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We consider random transverse-field Ising spin chains and study the magnetization and the energy-
density profiles by numerically exact calculations in rather large finite systéms [28). Using
different boundary conditions (free, fixed, and mixed) the numerical data collapse to scaling functions,
which are very accurately described by simple analytic expressions. The average magnetization
profiles satisfy the Fisher—de Gennes scaling conjecture and the corresponding scaling functions are
indistinguishable from those predicted by conformal invariance. [S0031-9007(97)02733-6]
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d
Every experimental system is geometrically constrained _ l . /
and therefore has a surface, for which reason we have to Fap(I/L)=A| 1+ Bap L NRRE 7 < L@

discriminate between so-calldaulk and surface proper- . i .
where the exponent in the first correction term was

ties. This is justified as long as the correlation length is” "~ )
much smaller than the system size. Howewara criti- confirmed by different methods [7—9]. It has been shown

cal point it is more appropriate to describe the positiorrby Burkhardt and Xue [10] and by Cardy [9] that the

; ; ; coefficients in (2) and thd,;, finite-size correction
dependent physical properties of the system by densit gfefficients of the fr(ec)e energy ;; 141 gre related to
profiles rather than bulk and/or surface observables. F i AR > b .

a number of universality classes much is known about thi ach other: Their ratio is universal and independent of the
spatially inhomogeneous behavior [1], in particular in two orm of the b.c.

: . : : : Having the same type of b.c. at both plates the pro-
dimensions, where conformal invariance provides a pow:, RS ; X .
erful tool to study various geometries [2]. file (®(1))aa =L " faa(l/L) is reflection symmetric

Not much is known about this issue for quantum sysf‘m(v) = faall = v)_xand according to Egs. (1) ‘;‘?/‘3 2)
tems with quenched (i.e., time independediyorder limy—ofaa(v) ~ v, ~ Consequently, [fu(v)]” /™
Here one is confronted with a possible quantum phas&an be expanded in a Fourier series [11]’¥Zh'0h yields
transition, i.e., a zero temperature transition that is trig- R - ka
gered by quantum rather than thermal fluctuations, as for (@(IN)aa = L DLZIA"S'nT} ) )
instance in random transverse field Ising models [3-5]
Their bulk properties have been studied quite extensiveg
by now. The aim of the present Letter is to investigat
for the first time the above mentioned density profiles in &
geometrically constrained disordered system at a quantu . X . ) .
phase transition. In particular we study numerically the isher—de Gennes _scalmg result in (2), in two d|mgn3|ons
random transverse field Ising chain and propose analytiene expects to obtain satisfactory accuracy by the first few

expressions of the magnetization and energy-density prdc_erms_ of thg expansion. Indeed fqr conformally Invariant
file for various boundary conditions (b.c.). twq—dlmensmnal models qnly the flrst.terr'n in the Fourier
In a critical system confined between two paraIIeISerIeS in (3) gives nonvanishing contribution [8]:

plates, being a large but finite distanteapart, the local L . 1

densities(®(r)) such as the order parameter (magnetiza- (@(D)aa = A[;S'WZ} : 4)
tion) or the energy density vary with the distanc&om
one of the plates as a smooth function/gf.. According
to the scaling theory by Fisher and de Gennes [6],

he Fourier expansion in (3) has different convergence
roperties in two and three dimensions due to the different
arity of the correction term in (2). While in three

jmensions infinite terms are needed to reproduce the

—Xo

Conformal invariance can be used further to predict the
density profiles with general b.c. In two dimensions the
profiles are in the form [10]

PO = L Fat/L). . @y = [%mﬂ ¢Gab<i>’ ©)

where x¢ is the scaling dimension of the operatér, L L
while ab denotes the b.c. at the two plates. The scalingvhere the scaling functiorG,,(I/L) depends on the
function in (1) has the asymptotic behavior universality class of the model and on the type of the b.c.
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For the Ising model the magnetization profile with free-in the thermodynamic limitn(l) = ooq(I). In a finite

fixed b.c. the scaling function is predicted as [10] system bulk and surface magnetization exponents can be
ol ™ deduced from the o.d. matrix element in Eq. (10) [2].
Gr+ = Bl sing | (6) The energy-density profile is given by the ground state

expectation valuee(l) =(0|o7|0). Since e(l) contains
a nonsingular contribution the scaling behavior of the
energy density is more convenient to deduce from the

wherex;, = 1/2 is the scaling dimension of the surface
magnetization operator. A similar result is obtained for

