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Ground State Properties of Fluxlines in a Disordered Environment
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A new numerical method to calculate exact ground states of multifluxline systems with quenched
disorder is presented, which is based on the minimum cost flow algorithm from combinatorial
optimization. We discuss several models that can be studied with this method including their specific
implementations, physically relevant observables and results: (1)VFliee model with N fluxlines
(or directed polymers) in ai-dimensional environment with point and/or columnar disorder and
hard or soft-core repulsion; (2) the vortex glass model for a disordered superconductor in the strong
screening limit; and (3) the sine-Gordon model with random pase shifts in the strong coupling limit.
[S0031-9007(98)07658-3]

PACS numbers: 74.60.Ge, 02.60.Pn, 36.20.—r, 64.60.Cn

Dirty type-Il superconductors in a magnetic field are theenergies;; = 0 are quenched random variables that indi-
most intensively studied representatives of elastic manieate how much energy it costs to put a segment of flux-
folds in a disordered environment [1]. Their paradigmaticline on a specific bondij). The fluxline configuratiorx
description consists in an ensemble of magnetic flux{x;; = 0), also called dlow, is given by specifying;; = 1
lines (or vortexlines) interacting strongly with point and/ for each bondi;), which is occupied by the fluxline and
or columnar defects and among themselves. This complix;; = 0 otherwise. For the configuration to forimeson
cated multiline situation is usually reduced to the study ofeach site of the lattice all incoming flow should balance
a single line, a directed polymer in a random medium [2],the outgoing flow, i.e., the flow is divergence free
a problem that possesses deep connection also to nonequi- V.x=0 2
librium fluctuations of moving interfaces [3]. ’

Here we are going to present a new numerical methowhereV- denotes the lattice divergence. The line(s) can
(in the spirit of other recent applications of combinato-enter the system anywhere on one free surface and leave it
rial optimization tools in the physics of disordered systemson the opposite surface. Therefore, we attach all sites of
[4]) by which the investigation of the full multiline situa- one free boundary to an extra site (via energetically neutral
tion becomes feasible. It will enable us to determine exarcs,e = 0), which we call the source and the other side
act ground states (i.e., minimum energy configurations) ofo another extra site, the targetas indicated in Fig. 1a.
theses systems in polynomial time. Since the low temNow one can push one line through the system by inferring
perature physics of fluxlines in a random environment ighat s has a source strength eéfl and thatr has a sink
dominated by disorder effects these ground state calcistrength of—1, i.e.,
lations will enable us to make various statements about
possibly glassy features, for instance the roughness of (V-x)y=+N and (V-x) =-N, (3)
multiline systems, the stiffness of vortex or gauge glassvith N = 1. Thus, thel-line problem consists in mini-
models, and the displacement-displacement correlations imizing the energy (1) by finding a flow in the network
random phase models. (the lattice plus the two extra sitesandz), fulfilling the

To introduce the notation and to set the stage of theonstraints (2) and (3).
theoretical models we consider we start with a simple but The solution of this problem is equivalent to finding
nontrivial (and hence heavily discussed [2]) example: thehe shortest path from to ¢z, where distances between
so-called1-line problem, which consists in determining two lattice sites are identified with the energieg,
the minimum energy configuration of a single (magnetic)which can either be done with Dijkstra’s algorithm from
fluxline or a directed polymer (for a 111 lattice) in a combinatorial optimization [5] or by equivalent methods
disordered environment. The lattice version of this modebetter known to physicists: the transfer matrix method [6].

is given by the Hamiltonian (or energy function) Since this1-line problem has been extensively studied
[2] we directly proceed to its full generalization t§
H(x) = %ei! " Xijs (1) fluxlines, which has, apart from a special situatiod is- 2
1

