11. Thus the transition probability for a jump from a nod
i to a nodej is given by v j i 5Aji /Ki , where Aji is the
adjacency matrix andKi5( jAji is the degree of the nodei.

This stochastic process in discrete time is described b
master equation for the time evolution ofPi(t), the probabil-
ity finding the walker at nodei and timet. The master equa
tion readsPi(t11)5( jv i j Pj (t). Equivalently, defining the
state vectoruP(t)&[( i Pi(t)u i & with u i & being the state in
which the walker is at nodei, one can rewrite the maste
equation asuP(t11)&5ÛuP(t)&, whereÛ is the transition
operator whose elements are (Û) j i 5v j i .

In the infinite time limitt→` the probability distribution
converges to the stationary state distributionPi

` , which is
given byPi

`5Ki /N with N[( iKi for the random walk on
arbitrary undirected network@12#. In the hierarchical net-
work the degrees of all nodes are known exactly@23#. For
instance, the hub has the largest degree

Kh5~M21!~M22!21@~M21!G21#;~M21!G, ~3!

and the peripheral node has the degree

Kp5~M221G!. ~4!

The sum of all degrees is given by

N5~3M22!~M21!MG2122~M21!G11;MG. ~5!

A quantity of particular interest is the scaling law for th
relaxation timeT, which is the characteristic time scale fo
the approach of the probability distributionPi(t) to the sta-
tionary state distributionPi

` . Also of interest is the nature o
the relaxation dynamics, for which we consider the decay
the autocorrelation function
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CONSTRAINED SPIN-DYNAMICS DESCRIPTION OF . . . PHYSICAL REVIEW E 69, 036111 ~2004!
CS~ t !5^SuÛtuS&, ~6!

which is the overlap between a stateuS& with itself after t
time steps. WhenuS&5u i &, it reduces to the returning prob
ability of the random walker to the origin~starting node! i
after t time steps. In the limitt→` the autocorrelation func
tion converges to a value determined by the stationary s
distributionP`. The scaling behavior ofCS(t) for t!T will
be studied for various statesuS&.

III. RESULTS

In this section we present our main results. They are
rived using the exact mapping of our random walk proc
onto a constrained dynamics of an Ising spin chain. Det
of the mapping and the derivations of the formulas dedu
from it and used in the present section are delegated to
following section.

A. Relaxation time

Consider the motion of the random walker located i
tially on a particular node, say (030201). The memory of
initial position will be lost when all componentsxi ’s are
flipped at least once, which defines the relaxation time sc
T. The node connectivity summarized in Eqs.~1! and~2! tells
us thatxi may flip only when allxj ’s with j , i are equal to
0 ~if xi50) or all are not equal to 0~if xiÞ0). Hence, the
random walker should follow the path

(030201)→(030200)→(0302y2y1)→(030000)
→(03y4y3y28y18)→(000000)→(y6y5y48y38y29y19)

to lose the memory of its initial state.
Each process requires a simultaneous flip ofj components

from zero to nonzero values or vice versa, which may oc
after many trials. For instance, the random walker
(0302y2y1) may hop to (0302y20) or ~030200! instead of to
~030000!. When it jumps to a wrong node, say~030200!, first
it should hop to a node (0302y28y18), and then try anothe
hopping toward the destination. In this respect the dynam
we are considering is of a hierarchical nature. Utilizing th
observation we will show in the following section that th
associated time scaletj for the process increases expone
tially as tj;@M /(M21)#j. We definek[M /(M21) for
further use.

Therefore, the relaxation timeT, which is given byT
;(j

Gtj , scalesexponentiallywith G as

T;kG. ~7!

SinceN5MG, the relaxation time scalesalgebraicallywith
N as

T;Nz, ~8!

with the dynamic exponent

z5 ln k/ ln M . ~9!
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B. Autocorrelation function

To be specific we consider the autocorrelation functio
for the following states:

~i! H is the state corresponding to the hub

uH&5u0G&. ~10!

