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A continuous time cluster algorithm for two-level systems coupled to a dissipative bosonic bath is

presented and applied to the sub-Ohmic spin-boson model. When the power s of the spectral function

Jð!Þ / !s is smaller than 1=2, the critical exponents are found to be classical, mean-field like. Potential

sources for the discrepancy with recent renormalization group predictions are traced back to the effect of a

dangerously irrelevant variable.
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Quantum-mechanical systems embedded into a dissipa-
tive environment play an important role in many areas of
physics [1,2]. Among the numerous applications of models
that couple a small quantum system to a bosonic bath are
noisy quantum dots [3], decoherence of qubits in quantum
computations [4], and charge transfer in donor-acceptor
systems [5]. A major research field is quantum impurity
models (i.e., a quantum spin embedded in a crystal [6]),
where, in particular, quantum critical points occurring for
instance in the Bose-Fermi Kondo model have been
studied intensively [7–10].

The paradigmatic model of a two-state system coupled
to an infinite number of bosonic degrees of freedom,
characterized by its spectral function Jð!Þ with low-
frequency behavior Jð!Þ / !s, is the spin-boson (SB)
model [1,2]. As a function of the strength of the coupling
to its bath, it displays for s � 1 a quantum phase transition
(QPT) at zero temperature between a delocalized phase,
which allows quantum-mechanical tunneling between the
two states, and a localized phase, in which the system
behaves essentially classically.

While the phase transition is understood in the case of
Ohmic dissipation (s ¼ 1), the sub-Ohmic situation (s <
1) has been investigated in detail only recently. On general
grounds, one expects the phase transition to fall into the
same universality class as that of the classical Ising spin
chain with long-range interactions [11]. Indeed, a continu-
ous QPT has been found in the spin-boson model for all
values of 0< s < 1 [12], using a generalization of
Wilson’s numerical renormalization group (NRG) tech-
nique [6]. However, on the basis of these NRG calcula-
tions, it was suggested that the quantum-to-classical
mapping fails for s < 1=2 [13]: There, the Ising chain
displays a mean-field transition, whereas the critical ex-
ponents extracted from NRGwere non-mean-field-like and
obeyed hyperscaling. Subsequent NRG calculations for the
spin-boson [14] and Ising-symmetric Bose-Fermi Kondo
model [7] confirmed this claim. Such a breakdown of
quantum-to-classical mapping has consequences not only
for quantum-dissipative systems, but also for Kondo lattice

models studied within extended dynamical mean-field the-
ory, where non-mean-field critical behavior is at the heart
of so-called local quantum criticality [9].
The purpose of this Letter is twofold: (i) We present a

novel and accurate quantum Monte Carlo (QMC) method
to study the low-temperature properties of the sub-Ohmic
spin-boson model, and (ii) we determine its critical expo-
nents at the QPT using this method together with finite
temperature scaling and reconfirm the correctness of the
quantum-to-classical mapping for s < 1=2.
The spin-boson Hamiltonian is defined as

H ¼ �
�̂x

2
þ �̂z

2

X
i

�iðai þ aþi Þ þ
X
i

!ia
þ
i ai; (1)

where �x;z are Pauli spin-1=2 operators, aþi , ai are bosonic
creation and annihilation operators, � the tunnel matrix
element, and !i the oscillator frequencies of the bosonic
degrees of freedom. The spin-bath coupling via the �i is
determined by the spectral function for the bath:

Jð!Þ ¼ �
X
i

�2
i �ð!�!iÞ ¼ 2�� �!1�s

c !s (2)

for 0<!<!c and Jð!Þ ¼ 0 otherwise. � represents the
coupling strength to the dissipative bath and !c is a cutoff
frequency. The spectral function with s ¼ 1 represents an
Ohmic bath, and with s < 1 a sub-Ohmic bath. A system
described by (1) and (2) displays for s � 1 a QPT at a
critical coupling strength �cðs;�; !cÞ.
Consider a general Hamiltonian of the form

H ¼ ��̂x þGð�̂z; â; !Þ; (3)

where � is the transverse field strength, � ¼ �=2 in (1), â
and ! a set of Hermitian operators and parameters, re-
spectively, like the Bose operators and frequencies in the
SB model, and G an arbitrary function.
The partition function for this Hamiltonian is derived by

implicitly performing the limit of an infinite number of
time slices in its Suzuki-Trotter representation [15–17] and
yields the imaginary time path integral (PI)
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Z ¼ Tr�̂;â expð��HÞ ¼
Z

