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Flow Correlated Percolation during Vascular Remodeling in Growing Tumors
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A theoretical model based on the molecular interactions between a growing tumor and a dynamically
evolving blood vessel network describes the transformation of the regular vasculature in normal tissues
into a highly inhomogeneous tumor specific capillary network. The emerging morphology, characterized
by the compartmentalization of the tumor into several regions differing in vessel density, diameter, and
necrosis, is in accordance with experimental data for human melanoma. Vessel collapse due to a combina-
tion of severely reduced blood flow and solid stress exerted by the tumor leads to a correlated percolation
process that is driven towards criticality by the mechanism of hydrodynamic vessel stabilization.
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Tumor vasculature, the network of blood vessels in and
around a growing tumor, is in many respects different from
the regular vasculature in normal tissues. Hypoxia, the lack
of oxygen that prevents a small tumor nucleus from further
growth, induces the expression of various diffusible growth
factors (GFs) by the tumor cells that trigger a coordinated
response of angiogenesis—the formation of irregular
blood vessels [1,2]. The expected increase in microvascu-
lar density (MVD) is usually observed in the periphery of
the tumor, whereas the morphology of the vasculature in
the tumor center is characterized by decreased MVD,
dilated vessels, and regions of necrotic tumor tissue [3,4].
The resulting tumor specific capillary network is very
heterogeneous, composed of dense and void regions, and
has a fractal dimension different from normal arteriove-
nous or normal capillary networks [5].

Although on the molecular level the main actors in the
angiogenic game are rapidly identified, the physical prin-
ciples that determine the global morphology of the vascular
network in tumor tissues are not known. Since, for in-
stance, MVD is used as a diagnostic tool in cancer therapy
[6], a quantitative understanding of the mechanism that
leads to the compartmentalization of the tumor vasculature
into various regions differing substantially in vessel density
appears mandatory. Moreover, scale-invariant aspects such
as fractal dimension are used as hints towards the nature of
the growth process underlying the formation of the tumor
vasculature [7]. In this Letter we propose a theoretical
model for the evolution of tumor vasculature that illumi-
nates the physical principles leading to its global morphol-
ogy. The experimentally observed increase in MVD at the
tumor perimeter and periphery and decrease in MVD and
vessel dilation in the tumor center in human melanoma [4]
appear also as the general scenario in the theoretical model
that we discuss. Furthermore, we will argue that vessel
collapses in the interior of the tumor lead to a percolation
process which is driven towards criticality, the percolation
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threshold, via a mechanism of vessel stabilization by in-
creased blood flow in the remaining vessels.

Guided by a 2d automaton model that two of us devel-
oped recently [8], we consider the tumor-vessel system as a
dynamically evolving network or graph interacting with a
tumor growth process. Although there is a large amount of
work on the mathematical modeling of tumor-induced
angiogenesis (for reviews, see, e.g., [9,10]), the integration
of the two aspects, a growing tumor and a vascular struc-
ture dynamically evolving from a given one, has not been
tried before: Previous attempts either assume a static tumor
[11] or a static network topology [12], look at dynamic
vascular remodeling in the absence of tumor growth [13],
or use cell densities within continuum models [14] or in
discretized versions [15], thereby disregarding all struc-
tural and hydrodynamic aspects.

In our model the interaction between tumor and vascu-
lature takes place via two concentration fields: the oxygen
(O2) originating in the vessel network, and the growth
factor originating in the tumor cells (TCs). A hydrody-
namic flow is imprinted on the vessel network that emits
O2. TCs proliferate (die) when the local O2 concentration
is high (low). Vessels (edges) emerge when the local GF
concentration is high enough, and they vanish (collapse)
stochastically inside the tumor when the hydrodynamic
shear force acting on the vessel walls is too low. The
biological and pathophysiological motivation for the de-
tails of the model definition to follow is discussed in [8].

To be specific, we describe the topology of the vessel
network by a graph G � �V;E�, each edge e 2 E repre-
senting a vessel and each node v 2 V a vessel junction.
Here we restrict to capillary networks and do not discrimi-
nate between arteries and veins. The network G is em-
bedded in the 3d Euclidean space R3 and restricted to the
cube Z of volume L3, which is discretized into L3 �
�L=a�3 unit cells. The microscopic length scale is chosen
to be a � 10 �m, the typical size of the endothelial cell
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FIG. 1. Schematic illustration of the model: (a) TC prolifera-
tion, (b) TC death, (c) vessel growth, (d) vessel dilatation,
(e) vessel collapse due to low shear force, and (f) collapse of
uncirculated vessels.
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(EC) and TC. For computational convenience we restrict
the edges to run only parallel to the three coordinate axes
and identify an edge with the string of unit cells of Z that it
covers. We assume the original tissue to be regularly
vascularized with a homogeneous capillary network of
given MVD that is fixed by intercapillary distance �.

The tumor is represented by the set T of tumor cells.
Initially it is a nucleus with NTC tumor cells centered at
rc � �L=2; L=2; L=2� grown using the Eden rule [16]. The
time that a TC spent under hypoxia is tuo�r�.