~ii ! P is the state corresponding to the peripheral nodes

uP&5
1

~M21!G (
y1 , . . . ,yG

uyG , . . . ,y1&. ~11!

~iii ! A1 andA2 are the states

uA1&5
1

~M21!(G/2) (
y2 ,y4 , . . .

u•••y40y30&, ~12!

uA2&5
1

~M21!(G/2) (
y1 ,y3 , . . .

u•••0y30y1& ~13!

with zero and nonzero components alternating.
The stationary state probability distribution is determin

by the degree distribution. Since the degree of all node
known, it is easy to show thatPH

`;k2G, PP
`;Gk2G, and

PA1
` 5PA2

` ;(M /AM21)2G in the largeG limit.
The exponential decrease of the stationary state proba

ity and the exponential increase of the relaxation time s
gests a power-law decay of the autocorrelation function
time. Indeed, we find that the autocorrelation functions de
algebraically fort!T as

CH~ t !;
1

G2
t2aH, ~14!

CP~ t !;
1

G
t2aP, ~15!

CA1~ t !.CA2~ t !;t2aA, ~16!

where aH5aP51 and aA5 ln(M/AM21)/lnk.1 with k
5M /(M21). Quite remarkably, the decay exponent d
pends on the state—a manifestation of the fact that the
work under consideration is not homogeneous. In addition
the power-law dependency int, the functionsCP(t) and
CH(t) also decay as 1/G and 1/G2, respectively, i.e., alge-
braically with the number of generations in the network. S
the power-law decay in time is observed only in finite sy
tems for the statesH and P, since in the limitG→` the
functionsCH andCP vanish.

IV. ISING SPIN CHAIN

In this section, we explain the exact mapping of the ra
dom walk problem onto the constrained dynamics of an Is
spin chain.

A. Mapping

Using the coordinate representation of the nodes, one
map the stateu i & with a random walker at a nodei 5(x) in
GG to a spin configurationux&5uxG , . . . ,x1& of an M-state
Potts spin chain of lengthG, wherexnP$0, . . . ,M21% de-
notes the state of the spin at siten (51, . . . ,G) in the chain.
1-3
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A jump of the walker corresponds to a transition betwe
spin configuration. In this way the connection rules defi
the time evolution of the spins.

In the context of spin dynamics, it is useful to define
zero domain~ZD! and anonzero domain~NZD!; the ZD is a
domain of spins that are all in the zero state, i.e.,xi5xi 11
5•••5xi 1 l50; and the NZD is one in which all spins ar
in a nonzero state. In particular, a domain including the s
x1 will be called aboundary domain. The node connectivity
imposes the constraint that spins outside the boundary
main cannot flip in a given spin configuration. So it suffic
to consider the transition of spins in the boundary doma
Equation~1! implies that spins in a boundary ZD evolve
one time step according toÛu0m&5(n51

m ((y1 , . . . ,yn
u0m2nyn

•••y1&)/V with V5(n51
m (M21)n. On the other hand

Eq. ~2! implies that spins in a boundary NZD evolv
as

Ûuym•••y1&5~(y
18Þy1

uym•••y2y18&

1(n51
m uym•••yn110n&)/V8

with V85~M221m!.

Note that the boundary domain size decreases in most c
It increases only when all spins in the boundary domain fl

The operatorÛ is symmetric under any permutationyn

→yn8 among nonzero spin states. Taking advantage of
symmetry, we restrict ourselves to the subspace which
invariant under all such permutations. The subspace
spanned by the statesus&5usG•••s1&5usG& ^ •••^ us1&,
wheresn56 and

u1&[
1

M21 (
y51

M21

uy&, ~17!

u2&[u0&. ~18!

For example, inG2 with M55 as shown in Fig. 1,u22&
corresponds to the state with the walker at the hub, and
statesu12&, u21&, and u11& correspond to the states i
which the walker can be found with equal probability o
nodesh’s, d’s, ands’s, respectively.