D�ð�Þ expð�S!½�ð�Þ�Þ; (4)

where S!½�ð�Þ�Þ ¼ � lnTrâ exp½
R�
0 d�Gð�ð�Þ; â; !Þ� and

D�ð�Þ denotes a Poissonian measure on the space of
spin-1=2 world lines, i.e., two-valued functions �ð�Þ 2
fþ1;�1g of the imaginary time � 2 ½0; �� as sketched in
Fig. 1(a) and characterized by n � 0 spin flips at times 0<
�1; . . . ; �n < �. The intervals ��i ¼ �iþ1 � �i obey a
Poissonian statistics Pð��Þ ¼ ��1 expð����Þ with
mean value 1=� [16]. The PI (4) can be sampled by
generating realizations of such world lines and accept-
ing them according to their ‘‘Boltzmann’’-weight
expð�S!½�ð�Þ�Þ. More efficient sampling procedures like

cluster algorithms are based on this principle [16].
For a general transverse Ising model (without coupling

to a dissipative bath) Gð�̂zÞ represents just the ‘‘classical’’
energy Eð�̂zÞ that is diagonal in the z-representation

of the spin-1=2 degrees of freedom and S½�ð�Þ� ¼R�
0 d�Eð�ð�ÞÞ. This form holds for an arbitrary number

of spins and for arbitrary spin-spin interactions.
In the case of the SBmodel (1) and (2), the trace over the

oscillator degrees of freedom yields [2] S! ¼ SSB with

SSB½�ð�Þ� ¼ �
Z �

0
d�

Z �

0
d�0�ð�ÞK�ð�� �0Þ�ð�0Þ: (5)

K�ð�Þ imposes long-range interactions in imaginary time:

K�ð�Þ ¼
Z 1

0
d!

Jð!Þ
�

coshð@�2 !½1� 2�=��Þ
sinhð@�2 !Þ : (6)

It has the symmetry Kð�� �Þ ¼ Kð�Þ and the asymptotics

Kð�Þ / ��ð1þsÞ for �c � � � �, where �c ¼ 2�=!c. For
� < �c the Kernel Kð�Þ is regularized via the frequency
cutoff !c in (2) and approaches a constant for � ! 0.

An efficient way of sampling the PI (4) is a cluster
algorithm based on [16]. It is a generalization of the

Swendsen-Wang cluster algorithm [18] to continuous
time world lines, which has to incorporate the long-range
interactions [19] and in which not individual spins but the
world line segments are connected during the cluster-
forming procedure. It is sketched in Fig. 1(b): Starting
from a world line �ð�Þ new potential spin flips are intro-
duced according to a Poissonian statistics, then segment-
pairs of equal spin are ‘‘connected’’ with probability

pðsI; sIIÞ ¼ 1� exp

�
�2

Z b

a
d�

Z d

c
d�0K�ð�� �0Þ

�
: (7)

where a, b, and c, d denote the limits of segment SI and SII,
respectively. Finally, the connected clusters are identified
and flipped with probability 1=2. All potential spin-flip
times that do not represent real spin flips are then removed.
We implemented this algorithm and tested it by comparing
results with those obtained with conventional Monte Carlo
procedures in discrete imaginary time extrapolated to an
infinite number of time slices. We analyzed the sampling
characteristics of the algorithm for the kernel (6) with (2)
over the whole range 0< s < 1 and found that world line
configurations decorrelate on average after 5 updates as
sketched in Fig. 1(b). The data presented below represent
averages over 105–106 updates.
To study the phase transition in the sub-Ohmic spin-

boson model (s < 0:5) we utilize the finite-� scaling forms
for observables close to the critical point � ¼ �c

hOiT;� ¼ �xOgOð�y�t �Þ; (8)

where � ¼ ð�� �cÞ=�c denotes the distance from the
critical point, xO and gO are the scaling exponent and
scaling function of the observable O, respectively. The
exponent y�t is 1=� below the upper critical dimension (s >
1=2), � being the correlation length exponent, and y�t ¼
1=�þ ð1=2� sÞ above it (s < 1=2) [19].
We use the dimensionless ratio of moments Q ¼

hm2i2=hm4i, which has xQ ¼ 0 and is therefore asymptoti-

cally independent of temperature at � ¼ 0, to locate the
critical point �c as shown for s ¼ 0:2 in Fig. 2(a). This
estimate for �c is then used to perform the finite-� scaling

analysis for Q, Q ¼ ~Qð�y�t �Þ the magnetization m ¼
hjmji ¼ �y�

h
�1 ~mð�y�t �Þ and the susceptibility 	 ¼

�hm2i ¼ �2y�
h
�1 ~	ð�y�t �Þ, where y�h is the magnetic expo-

nent. The data collapse that one obtains with the mean-field
values for the exponents y�t and y�h

y�t ¼ 1=2; y�h ¼ 3=4 (9)

is good, as shown Figs. 2(b)–2(d). At the critical point � ¼
�c the scaling forms predict 	 / T�x with x ¼ 2y�h � 1 ¼
1=2, which is clearly confirmed by our data displayed in