[7], never been treated in the literature before. The reason
where} ;) is a sum over albonds(ij) joining sitei and;  is simple: Whereas two linesvV(= 2) are still tractable
of ad-dimensional lattice, e.g., a rectangulaf (' X H) [8], the transfer matrix method fails to work efficiently
lattice, with periodic boundary conditions (b.c.)dn— 1  for an increasing number of lines since its complexity
space directions and free b.c. in one direction. The bondrows exponentially withV. Since it is the dense limit
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Suppose that we put one fluxline along a shortest path
P(s,t) from s to ¢, which means that we set; = 1 for
all arcs on the patl®(s, 7). Then the residual network is
obtained by reversing all arcs and inverting all energies
along this path, indicating that here we cannot put any
further flow in the forward direction (since we assume
hard-core interaction, i.ex;; = 1), but can send flow
backwards by reducing; on the forward arcs by one unit.
This procedure is sketched in Fig. 1.

The second key ingredient is the introduction of a so-
called potentiaky that fulfills the relation

e(j) = i) + e 4)

for all arcs(ij) in the residual network, indicating how
much energyp () it would at leasttake to send one unit

of flow from s to sitej, if it would cost an energy (i)

to send it to site. With the help of these potentials one
defines the reduced costs

¢ = e+ @li) — @(j)=0. (5)

FIG. 1. Sketch of the residual network with shortest pathThe |ast inequality, which follows from the properties of

before putting in the first fluxline (top left) and after the . h
update for one fluxline (top right). Bottom: Residual network the potentialy (4) actually ensures that there is no loop

after second iteration (left) and the actual optimal fluxiine £ in the current residual network (corresponding to a
configuration (right). Note that this case is a nontrivial caseflow x) with negative total energy, SINCE (;j)cr €ij =
e e 1 e st b deomed i orier 1 sy, f, impying hat e fow s opimal ]
portant to note that the inequality (4) is
reminiscent of a condition for shortest path distan¢€$
rr1;rom s to all sitesi with respect to the energies;: they
thave to fulfill d(j) = d(i) + e;;. Thus, one uses these
distances! to construct the potentiab when putting one
fluxline after the other into the network:
We start with the empty network (zero fluxlines) =
0, which is certainly an optimal flow foN = 0, and set
=0, cfj = ¢;;. Next, letus suppose that we have an op-

N = pL¢ 1 with p of the order of 1 which is expected to
contain new physics an algorithm that solves this proble
in polynomial time as the one we are now going to presen
is highly desirable.

The N-line problem again consists in minimizing (1)
in such a way that (2) and (3) are fulfilled, now with an
arbitrary value forN. Physically one has to take into
account a repulsive interaction between the fluxlines, fof* . ) . i
instance a hard-core repulsion, which can be modeled b 'Nil N _h I-line conflgurat_loln_ C?Vr[?Spr?ndm(? to éhe flow
inferring thatx;; € {0, 1}, i.e., that only a segment of one ;\,,11_ e current]\P_()ltgntla '3}3_1 ’ the reduce C.OStS
single fluxline can pass through an arc [9]. It is also®©¢ii = €ij T ¢ N_(ll) — ¢" () and we con5|_dler
possible to apply our method to a situation with soft-core€ residual networks, 71correspond|_ng tothe ﬂOW_N
repulsion, which we discuss below. The problem is nowith the reduced costs) ' = O.NThe iteration leading to
formulated in such a way that it is identical to a minimum an optimalN-line configurationx;; is as follows:
cost flow problem in combinatorial optimization [5]. (1) Determine a shortest patt(s, ¢) with respect to the

Since the 1-line problem can be solved by finding areduced costsa?}_l from s to ¢ in the residual network
shortest path the intuitive idea to solve thdine problem GN L
would be to search successively shortest path, i.e., by ~ (2) For all site onP(s, 1) let d(i) be the shortest path
adding one fluxline after the other to the system. Howeverglistance froms to i. For these update the potentials:
adding a fluxline to an existing fluxline configuration might ¢" (i) = @~ ~'(i) + d(i) — d(2).
necessitate redirecting one or more fluxlines, as indicated (3) To obtainx;; increase (decrease) by one unit the
in Fig. 1. This at first sight formidable task is elegantly flow variablesxf»}{_1 on all forward (backward) arc&;)
solved by the so-called successive shortest path algorithon the shortest patA(s, 7).
for minimum cost flow problems [5]. Note that due to the fact that the numbei§) are

