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The discrete time path integral Monte Carlo with a one-particle density matrix approximation is applied to
study the quantum phase transition in the coupled double-well chain. To improve the convergence properties,
the exact action for a single particle in a double-well potential is used to construct the many-particle action.
The algorithm is applied to the interacting quantum double-well chain for which the zero-temperature phase
diagram is determined. The quantum phase transition is studied via finite-size scaling, and the critical expo-
nents are shown to be compatible with the classical two-dimensional Ising universality class—not only in the
order-disorder limit �deep potential wells�, but also in the displacive regime �shallow potential wells�.
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I. INTRODUCTION

The two-level tunneling model provides a phenomeno-
logical description of the low-temperature properties of
glassy materials �1�. In the simplest case, an isolated tunnel-
ing system can be represented by a particle moving in a
double-well potential. Experimental findings have suggested
that the interactions between the tunneling systems play a
crucial role in the low-temperature behavior which deviates
from the predictions of the noninteracting two-level systems
�2�. The model Hamiltonian of the system with L particles is
then given by

H = �
i=1

L � pi
2

2�
+ U�xi�� + �

j�i

V�xi,xj� , �1�

where xi is the �one-dimensional� displacement of the ith
particle �i=1, . . . ,L� of mass � from a reference position,
pi=

�

i
�

�xi
denotes the momentum operator, U�xi� is a local po-

tential for the displacement of the ith particle that is usually
assumed to be a double-well potential, and V�xi ,xj� describes
the interaction between particles; see Fig. 1. Apart from
glassy materials, this coupled double-well model has been
applied to other systems, including structural phase transi-
tions of a wide range of systems—e.g., uniaxial ferroelectrics
�3�. Most numerical computations devoted to understanding
the interacting double-well model have mainly treated the
problem in the framework of the classical �4 model or have
been limited in the “two-state” limit by studying the corre-
sponding Ising model. These simplifications reveal the diffi-
culties inherent in simulations of the quantum coupled
double-well model.

In this paper we present an efficient path integral Monte
Carlo �PIMC� algorithm to study interacting particles, each
of which is confined to a double-well potential. The method
is presented in the next section, and it is applied to the one-
dimensional interacting double-well model in the Sec. III,
which also contains the results: the phase diagram and the

discussion of the universality class of the quantum phase
transition.

II. THE METHOD

The partition function of Eq. �1� is given by

Z =� dx��x,x;�� , �2�

where x= �x1 , . . . ,xL� is the displacement configuration of the
whole system and

��x,x�;�� = 	x
e−�H
x�� �3�

is the density matrix, with �=1/T the inverse temperature.
Observables that are diagonal in the displacements, like the
the mth moment 	xi

m�, are given by

FIG. 1. Schematic representation of a coupled tunneling model
in which the local potential is described by a double-well form.
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	O�x�� =
1

Z � dx��x,x;��O�x� . �4�

By splitting the Hamiltonian �1� into two �noncommuting�
parts H=HA+HB and using the Suzuki-Trotter identity, one
arrives at the path integral formula for �:

e−��HA+HB� = lim
M→�

�e−�HAe−�HB�M , �5�

with �=� /M. The conventional choice for HA and HB is the
kinetic energy for HA �which is diagonal in the momenta pi�
and the potential plus interaction energy U+V for HB �which
is diagonal in the displacement variables�. In the lowest or-
der of the commutator expansion—the so-called primitive
approximation—the high-temperature density matrix be-
comes

��x,x�;�� = �
i,j

L

e−��U�xi�+V�xi,xj��/2�0�xi,xi�;��e−��U�xi��+V�xi�,xj���/2,

�6�

where �0�xi ,xi� ;�� is the free-particle density matrix. This
choice leads to bad convergence properties in the Trotter
number M �4� because of the fractal character of a trajectory
of a free quantum mechanical particle described by the term
HA.

