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A lattice model of a three-dimensional periodic elastic medium at zero temperature is studied with exact
combinatorial optimization methods. A competition between pinning of the elastic medium, representing
magnetic flux lines in a superconductor or charge density waves in a crystal, by randomly distributed
impurities and a periodic lattice potential gives rise to a continuous roughening transition from a flat to a
rough phase. A finite size scaling analysis yields the critical exponents v = 1.3, 8 = 0.05, y/v = 2.9
that are universal with respect to the periodicity of the lattice potential. The small order parameter
exponent is reminiscent of the random field Ising critical behavior in 3D.

DOI: 10.1103/PhysRevLett.87.176102

A number of materials possess an instability towards the
formation of a periodically modulated structure in space
below a particular temperature. Prominent examples
are charge-density wave systems [1], where a Peierls
instability leads to a state with periodically varying charge
modulation, or magnetic flux lines in the mixed phase of
high-temperature superconductors [2], where the long-
range interaction among the lines results in the forma-
tion of the Abrikosov flux-line lattice. Other systems
forming such periodic structures are spin density waves
in anisotropic metals, polarization density waves in
incommensurate ferroelectrics, and mass density waves in
superionic conductors [3].

Usually the periodicity q of this state of broken trans-
lational invariance is incommensurate with the underlying
crystal lattice, but if q and a reciprocal lattice vector k
become commensurate (q = Kk/p), where p is a rational
number, the density wave locks in at this wave vector. If
fluctuations — either thermal or induced by impurities, i.e.,
quenched disorder—are weak, these systems are then in
a flat phase that can be quantified by an order parameter
reflecting the broken symmetry. Deviations of the local
density from the perfect periodic structure can be measured
by a displacement field ¢ (r), which shows long-range or-
der in the flat phase. When the fluctuations become too
strong, this long-range order vanishes at a roughening tran-
sition and the system enters a rough phase in which the
displacement-displacement correlations {{¢(r) — ¢(0)]%)
diverge with the distance r.

In the presence of quenched disorder this roughening
transition is driven by the competition between two pin-
ning forces acting on the periodically modulated flat phase:
one coming from the underlying lattice potential prefer-
ring long-range order and the other by the point impurities
tending to destroy it. The universality class of this transi-
tion in the experimentally most relevant case of three space
dimensions (3D), its critical exponents, and the scaling
laws have not been directly scrutinized up to now and are
the topic of this Letter. Thermal fluctuations are expected
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to be (dangerously) irrelevant at the roughening transition
[4], and the critical behavior at the transition should be
dominated by a zero temperature fixed point analogous to
random field critical behavior [5]. Hence the universal
properties of the roughening transition at finite tempera-
tures are expected to be identical to the one at zero tem-
perature and the critical exponents can, in principle, be
extracted numerically by exact ground state calculations
[6,7], which is the method that we use here.

The model Hamiltonian that captures the universal prop-
erties of the roughening transition under consideration
should contain the following features: It should be for-
mulated in terms of a (scalar) displacement field ¢(r) €
(—c0, +0), an elastic energy term % (V¢)? as the first order
(elastic) approximation of the interaction energy arising
from small deformations of the flat state ¢ (r) = const, a
periodic potential Vper(¢p) = Vper(¢p + 277/ p), where p
is rational, modeling the crystal lattice, and a random po-
tential Vyana(¢) mimicking the effect of impurities, which
should be invariant under the global shift of the whole
displacement field ¢ — ¢ + 2. The commensurability
parameter p entering the periodic potential is integer
for the lock-in state and is given by the ratio of lattice
constant of the elastic media with respect to that of the
underlying periodic potential. The following Hamiltonian
fulfills these requirements [3,4]:

5{=fddr[%|V¢|2

—wvcos(pep) + mcos(p — 90):|, (D

where ¢(r) are independent quenched random variables
uniformly distributed on [—7, 7] and 7y, v, and 7(r) de-
note the elastic constant, the periodic potential strength,
and the random potential strength, respectively. The un-
derlying elastic approximation for this model is valid as
long as disorder induced topological defects do not prolif-
erate. In 2D this actually happens [8], but in 3D the elastic
medium is stable for weak disorder [9].
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For v = 0, the Gaussian variational and the functional
renormalization group (FRG) calculations [10,11] and nu-
merical studies [12] show that the system is in the elas-
tic glass phase, corresponding to a zero-temperature fixed
point, at all temperatures. The elastic glass phase in 3D is
characterized by diverging fluctuations

G(r) = ¢y + 1) = ¢(r)?) = 2AIn[r[ (2)

at large distances with a universal coefficient A. The
overbar denotes the disorder average and - - -) denotes the
spatial average over ro and the thermal average.