The first key ingredient is that one does not workshortest distances one has agaﬂ\z 0, i.e., the flow
with the original network but with the residual network xV is indeed optimal. The complexity of this iteration
corresponding to the actual fluxline configuration, whichis the same as that of Dijkstra’s algorithm for finding
contains also the information about possibilities to sendghortest paths in a network, which@(M?) in the worst
flow backwards (now with energy-e;; since one wins case Y is the number of nodes in the network). We
energy by reducing;;), i.e., to modify the actual flow. find, however, for the cases we considérdimensional
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lattices) it roughly scales linear i¥ = L¢. Thus, forN replaced by the quantity;;(x;; + 1) — &;;(x;;), which is
fluxlines the complexity of this algorithm i© (NL9). the energy needed to increase the figyon arc(ij) by one

In Fig. 2 we show a number of optimal fluxline unit. Since it depends on the current flawthe convex-
configurations with varying line density obtained with ity of ¢;; is needed to ensure that the reduced costs fulfill
our algorithm for theN-line problem on a X L square the inequalityc); = 0 (5) also after the flow modification.
lattice. We would like to emphasize the algorithm worksWhereas with hard-core repulsion it was only possible to
for fluxlines in arbitrary dimension, even for general put N = L fluxline into the system, the fluxline density
graphs. One observes that the roughrigss],, of the  can now be arbitrarily high and an interplay between the
fluxlines decreases systematically with increasing lingepulsion and the disorder effects lead to a much richer
density from the single line limitX\ = 1) [Aw]l,y ~ L  phenomenology [11].
with the roughness exponetit= 2/3 to the dense limit Up to now we considered situations in which the flux-

(N = L in d = 2) with no roughness at alAw],, = 0. lines are put into the system via an explicit external source.

For a finite fluxline densityp = N/L each fluxline is We now present a model in which fluxlines are generated

essentially free up to a lengthy = gll/f with £, = 1/p. insidethe system: namely the vortex representation of the

Thus one expects faf = 2 the finite size scaling form gauge glass model [12] with strong screening, which is
[Awle ~ LEW(Hp”) with v = 1/¢, (6) given by the Hamiltonian [13]

w_here~H is the height andw is a scaling function Hy = Z(XU — bij)>. (8)

with w(x) — const forx — 0. In Fig. 3 we show a @)

corresponding scaling plot for the data obtained with our
algorithm ford = 2 (andH = L) [11].

Before we proceed we would like to point out that
the Hamiltonian (1) is general enough to describe variou
physically interesting situations. By an appropriate defi-
nition of the energieg;; one can easily model columnar
defects [10], disorder induced melting of a fluxline lattice
(e.g., the Abrikosov lattice) and depinning transitions.

Here > ;) is a sum over all bonds of a simple cubic
lattice (@ = 3) with periodic b.c. in all directions and we

o not have external source nodes subjected to condition
3). Thex;; are the integer flow variables that have to
fulfill the divergence free condition (2), and titg; are
guenched random variables that aeal numbers. They
can be arbitrary, however in the gauge glass they fulfill a

Next we consider soft-core repulsion, which can b dlvergenc.e ffee conditioﬁ - b = 0 since they represent
modeled by allowing a multiple occupancy of a bond@ Mmagnetic field derived frpm a quenched random vector
(x;j = 0,1,2,...) but punish high fluxiine densities with POtential b =V x'A).  Without the constraint (2) the
an energye;;(x;;) increasing faster than linear with the optimal solution WO.UId simply be given by _choosm;tg
number of flux unitsr;; on the bondij). Thus then-line to be the closest integer tb;;. This solution fulfills

