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We study the time dependence of the magnetization profile, mlðtÞ, of a large finite open quantum Ising

chain after a quench. We observe a cyclic variation, in which starting with an exponentially decreasing

period the local magnetization arrives to a quasistationary regime, which is followed by an exponentially

fast reconstruction period. The nonthermal behavior observed at near-surface sites turns over to thermal

behavior for bulk sites. In addition to the standard time and length scales a nonstandard time scale is

identified in the reconstruction period.
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Recent experimental progress in controlling ultracold
atomic gases in optical lattices has opened new perspec-
tives in the physics of quantum systems. In these measure-
ments the coupling in an interacting system can be tuned
very rapidly, commonly denoted as ‘‘quench’’, for instance
by using the phenomenon of Feshbach resonance and the
couplings to dissipative degrees of freedom (such as pho-
nons and electrons) are very weak. As a consequence, one
can study coherent time evolution of isolated quantum
systems. Among the fascinating new experiments we men-
tion the collapse and revival of Bose-Einstein condensates
[1], quenches in a spinor condensate [2], realization of one-
dimensional Bose systems [3], and measurements of their
nonequilibrium relaxation [4].

Concerning the theoretical side of quantum quenches
here the first investigations had been performed on quan-
tum XY and quantum Ising spin chains [5–7] before the
experimental work has been started. The new experimental
results in this field have triggered intensive and systematic
theoretical researches, which are performed on different
systems, such as 1D Bose gases [8], Luttinger liquids [9],
and others [10]. Besides studies on specific models there
are also field-theoretical investigations, in which relation
with boundary critical phenomena and conformal field
theory are utilized [11,12].

One fundamental question of quantum quenches
concerns the nature of the stationary state of this nonequi-
librium quantum relaxation including the issue of thermal-
ization and potential descriptions by Gibbs ensembles. For
nonintegrable systems exact thermalization of stationary
states was conjectured [13], however, the numerical results
on specific systems are controversial [13–15]. On the other
hand, integrable systems are sensitive to the initial states
and their stationary states are thermal-like, being in a form
of a generalized Gibbs ensemble [8].

Thermalization includes generically (i.e., away from
critical points) an exponential decay of correlation functions
in the stationary state on length and time scales that can be

related to the correlation length and time of an equilibrium
system at an effective temperature depending on the pa-
rameters of the quench [7,16,17]. Some quantum systems
do not thermalize completely and display a different behav-
ior for correlation functions of local and for nonlocal op-
erators, such that the former do not exhibit effective thermal
behavior [16]. An interesting issue not being addressed so
far is the characterization of the nonstationary, that means
not time-translation invariant, quantum relaxation following
a quench: Preparing the quantum system in a noneigenstate
of its Hamiltonian, how is thermalization achieved during
the time-evolution? How do correlations develop in time
towards the stationary (i.e., time-translation invariant) state,
is there a time dependent correlation length, etc.?
Another important issue concerns quantum relaxation

and potential thermalization in the presence of boundaries.
Theoretical studies of nonequilibrium quantum relaxation
have focused on bulk sites up to now, but all real systems
have a finite extent and they are bounded by surfaces and
the physical properties in the surface region are consider-
ably different from those in the bulk [18]. Obviously an
interesting question is whether the time and length scales
characterizing the stationary relaxation in the bulk is al-
tered in the vicinity of the boundary, and how thermaliza-
tion is achieved there.
In this Letter we will address these two issues: The

nonstationary quantum relaxation after a quench and the
effect of boundaries. For this we focus on a computation-
ally tractable model for a quantum spin chain and study the
relaxation of profiles of observables in the early time steps
as well as their behavior in the long-time limit. We also
address the behavior in large, but finite systems and study
the consequences of the recurrence theorem.
The system we consider in this Letter is the quantum