One may regard the two-state variables as the Ising spin.
Then the random walk problem in the subspace reduces t
Ising spin chain with a particular constrained dynamics.
fact, the states defined in the preceding section are equ
the ferromagnetically and antiferromagnetically order
states:

uH&5u22•••22&, ~19!

uP&5u11•••11&, ~20!

uA1&5u•••1212&, ~21!

uA2&5u•••2121&. ~22!

The Ising spins evolve as follows: As in the Potts sp
dynamics, only spins in the boundary domain may flip.
boundary domainu6m& of up/down spins of sizem evolves
in one time step according to
03611
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Ûu1m&5 (
n50

m

pm,nu1m2n2n&, ~23!

Ûu2m&5 (
n51

m

qm,nu2m2n1n&, ~24!

where pm,n5@(M22)dn,01(12dn,0)#/(M221m) and
qm,n5(M21)n/(k51

m (M21)k. Each spin state has a diffe
ent multiplicity factor, so the transition probabilitiespm,n and
qm,n are not uniform inn. Note that the spin up-down sym
metry is broken forM>3. It is restored forM52, in which
case the corresponding network is not scale-free.

In Fig. 2, we illustrate a diagram of the configuratio
space of the spin chain of lengthG54 displaying the spin
configurations and possible transitions between them. Qu
tative features of the Ising spin dynamics are easily read
from the diagram:~i! The configuration space has a tre
structure, if one ignores self-loops from the states with a1
boundary domain to themselves (pm,0Þ0); ~ii ! the configu-
ration space has a hierarchical structure, that is, the confi
ration space ofGG contains those ofGG8 with G8,G as parts
~see Fig. 2!.

B. Boundary domain growth

The condition that only spins in a boundary domain m
flip imposes severe constraint on the spin relaxation dyn
ics. In a given Ising spin configuration,s2 may flip afters1
aligns parallel to it,s3 may flip afters1 ands2 align parallel
to it, and then, in general,sm may flip after all spinssn with
n,m align parallel to it. In other words, the boundary d
main size grows up tom in order to flipsm . The boundary
domain growth is the essential mechanism in the spin re
ation dynamics. In the language of a domain wall, a dom
wall at site n11/2, i.e., sn11Þsn , plays a role of a dy-
namic barrier since it prevents spinssm with m.n from
flipping.

Consider a spin configuration with a boundary domain
sizem. The size of the boundary domain increases only wh
all m spins inside the domain flip simultaneously. Whenn
,m spins flip, the boundary domain size reduces ton. Then
the spin system should grow the boundary domain size u

FIG. 2. The configuration space of the Ising spin chain of len
G54. Solid ~dashed! lines with the arrow represent the transitio
with the probabilityqm,n (pm,n), wherem is the boundary domain
size of a source state andn is the number of flipped spins. Self
loops from states with a1 boundary domain to themselves wit
weightspm,0 are omitted. The parts inside the boxes withs4 being
ignored are equivalent to the configuration space ofG3; the configu-
ration space has a hierarchical structure.
1-4
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m to return to the initial state and try another flip to increa
the boundary domain size. It shows that the boundary gro
process has a hierarchical nature, which is inherited from
hierarchical structure of the configuration space.

We investigate the characteristic time scale associa
with the boundary domain growth process. Due to the h
archical nature of the dynamics, we find that the time sc
satisfies a recursion relation. To be more specific, we c
sider the mean first passage time~MFPT! Tm

12 (Tm
21),

which it takes to flip all spins in the boundary domain ofm
up ~down! spins simultaneously for the first time. Note th
such time scales do not depend on spins outside the bo
ary domain, so they do not depend on the total chain len
G.

