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Critical Behavior and Griffiths-McCoy Singularities in the Two-Dimensional
Random Quantum Ising Ferromagnet
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We study the quantum phase transition in the two-dimensional random Ising model in a transverse
field by Monte Carlo simulations. We find results similar to those known analytically in one dimension.
At the critical point the dynamical exponent is infinite and the typical correlation function decays with a
stretched exponential dependence on distance. Away from the critical point there are Griffiths-McCoy
singularities, characterized by a single continuously varying exponemhich diverges at the critical
point, as in one dimension. Consequently, the zero temperature susceptibility divergesige af
parameters about the transition. [S0031-9007(98)08096-X]

PACS numbers: 75.50.Lk, 05.30.—d, 75.10.Nr, 75.40.Gb

Though classical phase transitions occurring at finite point, for example, the average correlation function falls
temperature are very well understood, our knowledgeff with a power of the distanceasC,,(r) ~ r~7, where
of quantumtransitions at7 = 0 is relatively poor, at [5] # = (3 — +/5)/2 = 0.38, whereas the typical value
least for systems with quenched disorder. There isfalls off much faster, as a stretched exponentig) (r) ~
however, considerable interest in these systems sinaxp(—constX r?), with ¢ = 1/2. As the critical point
they (i) exhibit new universality classes, and (ii) displayis approached, the average and typical correldgogths
“Griffiths-McCoy” [1,2] singularities even away from both diverge but withdifferentexponents [5], i.e.£.v ~
the critical point, due to rare regions with stronger thané ", &, ~ 6 ", whereé is the deviation from criti-
average interactions. cality, andv,, = 2, vy, = 1. Finally, there are strong

Just as the simplest model with a classical phase transizriffiths-McCoy singularities at low temperature even
tion is the Ising model, the simplest random model with aaway from the critical point, coming from rare regions
gquantum transition is arguably the Ising model in a transwhich are “locally in the wrong phase.” These are char-

verse field whose Hamiltonian is given by acterized by a single continuously varying exponent [9],
. Z'(8), which divergesasé — 0.
H = - Z Jijoioj = Z hio;. 1) An important question is whether these striking analyti-

o cal results are a special feature of 1D or whether they

Here the{os{} are Pauli spin matrices, and the nearesiare valid more generally. Unfortunately, the analytical
neighbor interactiond;; and transverse fields are both  approach is valid only in 1D, and very little is known in
independent random variables. This model should providaigher dimensions. Senthil and Sachdev [10] have studied
a reasonable description of the experimental system [3he model in Eq. (1) with site dilution and shown that
LiHo,Y-,F4 and may also be an appropriate model [4]activated dynamical scaling occurs along that part of the
to describe non-Fermi liquid behavior in certgirelectron  zero temperature phase boundary which is precisgly
systems. the percolation concentration. However, it is not clear if

Naturally the random transverse field Ising model haghis result also holds for the rest of the phase boundary,
been quite extensively studied and many surpriging- and, to our knowledge, there are no results at all for
lytical results are available [5—7] for the case of dimen-other, more general, models. Here, we investigate the
siond = 1. For example, the dynamic critical exponent, behavior of the random transverse field Ising ferromagnet
z, is infinite. Instead of a characteristic time sc&le  in two dimensions by performing large-scale Monte Carlo
varying as a power of a characteristic length scalac- simulations. Because the ferromagnet has no frustration
cording to &, ~ £%, one has instead an exponential re-we are able to use highly efficient cluster algorithms
lation [5] &, ~ exp(constX &%), whereys = 1/2. This  which considerably reduce critical slowing down. Our
is calledactivateddynamical scaling. In addition, distri- main conclusion is that the behavior of the 2D system
butions of the equal-timer;—o i, correlations are very is very similar to that of 1D.
broad. As a resulaverageand typical [8] correlations In order to capture the random quantum critical behavior
behave rather differently, since the average is dominateh the intermediate-size systems that we can simulate,
by a few rare (and hencaypical) points. At the critical we wish the disorder to be effectively quite strong. In
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particular, we would like some of the fields to beuch  which, from Eq. (4), is similar to Eq. (2). We tune
stronger than the bonds in their vicinity and vice versathrough the transition by varying the classical tempera-
which is captured by having distributions for both the fieldsture, T;.