The vessel network G is the source of an O2 concentra-
tion field O2�r�, and the tumor T is the source of a growth
factor concentration field GF�r�. For computational tracta-
bility (cf. [17]) we assume a constant transmural O2 pres-
sure difference at all vessel walls, which implies a fixed O2

secretion rate. This assumption overestimates the O2 con-
centration in regions with high MVD, but this does not
alter the model outcome significantly.

O2�r� �
X

e2E

X

r02e

hRoxy
�jr� r0j�;

GF�r� �
X

r02T

hRgf
�jr� r0j�:

(1)

Rgf and Roxy are the growth factor and O2 diffusion radii,
respectively, and for simplicity we choose a piecewise
linear and normalized form for the contribution hR�r� of
each tumor cell or vessel segment, hR�r� � �1�
r=R�=��R3=3� for r < R and hR�r� � 0 for r � R, satisfy-
ing

R
1
0 drhR�r�4�R

2 � 1.
Each edge e represents a tubular vessel of diameter d�e�

[initially d�e� � 10 �m] and length ‘�e�, carrying a hy-
drodynamic blood flow q�e� that exerts a shear force f�e�
upon the vessel walls. The flow is assumed to be incom-
pressible, laminar, and stationary; then q�e� and f�e� fol-
low Poiseuille’s law: q�e� � d4�e�rP�e� and f�e� �
d�e�rP�e�, where the blood pressure P�r� in the nodes
(vessel junctions) is computed using Kirchhoff’s law and
rP�e� � �P�re;i� � P�re;f��=‘�e�, with re;i and re;f the end
points of e. The boundary condition for P�r� on @Z is static
and chosen such that q�e�, f�e�, and the resulting O2

concentration are initially homogeneous (with values q0,
f0 and �O2, respectively), imprinting a global net flow in the
diagonal direction rc (cf. [8]).

Starting with the initial configuration described above
the following updates are performed sequentially in each
time step of duration �t � 1 h; cf. Fig. 1 for illustration.
(a) TC proliferation: (T ! T [ frg) at tumor surface sites r
[16] with probability pnew

TC if O2�r� is larger than a threshold
coxy. (b) TC death: TCs survive a time tmax in an under-
oxygenated state, and then they die: If tuo�r�> tmax, T !
T � frg with probability pdeath

TC � 1=2. Otherwise, tuo�r� !
tuo�r� � 1 if O2�r� 	 coxy. (c) Vessel growth: In regions of
large GF concentration new vessels of maximum length
‘max form: Insert a new vessel e between two existing ones
with probability pnew

EC if GF�r�> cgf at the start point r of
the new vessel. emust not touch other vessels except at the
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start and the end point and ‘�e� 	 ‘max. (d) Vessel dilata-
tion: In regions of large GF concentration vessel diameter
grows (up to a maximum dmax): d�e� ! d�e� �P

r2e��GF�r� � cgf�=�
P

r2e2�� [where ��x� � 1 for x �
0 and zero otherwise] with probability pdil

EC as long as
d�e�< dmax. (e),(f) Vessel collapse and regression:
Weakly perfused vessels can collapse due to the solid stress
exerted by the tumor—after computation ofP�r�, f�e�, and
q�e� vessels that are cut from the blood circulation [q�e� �
0] are removed. Each remaining vessel e is removed with
probability pcollapse

EC if the shear force falls below a thresh-
old �c: f�e�=f0 <�c (cf. [13]) and more than 80% of the
vessel surface sites are occupied by TCs.

Here we restrict ourselves to the discussion of one
typical parameter set, which is partly guided by data for
human melanoma [4]. The intercapillary distance is � �
100 �m; i.e., MVD0, the original MVD, is 100=mm2. Roxy

is 100 �m (giving �O2 
 0:03), coxy is 0.01, and the pro-
liferation times are for TCs tTC � 10 h (i.e., pnew

TC � 0:1)
and for new vessels and vessel dilatations tEC � 40 h (i.e.,
pnew

EC � pdil
EC � 0:025), and TC survival time tmax � 20 h.

We set Rgf � 200 �m and cgf � 0:001. dmax is 35 �m,
‘max � 100 �m, �c � 0:5, and the time that weakly per-
fused vessels can survive inside the tumor tcollapse � 50 h,

i.e., pcollapse
EC � 0:02. NTC is 27 000.

