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We study the effect of spatial correlations on quenched disorder in random quantum magnets
near a quantum critical point. In random transverse-field Ising systems disorder correlations that
algebraically with an exponentr change the universality class of the transition for small enoughr,
and off-critical Griffiths-McCoy singularities are enhanced. We present exact results for 1D utilizin
mapping to fractional Brownian motion and generalize the predictions for the critical exponents an
generalized dynamical exponent in the Griffiths phase tod $ 2.
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The presence of quenched disorder is known to ha
a pronounced effect on quantum (or zero-temperatu
phase transitions: new universality classes emerge, so
of them with unconventional scaling properties, quantu
activated dynamics, and strong, so called Griffiths-McCo
(GM) singularities [1,2] even away from the critical point
A well studied example is the random transverse Isin
model, for which many results in one dimension exi
[3–5]. Many of the unusual properties in 1D wer
recently shown to persist also in higher dimensions [6
8]. In this paper we investigate the effect of long
range correlated disorder on the critical and off-critic
singularities at quantum phase transitions. This issue h
to our knowledge, never been studied before, although i
known to have significant impact on various other phys
cal phenomena like classical (thermal) phase transitio
[9], surface properties [10,11], anomalous diffusion
disordered environments [12], and many other areas.

In addition to the experimental relevance for the qua
tum Ising spin glasses [13] an interesting relation of th
random transverse Ising models to the non-Fermi liqu
behavior off-electron compounds has recently been r
vealed [14]. For this system the low temperature prope
ties of the interacting Kondo impurities have been mapp
onto an effective quantum spin-1�2 system with strong
Ising anisotropy and random bond and transverse fiel
which turn out to possess long-range spatial correlatio
that decay like a power law with distance [14,15]. Th
observation, in addition to the above mentioned gene
interest, motivates the study of the present paper, wh
investigates the effect of long-range spatial correlations
the quenched disorder on the quantum phase transition
well as on the GM singularities.

To be concrete we consider the Ising ferromagnet w
transverse fields

H � 2
X

�ij�
Jijs

x
i sx

j 2
X

i

his
z
i , (1)

wheres
x,z
i are spin-1�2 operators and the interactionsJij

($0) and/or the transverse fieldshi ($0) are quenched
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random variables. The spins are located on the sites
a d-dimensional lattice and�ij� denote nearest neighbor
pairs on this lattice (modeling short-range interactions).

At zero temperature (T � 0) this model has, in any di-
mensiond a quantum phase transition from a parama
netic to a ferromagnetic phase at some critical value
the average ratio between bonds and fields�ln�hi�Jij��av .
Here and in the following�· · ·�av denotes the disorder av-
erage. The distance from this critical point isd, such
that for d . 0 the system (1) is paramagnetic, and fo
d , 0 it is ferromagnetic. We can introduce local devia
tions from the critical point by introducing variablesd�r�,
which in 1D are simply given byd�r� � ln�hr�Jr ,r11�.
Thus one can discriminate regions in space that tendlo-
cally to be ferromagnetic (paramagnetic) even ford . 0
(d , 0).

Here we study systematically the effect of (isotropic
spatial correlations in the disorder that can be model
with a disorder correlatorG�r�:

�d�r�d�r0��av � G�r 2 r0� . (2)

Uncorrelated disorder is described by choosingG�r� to
be a delta function. The Harris criterion for correlate
disorder [9,16] shows that any disorder correlator th
falls off faster thanr22�n [i.e., G�r� � O �r2r� with
r . 2�n, wheren is the correlation length exponent for
uncorrelated disorder] does not change the universal
class of the quantum critical point of model (1) with
uncorrelated disorder. On the other hand for

G�r� � r2r with 0 , r # 2�n �#d� , (3)

where the last inequality holds generally for the diso
dered system with uncorrelated disorder [17] (cf. [18]
the disorder correlations are relevant (and thus truly lon
ranged), the critical exponents become different from th
uncorrelated case and the quantum critical point cons
tutes a new universality class, which we explore in th
paper.
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First we consider the 1D case for which we can derive
most of our results in a rigorous way utilizing a mapping of
the problem to fractional Brownian motion [19,20]. First
we note that n � 2 for uncorrelated disorder [3,5], which
means that the long-range correlations are relevant for
r , 1. The critical exponents and scaling relations can
be determined by studying the finite size scaling behavior
of model (1). As is shown in [5] the gap DE (lowest
excitation energy) of a chain of length L is given by DE 	
msmshL