Fig. 2(d): 	T1=2 collapses onto one point at � ¼ 0.
Moreover the scaling forms imply at T ¼ 0:	 /
j�� �cj�
 with 
 ¼ ð2y�h � 1Þ=y�t ¼ 1, which is demon-

strated in Figs. 3(a)–3(c) for different values of s < 1=2,
and m / ð�� �cÞ�m for �> �c with �m ¼ �ðy�h �
1Þ=y�t ¼ 1=2, which is demonstrated in Fig. 3(d).
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v

FIG. 1 (color online). (a) Realization of an imaginary time
world line of a spin-1=2 in a transverse field. (b) Sketch of the
continuous time cluster update: (i) Starting configuration.
(ii) Random insertion of new potential spin flips (red dots) with
Poissonian statistics. (iii) Connection of segments with proba-
bilities given by Eq. (7). Different colors indicate the resulting
clusters. (iv) Each cluster is flipped with probability 1=2 (the
blue one was not flipped). (v) Resulting new imaginary time
world line.
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Next we allow for an unbiased fit of the critical expo-
nents to our data, including corrections to scaling as in
[19]. We determined y�t and y�h by finite-� scaling of

@Q=@�ð� ¼ �cÞ / �y�t and 	ð� ¼ �cÞ / �2y�
h
�1. The re-

sults confirm (9) within the error bars for the whole range
of s < 1=2 that we studied. Only close to s ¼ 1=2 the
finite-� scaling analysis is impeded by the presence of
logarithmic corrections at the upper critical dimension.
Figures 4(a) and 4(b) show the resulting estimates for the
exponents 1=� ¼ y�t � ð1=2� sÞ and �m ¼ �ðy�h � 1Þ=y�t
in comparison with the NRG predictions of [13].

Although our results for the critical exponents of the
sub-Ohmic bath obtained with our continuous imaginary
time algorithm deviate from the NRG prediction, results
for the phase diagram match: In Fig. 4(c) our estimates for
the critical coupling �c are compared with those obtained
with the NRG method [13]; they agree very well.

We confirmed the scenario described here for other
values of � and !c, and also for smooth frequency cutoffs
as well as for other kernels (6), like one that has a regu-
larization in time [Kð�Þ ¼ 0 for � < �c] rather than in
frequency. We also found that the limit !c ! 1 (or �c !
0) exists and is approached smoothly and fast, and con-
clude that, concerning the critical exponents, the regulari-
zation does not play a significant role.

We also implemented a conventional QMC algorithm in
discrete time (with a finite number of Trotter time slicesM)
and found that for any fixed value of �� ¼ �=M mean-
field exponents describe the scaling at the critical point for
s < 1=2 (see also [19,20]). Moreover we found that the
extrapolation M ! 1 of numerical data for Q, m and 	

obtained for fixed M reproduces perfectly the results ob-
tained with our continuous time algorithm and that the
convergence is smooth and fast (with 1=M, as expected).
Our conclusion therefore is that the quantum-to-

classical mapping does not fail in the sub-Ohmic spin-
boson model. The question remains, why the NRG calcu-
lation presented in [12,13] yields apparently correct results
for quantities like the critical coupling, i.e., the phase
diagram [see Fig. 4(c)], but fails to predict the correct
critical exponents in the case s < 1=2.
We believe the problem is rooted in a shortcoming of the

present NRG implementation. Because of the truncation of
the bosonic Hilbert space, the NRG—while correctly de-
scribing the delocalized phase— is unable to capture the
physics of localized phase for s < 1 [21]. Technically, a
finite h�zi implies a mean shift of the bath oscillators
which diverges in the low-energy limit. Hence, the NRG
results are expected to be reliable as far as they do not
involve properties of the localized fixed point.
The analysis of critical exponents in Ref. [13] now

assumed that all exponents are properties of the critical
fixed point, and that the fixed-point spectrum at criticality
is captured by NRG. However, the first assumption is
invalid for the order-parameter related exponents �m and
�m if the critical fixed point is Gaussian (like in a�4 theory
above its upper critical dimension). Then, the order-
parameter amplitude is controlled by a dangerously irrele-

FIG. 2 (color online). Results for the spin-boson model for s ¼
0:2 and � ¼ 0:1. (a) Moment-ratio Q as a function of the
coupling constant � for different values of �. The critical
coupling is at �c ¼ 0:0175� 0:0002. (b)–(c) Finite �-scaling
for the moment-ratio Q, magnetization m and susceptibility 	
according to (8). The values for the critical exponents are y�t ¼
0:5, y�h ¼ 0:75. For large positive values of the scaling variable

corrections to scaling are stronger.

