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We consider random transverse-field Ising spin chains and study the magnetization and the en
density profiles by numerically exact calculations in rather large finite systems (L # 128). Using
different boundary conditions (free, fixed, and mixed) the numerical data collapse to scaling functi
which are very accurately described by simple analytic expressions. The average magnetiz
profiles satisfy the Fisher–de Gennes scaling conjecture and the corresponding scaling function
indistinguishable from those predicted by conformal invariance. [S0031-9007(97)02733-6]
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Every experimental system is geometrically constrain
and therefore has a surface, for which reason we hav
discriminate between so-calledbulk and surfaceproper-
ties. This is justified as long as the correlation length
much smaller than the system size. However,at a criti-
cal point it is more appropriate to describe the positi
dependent physical properties of the system by den
profiles rather than bulk and/or surface observables.
a number of universality classes much is known about t
spatially inhomogeneous behavior [1], in particular in tw
dimensions, where conformal invariance provides a po
erful tool to study various geometries [2].

Not much is known about this issue for quantum sy
tems with quenched (i.e., time independent)disorder.
Here one is confronted with a possible quantum ph
transition, i.e., a zero temperature transition that is tr
gered by quantum rather than thermal fluctuations, as
instance in random transverse field Ising models [3–
Their bulk properties have been studied quite extensiv
by now. The aim of the present Letter is to investiga
for the first time the above mentioned density profiles in
geometrically constrained disordered system at a quan
phase transition. In particular we study numerically t
random transverse field Ising chain and propose anal
expressions of the magnetization and energy-density p
file for various boundary conditions (b.c.).

In a critical system confined between two paral
plates, being a large but finite distanceL apart, the local
densitieskFsrdl such as the order parameter (magnetiz
tion) or the energy density vary with the distancel from
one of the plates as a smooth function oflyL. According
to the scaling theory by Fisher and de Gennes [6],

kFsldlab ­ L2xF FabslyLd , (1)

where xF is the scaling dimension of the operatorF,
while ab denotes the b.c. at the two plates. The scal
function in (1) has the asymptotic behavior
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FabslyLd ­ A

"
1 1 Bab

√
l
L

!d

1 Ùs

#
;

l
L

ø 1 , (2)

where the exponent in the first correction term wa
confirmed by different methods [7–9]. It has been show
by Burkhardt and Xue [10] and by Cardy [9] that the
Bab coefficients in (2) and theAab finite-size correction
coefficients of the free energy asAabL2d11 are related to
each other: Their ratio is universal and independent of th
form of the b.c.

Having the same type of b.c. at both plates the pro
file kFsldlaa ­ L2xF faaslyLd is reflection symmetric
faasyd ­ faas1 2 yd and according to Eqs. (1) and (2)
limy°!0faasyd , y2xF . Consequently, ffaasydg21yxF

can be expanded in a Fourier series [11], which yields

kFsldlaa ­ L2xF

"X̀
k­1

Aksin
kpl

L

#
2xF

. (3)

The Fourier expansion in (3) has different convergenc
properties in two and three dimensions due to the differe
parity of the correction term in (2). While in three
dimensions infinite terms are needed to reproduce t
Fisher–de Gennes scaling result in (2), in two dimension
one expects to obtain satisfactory accuracy by the first fe
terms of the expansion. Indeed for conformally invarian
two-dimensional models only the first term in the Fourie
series in (3) gives nonvanishing contribution [8]:

kFsldlaa ­ A

"
L
p

sinp
l
L

#2xF

. (4)

Conformal invariance can be used further to predict th
density profiles with general b.c. In two dimensions th
profiles are in the form [10]

kFsldlab ­

"
L
p

sinp
l
L

#2xF

Gab

√
l
L

!
, (5)

where the scaling functionGabslyLd depends on the
universality class of the model and on the type of the b.
© 1997 The American Physical Society 2473
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For the Ising model the magnetization profile with fre
fixed b.c. the scaling function is predicted as [10]

Gf1 ­ B

"
sin

pl
2L

#xs
m

, (6)

wherexs
m ­ 1y2 is the scaling dimension of the surfac

magnetization operator. A similar result is obtained f
the Q # 4 state Potts model [10] with the appropria
surface scaling dimension in (6).

In the present Letter we consider the random transve
field Ising chain

Ĥ ­ 2
X

l

Jls
x
l s

x
l11 2

X
l

hls
z
l . (7)

Here theJl exchange couplings and thehl transverse
fields are independent random variables with distributio
psJd and rshd, respectively, and thesx

l , s
z
l are Pauli

matrices at sitel. This Hamiltonian is the extreme
anisotropic limit [12] of the layered two-dimensional Isin
model as introduced by McCoy and Wu [13,14].