The purpose of this paper is to demonstrate the efficiency
of another choice for HA and HB by treating the single-
particle diffusion within a double-well potential exactly and
separately from the particle interactions. Doing this, we have

HA = �
i=1

L
pi

2

2�
+ U�xi� ,

HB = �
i�j

V�xi,xj� . �7�

This strategy is expected to be most promising in the case
when the interactions are much weaker than the mean poten-
tial energy of the particle.

With Eqs. �7� the path integral expression for the density
matrix becomes

��x,x;�� = lim
M→�

� dx1 ¯ dxM−1 �
m=0

M−1

�A�xm,xm+1;��

	�B�xm,xm+1;�� , �8�

with x=x0=xM and

�A�x,x�;�� = �
i=1

L

��1��xi,xi�;�� ,

�B�x,x�;�� = �
i�j

e−��V�xi,xj�+V�xi�,xj���/2, �9�

where

��1��x,x�;�� = 	x
e−�p2/2�
x��e−��U�x�+U�x���/2 �10�

is the one-particle density matrix for a single particle in a
potential U. For a double-well potential this is not known
analytically but can easily be computed numerically with the
matrix multiplication method �5�. This method is based on
the recursion formula

��1��x,x�;2
�� = �
xmin

xmax

dx���1��x,x�;
����1��x�,x�;
��

�11�

and the fact that in the limit 
�→0 the one-particle density
matrix ��1� can be factorized into the kinetic and potential
energy parts:

��1��x,x�;
�� → � �

2��2
�
�1/2

e−��x − x��2/2�2
�e−
��U�x�+U�x���/2.

�12�

By squaring the density matrix k times, we will lower the
temperature by a factor of 2k and reach the required tempera-
ture �. For a given potential U�x�, the limits of integration,
xmin and xmax, are chosen appropriately—not too large for
computational reasons and not too small for numerical accu-
racy. Once the limits are set, a fine grid between xmin and
xmax should be constructed for the numerical integrations.
The spacing between successive grid points should be suffi-
ciently small to ensure high accuracy. We store this one-
particle density matrix in a two-dimensional array as a
look-up table for use during the simulations and employ a
simple bilinear interpolation to determine the matrix ele-
ments for any point �xi ,xi�� within �xmin,xmax� in the continu-
ous position space. We note that the symmetric breakup of
the propagator in the form of Eq. �10� satisfies a unitarity
condition ��1��
����1��−
��=1, which can be utilized to re-
duce errors resulting from discretization of �, as discussed in
�6�.

Path integral Monte Carlo method means the evaluation
of the integral �8� via importance sampling of the configura-
tions �x1 , . . . ,xM−1� �for fixed M� with the appropriate weight
given by the integrand of �8�. Here we use a single-step
update scheme: Let X= �x1 , . . . ,xM−1�= 
xi,m� be the current
configuration. We generate a new configuration X� which
differs from the old configuration X only in a single-particle
displacement in a particular time slice: xi,m� =xi,m+
, where

� �−� ,�� is a uniformly distributed random number and �
the step size. The acceptance probability w�X→X�� of this
new configuration should be chosen to fulfill detailed bal-
ance with respect to the weights of of the old and new con-
figurations; a possible choice is
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w�X → X�� = min�1, �
m=0

M−1
�A�xm−1,xm� ;���B�xm� ,xm+1;��
�A�xm−1,xm;���B�xm,xm+1;���

= min�1,e−�
V�X,X�� ·
��1��xi,m−1,xi,m� ;����1��xi,m� ,xi,m+1;��
��1��xi,m−1,xi,m;����1��xi,m,xi,m+1;��� . �13�

III. ONE-DIMENSIONAL MODEL AND RESULTS

To test the above algorithm we focus here on a one-
dimensional geometry in which particles interact only with
their nearest neighbors and assume V�xi ,xi+1� to be quadratic
in the displacements:

HB = �
i�j

V�xi,xj� = − �
i=1

L

Jixixi+1 �14�

�cf. Fig. 2�. Furthermore, we choose homogeneous interac-
tion strength Ji=J�0 and the double-well potential in the
symmetrical form with two minima located at ±1:

U�x� = V0�x4 − 2x2� . �15�

Periodic boundary conditions are imposed.
The model �1� with �14� and �15� has a Z2 symmetry �xi