Before proceeding, we derive a useful formula for t
MFPT in a treelike structure. Consider a node~or state! s
which is connected tok nodest i with i 51, . . . ,k. The tran-
sition probability froms to t i is given byv i , and to itself by
v0 ~see Fig. 3!. By the treelike structure, we mean thatt i can
be reached fromt j only throughs for all pairs of i and j, no
matter how many loops there are in the shaded areas. T
Ti , the MFPT froms to t i , is given by

Ti5v i1(
j Þ i

~21Tj8!v jv i

1 (
j , j 8Þ i

~31Tj81Tj 8
8 !v jv j 8v i1•••,

whereTj Þ08 denotes the MFPT fromt j to s andT08 is set to
zero. The first term corresponds to the transition tot i in a
single step, the second term to a round trip viat j Þ i or staying
at s followed by the transition tot i , and so on. The infinite
sum can easily be evaluated which yields

Ti5v i
21S 11(

j Þ i
v jTj8D . ~25!

The configuration space of the Ising spin chain has a
structure. So we can make use of the formula in Eq.~25!.

FIG. 3. Treelike network. The shaded areas need not have a
structure as long as there is no overlap between different parts
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Take a spin state with a boundary domain ofm up spins ass
in Fig. 3. It is connected to spin states with boundary d
mains ofn down spins (n51, . . . ,m21) with the transition
probabilitiespm,n , which leads to

Tm
125pm,m

21 S 11 (
n51

m21

pm,nTn
21D . ~26!

Likewise, one also obtains that

Tm
215qm,m

21 S 11 (
n51

m21

qm,nTn
12D . ~27!

After lengthy but straightforward calculations, the recursi
relations can be solved exactly to yield

Tm
125~322M !1~3M22! km22, ~28!

Tm
215@~3M22!/M # km2121 ~29!

for m>2 and T1
125M21 and T1

2151. Recall thatk
5M /(M21). The time scales increaseexponentiallywith
m.

C. Relaxation time

Consider an arbitrary spin configurationus& with l domain
walls at sites$m111/2, . . . ,ml11/2% with mi,mj for i
, j . The spin state has a boundary domain of sizem1 ini-
tially. The spin system loses the memory of the initial sta
when all spins flip at least once. Note thatsG is the last spin
to flip. So, the characteristic relaxation time is given by t
time at whichsG flips for the first time. It can flip when all
spins align ferromagnetically, which requires that sp
sn<ml

align, which also requires that spinssn<ml 21
align,

and so on. Therefore the relaxation time is given byT
5(a51

l Tma

671TG
67 . For example, the relaxation time for

spin stateu1211& is given byT5T2
121T3

211T4
12 .

SinceTm
67 increases exponentially inm, the sum is domi-

nated by the last termTG
67 for all spin states. Therefore w

conclude that the characteristic relaxation time averaged o
all states scales asT;TG

12;TG
21 , which givesT;kG, i.e.,

the important formulas in Eqs.~7! and ~8!.

D. Autocorrelation

In this section, we derive the scaling laws for the autoc
relation function Cs(t). It measures the strength of th
memory of the initial stateus& after timet. The spin system
loses the memory as more and more spins fluctuate. Du
the hierarchical nature of the spin dynamics, the spin fl
tuations grow from one boundary of the chain, namely, fro
s1. So, it is useful to define a length scalej(t) which is
determined by the condition thatsn(t)5sn(0) for n.j and
sj(t)Þsj(0), wheres(t) denotes the spin state at timet.
All spins at sitesn<j have flipped at least once up tot. For
this reason, we will call those sites theperturbed domain,
andj the perturbed domain size. Roughly speaking,j(t) is
the maximum size of the boundary domain up to timet.

ee
1-5
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First, consider the antiferromagnetically ordered st
uA1& defined in Eqs.~12! and ~21!. One obtains the sam
results for the stateuA2&. It is the linear superposition o
(M21)G/2 states, in which the random walker is located
nodesu•••0y30y1&, each of which has the degreeK5M
21. Hence, its stationary state probability is given by

PA1
` ;~M21!G/211/N;r A

2G ~30!