¢ ; _
problem with soft repulsion consists in minimizing cij = 0 with ¢ = 0, where the costs are chosen as for the
_ convex flow problem (7). Since it violates the constraints
Ax) =D &), (7)  (2) one has either excess or deficit flow entering or
(i) leaving individual sites, which one has to remove. Instead

under the constraints (2) and (3). The local energy funcef sending flow from one particular source nosleto
tionsé;; can be chosen arbitrarily for each bofig), how-  a targets as in the fluxline problem, one now sends
ever, they have to beonvexas for instance;;(x;;) = k;; - flow from excess to deficit sites along shortest paths
xi; with n = 1 arbitrary. The energies; have now to be using the iteration described above. In this way one
successively removes the violations of constraint (2) by
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FIG. 2. Optimal fluxline configuration for one particular 2D FIG. 3. Scaling plot for the roughness (per line) in the
sample of linear sizé& = 100. The number of fluxlinesy, is  two-dimensional multifluxline system; cf. (6). The data are
1,2,4 (top) and 8,16,32 (bottom). averaged over 1000 different disorder configurations.

4490



VOLUME 81, NUMBER 20 PHYSICAL REVIEW LETTERS 16 MVEMBER 1998

keeping the reduced cost optimalit)‘/j = 0 all the time, containing many fluxlines or directed polymers with short
which guarantees the optimality of the flow at the end ofrange repulsion and derived a number of new results. It
the iteration. would be of high interest to think about generalization to
The physically most interesting question in the contexffluxlines with long range (like Coulomb) interaction. [20].
of the model Hamiltonian (8) concerns the existence of a This work has been supported by the DFG, and
superconducting glass phase. This can be studied via do- acknowledge helpful discussions with M. Alava,
main wall renormalization group methods [14], by which U. Blasum, J. Kisker, and V. Petgja.
one determines the scaling behavior of low lying excita-
tion AE on the length scalé. Such an excitation in the
vortex representation (8) is a loop (closed fluxline) with an 1] For a review, see G. Blattest al., Rev. Mod. Phys66,
area proportional td.?, which can be realized by an ex- 1125 (1994).
tra fluxline (on the background of the true ground state) [2] T. Halpin-Healy and Y.-C. Zhang, Phys. Rep54 215
winding once around the 3D torus in one direction (note (1995), and references therein.
that we have periodic b.c. in all directions). Details of [3] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.
this procedure can be found in [15]; here we give only 56, 889 (1986).
the result AE ~ L? with 8 = —0.95 = 0.03 From this [4] For a review, see M. Alava, P. Duxbury, C. Moukarzel,
we can draw two conclusions: (a) since it is clearly nega- ~ and H. Rieger,Combinatorial Optimization and Disor-
tive there is no superconducting (vortex) glass phase at dered Systemsdn Phase Transition and Critical Phenom-

A . ena, edited by C. Domb and J.L. Lebowitz (Academic
nonvanishing temperature, and (b) the thermal correlation Press, New York, to be published).

length diverges only with — 0 asén, ~ 7" with an ex- 5] H. Rieger, Frustrated Systems: Ground State Properties

ponenty = 1/]6] ~ 1.05 + 0.03, which is in agreement via Combinatorial Optimizationl.ecture Notes in Physics

with Ref. [13]. 501 (Springer-Verlag, Heidelberg, 1998); R. Ahuja,
Finally, as our last application of our algorithm we T. Magnanti, and J. OrlinNetwork Flows(Prentice Hall,

discuss the Sine-Gordon model with random phase Englewood Cliffs, NJ, 1993).
shifts, which in two dimensions is a model for a fluxline [6] M. Kardar, Phys. Rev. Let65, 2235 (1985); D. Huse and
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