→−xi∀ i� and corresponds to a quantum version of a �4

theory, which is expected to belong to the universality class
of �1+1�-dimensional Ising models. Suppose that the height
of the potential barrier V0 is large compared to the energy
scale of the particle executing small oscillations in one of the
double wells. The model is then equivalent to the one-
dimensional Ising model in a transverse field:

HTIM = − ��
i

�i
x − J�

	i,j�
�i

z� j
z, �16�

where the transverse field � corresponds to the tunneling
splitting in the double-well problem. Therefore we expect it
to display a zero-temperature quantum phase transition �9�
from a disordered phase with 	xi�=0 to an ordered phase
with 	xi��0 at a critical interaction strength Jc �for fixed �
and V0�. According to the universality hypothesis, the same
universality class—i.e. the 2D Ising class—should extentd to
the region where V0 is small compared to the interactions
between particles, the so-called displacive region �3,7,8�.

For a given value of the parameters V0 and J we com-
puted the following quantities: the average of the displace-
ment m �i.e., the magnetization in the spin formulation�, de-

fined as m�L ,M�= 1
LM �i

L�n
M	xi,n�, where xi,n is the position of

the ith particle at the time step n with respect to the zero
position of the local potential Vdw; the fourth-order cumulant
of the magnetization given by g= 1

2 �3− 	m4� / 	m2�2�, where
	¯� denotes the expectation value over MC configurations;
the susceptibility defined as �=L��	m2�− 	
m
2��. Close to a
quantum critical point, one expects �9� observables O to
scale as

O = L−xOÕ�
L1/�,
�

Lz� �17�

where xO is the scaling dimension of the observable O, � the
correlation length exponent, and z the dynamical exponent. If
the transition falls into the Ising universality class, the dy-
namical exponent z is unity �9�. In the following we assume
this to be the case and check whether our data are compatible
with this. We choose a fixed value of the aspect ratio L /�,
corresponding to z=1, so that the finite-size scaling function
of these quantities involves only one variable—i.e., O
=L−xOÕ�
L1/��. For a given V0, the deviation from the criti-
cal point is parametrized as 
=J−Jc. The scaling dimension
is given by xm=−�m /� for the magnetization 
m
, x�=� /� for
the magnetic susceptibility �, and xg=0 for the dimension-
less fourth cumulant g. Typically we executed 106–107 MC
steps to thermalize the system. Once in equilibrium, we gen-
erated 4–5	107 MC configurations for measurements,
which were carried out every 5 MC steps. We have consid-
ered a wide rage of values of V0 between 0.01 and 5. At a
fixed value of V0 we varied the strength of the ferromagnetic
interaction J for system sizes up to L=64 to localize the
zero-temperature critical point Jc and to carry out the finite-
size analysis.

To confirm the accuracy of the one-particle density matri-
ces calculated by matrix multiplication method, we first com-
pare the distribution of displacements of the particles in the
absence of the interaction obtained by PIMC with the distri-
bution calculated by solving numerically the single-particle
Schrödinger equations. For the latter, we calculated the first
N=50 energy eigenvalues En and the corresponding eigen-
states �n�x�; the distribution function of the displacement is
then computed by P�x�=�n=1

N 
�n�x�
2e−�En /�n=1
N e−�En. As

shown in Fig. 3 for �=16 by using �=0.25, the excellent
agreement confirms the accuracy of the density matrices.
Furthermore, we compare the results from the PIMC simu-
lation within the one-particle density matrix approximation
with those in the primitive approximation for the same pa-
rameters �e.g., V0 and J�, as shown in Fig. 4 as a typical
example for the dependence of magnetization 
m
 and its