with the chain lengthG and r A5M /AM21.
The stateuA1& has the highest density of domain walls.

such a state, the perturbed domain grows by removing
domain walls successively. So, the perturbed domain
reachesj after the time scaletj;(n,jTn

67;kj. Note that
the time scaletj is of the same order of magnitude as t
relaxation time scale of the spin chain of lengthj. It implies
that the spinssj•••s1 in the perturbed domain are in th
stationary state, while those spins outside the perturbed
mains are frozen at that time scale. Therefore,CA(tj) is
given by the stationary state probability for the antiferroma
netic state in the chain of lengthj, that is,CA1

` in Eq. ~30!
with G replaced byj to yield CA1(tj);r A

2j . Eliminating j
in tj andCA1(tj), we obtain the power-law decay as writte
in Eq. ~16!.

We confirmed the analytical results with numerical sim
lations of the Ising spin chain. Starting from the initial sta
u•••1212&, a stochastic time evolution is generated us
the transition rules in Eqs.~23! and~24! andCA1(t) is mea-
sured and averaged over independent runs. In Fig. 4,
numerical results are presented. They are consistent with
analytic results.

For the ferromagnetic statesuP&, one can apply a simila
scaling argument with a little care. It is a linear superposit
of (M21)G states, in which the random walker is located
peripheral nodes with degreeM211G. So, its stationary
state probability is given by

PP
`5~M211G!~M21!G/N;Gk2G. ~31!

FIG. 4. Numerical results forCA1(t) are represented by th
symbol plots forM52,3,4,5 in the Ising spin chain of lengthG
5100. The solid lines have the slope given byaA1(M )
5 ln(M/AM21)/ln k. The inset shows the plot ofaA1 vs M.
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The state does not contain any domain walls. So in the
ginning it evolves quickly creating domain walls into one
states$uh&% with h51, . . . ,G with the transition probability
pG,h;1/G, whereuh& denotes a state with the domain wall
h11/2, i.e.,sn.h51 andsh52. After this, the boundary
domain growth takes place for eachuh& independently. After
a time scalet;kj, the spinssj•••s1 in the stateuh5j&
reach the stationary state with the probability for them to
in the ferromagnetic up state being given byPP

` in Eq. ~31!
with G replaced byj, i.e., jr P

2j . Therefore the value of the
autocorrelation function is given byCP(tj);jr P

2j/G where
1/G is the transition probability fromuP& to uh5j&. Elimi-
natingj usingtj;kj, we obtain the result in Eq.~15! in the
leading order.

Analogously, the stateuH& evolves into one of the state
$uz&% with z50, . . . ,G, where uz& denotes a state with th
domain wall atz11/2, i.e.,sn.z52 and sz51. In this
case, however, the transition probabilityqG,z;(M21)z in-
creases exponentially withz. Hence we can ignore the othe
states except for the state withz5G, that is,uP&. Therefore,
the autocorrelation functionCH(t) for uH& is given by
CP(t22) multiplied by the transition probabilitypG,G from
uP& to uH&, which results in Eq.~14!.

The scaling behavior ofCP(t) and CH(t) is also con-
firmed via the numerical simulations. In Fig. 5, we show
plot of the autocorrelation function evaluated in the Isi
spin chain of lengthG<400 withM55. AsG increases, the
decay follows the power law int with the exponent21. We
also checked that the power-law scaling regime overlap
the plots ofGCP(t) andG2CH(t) vs t.

It is easy to generalize the argument for the autocorre
tion function to an arbitrary stateus& whose stationary state
probability scales asPs

`;r 2G. Since the perturbed domai
size grows in time asj; ln t/ln k, the value ofCs(t) at t
.kj is given by the stationary state probability for the sp
configurationsj•••s1 in the chain of lengthj, i.e., Cs(t
.kj).r 2j. Eliminating j, one obtains thatCs(t);t2a

with a state-dependent exponenta5 ln r/ln k @24#. The sta-
tionary state distribution is determined by the degree dis
bution. Therefore, we conclude that the nonuniversality~i.e.,

FIG. 5. Numerical results forCP(t) and CH(t) for different
values ofG ~as listed in the inset! with M55. The solid lines have
the slope21.
1-6
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state dependence! of the decay exponent is a consequence
the broad distribution of the degree in the underlying n
work.