Ising chain defined by the Hamiltonian

H ¼ � XL�1

l¼1

�x
l �

x
lþ1 � h

XL

l¼1

�z
l ; (1)
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in terms of the Pauli matrices �x;z
l at site l. In the nonequi-

librium process the strength of the transverse field is
suddenly changed from h0 (t < 0) to h (t � 0). The
Hamiltonian in Eq. (1) can be expressed in terms of free
fermions [19], which is used in studies of its nonequilib-
rium properties [6,16]. The bulk transverse magnetization,
�z

l , which is a local operator, has nonthermal behavior

[5,11,17], whereas the bulk (longitudinal) magnetization,
�x

l , which is a nonlocal operator, has effective thermal

behavior [17]. Here we concentrate on the latter quantity

and study the time dependence of its profile, mlðtÞ ¼
limb!0þbh�ð0Þ

0 j�x
l ðtÞj�ð0Þ

0 ib, where j�ð0Þ
0 ib is the ground

state of the initial Hamiltonian (1) in the presence of an
external longitudinal field b. According to [20] this can be
written as the off-diagonal matrix element of the
Hamiltonian (1):

mlðtÞ ¼ h�ð0Þ
0 j�x

l ðtÞj�ð0Þ
1 i: (2)

Here, j�ð0Þ
1 i is the first excited state (which is the ground

state of the sector with odd number of fermions) of
the initial Hamiltonian (t < 0). In the ordered phase, h0 <

hc ¼ 1, where mlðt < 0Þ> 0, j�ð0Þ
1 i is asymptotically de-

generate with the ground state, j�ð0Þ
0 i. For h0 � hc the

magnetization vanishes as mlðt < 0Þ � L�x with the sys-
tem size for t < 0. The decay exponent, x, is different at the
critical point, h ¼ hc, and in the paramagnetic phase, h >
hc, as well in the bulk (l=L ¼ Oð1Þ) and at the boundary
(l=L ! 0); see Table I.

To calculate the magnetization profile in Eq. (2) we have
used standard free-fermionic techniques [19,21]. For the
surface site, l ¼ 1, most of the calculations are analytical,
whereas for l > 1 numerical calculations have been made
for large finite systems up to L ¼ 384.

We have performed quenches for various pairs of trans-
verse fields, h0 and h and calculated the time dependence
of the local magnetization at different sites, l � L=2. The
results depend primarily on whether the system before and
after the quench is in the ordered (O) or disordered (D)
phase; see Fig. 1 for different combinations of O and D.
One can identify different time regimes that can be inter-
preted in terms of quasiparticles, which are emitted at
t ¼ 0, travel with a constant speed, v ¼ vðh; h0Þ, and are
reflected at the boundaries.

As argued in Ref. [11] only those quasiparticles are
quantum entangled that originate from nearby regions in
space, others are incoherent. When the latter arrive at a
reference point l they cause relaxation of local observables
(such as magnetization). Here we extend this picture by

noting that in a system with boundaries the same quasi-
particle can reach the point l twice (or more) at different
times after reflections. This induces quantum correlations
in time signalized by the reconstruction of the value of the
local observable. In the following we analyze the different
regimes of the relaxation.
In the free relaxation regime t < tl ¼ l=v, only incoher-

ent quasiparticles pass the reference point resulting in an
exponential decay of the magnetization (cf. Fig. 1):

mlðtÞ � mðtÞ � AðtÞ expð�t=�Þ; t < tl; (3)

with an oscillating prefactor, AðtÞ. In the regime h > hc
and h0 < hc we have AðtÞ � cosðatþ bÞ, thus mðtÞ
changes sign. On the other hand in the other parts of the
phase diagram mðtÞ is always positive, i.e. AðtÞ �
½cosðatþ bÞ þ c�, with c > 1. The characteristic time
scale, � ¼ �ðh; h0Þ, is the relaxation or phase coherence
time, which is extracted from the numerical data. The
exponential form of the decay in Eq. (3) indicates thermal-
ization, at least for bulk sites, which is in agreement with
the similar decay of the autocorrelation function.
In the quasistationary regime tl < t < T � tl, T ¼ L=v,