FIG. 2. Representation of the model defined in Eq. �1� in the
one-dimensional form.
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fourth-order cumulant g on the time step �. The results pre-
sented are averaged over 16 samples for each time step. We
find that, with �=0.05, the results obtained by the primitive
approximation converge to the same values computed with
the one-particle density matrix for ��0.25 within the statis-
tical error bars. The CPU time required on an Intel Pentium
processor �2.40 GHz� to calculate 500 000 MC steps for a
system size L=32 and �=16 within the one-particle density
matrix approximation using �=0.25 is about 780 s and with
the primitive approximation using �=0.05 is about 1485 sec.
The efficiency of the calculations with the one-particle den-
sity matrix is gained from the fast convergence with respect
to the number of time slices. After a careful examination, we
are convinced that the time step �=0.25, used in our simula-
tions for the high-temperature one-particle density matrix, is
sufficiently small for the convergence. We carried out eight
iterations for the matrix multiplication to generate a one-

particle density matrix with �=0.25, and the spacing between
neighboring points within �xmin,xmax� was chosen to be 0.01.
In all cases studied we used a wide interval of
�xmin,xmax�—e.g., �−10, +10� for V0=3—for the iterative in-
tegrations and then truncated this interval to a smaller one
while storing into the look-up table for PIMC simulations.
The appropriate values for the interval �xmin,xmax� in the
look-up table were justified by doing a short run of the PIMC
simulation to check whether the particles would move be-
yond the chosen boundaries.

In Fig. 5 we present the zero-temperature phase diagram,
in which the critical value Jc is estimated by the intersection
of g�J� curves at a given V0 for various system sizes �up to
L=64� with fixed aspect ratio L /�=2. We note the lack of
monotonicity of the critical Jc with respect to the potential
barrier V0; Jc decreases with V0 in the deep-well region,
while it increases with V0 in the small-V0 region. This non-
monotonic behavior of Jc�V0� is qualitatively reproduced
within the mean-field approximation: Consider the effective
single-site Hamiltonian including a mean-field term

Hmf =
p2

2
+ V0�x4 − 2x2� − 2Jxm , �18�

where the order parameter m is the expectation value of the
displacement x in the ground state �0�x ,m� of Hmf and is
determined self-consistently via

m =� dxx
�0�x,m�
2. �19�

Varying J and solving the nonlinear equation �19� for m nu-
merically, the critical point can be estimated as the value of J
above which a nonzero solution exists.

FIG. 3. �Color online� The distribution of displacements of the
particles, calculated for L=32 and �=16, with J=0. A comparison
with numerical solutions �indicated by the solid line� of the
Schrödinger equation is shown. The excellent agreement confirms
the accuracy of the density matrices.

FIG. 4. The magnetization 	
m
� and its fourth-order cumulant g,
calculated by using the one-particle density matrix and the primitive
approximation. The model parameters are V0=1 and J=0.56 for a
system size L=32 at temperature �=16. The values obtained from
both methods are compatible in the small-� limit.

FIG. 5. �Color online� Lower panel: the phase diagram of the
coupled double-well chain: the critical ratio Jc /V0 as well as the
critical interaction Jc as functions of the depth of the potential well
V0; the ordered phase is located above the curves and the disordered
phase is below the curves. The critical Jc obtained by the mean-field
approach is indicated by the dashed line. Upper panel: the low-lying
energy eigenvalues of the one-particle Hamiltonian for various V0,
determined by numerical solutions of the Schrödinger equation. The
dotted line at E=0 indicates the top of the potential barrier.
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The mean-field result for Jc, depicted in Fig. 5, shows the
same nonmonotonic behavior as our results for Jc from the
PIMC simulation and has a maximum at V0=1. This behav-
ior of Jc can be understood as follows: In the region V0�1
the potential has two deep minima separated by a barrier V0
giving rise to a nearly degenerated ground-state doublet that
is well separated from the rest of the spectrum, as shown in
the upper panel of Fig. 5. This is called the order-disorder
limit �3,10� in the interacting double-well model. The energy
difference between the ground state and the first excited
state—i.e., the tunneling splitting �—is reduced as V0 grows,
which results in a decrease of the critical ordering term Jc. In
the region V0�1, on the other hand, the potential has two
shallow minima and the two lowest energy levels are not
well separated from the rest of the spectrum. This is called
the displacive regime �11� in the interacting double-well
model. In this displacive region, the zero-point energy of a
single particle lies above the barrier of the local potential so
that the local potential is effectively in a single-well form.
Without the interaction term, the particles fluctuate around
the x=0 position �cf. Fig. 3�; switching on the interaction
shifts the displacement expectation value 	x� away from the
origin, and at the critical coupling Jc the systems undergoes a
displacive transition from a symmetric �disordered� phase to
a broken symmetry �ordered� phase. The key factor for the
strength of the critical displacing force Jc in this case is the
width of the local potential, which decreases with increasing
V0: the wider the local potential, the weaker the force J
needed for the displacement. Therefore, the critical value Jc
increases with V0 in the displacive regime.