V. ULTRAMETRIC DIFFUSION

In the preceding sections it turned out that the origin
the power-law decay of the autocorrelation functions is
hierarchical organization of the configuration space;
spins~or the random walker! overcome the dynamic barrier
successively expanding the number of accessible config
tions. We note that this phenomenon is very similar to
one observed in the diffusion in an ultrametric space@25,26#.
In this section, we compare ultrametric diffusion with th
random walk problem we have studied in this paper.

Consider a dynamical system withN states a
51,2, . . . ,N. The system in statea may perform transitions
to any other stateb with a transition probabilitywab . One
can define the distance between two states asdab51/wab and
thus provide the state space with a metric. If the transit
probabilities satisfy the relation 1/wab<sup(1/wac ;1/wbc)
for all a, b, and c, the corresponding metric is called a
ultrametric and the state space is an ultrametric space.

The simplest example of an ultrametric space is rep
sented by a rooted tree generated as follows: We start fro
single vertex at theRth hierarchy and branchB vertices in
the next (R21)th hierarchy. Each of them branches intoB
vertices. It is repeated until one hasN5BR vertices at the
zeroth or bottom level. One then associates the vertices a
bottom level with theN states. The transition probabilitie
between two states are assigned towab5e2dD, whereD.0
is a constant andd is thehierarchical distancebetween them,
namely the hierarchy level of their common ancestor at
lowest level. It is easy to see that the transition probabilit
satisfy the ultrametric relation, and thus an ultrametric sp
of N states is obtained. As an example, we illustrate in Fig
the rooted tree withR54 andB52 for an ultrametric space
of N516 states. In this example, two states 1 and 7 have
common ancestors at the hierarchy levelh53 and 4, hence
w1,75e23D, while w1,95e24D.

The autocorrelation function can be calculated exac
see, e.g., Ref.@25#. The exact result is also understood with
simple scaling argument. Suppose that the system is
statea initially. Since the transition probability to a state
the hierarchical distancej is given byw5e2Dj and there are
O(Bj) such states, it takestj;(Bje2Dj)21 time steps for
the system to reach one of the states within the hierarch

FIG. 6. Ultrametric space of 16 states.
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distancej. Hence, the autocorrelation function at timet
;tj is given byC(tj);B2j. Eliminatingj, one obtains that
the autocorrelation function decays algebraically asC(t)
;t2a with a5 ln B/(D2ln B). The power-law decay is valid
for D. ln B, while the dynamics is unstable forD, ln B. At
the marginal case, a stretched exponential decayP(t)
;e2(ln B)t1/g

may occur when the transition probability de
creases asw(d);d2ge2(ln B)d with the hierarchical distance
@25,26#.

Comparing the phenomenology, it is clear that the dif
sion in the hierarchical network is essentially the same as
ultrametric diffusion. In both processes, the relaxation ta
place by overcoming dynamic barriers successively and
creasing associated length scale. The length scale co
sponds to the perturbed domain sizej(t); ln t/ln k in the
former, and to the hierarchical distancej(t); ln t/ln(D
2ln B) in the latter. The length scale grows logarithmically
time, which is a consequence of the exponential increas
the dynamical barrier height.