two types of quasiparticles reach the reference point l: type
1 passed l only once at a time t0 < t and type 2 passed it
twice at 2 times t0 < t00 < t, with a reflection at the nearby
boundary between t0 and t00. These two types interfere,
resulting in a comparatively slow relaxation (cf. Fig. 1).
Deep inside the ordered phase the quasiparticles can be
identified with kinks moving with a speed �v [22] and in
the regime tl 	 t 	 T half of the quasiparticles reaching
the site l are of type 1 (flipping the spin at l once) and half
of them type 2 (flipping it twice), leading to a quasista-
tionary relaxation.
The magnetization profiles for fixed times t < T=2 are

shown in Fig. 2 for the same quenches as in Fig. 1. For

TABLE I. Decay exponent of the off-diagonal (longitudinal)
magnetization in the initial (equilibrium) period.

h0 ¼ hc h0 > hc

Bulk 1=8 1=2
Boundary 1=2 3=2
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FIG. 1 (color online). Relaxation of the local magnetization,
logmlðtÞ, at different positions in a L ¼ 256 chain after a quench
with parameters: a) h0 ¼ 0:0 and h ¼ 0:5 (O ! O) (b) h0 ¼ 0:5
and h ¼ 1:5 (O ! D) (c) h0 ¼ 1:5 and h ¼ 0:5 (D ! O)
(d) h0 ¼ 1:5 and h ¼ 2:0 (D ! D).
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sufficiently large l the quasistationary magnetization has
an exponential dependence, such that comparing its value
at two sites, l1 and l2, we have

ml1ðt1Þ=ml2ðt2Þ � exp½�ðl1 � l2Þ=��; (4)

with oscillating prefactors.
In the limits L ! 1 and t ! 1 one can define a quasi-

stationary limiting value which will be denoted by, �ml. For
the surface site we have the exact result

�m l ¼ ð1� h2Þð1� h20Þ1=2
1� hh0

; h0; h < 1; (5)

and zero otherwise. Note that the nonequilibrium surface
magnetization has different type of singularities for
h ! 1� (h0 < 1) and for h0 ! 1� (h < 1). We have ana-
lyzed the correction term, �ðt; LÞ ¼ m1ðtÞ � �m1, and its
asymptotic behavior is summarized in Table II in the
different domains of h and h0. These corrections are in
power-law form, which signals that the relaxation of the
surface magnetization has nonthermal behavior.

For l > 1 we observe that �ml is monotonically decreas-
ing with l and thus �ml > 0 for h0; h < 1 and zero
otherwise. The correction terms are identical with those
given in Table II so that a finite distance, l, the local
magnetization has nonthermal behavior.

In the reconstruction regime: T � tl < t < T more and
more quasiparticles of type 2 reach the reference point,
which implies, within a kink-picture, that incoherent
spin flips in the past are progressively reversed by quasi-
particles returning to the site l after reflection. For mono-
disperse quasiparticles (velocity v) one would expect a
T-periodicity and thusmlðtÞ ¼ mlðT � tÞ, i.e., an exponen-
tial increase in t with a growth rate similar to the initial
decay rate. Indeed, we find

mlðtÞ � mðtÞ � BðtÞ expðt=�0Þ; T � tl < t < T; (6)

which is practically position independent and where the
growth rate of �0ðh; h0Þ depends on the conditions of the
quench, being approximately proportional to �ðh; h0Þ:
�=�0 ¼ 0:883� 0:002. It turned out to be useful to mea-
sure the crossover time, ~t ¼ T=2, which is defined as the
crossing point of the two asymptotic regimes:
�A expð�~t=�Þ ¼ �B expð~t=�0Þ, where �A and �B are averaged
prefactors. During the crossover time the quasiparticles
travel a distance, L=2, thus their speed is given by
vðh; h0Þ ¼ L=2~t, which can be measured accurately. We
have noticed, that for h < 1 the speed is proportional to h:
vðh; h0Þ ¼ haðh; h0Þ, where aðh; h0Þ is practically inde-
pendent of h0 and has just a very week dependence on h
close to h ¼ 1. The typical values are in the range
aðh; h0Þ � 0:86–0:88. For h � 1 the speed is practically
constant and has no h dependence.
Approximate periodicity with T starts for t > T, when

