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We study the quantum phase transition in the two-dimensional random Ising model in a transve
field by Monte Carlo simulations. We find results similar to those known analytically in one dimension
At the critical point the dynamical exponent is infinite and the typical correlation function decays with
stretched exponential dependence on distance. Away from the critical point there are Griffiths-McC
singularities, characterized by a single continuously varying exponent,z0, which diverges at the critical
point, as in one dimension. Consequently, the zero temperature susceptibility diverges for arange of
parameters about the transition. [S0031-9007(98)08096-X]
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Though classical phase transitions occurring at finite
temperature are very well understood, our knowledg
of quantum transitions atT  0 is relatively poor, at
least for systems with quenched disorder. There i
however, considerable interest in these systems sin
they (i) exhibit new universality classes, and (ii) display
“Griffiths-McCoy” [1,2] singularities even away from
the critical point, due to rare regions with stronger tha
average interactions.

Just as the simplest model with a classical phase tran
tion is the Ising model, the simplest random model with
quantum transition is arguably the Ising model in a trans
verse field whose Hamiltonian is given by

H  2
X
ki,jl

Jijsz
i sz

j 2
X

i

his
x
i . (1)

Here thehsa
i j are Pauli spin matrices, and the neares

neighbor interactionsJij and transverse fieldshi are both
independent random variables. This model should provid
a reasonable description of the experimental system [
LiHoxY12xF4 and may also be an appropriate model [4
to describe non-Fermi liquid behavior in certainf-electron
systems.

Naturally the random transverse field Ising model ha
been quite extensively studied and many surprisingana-
lytical results are available [5–7] for the case of dimen
sion d  1. For example, the dynamic critical exponent
z, is infinite. Instead of a characteristic time scalejt

varying as a power of a characteristic length scalej ac-
cording to jt , jz , one has instead an exponential re
lation [5] jt , expsconst3 jc d, wherec  1y2. This
is calledactivateddynamical scaling. In addition, distri-
butions of the equal-timesz

i –s
z
i1r correlations are very

broad. As a resultaverageand typical [8] correlations
behave rather differently, since the average is dominat
by a few rare (and henceatypical) points. At the critical
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point, for example, the average correlation function falls
off with a power of the distancer asCav srd , r2h̃, where
[5] h̃  s3 2

p
5dy2 . 0.38, whereas the typical value

falls off much faster, as a stretched exponentialCtypsrd ,
exps2const3 rsd, with s  1y2. As the critical point
is approached, the average and typical correlationlengths
both diverge but withdifferentexponents [5], i.e.,jav ,
d2nav ; jtyp , d2ntyp , whered is the deviation from criti-
cality, andnav  2, ntyp  1. Finally, there are strong
Griffiths-McCoy singularities at low temperature even
away from the critical point, coming from rare regions
which are “locally in the wrong phase.” These are char
acterized by a single continuously varying exponent [9]
z0sdd, which divergesasd ! 0.

An important question is whether these striking analyti
cal results are a special feature of 1D or whether the
are valid more generally. Unfortunately, the analytica
approach is valid only in 1D, and very little is known in
higher dimensions. Senthil and Sachdev [10] have studie
the model in Eq. (1) with site dilution and shown that
activated dynamical scaling occurs along that part of th
zero temperature phase boundary which is preciselyat
the percolation concentration. However, it is not clear i
this result also holds for the rest of the phase boundar
and, to our knowledge, there are no results at all fo
other, more general, models. Here, we investigate th
behavior of the random transverse field Ising ferromagne
in two dimensions by performing large-scale Monte Carlo
simulations. Because the ferromagnet has no frustratio
we are able to use highly efficient cluster algorithms
which considerably reduce critical slowing down. Our
main conclusion is that the behavior of the 2D system
is very similar to that of 1D.

In order to capture the random quantum critical behavio
in the intermediate-size systems that we can simulat
we wish the disorder to be effectively quite strong. In
© 1998 The American Physical Society
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particular, we would like some of the fields to bemuch
stronger than the bonds in their vicinity and vice vers
which is captured by having distributions for both the field
and interactions with a finite weight at the origin. We
therefore take the following “box” distribution

psJijd 

Ω
1, for 0 , Jij , 1,
0, otherwise,

rshid 

Ω
h21, for 0 , hi , h,
0, otherwise.

(2)

As is standard [11], we represent thed-dimensional
quantum Hamiltonian in Eq. (1) by an effective classica
action in d 1 1 dimensions, where the extra dimension
imaginary time, is of sizeb ; 1yT , and is divided up
into Lt ; byDt intervals each of widthDt in the limit
Dt ! 0. The partition function can then be written a
Z  limDt!0 Tr exps2Sd, where the effective classical
action is given by

S  2
X

ki,jl,t
KijSistdSjstd 2

X
i,t

eKiSistdSist0d , (3)

wheret0  t 1 Dt, Sistd  61,

Kij  DtJij , and exps22 eKid  tanhsDthid . (4)
To study large systems’ sizes with small statistical e

rors, we use cluster algorithms which simultaneously fl
many spins. For our results on Griffiths-McCoy singu
larities we have developed [12] a variant of the loo
algorithm [13] in which the required limitDt ! 0 is ex-
plicitly taken. We shall call this thecontinuous imagi-
nary time algorithm. It represents the original quantum
Hamiltonian exactly (apart from statistical errors). W
tune through the transition by varyingh.