_ . .
the 0 = 4 state Potts model [10] with the appropriate asymptotic form of the connected time-time correlation

surface scaling dimension in (6). : e N_ /2 z /2 z _
_ Inthe present Letter we consider the random transvers{%’irllg?cl)orllg é )((2:T<(Zl (I)g 0’)(]0())% théoérg:e)ré;f-ld(galﬁyzoipéra—
field Ising chain tor of. Then, similarly to the order parameter the singular

H=— ZJZJ;(J;H — th;_ (7)  energy densit (/) is given by
l l

Here theJ : e(l) = (ela}l0), (11)
; exchange couplings and thig transverse

fields are independent random variables with distributionsvhere (¢| denotes the lowest excited state that yields a
w(J) and p(h), respectively, and ther], o} are Pauli nonvanishing matrix elemer|o;|0). This o0.d. matrix
matrices at sitel. This Hamiltonian is the extreme element is of interest in the finite-size scaling study of the
anisotropic limit [12] of the layered two-dimensional Ising bulk and surface energy-density operators [18].
model as introduced by McCoy and Wu [13,14]. To calculate the matrix elements in Egs. (9)—(11), we

The critical behavior of the random transverse-fieldfirst, following Liebet al. [19] and Pfeuty [20], transform
Ising spin chain in (7) has been investigated analytically into a free-fermion model. For the fixed and free
[3,14,15] and numerically [16,17] in several papers.b.c. we study in this Letter we found it most convenient
Depending on the strength of the average value ofo choose the representation described in [21], which
the transverse field the system has two phases, whiahmecessitates only the diagonalization of ah X 2L-
are separated by a second order phase transition poitridiagonal matrix. From the corresponding eigenvectors
located at [15]6 = InJ — Ink = 0. Because of a broad one obtains the local magnetization (9) and the matrix
distribution of various physical quantities the typical andelements (10) and (11) [22]. Details will be presented
average quantities of the system are generally differenelsewhere [23].
The scaling dimensions of the averaged magnetization are The critical properties of random Ising chains are ex-
xm = (3 — V/5)/4 = 0.191 [3] andx$, = 1/2[14]. The pected to be independent of the details of the distributions
model is anisotropic at the critical point; the dynamicalof the couplings antbr fields. In this Letter we consider
exponent isz = ». More precisely the characteristic two different cases: the binary distribution
length scale¢ and the corresponding time scaleare

1 1
related through w(J)= > 8(J—A)+ ) S =AY h=ho, (12)
i Ing ~ \/E ) . (8) . i.e,,p(h) = 6(h — hp), and the uniform distribution
Thus the model is not conformally invariant and predic- .
tions in Egs. (4)—(6) are not expected to be valid. m(J) =00 — NOV);  p(h) = hy 0(ho — h)O(h).
In the following we briefly describe how the density (13)

profiles were calculated. Fdixed boundary conditions,

Eqg. (7), the local magnetization defined as data which we present below are averaged over 50000

m(l) = (0|o¥]0) ©) samples and the resulting statistical error is much smaller
L - ! than the size of the symbols used in the plots. Disorder-
i finite for any finite system. On the other hand, for 5yeraged quantities are denoted by the bradketk,.
frefg (nonsymmetry brealélng) b.c. the magnetlzsjtlon N First we study the magnetization profile of the system
a finite system is zero, due to symmetry. In this Casgin fixed b.c. at both ends of the chain. The finite-size
one can|ders the_ asymptotic behavior gf thex(lmaglnary esults on the pure model, which are shown in the inset
time-time cc>2rrelat|on functiorG, () = (07 (7)o (0)) = of Fig. 1, are in complete agreement with the conformal
i Kilo7|0)* exd—7(E; — Eo)] where (0] and (il de-  ,egiction in (4). The profile for the random chain is
note the ground state and thith excited state with en- g0y in Fig. 1. From the scaling plot one can see that
ergiesEy and £;, respectively. In the large limit the e Fisher_de Gennes scaling result in (1) is well satisfied
sum is dominated by the first term, and the correspondingith, the conjectured value of the decay exponept=
off-diagonal (0.d.) matrix eleme?t B/v = 0.191. Note that we daot usex,, (as well as