QL21
i�1 hi�Ji,i11, where ms and ms are the left and

right surface magnetizations [�O �1�], respectively. Thus,

lnDE ~

L21X

i�1

d�i� . (4)

Since d�i� are random variables with zero mean at criti-
cality that are correlated according to (2) we conclude that
lnDE scales like the transverse fluctuations of a correlated
random walk. Since �


PL21
i�1 d�i��2�av � L

RL
1 dr G�r� 	

L22r we have for r # 1

lnDE ~ Lc�r� with c�r� � 1 2 r�2 . (5)

Thus for long-range-correlated disorder the quantum acti-
vated dynamics scenario at the critical point is even en-
hanced and we get a new critical exponent c . Note that
for r $ 1 one gets c � 1�2, the result for uncorrelated
disorder [3,5]. We checked this result by computing nu-
merically the probability distribution PL�DE� (see [5] for
details), which we indeed found to scale like PL�lnDE� �
L2c�r�p̃�lnDE�Lc�r�� with c�r� as in (5).

The surface magnetization ms � �sx
1 � of a finite chain

of length L (with the spin at site L being fixed) is given by
ms � 
1 1

PL21
k�1

Qk
i�1�hi�Ji,i11�2�21�2 [5]. From this

expression and (5) one sees that �lnms�L��av � 2Lc�r�,
i.e., that the typical magnetization decays with a
stretched exponential. Moreover, away from the critical
point (d . 0) one has �lnms�L��av � 2Ld implying
�ms�L, d��typ ~ exp�2L�jtyp�, where we defined typical
correlation length that is seen to scale like jtyp � d2ntyp

with ntyp � 1 independent of the correlation exponent r.
On the other hand the average surface magnetization

can be shown [5,21] to scale like the survival probability
Psurv �L� of a random walk of L steps. This can be
related to the first return time (frt) distribution Pfrt�L�
of a fractional Brownian motion [with Hurst exponent
H � 1 2 r�2 [ �1�2, 1�; cf. (4) and (5)], which has
been shown to scale like LH22 [22]. Since Psurv�L� �R`

L Pfrt�L� � LH21 we get for r # 1

�ms�L��av � L2xs�r� with xs�r� � r�2 . (6)

For r $ 1 one has the known result xs � bs�n � 1�2.
From the analogy to fractional Brownian motion one

can also derive the exponent n describing the divergence
of the average correlation length when approaching the
critical point, j � jdj2n. A nonvanishing distance from
the critical point implies that the disorder configurations
3742
are such that they give rise to a nonvanishing average for
the step width �d�i��av � d; i.e., the fractional Brownian
motion is biased. For d . 0 (in the paramagnetic phase)
the return time distribution has an exponential cutoff
beyond a characteristic length scale j that scales like
d1�H21 [22], which yields for r # 1

jav � d2n�r� with n�r� � 2�r . (7)

From (6) and (7) one gets bs�r� � 1, independent of
r. For r $ 1 it is n � 2. The finite size scaling
behavior of the average surface magnetization is then
described by �ms�av � L2xs m̃�L1�nd�. In Fig. 1 we show
a corresponding scaling plot for r � 0.75.

The bulk magnetization mb � �sx
L�2� of such a chain is

much harder to calculate; see [5]. The size dependence
of the average bulk magnetization at criticality determines
the last and remaining critical exponent xb via

�mb�L��av � L2xb �r�. (8)

In the case of uncorrelated disorder it was possible
to predict the exact bulk magnetization exponent xb �
bb�n � �3 2

p
5 ��4 (that will also hold for any r $

1) using a particular real space renormalization group
[3], which, however, appears to be inappropriate for
long-range correlated disorder. In the limit r ! 0 the
difference between bulk and surface magnetization will
vanish due to the extreme correlation of the disorder.
Hence we expect xb�r� 	 xs�r� � r�2 for r ! 0. To
obtain the full r dependence we computed numerically
the average magnetization for finite systems using the