quasiparticles start to be reflected a second time and the
spin-configuration of the system becomes approximately
equivalent to that at t� T.
The time and length scale, as defined in Eq. (3) and (4),

respectively, as well as the characteristic quasiparticle
speed vðh; h0Þ ¼ �=�, can be extracted with high numeri-
cal accuracy from our data for the magnetization profiles,
typically with a precision of 3–4 digits. Complementary

calculations of the autocorrelation function GlðtÞ ¼
h�ð0Þ

0 j�x
l ðtÞ�x

l ð0Þj�ð0Þ
0 i, and the equal-time correlation

function, CtðrÞ ¼ h�ð0Þ
0 j�x

lþrðtÞ�x
l ðtÞj�ð0Þ

0 i show that they

yield the same correlation time and length, but with less
accuracy. Based on our results for the profiles we have
conjectured possibly exact results about the relaxation
time, as discussed below.
The relaxation time �ðh; h0Þ is divergent at two points:

(i) at the stationary point, h ¼ h0, where �ðh; h0Þ�
ðh� h0Þ�2 and (ii) for small h, where �ðh; h0Þ � h�1,
which can be derived perturbatively. For h0 ¼ 0 the two
singularities merge at h ¼ 0: �ðh; h0 ¼ 0Þ � h�3.
To obtain information about �ðh; h0Þ away from

the singularities we consider a quench from the fully
ordered initial state (h0 ¼ 0) first. A quench into the dis-
ordered phase (h � 1) yield to high numerical accuracy
�ðh � 1; h0 ¼ 0Þ ¼ �=2, i.e., independent of h. For a
quench into the ordered phase (h � 1) we introduce
~�ðh; h0 ¼ 0Þ ¼ h3�ðh; h0 ¼ 0Þ to get rid of the singularity
at h ¼ 0. In the limit h ! 0 we obtain ~�ðh ¼ 0; h0 ¼ 0Þ ¼
3�=2, and for h > 0 we consider the ratio: y�ðhÞ ¼
�~�ðhÞ=�~�ð0Þ with �~�ðhÞ ¼ ~�ðhÞ � ~�ð1Þ and compare
it with a similar expression for the correlation length

y�ðhÞ ¼ �~�ðhÞ=�~�ð0Þ with �~�ðhÞ ¼ ~�ðhÞ � ~�ð1Þ, where

TABLE II. Correction to the quasistationary behavior for the
surface magnetization in different domains of the quench.

h0 < hc h0 > hc

h < h0 t�1 cosðatþ bÞ L�3=2½cosðatþ bÞ þ c�, c > 1
h > h0 t�3=2 cosðatþ bÞ t�1=2½cosðatþ bÞ þ cL�3=2�

-12

-10

-8

-6

-4

-2

 0

 0  25  50  75  100  125  150  175  200

lo
g 

m
l(t

)

l

O->O
t=48
t=96

t=144
t=192
t=240
t=288
t=336
t=384

(a)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0  25  50  75  100  125  150  175  200

lo
g 

m
l(t

)

l

O->D
t=24
t=48
t=72
t=96

t=120
t=144
t=168
t=192

(b)

-70

-60

-50

-40

-30

-20

-10

 0

 0  25  50  75  100  125  150  175  200

lo
g 

m
l(t

)

l

D->O
t=48
t=96

t=144
t=192
t=240
t=288
t=336
t=384

(c)

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

 0  25  50  75  100  125  150  175  200

lo
g 

m
l(t

)

l

D->D
t=24
t=48
t=72
t=96

t=120
t=144
t=168
t=192

(d)

FIG. 2 (color online). Nonequilibrium magnetization profiles,
logmlðtÞ, at different times after a quench with parameters given
in Fig. 1 for L ¼ 384. From the asymptotic values of the slopes
one can measure the correlation length.