For a particular value of V0 we can use the scaling form
given in Eq. �17� for g, 
m
, and � to extract values of the
critical exponents. In all cases a good data collapse is
achieved with the exponents �m=1/8,�=7/4, and �=1.0,
which is representative of the classical 2D Ising universality
class. In Fig. 6 we show the finite-size scaling plots for V0
=3 and V0=0.01. For V0=0.01, which is well inside the dis-
placive regime, the quality of the scaling decreases and cor-
rections to scaling become more pronounced. Interestingly,
the peak of the scaling function �̃�t� of the susceptibility is
shifted away from t=0 for V0=0.01, whereas it is at t=0 for

V0=3, indicating the nonuniversality of the scaling function.
Our results for V0�1 indicate that the model is in the Ising
universality class even in the displacive regime. For the in-
teraction in the form given in Eq. �14�, we expect that a
phase transition in the same universality still occurs when the
local potential is reduced to only a quartic term. To provide
support for this we carried out simulations for the model
with a local potential given by U�x�=x4 which exhibits a
single well. Our results depicted in Fig. 7 suggest that the
critical behavior of this one-well model is indeed consistent
with 2D Ising universality �12�. We note that the coupling
term �14� that we use can be brought into a form that is more
reminiscent of a lattice version of the standard �4 �quantum�
field theory:

HB =
J

2�
i=1

L

�xi − xi+1�2 − J�
i=1

L

xi
2. �20�

Together with the local potential �15� this implies that the
corresponding continuum model for a scalar field � contains
a �d� /dx�2 term and a potential energy of the form V0��4

− �2+J /V0��2�. Since J is always positive and can be made
arbitrarily large, this model has always a phase transition �at
zero temperature�. On the other hand, the field theory with a
potential energy that has only a single minimum, like the
pure quartic potential V0�4, does not have a phase transition.
We checked, within mean-field as well as with PIMC simu-
lations, that the corresponding lattice model

FIG. 6. Scaling plots of the cumulant �a�, the magnetization �b�,
and the susceptibility �c� for V0=0.01 �left� and V0=3 �right� using
the two-dimensional Ising universality.

FIG. 7. Scaling plots of the cumulant �a�, the magnetization �b�,
and the susceptibility �c� for the single-well model with U�x�=x4

using the two-dimensional Ising universality. In the scaling plot �c�,
the system sizes only range from L=16 to L=64.
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H = �
i=1

L � pi
2

2m
+

J

2
�xi − xi+1�2 + V0xi

4� �21�

also does not have a phase transition.
To summarize, we have demonstrated that the PIMC

within the one-particle density matrix approximation is an
efficient method to simulate quantum interacting many-body
systems, in which particles are confined to a local potential
and interact with each other. Using this method we have
studied the zero-temperature phase transition of the coupled
double-well chain, both in the order-disorder case, corre-
sponding to a coupled two-level tunneling system, and in the

displacive regime, in which the interaction dominates over
the double-well structure. Based on this numerical scheme,
our further study will include the double-well model coupled
through long-range and random interactions and coupled to a
dissipative bath �13,14�. In the presence of quenched disor-
der in the coupling, even for the case without dissipation,
implementation of many improved PIMC methods—e.g.,
Fourier PIMC techniques or cluster algorithms—becomes
complex and the computational efficiency reduces. This mo-
tivates the choice of a method which provides easy perfor-
mance and can be extended to the random case in a straight-
forward way, as the technique applied in this paper does.
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