In our simulations which determine for critical expo
nents, we use a different approach, and exploit unive
sality according to which the universal quantities shou
be independent ofDt and so, for convenience, we se
Dt  1. We then have a three-dimensional Ising mode
with disorder perfectly correlated in one direction, whic
we simulate using the Wolff [14] cluster algorithm. We
shall call this thediscrete imaginary timealgorithm. It
doesnot represent the quantum Hamiltonian exactly bu
is expected to be in the same universality class. Furth
more, for this algorithm we find it convenient to parame
trize the strength of fluctuations by an effective classic
temperatureTcl ; 1ybcl (not equal to the real tempera-
ture which is the inverse of the size in the time direction
and writeZ  Tr exps2bclHcld where

Hcl  2
X

ki,jl,t
JijSistdSjstd 2

X
i,t

eJiSistdSist 1 1d .

(5)
Here t runs over integer values,1 # t # Lt , and the
distributions of the interactions are given by

psJijd 

Ω
1, for 0 , Jij , 1,
0, otherwise,

rseJid 

(
2 exps22eJid, for eJi $ 0,

0, for eJi , 0,
(6)
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which, from Eq. (4), is similar to Eq. (2). We tune
through the transition by varying the classical tempera
ture,Tcl.

The lattice is of sizeL in the space directions, and
we denote disorder averages byf· · ·gav and Monte Carlo
averages for a single sample byk· · ·l. For both algorithms
we employ periodic boundary conditions in all directions

First of all we discuss our results for the location
of the critical line using the continuous imaginary time
algorithm. We do this by computing the Binder ratio

gav 
1
2

"
3 2

kM4l
kM2l2

#
av

, (7)

where M 
P

i

Rb

0 Sistd dt. At any finite temperature
the system is expected to be in the universality class
the classical two-dimensional random bond Ising ferro
magnet. For small temperatures the size of the class
cal critical region shrinks, and we need to study large
sizes (we went up toL  32) to get a reliable estimate of
hcsT d. By extrapolating the latter toT  0, see Fig. 1,
we obtain for the location of the quantum critical point
hc  hcsT  0d  4.2 6 0.2.

Now we turn our attention to the Griffiths-McCoy
region in the disordered phase (h . hc). Because of the
presence of strongly coupled regions in the system th
probability distribution of excitation energies (essentially
inverse tunneling times for these ferromagnetically ordere
clusters) becomes extremely broad. As a consequence
expect the probability distribution of local susceptibilities
to have an algebraic tail atT  0 [15–18],

Vsln xlocald ø 2
d

z0shd
ln xlocal , (8)
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FIG. 1. Results obtained with the continuous imaginary tim
algorithm. The left-hand axis indicates the phase diagram
of the d  2 random transverse Ising model: PM means
paramagnetic; FM means ferromagnetic;Tc  1.00s1d is the
critical temperature of the classical random Ising ferromagne
(hi  0) with the box bond distribution in Eq. (2), and
hc  4.2s2d the location of the quantum critical point we
are interested in. The right-hand scale indicates the valu
of dyz0shd obtained from analyzing the integrated probability
distribution of lnxlocal according to (8) in the Griffiths-McCoy
region, h . hc. The open circle corresponds toz0shcd  `
and the horizontal line atdyz0  1 indicates the expected limit
limh!` z0shd  d. The broken line is just a guide to the eye.
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where Vsln xlocald is the probability for the logarithm
of the local susceptibilityxi at site i to be larger than
ln xlocal. The dynamical exponent [9]z0shd varies con-
tinuously with the distance from the critical point an
parametrizes the strengths of the Griffiths-McCoy sing
larities also present in other observables. At finite tem
peratures the distribution ofxlocal is chopped off atb,
and close to the critical point one expects finite-size co
rections as long asL or b are smaller than the spatia
correlation length or imaginary correlation time, respe
tively. We usedb # 1000 and averaged over at leas
512 samples.

In Fig. 1 we show our results fordyz0shd in
the Griffiths-McCoy region. Forh ! ` we expect
dyz0shd ! 1, since this is the result forisolated spins
in random fields with nonvanishing probability weigh
at hi  0. The more interesting limit ish ! hc. The
data are well compatible with limh!hc z0shd  `, as in
one-dimension [5,15]. The average susceptibilityfxgav
diverges like [18]fxgav , Tdyz0shd21 for T ! 0. Hence,
if lim h!hc z0shd is universal, i.e., does not depend on th
details of the disorder, as is the case in 1D,fxgav diverges
quite generally in arangeabout the quantum critical point
for systems with Ising symmetry.