A simple scaling argument [4,13,14] shows that for
d > 2 the flat phase (¢ = 27rn/p, where n is a fixed in-
teger) is stable as long as the disorder is weak enough: For
vanishing disorder = 0 an excitation ¢ — ¢ + 27 /p
over a terrace of linear scale £ costs an elastic energy of the
order of £~ !, whereas for nonvanishing disorder the same
excitation could gain energy of order £%/2. Thus for d > 2
the elastic energy loss will dominate over weak disorder
and the ground state stays flat. Only a strong enough dis-
order will drive the periodic medium into the rough phase.
This disorder-driven roughening transition was first [15]
studied within a variational theory in [16] for the elastic
manifold case, where a first order transition was found,
whereas the FRG method used in [4] predicted a con-
tinuous roughening transition for p > p.(d) = 6/(m./€)
with € = 4 — d at finite disorder strength that is deter-
mined by a zero-temperature fixed point. The order pa-
rameter exponent 8 and the correlation length exponent v
were given to leading order in a double expansion in € and

p = p*/p: — 1by
vl =4pu,

B/v = (m*/18)e. 3)

A naive insertion of d = 3 and p. = 6/7 into these ex-
pressions yields values for 8 and » that are incompatible
with our results which we report now.

We consider a discrete model for the continuum Ham-
iltonian (1). Because of the periodic potential the elastic
medium remains flat on a microscopic length scale with

¢ = (2m/p)h,

Therefore, on a coarse-grained level, the medium can be
described by this integer height variable {hy} representing a
(3 + 1)-dimensional surface on a simple cubic lattice with
sites x € {1,...,L}>. Creating steps costs elastic energy
and the surface is subjected to a random pinning potential.
These effects plus the periodic potential are incorporated
in the following solid-on-solid (SOS) model Hamiltonian:

H = Z Sy [x = hyl

(x.y)

= > mycos[2m/p)hy — @xls (5)

h integer . “)

where the first sum runs over nearest neighbor pairs (x,y)
on a simple cubic lattice. The Hamiltonian has to be in-
variant under a global shift z — h + p, which is inherited
from the symmetry under ¢ — ¢ + 2 of the continuum
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Hamiltonian (1). Hence we impose a periodicity in the step
energies J by Jo.+px):.w+py) = Jhx):(ny). Although vari-
ous aspects of the microscopic physics of the lattice model
(5) and the continuum Hamiltonian (1) might be differ-
ent, we can expect the roughening transition occurring in
both models to be in the same universality class, since both
models have identical symmetries. This 3D SOS model
is then mapped onto a (3+1)-dimensional ferromagnetic
random bond Ising model with an antiperiodic boundary
condition in the extra direction, denoted by u [17]. In the
ground state the latter induces a 3D interface, identical to
the surface we are searching (up to a global shift) that can
be determined exactly by using a min-cut/max-flow algo-
rithm (see [6,12] for details).

We study the model (5) with p = 2,3, and 4 in finite
L? X U lattices with L =< 32. The lattice size in the u di-
rection, U, has to be chosen large enough in order to avoid
an interference of the surface with the boundary. Ran-
dom couplings are assigned to the bonds in a unit cell of
size L X p and they are repeated periodically in the u
direction. Then the exact ground state configuration is cal-
culated using a max-flow algorithm. We present numeri-
cal results obtained by using the uniform distribution for
0= ¢ox <27 and 0 = 7 < V and the exponential dis-
tribution, P(J) = Jo ‘e /%, for J > 0[18]. The strength
of the random pinning potential is denoted by A = V /J,
and we vary this quantity to trigger the roughening transi-
tion in our system.