The critical behavior of the random transverse-fie
Ising spin chain in (7) has been investigated analytica
[3,14,15] and numerically [16,17] in several pape
Depending on the strength of the average value
the transverse field the system has two phases, w
are separated by a second order phase transition p
located at [15]d ­ lnJ 2 lnh ­ 0. Because of a broad
distribution of various physical quantities the typical an
average quantities of the system are generally differe
The scaling dimensions of the averaged magnetization
xm ­ s3 2

p
5 dy4 ø 0.191 [3] andxs

m ­ 1y2 [14]. The
model is anisotropic at the critical point; the dynamic
exponent isz ­ `. More precisely the characteristi
length scalej and the corresponding time scalet are
related through

lnt ,
p

j . (8)
Thus the model is not conformally invariant and pred
tions in Eqs. (4)–(6) are not expected to be valid.

In the following we briefly describe how the densit
profiles were calculated. Forfixed boundary conditions,
which break the up-down symmetry of the Hamiltonian
Eq. (7), the local magnetization defined as

msld ­ k0js
x
l j0l (9)

is finite for any finite system. On the other hand, f
free (nonsymmetry breaking) b.c. the magnetization
a finite system is zero, due to symmetry. In this ca
one considers the asymptotic behavior of the (imagina
time-time correlation functionGlstd ­ ksx

l stdsx
l s0dl ­P

i jkijsx
l j0lj2 expf2tsEi 2 E0dg where k0j and kij de-

note the ground state and theith excited state with en-
ergiesE0 and Ei, respectively. In the larget limit the
sum is dominated by the first term, and the correspond
off-diagonal (o.d.) matrix element

sodsld ­ k1js
x
l j0l (10)

is of interest. In the strong coupling phase (d , 0), where
E1 is asymptotically degenerate with the ground sta
2474
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in the thermodynamic limitmsld ­ sodsld. In a finite
system bulk and surface magnetization exponents can
deduced from the o.d. matrix element in Eq. (10) [2].

The energy-density profile is given by the ground sta
expectation valueesld ­ k0js

z
l j0l. Since esld contains

a nonsingular contribution the scaling behavior of t
energy density is more convenient to deduce from
asymptotic form of the connected time-time correlatio
function Ge

l std ­ ksz
l stdsz

l s0dl 2 ksz
l stdlksz

l s0dl ­
P

i 3

jkijsz
l j0lj2 expf2tsEi 2 E0dg of the energy-density opera

tor s
z
l . Then, similarly to the order parameter the singu

energy densityesld is given by

esld ­ kejsz
l j0l , (11)

where kej denotes the lowest excited state that yields
nonvanishing matrix elementkejsz

l j0l. This o.d. matrix
element is of interest in the finite-size scaling study of t
bulk and surface energy-density operators [18].

To calculate the matrix elements in Eqs. (9)–(11), w
first, following Liebet al. [19] and Pfeuty [20], transform
Ĥ into a free-fermion model. For the fixed and fre
b.c. we study in this Letter we found it most convenie
to choose the representation described in [21], wh
necessitates only the diagonalization of an2L 3 2L-
tridiagonal matrix. From the corresponding eigenvecto
one obtains the local magnetization (9) and the mat
elements (10) and (11) [22]. Details will be present
elsewhere [23].

The critical properties of random Ising chains are e
pected to be independent of the details of the distributio
of the couplings andyor fields. In this Letter we conside
two different cases: the binary distribution

psJd ­
1
2

dsJ 2 ld 1
1
2

dsJ 2 l21d; h ­ h0 , (12)

i.e., rshd ­ dsh 2 h0d, and the uniform distribution

psJd ­ us1 2 JdusJd; rshd ­ h21
0 ush0 2 hdushd .

(13)

In both cases the critical point is ath0 ­ 1. All numerical
data which we present below are averaged over 50
samples and the resulting statistical error is much sma
than the size of the symbols used in the plots. Disord
averaged quantities are denoted by the bracketsf· · ·gav .

First we study the magnetization profile of the syste
with fixed b.c. at both ends of the chain. The finite-si
results on the pure model, which are shown in the in
of Fig. 1, are in complete agreement with the conform
prediction in (4). The profile for the random chain
shown in Fig. 1. From the scaling plot one can see t
the Fisher–de Gennes scaling result in (1) is well satisfi
with the conjectured value of the decay exponentxm ­
byn ­ 0.191. Note that we donot usexm (as well as
laterxs

m) as fit parameters but fix them to the theoretica
predicted values cited above. The only fit parameter
the nonuniversal prefactorA in (4). Obviously, one can
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FIG. 1. Scaling plot of the magnetization profilemLsld (9)
with fixed b.c. at both ends. We have shifted the site index
half a lattice constant and denotel0 ­ l 2 0.5. The pure case
is depicted in the inset, for which the scaling function is giv
by (5) with xpure

m ­ 1y8 and G11 ­ const. The main figure
shows the result for the binary distribution (12) withl ­ 4.
Other values ofl as well as the uniform distribution yield th
same quality for the data collapse, with different values for
nonuniversal prefactors but identical scaling function (5) w
xrandom

m ­ byn ø 0.191 andG11 ­ const.

very accurately describe the finite-size data in the wh
profile with the first term of the Fourier expansion in (3
The corrections to the conformal result in (4) are inde
negligible.