ooa(l) = (1lo7]0) (10)  laterx:) as fit parameters but fix them to the theoretically
is of interest. In the strong coupling phage< 0), where predicted values cited above. The only fit parameter is
E; is asymptotically degenerate with the ground statethe nonuniversal prefactot in (4). Obviously, one can
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27— accurately described by a function of the form in (6) with
. 1.02*sin(mx) 1% the exponents,, = 0.191 andx?, = B°/v = 1/2 [again
1.8 H s = " the only fit parameter is the nonuniversal prefa@drom
1.8 1.01*sin(mx) L=16 o . . .
N =16l L<16 o L=32 x (6)]. According to Fig. 2 the corrections to the conformal
=~ 16 Lt & ] L=64 + || result seem here also to be negligible.
< S | T el - S f|L=128 ——F With free (nonsymmetry breaking) b.c. the magnetiza-
g 14|\ /| tion is zero in a finite system. Therefore we consider the
5 ) 0.d. density in Eq. (10), the profile of which can be pre-
S, ol | dicted by conformal invariance [18]. For a general local
: operator® (/) the scaling form of the o0.d. matrix element
in the strip geometry is [18]
1t E Xo / Xp—Xo
—_—— O] ()| D) o <1> (sinrr—) . (14)
0 01 02 03 04 05 06 07 08 09 1 L L
L » denotes th f ling di [ f
FIG. 1. Scaling plot of the magnetization profile,(l) (9) \é\;here Yo denotes e surace scaing dimension o

with fixed b.c. at both ends. We have shifted the site index by™ : . This exprefiion SatiSfi?S the known jcaling limits

half a lattice constant and dendte=  — 0.5. The pure case (OI®(D)|®) ~ L™ and (0|(L/2)|P) ~ L™* at the

is depicted in the inset, for which the scaling function is givensurface and in the bulk, respectively. For nonconformally

by (5) with x}"* = 1/8 and G, = const. The main figure jnvariant systems (14) represents the first leading term of
shows the result for the binary distribution (12) with= 4. a Fourier-expansion, as in (3) and (4).

Other values ofA as well as the uniform distribution yield the N ical It th d. densit fi ith f
same quality for the data collapse, with different values for the umerical results on the 0.d. densily protiies with iree

nonuniversal prefactors but identical scaling function (5) withb.c. are shown on Fig. 3. Again the finite-size results on
xrandom — 3/3 ~ 0.191 andG,+ = const. the pure Ising model are in complete coincidence with the

conformal prediction in (14). For the random case the
_ o . numerical data collapse to a scaling curve, which is very
very accurately describe the finite-size data in the wholeccurately described by the conformal expression in (14)
profile with the first term of the Fourier expansion in (3). with the exponentsy,, = 0.191 and x!, = 1/2. Thus
The corrections to the conformal result in (4) are indeeChgain the nonconformal corrections are very small.
negligible. Finally, we discuss the o.d. energy-density profile in
Next we turn to study the magnetization profiles with (11). For the pure model one can easily evaluats,
free-fixed b.c. As seen on the inset of Fig. 2 the finitewhich yields in the scaling limit/(>> 1,L > 1)
lattice results on the pure model perfectly coincide with
the conformal prediction in (6). Results for random
models are shown in Fig. 2. As one can see the numerical
data collapse to a scaling function, which can be verysee inset of Fig. 4. This corresponds to the conformal
result in Eq. (14) withx, = 1 andx] = 2.

e(ll) = %sinrr%. (15)
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FIG. 2. The same as in Fig. 1 with fixed b.c. on the right end /L

of the chain and free b.c. on the left end. The magnetizatiorFIG. 3. Scaling plot of the o.d. magnetization profig,(/)
profile is given by (5) and (6) with{, = 1/2 for the pureand  [Eq. (10)] for free b.c. on both ends of the chain. The data for
the random case. The data shown in the main figure are for thihe random case are for a binary distribution with= 2. The
uniform distribution (13). full line represents the scaling form (14).
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-1.4 . - . . files are completely different from the conformal results
L6 L L B N | [22]. One could speculate about the existence of some
=1, +‘\‘4—H—'++++‘f- X . . . . .
g M, hidden symmetry which explains the coincidence of the
> 18 ol 3 1 density profiles of the random transverse-field Ising chain
= ol | with the conformal result.
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FIG. 4. The o.d. energy profile; (/) (11) with free b.c. on
both sides. The pure case is depicted in the inset, for which
the scaling function is given by (15). The main figure shows
the result for the binary distribution (12) with = 4. Here the
scaling function is well described by (16). We note that the
approach to the asymptotic scaling limit seems to be much
slower than for the magnetization profiles.
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