For each p, we measure the magnetizations

mp,q(L> A) = |<627Tih"/q>| (61 =23,.. ) (6)

with {(---)) and (- - -) denoting the spatial and the disorder
average, respectively, in the ground state. Typically the
disorder average is taken over 10000-3000 samples for
L = 4-32. Note that the order parameter m = (e‘?%) con-
sidered in Ref. [4] corresponds to m,, ,—,; cf. Eq. (4).

In Fig. 1 we show the magnetization for p = 2 as a
function of L, which scales at the critical point A = A,
like mp, ~ L~ Pra/” | where Bpq and v are the order
parameter and correlation length exponent, respectively.
This scaling is followed best by the data at A = 2.20,
whereas there is a downward (upward) curvature for A =
2.23 (2.17) when plotting Inm,, , vs InL. The critical point
A, can be directly determined by looking at the effective
exponent

_In[m4(2L)/m, 4(L)]
In2 ’

[Bp,q/V]L = (7)
which is (asymptotically) independent of system size at the
critical point and equal to the critical exponents 3, ,/v
(see Table I).

The correlation length exponent is obtained from the
scaling behavior near the critical point. Each quantity is
a function of L/& with the correlation length & ~ |A —
A.|77 such that the scaling form of the magnetization is

myg(L,A) = L™Fal? F((A = ANLY")  (8)
176102-2
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FIG. 1. Magnetizations m,, (¢ = 2,3,4)at p =2 and A =

2.17, 2.20, and 2.23 from top to bottom. The data at the critical
point A, = 2.20 are connected by solid lines. The inset shows
the effective exponents for m,, [Eq. (7)].

with a scaling function F. Using the values of A, and
B2/ v estimated previously, we determine the correlation
length exponent as the optimal value which yields the best
data collapse of m; ,—>(L,A). The estimated correlation
length exponent is also listed in Table I and the scaling
plot is given in Fig. 2(a).

The correlation length exponent is also determined from
the susceptibility defined as

Xp = L3(|(e2mins/p)|2 — |<627Tihx/p>|2). 9)

Near the transition point it develops a peak, whose po-
sition scales as [A*(L) — A.] ~ L'” and whose height
scales as y*(L) ~ LY/” with the susceptibility exponent
v. For each L, A" and y™ are obtained by fitting the sus-
ceptibility curve near the peak with a quadratic function,
and then the critical exponents are extracted to yield that
v~ =0.76(5) and y/v = 2.90(5) for p = 2. Both esti-
mates of v from the magnetization and the susceptibility
are consistent with each other, and the susceptibility ex-
ponent satisfies the scaling relation, y/v = d — 2B22/v
within the error bars. Figure 2(b) shows the scaling plot of
x2L?/? versus (A — A )LY? with A, = 2.20, v = 1.25,
and y/v = 2.90. Except for the smallest system size
L = 4, those exponents collapse the data well.

We have performed the same analysis for p = 3 and
p = 4 and present the critical points and the critical ex-
ponents in Table 1. Figures 2(c) and 2(d) show the cor-
responding scaling plots of m,—3 ,—3 and m,—44—4. The
order parameter exponent 8 turns out to be very small for

TABLE 1. Estimates for the critical exponents for different
commensurability parameter p obtained via finite size scaling
from the numerical data.

A, Bp2/v  Bps/v  Bpal/v v
p =2 22003) 0.046(5) 0.034(3) 0.022(3) 1.25(5)
p =3 247525) 0.049(7) 0.037(9) 0.024(4) 1.29(5)
p =4 29505 0.044(5) 0.033(5) 0.022(5) 1.28(8)
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all values of p and g. Nevertheless the transition is not
first order since the correlation length clearly diverges at
the critical point. This behavior is very reminiscent of the
3D random field Ising model (RFIM) [7,19,20] for which
B/v = 0.012(4) [7].

Our numerical results deviate from the FRG results [4]
in many respects. The critical exponents are substan-
tially different from the analytic results of v = 2.59 and
Ba2/v = 0.548 for p = 2 [see Eq. (3)]. Moreover, the
correlation length and the order parameter exponents ap-
pear to be independent of p within the error bars [21].