Next we turn to study the magnetization profiles w
free-fixed b.c. As seen on the inset of Fig. 2 the fini
lattice results on the pure model perfectly coincide w
the conformal prediction in (6). Results for rando
models are shown in Fig. 2. As one can see the nume
data collapse to a scaling function, which can be v

FIG. 2. The same as in Fig. 1 with fixed b.c. on the right e
of the chain and free b.c. on the left end. The magnetiza
profile is given by (5) and (6) withxs

m ­ 1y2 for the pure and
the random case. The data shown in the main figure are for
uniform distribution (13).
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accurately described by a function of the form in (6) wi
the exponentsxm ­ 0.191 andxs

m ­ bsyn ­ 1y2 [again
the only fit parameter is the nonuniversal prefactorB from
(6)]. According to Fig. 2 the corrections to the conform
result seem here also to be negligible.

With free (nonsymmetry breaking) b.c. the magnetiz
tion is zero in a finite system. Therefore we consider t
o.d. density in Eq. (10), the profile of which can be pr
dicted by conformal invariance [18]. For a general loc
operatorF̂sld the scaling form of the o.d. matrix elemen
in the strip geometry is [18]

k0jF̂sldjFl ~

√
p

L

!xF
√

sinp
l
L

!xs
F2xF

, (14)

where xs
F denotes the surface scaling dimension

F̂. This expression satisfies the known scaling lim
k0jF̂s1djFl , L2xs

F and k0jF̂sLy2djFl , L2xF at the
surface and in the bulk, respectively. For nonconforma
invariant systems (14) represents the first leading term
a Fourier-expansion, as in (3) and (4).

Numerical results on the o.d. density profiles with fre
b.c. are shown on Fig. 3. Again the finite-size results
the pure Ising model are in complete coincidence with t
conformal prediction in (14). For the random case t
numerical data collapse to a scaling curve, which is ve
accurately described by the conformal expression in (
with the exponentsxm ­ 0.191 and xs

m ­ 1y2. Thus
again the nonconformal corrections are very small.

Finally, we discuss the o.d. energy-density profile
(11). For the pure model one can easily evaluateesld,
which yields in the scaling limit (l ¿ 1, L ¿ 1)

esld ­
2
L

sinp
l
L

. (15)

See inset of Fig. 4. This corresponds to the conform
result in Eq. (14) withxe ­ 1 andxs

e ­ 2.

FIG. 3. Scaling plot of the o.d. magnetization profilesodsld
[Eq. (10)] for free b.c. on both ends of the chain. The data
the random case are for a binary distribution withl ­ 2. The
full line represents the scaling form (14).
2475
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FIG. 4. The o.d. energy profileeLsld (11) with free b.c. on
both sides. The pure case is depicted in the inset, for wh
the scaling function is given by (15). The main figure sho
the result for the binary distribution (12) withl ­ 4. Here the
scaling function is well described by (16). We note that t
approach to the asymptotic scaling limit seems to be m
slower than for the magnetization profiles.

In a quantum system the bulk energy density is p
portional to the inverse relaxation time:e , t21. In the
random transverse Ising chain the scaling is anomalou
indicated in (8), therefore the appropriate scaling com
nation isL21y2lnesld instead ofLesld1yz if z would be fi-
nite. In the following we study the typical energy dens
flnesldgav , which after multiplication withL21y2 yields a
universal scaling function. The finite-size data for the ra
dom case (see Fig. 4) very well satisfy the relation

flnesldgav L1y2 ­ A0 1 A1

√
L
p

sinp
l
L

∂1y2

. (16)

We note that this expression can also be considered a
leading part of a Fourier expansion, where the correct
terms are again very small.

To summarize we have investigated the density profi
of random transverse-field Ising spin chains. The num
cal data on rather large systemsL # 128 follow scaling
plots and the scaling functions can be described v
accurately by analytical expressions, which are derived
conformally invariant systems. Since our system is
conformally invariant there are presumably correctio
These are, however, very small, certainly smaller than
error in our present numerical calculation.

Generally the nonconformal corrections to the dens
profiles are not small. As an example, we mention the tw
dimensional aperiodically layered Ising model [24], whi
is somewhat related to our problem. When the aperio
cally modulated couplings of the model represent a m
ginal perturbation the system is described by a coup
dependent dynamical exponentz . 1 [21], thus the sys-
tem is not conformally invariant. Although the aperiod
model looks similar to our random problem its density p
2476
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files are completely different from the conformal result
[22]. One could speculate about the existence of som
hidden symmetry which explains the coincidence of th
density profiles of the random transverse-field Ising cha
with the conformal result.
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