Note, however, that the diffusion in the hierarchical n
work is not the ultrametric diffusion in a strict sense sin
the ultrametric relations are not valid. The configurati
space of the Ising spin system has a tree structure withall
verticescorresponding to physical states. The ultrametric
would hold only if vertices at the bottom hierarchy wou
represent physical states, see Figs. 2 and 6. Such a differ
does not modify the ultrametric nature of the relaxation fro
the statesuA1& anduA2&, which are located at the end branc
in the configuration space. On the other hand, the relaxat
from uH& and uP&, which are in the center of the configura
tion space tree, are influenced by the nonultrametricity. I
reflected in theG21 andG22 factors in the autocorrelation
functionsCP(t) and CH(t), respectively. Pseudoultrametr
diffusion is also observed for the random walks on a t
structure@27# and on the one-dimensional lattice with hie
archically distributed dynamic barriers@28#.

VI. SUMMARY

In summary, we have studied the random walk probl
on the hierarchical network. The random walk problem
the network ofN5MG nodes is mapped to a specially co
strained dynamics of aM-state Potts spin chain of lengthG.
Using the symmetry property, it is further mapped to a s
cially constrained dynamics of an Ising spin chain. From
analysis of the MFPT, it is shown that the characteristic
laxation time scales asT;kG;Nz with k5M /(M21) and
z5 ln k/ln M. It is also shown that the autocorrelation fun
tion decays algebraically in time asCs(t);t2as for t!T
with a nonuniversal~i.e., state-dependent! exponentas . The
power-law scaling behavior is closely related to the ultram
ric diffusion. The exponent is given byaa5 ln rs / ln k for a
states whose stationary state probability isPs

`;r s
2G . The

stationary state probability is determined from the degree
the corresponding nodes in the network. The broad distri
tion of the degree gives rise to the nonuniversality~state
dependency! of the decay exponent.

The power-law decay of the autocorrelation functions a
pears in marked contrast to the stretched-exponential de
1-7
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J. D. NOH AND H. RIEGER PHYSICAL REVIEW E69, 036111 ~2004!
in random networks@14# and in the small-world networks
@16#. In order to investigate the origin of the emergence
the power-law scaling, we have also studied the rand
walks on the hierarchical networks withM52. At M52,
the hierarchical network is not scale-free anymore. Never
less, we can use the same mapping to the Ising spin sy
with the configuration space of the same tree structure.
we can obtain the scaling behaviors of the relaxation timT
using Eqs.~26! and~27!, and of the autocorrelation functio
using the same scaling arguments: The relaxation time sc
asT;Gln 2;N1, and the autocorrelation functions decay
gebraically in time with theuniversal~state-independent! ex-
ponent, i.e.,aH5aP5aA51. ForM52, the corresponding
spin dynamics has the spin up-down symmetry. So,CH(t)
and CP(t) decay in the same way asCH(t)5CP(t)
;t21/G with the same dependency onG. Finally, the scaling
behavior of the relaxation time and the autocorrelation fu
tions was confirmed numerically.

Comparing the results forM52 andM.2, we conclude
that the power-law scaling behavior of the relaxation tim
and the autocorrelation functions has its origin in the t
structure of the spin configuration space as shown in Fig
We also conclude that the nonuniversality of the decay
ponent forM.2 results from the scale-free degree distrib
tion.

The hierarchical network itself does not have a tree str
ture. But, after the mapping, the random walk problem on
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network reduces to that on the tree structure. In general,
not known a priori whether such a mapping exists for a
arbitrary network. It would be interesting to study the ra
dom walk problem on general networks in order to scrutin
the robustness of the power-law scaling behavior and
effect of the scale-free degree distribution on the relaxat
dynamics. Such work is actually in progress.

We note that the very slow relaxation dynamics of t
Ising chain representation of the random walk problem
the hierarchical network is due to the severe constraints
the dynamics imposed by the restrictions for possible tra
tions. Constrained dynamics in otherwise~for instance, ther-
modynamically! very simple models lead quite frequently
a slow orglassydynamics@29#, for which reason kinetically
constrained models are often used as models for the dyn
ics in glasses and spin glasses. It is interesting to note
such a model also occurs in the context of diffusion in co
plex networks as we have demonstrated in this work.
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