and interactions with a finite weight at the origin. We The lattice is of sizeL in the space directions, and

therefore take the following “box” distribution we denote disorder averages by-]., and Monte Carlo
L. foro<J. <1 averages for a single sample py-). For both algorithms
w(Jij) = {O’ otherwisé] we employ periodic boundary conditions in all directions.
’_] ’ First of all we discuss our results for the location
o(h) = {h , for0 <h; <h, (2)  Of the critical line using the continuous imaginary time
0, otherwise. algorithm. We do this by computing the Binder ratio
As is standard [11], we represent tldedimensional 1 (M*)
guantum Hamiltonian in Eqg. (1) by an effective classical Sav = 3= <M2>2 ’ (7)

action ind + 1 dimensions, where the extra dimension,

imaginary time, is of size§ = 1/T, and is divided up Where M =3 J§ Si(r)dr. At any f|n|te temperature
into L, = B/Ar intervals each of width\~ in the limit  the system is expected to be in the universality class of
A7 — 0. The partition function can then be written as the classical two-dimensional random bond Ising ferro-

Z = limy,—o Trexp(—S), where the effective classical magnet. For small temperatures the size of the classi-

action is given by cal critical region shrinks, and we need to study larger
sizes (we went up té. = 32) to get a reliable estimate of
S =~ D KiySi(n)s;(r) - Z KiSi(1)Si(7"). () p.(T). By extrapolating the latter t&@ = 0, see Fig. 1,
(@) we obtain for the location of the quantum critical point
wherer’ = 7 + AT, Si(T) = *1, h, = hC(T — 0) =42 + 0.2.
Kij = AtJj;, and exp(—2K,-) = tanhA7h;). (4) Now we turn our attention to the Griffiths-McCoy

To study large systems’ sizes with small statistical er+egion in the disordered phaske & h.). Because of the
rors, we use cluster algorithms which simultaneously flippresence of strongly coupled regions in the system the
many spins. For our results on Griffiths-McCoy singu- probability distribution of excitation energies (essentially
larities we have developed [12] a variant of the loopinverse tunneling times for these ferromagnetically ordered
algorithm [13] in which the required limiAr — 0 is ex-  clusters) becomes extremely broad. As a consequence we
plicitly taken. We shall call this theontinuous imagi- expect the probability distribution of local susceptibilities
nary timealgorithm. It represents the original quantumto have an algebraic tail & = 0 [15-18],

Hamiltonian exactly (apart from statistical errors). We d
tune through the transition by varyirig QN Yiocal) = o IN Xiocal » (8)

In our simulations which determine for critical expo-

nents, we use a different approach, and exploit univer-

sality according to which the universal quantities should 1

be independent oAr and so, for convenience, we set

A7 = 1. We then have a three-dimensional Ising model, el 0.8

with disorder perfectly correlated in one direction, which l 062

we simulate using the Wolff [14] cluster algorithm. We o TN

shall call this thediscrete imaginary timelgorithm. It o —> 104°

doesnot represent the quantum Hamiltonian exactly but

is expected to be in the same universality class. Further- u 102

more, for this algorithm we find it convenient to parame- A PN

trize the strength of fluctuations by an effective classical 6 9

temperaturel,; = 1/8 (not equal to the real tempera- h

ture which is the inverse of the size in the time direction)

and writeZ = Tr exp(— Bq H.1) where FIG. 1. Results obtained with the continuous imaginary time

~ algorithm. The left-hand axis indicates the phase diagram
Hy = - Z JijSi(7)S;(7) — Z JiSi(T)Si(t + 1). ofgthe d = 2 random transverse lIsing model:p PM me%ns
{i.j)T 0T (5) paramagnetic; FM means ferromagneti¢; = 1.00(1) is the

. critical temperature of the classical random Ising ferromagnet
Here 7 runs over integer valued, = 7 = L,, and the (4, = 0) with the box bond distribution in Eg. (2), and

distributions of the interactions are given by h. = 4.2(2) the location of the quantum critical point we
are interested in. The right-hand scale indicates the values
a(J;;) = 1, for0 <_ Jij <1, of d/z'(h) obtained from analyzing the integrated probability
Y 0, otherwise distribution of In yjo.a1 according to (8) in the Griffiths-McCoy
o ~ ~ region, h > h.. The open circle corresponds td(h.) =
() = 2exp(—2J;), forJ; =0, (6)  and the horizontal line af/z’ = 1 indicates the expected limit
' 0, for J; < 0, lim,—.z'(h) = d. The broken line is just a guide to the eye.
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where Q(In yiocar) is the probability for the logarithm Next we consider the equal-time correlations at the criti-
of the local susceptibilityy; at sitei to be larger than cal point. Figure 3 shows data for the average and typical
IN x10ca1. The dynamical exponent [9] (k) varies con-  [8] correlations for spins separated by= (L/2,0). For
tinuously with the distance from the critical point and each value ofL, we took L, such thatg,, is close to
parametrizes the strengths of the Griffiths-McCoy singuthe peak [21] shown in Fig. 2. According to finite-size
larities also present in other observables. At finite temscaling, the dependence arfor a finite system should be
peratures the distribution of...; is chopped off a8, the same as the dependencerdn a bulk system.