FIG. 1. Finite size scaling plot of the surface magneti-
zation according to the form �ms�av � L2xs m̃�L1�nd� for
r � 0.75 using (7) and (6). The data are averaged over
50 000 samples using a symmetric binary distribution for the
couplings (Ji,i11 [ 
l, l21�, where l � 5, hi � 1). Inset: The
bulk magnetization exponent xb as a function of the value of
disorder correlation exponent r estimated by evaluating nu-
merically the average persistence exponent for the same type of
correlated disorder in the Sinai model (see text). The horizontal
line is the value for uncorrelated disorder xb � �3 2

p
5 ��4 �

0.190 98 . . . ; the dashed line is r�2 and represents the asymp-
totic dependence of xb�r� for r ! 0.
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fermion representation [5] and analyzed its finite size
scaling behavior. We found only a slight decrease of
xb�r� with r, which presumably does not reflect the
true asymptotic behavior that is much harder to reach
numerically for correlated disorder than for uncorrelated
disorder. Therefore we used the relation between the
scaling properties of the bulk magnetization and the
average persistence of a Sinai walker [21,23] to compute
the exponent xb�r�, as shown in the inset in Fig. 1. It
confirms the asymptotic behavior xb�r� � r�2 and the
expected inequality xb�r� # xs�r� [23]. In passing we
note that the order parameter profiles m�r� � ��sx

r ��av do
not have the simple scaling properties reported in [24] for
the uncorrelated case.

Away from the critical point the physical properties
are controlled by strongly coupled clusters (i.e., segments
that have locally a tendency to order ferromagnetically
[5]) giving rise to the so called GM singularities. In
the paramagnetic phase (d . 0) the probability PL�l� for
a strongly coupled cluster of length l is proportional to
Le2l�j implying a typical length of such a cluster ltyp �
j lnL, with j given by (7). With Eq. (4) for the gap we
therefore get a typical energy scale of lnDE ~ dltyp ~

2d12n�r� lnL. Therefore we obtain for r # 1 and d ø 1

DE � L2z0�d,r� with z0�d, r� ~ d122�r (9)

[and z0�r, d� � 2d21 for r $ 1, d ø 1]. The general-
ized dynamical exponent z0�r, d� parametrizes all singu-
larities occurring in the GM phase [3,5,25]: e.g., the spin
autocorrelation function at T � 0 decays algebraically
with z0, Gloc�t� � ��sx

i �t�si�0���av � t21�z0

; the local
susceptibility diverges for T ! 0 when z0 . 1, xloc �
T1�z021; the specific heat has an algebraic singularity at
T � 0, C � T1�z0

; the magnetization in the presence of
an external longitudinal field (in the x direction) scales as
M � H1�z0

, etc. We computed numerically [5] the proba-
bility distribution PL�DE� which we confirmed to have a
power law tail PL�DE� ~ DE21�z011 with z0 as in (9).

Concluding the 1D case we stress that (for fixed dis-
tance d from the critical point) z0 increases monotonically
with decreasing d; i.e., stronger disorder correlations gen-
erate stronger GM singularities. Because of the nature of
these singularities this tendency is a direct consequence of
an increasing probability for large clusters for increasing
disorder correlations.

Before we proceed to the higher dimensional case (d $

2) we describe briefly the infinite randomness disorder
fixed point (IRFP) scenario, originally developed for
uncorrelated disorder [26], but one can generalize it
for the present correlated case. This phenomenological
theory involves three exponents: the lowest energy scale
DE and the linear size L of a strongly coupled cluster
are related via lnDE � Lc , its magnetic moment scales
as m � Lfc , and its typical size when approaching the
critical point, the correlation length, will diverge like
j � jdj2n. All bulk exponents can be expressed via c ,
f, and n; cf. xb � d 2 fc, ntyp � n�1 2 c�, and in
the Griffiths phase z0 ~ d2nc . For the 1D case, as treated
above, it is c � 1�2, f � �

p
5 1 1��2, and n � 2 for

uncorrelated disorder and r . 1, whereas for r , 1 we
obtained c � 1 2 r�2, f � �1 2 xb��c (see Fig. 1),
and n � 2�r. The exponent relations are satisfied for
the correlated and uncorrelated cases.

