Comment on "Dynamic and Static Properties of the Randomly Pinned Flux Array"

In a recent Letter Batrouni and Hwa [1] reported results of numerical simulations of the planar flux array described by the random phase model

$$H = \frac{\kappa}{2} \sum_{\langle ij \rangle} (u_i - u_j)^2 - \lambda \sum_i \cos(2\pi u_i - \beta_i), \quad (1)$$

where $\langle ij \rangle$ denote nearest neighbor sites on a square lattice, u_i a real-valued displacementlike field, β_i a random phase uniformly distributed in the interval $[0,2\pi]$, and λ the strength of the pinning potential. The main conclusion of the investigation in [1] was (a) that the various renormalization group (RG) predictions existing up to that time could be ruled out by their numerical results, which I agree with, and (b) that the disorder averaged correlation function $C(r) = [\langle (u_i - u_{i+r})^2 \rangle]_{\rm av}$, where $\langle \cdots \rangle$ means the thermodynamic expectation value and $[\cdots]_{\rm av}$ the disorder average, is indistinguishable from the pure case, i.e., $C(r) = C_{\lambda=0}(r) = T/\kappa \pi \log r$ for $T \leq T_g = \kappa/\pi$.

In this Comment I would like to point out that the last statement is incorrect in general and only a consequence of the weakness of the disorder they used, namely $\lambda = 0.15$, and that for stronger disorder (or larger length scales) the correlation function C(r) differs significantly from the pure case. Furthermore, the numerical data I obtain are compatible with the analytic predictions of [2,3] and the recent numerical results of a related model [4] with infinite disorder.

I used the usual Monte Carlo algorithm to calculate the static expectation values of the model (1) with $\kappa = 2$, implying $T_g \approx 0.637$. The system sizes were L = 32 and 64, where 1280 and 256 samples were used, respectively.

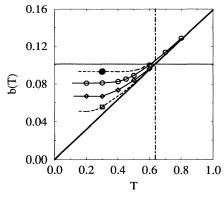


FIG. 1. The slope b(T), obtained via a least squares fit of the MC data for $r \le L/4$, as a function of the temperature T. From top to bottom one has $\lambda = 2.0$ ($lue{\bullet}$), 1.0 (\bigcirc), 0.5 (\bigcirc), and 0.25 (\bigcirc). Data for $\lambda = 0.15$ as obtained by Batrouni and Hwa [1] fall onto the thick full line $b(T) = T/\kappa \pi$, representing the pure model. The dash-dotted line indicates the glass transition temperature $T_g = \kappa/\pi$, and the dotted line is at $b(T) = T_g/\kappa \pi$. The statistical error is smaller than the size of the points; the systematic error is expected to be larger.

By applying a least squares fit of the data points for C(r) with $r \le L/4$ [where the effect of the periodic boundary conditions, C(r) = C(L - r) for $r \le L/2$ in the x and y directions, is still negligible] to the function $C(r) = a + b(T) \log r$ one gets the results shown in Fig. 1.

For weak disorder $\lambda \sim 0.15$ the slope b(T) is indeed indistinguishable from the pure case $b(T) = T/\kappa \pi$, as Batrouni and Hwa observed [1]. However, by increasing the disorder ($\lambda \ge 0.5$) one obtains a slope b(T) that is significantly different from the pure case already in the vicinity of T_g . Since systems with larger disorder are hard to equilibrate, only data for $\lambda \leq 2$ are shown, but the trend seems to be obvious: the estimate of b(T) obtained from intermediate length scales increases with increasing disorder strength. Furthermore, for some parameter sets (e.g., $\lambda = 0.5$, T = 0.4) one observes that the local slope $b(T,r) = \partial C(r)/\partial \log r$ is monotonically increasing for distances smaller than L/4, which indicates that the data shown in Fig. 1 are lower bounds for the asymptotic slope b(T). Hence the results for the correlation function are compatible with $b(T) = T_g/\kappa \pi$ for $T \le T_g$, however; also a quadratic dependency $C(r) \sim \log^2 r$, implying $\lim_{r\to\infty} b(T,r) = \infty$, cannot be strictly excluded.

Concluding, I have presented numerical evidence that the disorder averaged spatial correlation function of model (1) is indeed distinct from the pure case $\lambda = 0$, which is in contrast to the findings of [1]. For weak disorder this becomes manifest only on length scales that are not attainable via Monte Carlo simulations yet, which is the reason why it was not detected in [1]. However, my results agree with the conclusions of [1] that the various RG predictions, prior to their work, were incorrect.

I would like to thank T. Nattermann, S. Scheidl, L. H. Tang, and J. Kierfeld for many valuable suggestions and discussions. The computations were done on the Parsytec-GCel1024 from the ZPR in Köln and the Intel Paragon System from the HLRZ at the Forschungszentrum Jülich. This work was performed within the SFB 341 Köln-Aachen-Jülich.

Heiko Rieger

Institut für Theoretische Physik Universität zu Köln, 50926 Köln, Germany

Received 14 February 1995 PACS numbers: 74.60.Ge

- [1] G.G. Batrouni and T. Hwa, Phys. Rev. Lett. **72**, 4133 (1994).
- [2] S. E. Korshunov, Phys. Rev. B 48, 3969 (1993).
- [3] T. Giamarchi and P. Le Doussal, Phys. Rev. Lett 71, 1530 (1993); Report No. cond-mat/9501087, 1995 (to be published.
- [4] D. Cule and Y. Shapir, Phys. Rev. Lett. 74, 114 (1995); E. Marinari, R. Monasson, and J. Ruiz-Lorenzo, Report No. cond-mat/9503074, 1995 (to be published).