PRL 106, 035701 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 JANUARY 2011

035701-3



~�ðhÞ ¼ �ðhÞh2. The two ratios y�ðhÞ and y�ðhÞ, as shown in
Fig. 3(a), are almost indistinguishable. Since �ðhÞ ¼
�1= logðð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þ=2Þ is known exactly [7], the re-

laxation time for a quench from an ordered initial state
(h0 ¼ 0) can therefore be estimated very accurately, if not
exactly, by the relation y�ðhÞ ¼ y�ðhÞ.

Starting from a partially ordered initial state (0<h0<1)
we define ~�ðh; h0Þ ¼ hðh� h0Þ2�ðh; h0Þ and find to high
numerical accuracy that the limiting value at h ¼ 1 is
given by: ~�ðh ¼ 1; h0Þ ¼ �ð1� h0Þ=2. Away from h ¼ 1
we study the ratio �y�ðh; h0Þ ¼ �~�ðh; h0Þ=�~�ð0; 0Þ with
�~�ðh; h0Þ ¼ ~�ðh; h0Þ � ~�ð1; h0Þ which is identical to
y�ðhÞ for h0 ¼ 0 and which is plotted in Fig. 3(b) for
different values of h0. The curves for all values of h0 are
quite close to each other, and at h ¼ 1 they all have a

singularity, � ffiffiffiffiffiffiffiffiffiffiffiffi
1� h

p
. Therefore one obtains a very good

estimate for the relaxation time from ~�ðh; h0Þ by

�y�ðh; h0Þ � y�ðhÞ ¼ y�
0 ðhÞ, which is given in an analytical

form (see above).
The thermal-like stationary state can be characterized by

an effective temperature Teff [16] which is defined through
the condition, that the relaxation time in the stationary state
after a quench, �ðh; h0Þ, and the equilibrium correlation
time at temperature T ¼ Teff , �Tðh; TÞ, are identical. Using
the analytic result at the critical point [23]: �Tðh ¼ 1; TÞ ¼
8=ð�TÞ we arrive at Teffðh0; h ¼ 1Þ ¼ 16ð1� h0Þ=�2,
which is compatible with the numerical data in Ref. [16].
In the ferromagnetic phase, h < 1, and in the limit
T 	 �ðhÞ, �ðhÞ being the gap, the relaxation time is

given by [22]: �Tðh < 1; TÞ � ð2=ð�TÞÞe�=T , which for
jh� h0j 	 1 leads to: Teff � ��ðhÞ=ð2 lnjh� h0jÞ.

To summarize we have identified different regimes in the
nonequilibrium relaxation of the magnetization profiles of
the quantum Ising chain with boundaries, which can be
explained in terms of quasiparticles that are reflected at the
surfaces. For sites at or near the surface nonthermal be-
havior is observed, manifested by a power-law relaxation
form. For bulk sites a crossover to thermal behavior is
found, with exponentially decaying correlations, defining
a relaxation time and a correlation length that is identical in
semi-infinite and in infinite systems and which obey pre-
sumably exact relations conjectured on the basis of the

numerical data. In a finite system an exponentially fast
reconstruction of the local magnetization is observed, in-
volving a time-scale, �0, and characterizing an approxi-
mately periodic dynamics.
Several results for observables displaying thermal be-

havior in the bulk are expected to be valid also in other,
even nonintegrable spin chains: Absence of thermalization
at the boundaries, identity of correlation time and length in
infinite and semi-infinite systems and an exponentially fast
reconstruction in finite systems.
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