FIG. 3 (color online). (a)–(c) Data for the susceptibility 	 as a
function of the distance from the critical point � > 0 (i.e., in the
delocalized phase) for s ¼ 0:1 (a), s ¼ 0:2 (b) and s ¼ 0:3 for
different values of � (� and !c as in Fig. 2). For increasing
inverse temperature � the data points approach the straight line,
which is the zero temperature behavior 	 / ��1. (d) Magne-
tization m as a function of � > 0 (i.e., in the localized phase) for
� ¼ 216 for different values of s (multiplied with 2, 4 and 8 for
s ¼ 0:2, s ¼ 0:3 and s ¼ 0:4, respectively, for better visibility).
The straight lines are guides for the eye proportional to the zero
temperature behavior ð�� �cÞ�1=2. Shown are only the data that
are free from finite-� corrections.

PRL 102, 030601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

23 JANUARY 2009

030601-3



vant variable, and �m and �m are properties of the flow
towards the localized fixed point, which in turn is not
correctly captured by NRG. The second assumption is
correct for the NRG ground state [21], but fails for excited
states which are used to calculate the exponent x. There-
fore, the values of �m, �m, and x extracted from (present)
NRG calculations are unreliable.

Considering that the NRG calculations nevertheless
gave well-defined power laws which were moreover con-
sistent with hyperscaling, it is worth asking for the under-
lying reason. We conjecture that the artificial Hilbert-space
truncation, which limits h�zi, is equivalent to an operator
which is exactly marginal at criticality in the �4 language.
Near criticality, this has no consequences below the upper
critical dimension, s > 1=2, as the quartic interaction is
relevant here, but for s < 1=2 the marginal operator instead
dominates over the quartic term. It is easy to show that an
exactly marginal coupling leads to y�h ¼ ð1þ sÞ=2� yi
with yi ¼ 0 such that hyperscaling is fulfilled, while y�t
takes its mean-field value—this is what characterizes the
set of NRG critical exponents [13]. (The correct result
y�h ¼ 3=4 for s < 1=2 implies yi ¼ ð2s� 1Þ=4 arising

from the dangerously irrelevant variable.) The above rea-
soning is supported by analyzing fermionic impurity mod-
els, which naturally have the property that a Hilbert-space
constraint limits the field response. For instance, a
resonant-level model with power-law bath density of
states, which is controlled by a stable intermediate-
coupling fixed point, shows hyperscaling for all bath ex-
ponents [22]. Finally, the analytical RG argument in
Ref. [13], based on an epsilon-expansion for small s,

predicted non-mean-field exponents obeying hyperscaling
for a related reason: While the RG equations (9)–(11) of
Ref. [13] are correct, the subsequent analysis overlooked
the presence of the dangerously irrelevant variable, result-
ing again in the incorrect y�h ¼ ð1þ sÞ=2.
To conclude, we have, using an efficient and accurate

continuous time cluster Monte Carlo algorithm, shown that
the quantum-to-classical mapping is valid for the sub-
Ohmic spin-boson model. The presence of a dangerously
irrelevant variable for s < 1=2 impedes the correct extrac-
tion of the critical exponents with current versions of the
NRG method—work on its extension to reliably treat the
localized phase is in progress.
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FIG. 4 (color online). (a)–(b) Numerical estimates of the criti-
cal exponents 1=� and �m as a function of s. Triangles: QMC
result (from finite temperature scaling of the QMC data as
described in the text); squares: RG results (from [13], cf. also
[7]); straight lines: mean-field values for s < 1=2. (c) Critical
coupling strength �c as a function of s for the SB model (1) and
(2) with !c ¼ 1 and � ¼ 0:1. Triangles: QMC result; squares:
NRG results for fixed NRG discretization parameter � ¼ 2
(from [12]). Performing the limit � ! 1 moves the NRG esti-
mates for �c slightly downward.
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