This discrepancy between the FRG and our results is
surprising since in the elastic glass phase they agree very
well. According to FRG calculations [11] the prefactor A
of the logarithmic growth of fluctuations is here given by

A = %-(4 — d). We obtain a numerical estimate for A by
studying the roughness W? = (27 /p)*[(h2) — (hy)?] =
% >« G(x) = AInL. Figure 3(a) shows the logarithmic
scaling of the roughness W? in the glass phase (A > A,),
and Fig. 3(b) shows [W2(2L) — W?(L)]/In2 as a func-
tion of 1/L, which should extrapolate to A for L — o,
For p =3 we get 098 <A <1.11 (098 <A <1.03
for p = 4), which is also consistent with the earlier nu-
merical work [12] on a lattice version of an elastic glass
model without periodic potential [i.e., Hamiltonian (5)
with y = 0]. With the current system sizes finite size
effects are so strong that it is not conclusive whether A is
nonuniversal depending on A and/or p.

If the fluctuations of the elastic glass phase have the
Gaussian nature as assumed in Ref. [11], the roughness,
W2 ~ AlnL, and the magnetizations, m, , ~ L0,
are not independent quantities since they should obey

(e1#0=180)) ~ 3O =¢EF) j51ving the relation
ep,q/ep,q’ = 6]/2/612~ (10)

Figure 3(c) shows the effective exponents €33. The
polynomial fitting is used to extrapolate the asymptotic

A=206,,,

0.06 | ‘
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10 15

v

0 5,
(A-A) L

FIG. 2. Scaling plots of the magnetization for p = 2 (a), p
3 (¢), p = 4 (d), and the susceptibility for p = 2 with y/v
2.90 (b). Parameters in Table I are used in the plots.
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FIG. 3. (a) W? vs L in semilog scale, (b) prefactor A of
W? ~ AlnL, (c) effective exponent @33 for m3; ~ L7953 and
(d) exponent ratios r = 63,/633 (empty symbols) and 63,/6; 4
(filled symbols). All data are made from p = 3 in the disor-
dered phase.

value, which yields 0.51 < 633 < 0.62. We also cal-
culate Inms,/Inms3 and Inms,/ Inms 4, which approach
2.25 and 4.0, respectively, as L increases; cf. Fig. 3(d).
Those values satisfy the scaling relations in Eq. (10) ap-
proximately. This is strong evidence for the Gaussian na-
ture of the fluctuations in the elastic glass phase and hence
justifies the analytic approaches in this regime.

However, at the critical point we obtain A, =
0.18 (p = 2),0.092 (p = 3), and 0.046 (p = 4), using
again for the roughness W2 = A.InL and an extrapola-
tion L — o. Note that A, appears to be approximately
inversely proportional to p2, which implies that the bare
width W§ = (hZ) — (hy)? is independent of p. The
Gaussian theory requires the scaling relations (10) with
0,4 = Bpg/v. But A, and (B, ,/v) listed in Table I
violate the first relation by a factor of 2. The ratios
Bp2/Bps =15 and B,>/Bp4 = 2.3 are also far from
the values 9/4 and 4, required by (10). This implies a
strongly non-Gaussian nature of the fixed point of the
roughening transition in 3D and provides a hint why
the FRG prediction (3) for 3D differs from ours. On the
other hand, the latter are based on a double expansion
around d = 4 and p = p,, and it is very possible that
d = 3 and the values for p we have considered here are
simply beyond the validity of such first order perturbation
expansion. We stress that we think that the system sizes
we studied are sufficiently large to see the true asymptotic
behavior of the roughening transition since we capture
correctly the features of the rough phase fixed point.

In summary, we presented the first numerical study of
a disorder-driven roughening transition in a periodic elas-
tic medium. Our results for the critical exponents devi-
ate significantly from the predictions of a recent analytical
FRG calculation and show that the Gaussian approxima-
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tion is not valid at the critical point. We found that this
new universality class is reminiscent of random field criti-
cal behavior in 3D including a very small order parameter
exponent. To complete the picture of the underlying zero
temperature fixed point scenario, one has to compute the
violation of hyperscaling exponent #, which necessitates
techniques different from those used in this work [22].
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