and close to the critical point one expects finite-size cor- The data in Fig. 3 show that the average correlation
rections as long aé or B are smaller than the spatial function falls off with a power law, with7; about1.95,
correlation length or imaginary correlation time, respec-while the typical value falls off faster than a power law
tively. We usedB = 1000 and averaged over at least (because of the downwarcurvature, consistent with a
512 samples. stretched exponential behavior of the form exponst X

In Fig.1 we show our results ford/z'(h) in  L“), with ¢ = 1/3. The statistical errors (shown) are
the Griffiths-McCoy region. Forh — © we expect generally smaller than the size of the points, so the down-
d/7z'(h) — 1, since this is the result foisolated spins  ward curvature is statistically significant. This behavior
in random fields with nonvanishing probability weight is of the form expected in one dimension [5], except that
at h; = 0. The more interesting limit ids — h.. The thereo = 1/2, a result which is reproduced by our 1D
data are well compatible with lim.,, z’(h) = <, as in  simulations [20]. Moreover, in one dimensiah = o,
one-dimension [5,15]. The average susceptibilif.y,  and this relation also holds in higher dimensions [22] pro-
diverges like [18] xJav ~ T%¥™~! for T — 0. Hence, vided that the fixed point is similar, i.e., has infinitely
if lim ,—;, z/(h) is universal, i.e., does not depend on thestrong disorder. Our data are compatible with this re-
details of the disorder, as is the case in IP],, diverges sult though neither nor ¢ are determined with preci-
quite generally in @aangeabout the quantum critical point sion. Additional results, including the whole distribution
for systems with Ising symmetry. of correlation functions, will be presented in a separate

Next we describe our results for critical exponentspublication.
using the discrete imaginary time algorithm, for which To conclude, we have found a strong similarity between
we studied sizes up td. = 48 and L, = 2048. We the critical behavior of the random transverse field Ising
found that no more than 100 sweeps were required for
equilibration, even for the largest lattices. At least 1000
samples were averaged over.

We locate thel” = 0 critical point by a method already 05
used for the quantum spin glass [19]. We compute the
Binder ratio, Eq. (7), which (assuming, for now, thais
finite) has the finite-size scaling form

gav = S(8LY" L, /L7), 9)

0.4
wheres = T, — Tg, with T the value ofT,, at critical-
ity. For fixedL, g., has a peak as a function 6f. At Sav
the critical point,7¢!, the peak height is independent lof
and the values of.; at the maximumLT®*, vary asL®.
Furthermore, a plot 0f,, againstL,/L™* at the critical 0.3
point, which has the advantage of not needing a value for
z, should collapse the data. We see in Fig. 2 that this does t/f In(L) /1042
nothappen. Rather the curves clearly become broader for R ——
larger sizes. This is easy to understand since we know that - : f
for 1D z is infinite and it is the log of the characteristic
time which scales with a power of the length scale. This 1 10
suggests that the scaling variable should bg JjiIn L™ L,/ Lmax

: max 4 ) . .
with In .LT . L?, say. A corresponding scaling pIOt.IS FIG. 2. Results using the discrete imaginary time algorithm
shown in the inset of Fig. 2. The data collapse for sizes;; e quantum critical pointl,, = T¢' = 2.45. In the main
L = 12, quite good fory = 0.42, and not quite so good figure the horizontal axis i%.,/L™ where L™ is the value
with the 1D valueys = 1/2, though we would not claim of L, at the peak. Note that the curves do not scale but rather
thatyy = 1/2is ruled out. We have also performed analo-get broader for larger sizes, indicating activated scating, .
gous calculations for one dimension [20] with very similar The data for. = 48 are slightly high which may indicate that
oL the true value off¢' is a little higher. In the inset, the data
results.  The close similarity of the data for 1D and 2Dty ; = 13 are seen to scale quite well with the same form
and the broadening of the data in the main part of Fig. 2jn7_/L¥ known to be exact in 1D, but the value ¢f = 0.42

suggests that is infinite in 2D, as well as in 1D. (shown) works better than the 1D value of= 1/2.
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0.1 = ‘ | | munication) used a similar approach and observed a flow
& L | | | g to the infinite disorder critical fixed point, j i
E . point, just as in
S e, d=2, T=T. 1 d4-1
L _ . _
107 ¢ . E
Cav - e Cu(l/R) e . - *Present address: Department of Physics, Tokyo
Ct T 0 Cyull/R) | Metropolitan University, Minami-Ohsawa 1-1, Hachiohji,
yp e . Tokyo, Japan.
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