In higher dimensions the IRFP scenario still holds
[8,26], irrespective of the presence or absence of disor-
der correlations. However, the exponents (c , f, n) will
change. We can make precise statements on the change of
these exponents for the case of random bond or site dilu-
tion, for which the quantum phase transition occurs at the
percolation threshold p � pc (with p being the bond or
site concentration). In this case the physics is completely
determined by the geometric properties of the percolating
clusters [6], which means that (c , f, n) can be expressed
by the classical percolation exponents, which are the frac-
tal dimension Dperc of the percolating cluster, the expo-
nent bperc determining the probability for a site being in
the percolating cluster, and the correlation length expo-
nent nperc, respectively. It is known [9,16] that the dis-
order correlations are relevant for r , 2�nperc, in which
case one gets n�r� � nperc�r� � 2�r, c�r� � Dperc�r�,
which will increase with increasing correlations, since
then clusters become more compact, and f�r� � �d 2

bperc�r��nperc�r���Dperc�r�, where bperc�r��nperc�r� is
possibly independent of r [27]. In the GM phase this im-
plies for the dynamical exponent

z0 � jp 2 pc�r�j22Dperc�r , (10)

which increases with decreasing r, again confirming the
general tendency that disorder correlations enhance the
GM singularities.

For the generic nondiluted case the exponents need
not be identical with the diluted case; however, one
still has n � 2�r for r , 2�nuncorr , according to a
general argument given in [9]. Moreover, c increases
with increasing disorder correlations, since its value
is connected to the geometric compactness of strongly
coupled clusters. Thus, the dynamical exponent z0 �
d2nc grows, again enhancing the GM singularities.

Regarding the recent experiments on f-electron sys-
tems we point out that there is evidence [15] that the
spatial correlations in the metallic compound U12xThxPd3
decay like r23. If we assume that for the transverse Ising
model with uncorrelated disorder we have n � 2�d (as is
the case for d � 1 [3,5] and d � 2 [8], and also for other
random quantum critical points [28,29]) such a decay with
r � 3 is the marginal case and instead of modifications of
the above quoted exponents strong logarithmic corrections
will appear. In a scaling theory for the marginal situation
one has to replace L and j by L lnL and j lnj, respec-
tively, yielding for d � 3 and r � 3 for the gap, correla-
tion length, and dynamical exponent in the GM phase
3743
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lnDE � Lc lncL ,

j � d2nj lndj21, (11)

z0 � d2ncj lndjc ,
respectively, where c and n are the critical exponents
of the 3D system with uncorrelated disorder. Obviously
these logarithmic corrections will make it very hard to
extract the critical exponents c and n, for instance, from
experimental data, and, furthermore, will apparently vary
when approaching the critical point.

Finally we make a few remarks on related quantum mag-
netic systems: (a) Quantum spin glasses [28] are expected
to behave very similarly as the random ferromagnets with
respect to the introduction of disorder correlations. The
frustration caused by the random signs of the spin interac-
tions is irrelevant at the IRFP [26] and therefore the uni-
versality class and the critical exponents are not changed.
(b) Random XY , e.g., in 1D

H �
X

i

Jx
i,i11sx

i sx
i11 1 J

y
i,i11s

y
i s

y
i11 (12)

and XXZ or Heisenberg systems have different features
in 1D and in d $ 2. In the latter higher dimensional
case it seems that the quantum critical point is not an
IRFP [26,30]; however, disorder correlations will certainly
affect the critical properties. In 1D we encounter the same
scenario as for the transverse Ising systems, in particular,
for XY and XX chains [31], since these are equivalent to
two decoupled transverse Ising chains. Most remarkably
the transverse and longitudinal correlations still decay with
the same exponent (in contrast to the pure case), however,
more slowly with correlated disorder. Moreover the term
random singlet phase is now inapproriate when r , 1,
since then larger units than only pairs of spins will be
strongly coupled.

To summarize we have studied the effect of long-range
correlations in the disorder on the quantum critical be-
havior of random magnets. We have shown the relevant
correlations generally enhance the critical and off-critical
singularities, essentially because large strongly coupled
clusters appear more frequently. For the random trans-
verse Ising system in 1D we reported exact values for the
critical exponents for arbitrary disorder correlation expo-
nent r, also for the diluted case in higher dimensions and
argued how these results can be generalized to generic
bond/field randomness in d $ 2. With respect to the re-
cent experiments on f-electron systems we have pointed
out the existence of strong logarithmic corrections that
complicates the measurement of the critical and the dy-
namical exponenent. Finally we generalized our results
to XX and XY quantum spin systems.
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