Next we describe our results for critical exponen
using the discrete imaginary time algorithm, for whic
we studied sizes up toL  48 and Lt  2048. We
found that no more than 100 sweeps were required
equilibration, even for the largest lattices. At least 100
samples were averaged over.

We locate theT  0 critical point by a method already
used for the quantum spin glass [19]. We compute t
Binder ratio, Eq. (7), which (assuming, for now, thatz is
finite) has the finite-size scaling form

gav  egsdL1ynav , LtyLzd , (9)

whered  Tcl 2 Tc
cl, with Tc

cl the value ofTcl at critical-
ity. For fixed L, gav has a peak as a function ofLt . At
the critical point,Tcl

c , the peak height is independent ofL
and the values ofLt at the maximum,Lmax

t , vary asLz .
Furthermore, a plot ofgav againstLtyLmax

t at the critical
point, which has the advantage of not needing a value
z, should collapse the data. We see in Fig. 2 that this do
not happen. Rather the curves clearly become broader
larger sizes. This is easy to understand since we know t
for 1D z is infinite and it is the log of the characteristic
time which scales with a power of the length scale. Th
suggests that the scaling variable should be lnLty ln Lmax

t

with ln Lmax
t , Lc , say. A corresponding scaling plot is

shown in the inset of Fig. 2. The data collapse for siz
L $ 12, quite good forc  0.42, and not quite so good
with the 1D value,c  1y2, though we would not claim
thatc  1y2 is ruled out. We have also performed analo
gous calculations for one dimension [20] with very simila
results. The close similarity of the data for 1D and 2D
and the broadening of the data in the main part of Fig.
suggests thatz is infinite in 2D, as well as in 1D.
5918
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Next we consider the equal-time correlations at the crit
cal point. Figure 3 shows data for the average and typic
[8] correlations for spins separated by$r  sLy2, 0d. For
each value ofL, we took Lt such thatgav is close to
the peak [21] shown in Fig. 2. According to finite-size
scaling, the dependence onL for a finite system should be
the same as the dependence onr in a bulk system.

The data in Fig. 3 show that the average correlatio
function falls off with a power law, withh̃ about 1.95,
while the typical value falls off faster than a power law
(because of the downwardcurvature), consistent with a
stretched exponential behavior of the form exps2const3
Lsd, with s . 1y3. The statistical errors (shown) are
generally smaller than the size of the points, so the dow
ward curvature is statistically significant. This behavio
is of the form expected in one dimension [5], except tha
theres  1y2, a result which is reproduced by our 1D
simulations [20]. Moreover, in one dimensionc  s,
and this relation also holds in higher dimensions [22] pro
vided that the fixed point is similar, i.e., has infinitely
strong disorder. Our data are compatible with this re
sult though neithers nor c are determined with preci-
sion. Additional results, including the whole distribution
of correlation functions, will be presented in a separa
publication.

To conclude, we have found a strong similarity betwee
the critical behavior of the random transverse field Isin

FIG. 2. Results using the discrete imaginary time algorithm
at the quantum critical point,Tcl  Tcl

c  2.45. In the main
figure the horizontal axis isLtyLmax

t where Lmax
t is the value

of Lt at the peak. Note that the curves do not scale but rath
get broader for larger sizes, indicating activated scaling,z  `.
The data forL  48 are slightly high which may indicate that
the true value ofTcl

c is a little higher. In the inset, the data
for L $ 12 are seen to scale quite well with the same form
ln LtyLc known to be exact in 1D, but the value ofc  0.42
(shown) works better than the 1D value ofc  1y2.
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FIG. 3. The main figure shows the average and typical [
correlations between spinsLy2 apart at the critical point. The
average falls off with a power law, and a fit gives a slope o
2h̃ with h̃  1.95. However, the curvature of the data for
the typical correlation function shows that this falls offfaster
than a power law. The inset shows that the data are consist
with a stretched exponential form, exps2const3 Lsd, but with
s  1y3 rather than the value of 1y2 found [5] in 1D.

model in one and two dimensions. In particular, bothz
and limh!hc z0shd are infinite. Previous simulations on
quantum spin glasses [18] (for which the mean of th
distribution of theJij is zero) in two dimensions, found
these quantities to be apparently finite. However, it
plausible that the asymptotic result should be infinite als
for quantum spin glasses, and that the finite result found
an artifact of the smaller sizes used there. (Those stud
also used a nonrandom transverse field.)
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Note added.—Two of us (N. K. and H. R.) have im-
plemented numerically ford  2 a natural generalization
of the renormalization group procedure used in Ref. [
for d  1. After this work was completed, we heard tha
S.-C. Mau, O. Motrunich, and D. A. Huse (private com
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munication) used a similar approach and observed a fl
to the infinite disorder critical fixed point, just as in
d  1.
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