An example for the time evolution of the tumor or vessel
system in this model is shown in Fig. 2. Starting from a
regular vessel network the MVD in the peritumoral region
is increased due to the supply of GFs from the tumor, as can
best be seen in the snapshots of an equatorial cross section
through the tumor center in Figs. 2(g)–2(i). Once the
tumor grows over this highly vascularized region, vessels
start to collapse, by which the MVD in the interior of the
tumor is continuously decreased until only a few thick
vessels, surrounded by cuffs of TCs, remain. Because of
the reduced MVD, the tumor center regions become hy-
poxic and TCs will die leaving large necrotic regions. This
compartmentalization of the tumor into different shells that
4-2
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FIG. 3 (color online). (a) Tumor density �TC, (b) MVD,
(c) vessel diameter d, (d) blood pressure gradient rP, and
(f) shear force f as a function of the distance to the center R �
jr� rcj for different times t [see (a)]. Panel (e) shows rP as a
function of the azimuthal angle �. The data are averaged over all
sites with the same R (or �). Except for �TC, all quantities are
normalized to their (constant) values in the original network.
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FIG. 2 (color online). The time evolution of the tumor or
vessel system demonstrated by 3 snapshots at time t � 0, 200,
and 400. (a)–(c) Only the tumor is presented (note the necrotic
regions inside), (d)–(f) only the vessel network is presented
(note the increased MVD at the tumor periphery, and the reduced
MVD and dilated vessels in the tumor center), and (g)–(i) shows
an equatorial cross section of the whole system in the xy plane at
z � L=2. The parameter values are given in the text. The color
code of the TCs represents the age scaled to �0; 1� and the color
code of the vessel indicates the scaled blood flow, q�e�=q0.
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can be discriminated by MVD, vessel diameter, and ne-
crosis is also observed in real tumors [4].

Figure 3 presents a quantitative analysis of this dynami-
cal evolution. Shown in Fig. 3(a) is the radial tumor density
�TC�R�. One sees that the tumor radius grows linearly with
time t: RTC�t� � RTC�0� ’ 2t=tTC, where the factor 2 is
typical for the Eden growth. The radial vessel density
MVD�R�, shown in Fig. 3(b), has the peak in accordance
with the tumor boundary at RTC�t�.

Both �TC�R� and MVD�R� are substantially reduced
inside the tumor due to the emergence of necrotic regions.
The radial vessel diameter d�R�, shown in Fig. 3(c), in-
creases linearly from 1 at R ’ RTC � Rgf to dmax at the
tumor center since vessels that have long been exposed to
GFs have large diameters. Such a characteristic vessel
morphology is also in a quantitative agreement with ex-
perimental data presented in [4], where the morphometry
of human malignant melanoma was analyzed and the data
for MVD and vessel perimeter were obtained in three
different regions of the tumors: (I) the tumor center,
(II) the tumor periphery, and (III) the peritumoral host
tissue. It was found that for melanoma larger than
1.5 mm the MVD in (I) was less than 50% of the normal
tissue MVD0, in (II) it was around 50% more than MVD0,
and in (III) it was around 2 times MVD0. Within the
statistical error of the experimental data (up to 30%), this
agrees reasonably well with our results.
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Figures 3(d)–3(f) are concerned with hydrodynamic
quantities: Panel (d) shows the radial blood pressure gra-
dient rP�R�, which is 50% lower in the tumor center than
in normal vessels. This is, from hydrodynamic consider-
ations, an immediate consequence of the increased MVD
in the peritumoral region. Panel (e) shows the azimuthal
dependence of the pressure gradientrP���, where for each
vessel � is the azimuthal angle of the vessel center in a
spherical coordinate system with rc as center and the z axis
parallel to the diagonal. rP��� is lowest in the direction
orthogonal to the global flow �� � �=2�. Panel (f) shows
the radial shear force f�R�, which depends on the vessel
diameter and the pressure gradient. It develops a pro-
nounced dip at the tumor boundary since the pressure
gradient is reduced at the periphery but the vessel radius
is increased towards the tumor center.

The qualitative behavior of our model is robust and a
detailed discussion of the quantitative parameter depen-
dencies can be found in [8] for the 2d case, which carries
over to the present 3d case without substantial modifica-
tions: For example, the necrotic volume increases with the
ratio tEC=tcollapse due to reduced O2 supply.

The geometrical features of the emerging tumor vascu-
lature in our model are obviously very different from the
original, regular capillary network: It consists of a combi-
nation of dense and void regions that might possess fractal
properties. We used the box-counting method to determine
the fractal dimension Df as N" � "�Df , where N" is the
number of boxes of volume "3 necessary to cover the
4-3
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tcollapse and tmax. The straight line is the best fit N" � "�Df , with
Df � 2:52�5� being its slope. The local slope of the data
increases monotonically from 1, the fractal dimension of an
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tcollapse � 50 and tmax � 20. The slopes of the dashed upper
line and solid lower line are �2:24 and �1:68, respectively.
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tumor-vessel network lying within the outer limit of the
peritumoral region R & 145. The plot of N" vs " in Fig. 4
yields Df � 2:52� 0:05, which agrees with the value for
the percolation cluster in conventional percolation in 3d
[18]. We get the same value for a wide range of parameter
values and at different times t � 300 and also with other
methods to estimate Df (for a discussion, including the
caveats, see [19]). When we restrict the fractal analysis to
concentric shells (R1 	 R 	 R2) the estimates for Df de-
crease systematically towards the tumor center (see Fig. 4,
inset), reflecting the characteristic compartmentalization of
the tumor vasculature also in the fractal properties.

We conclude that the basic mechanism responsible for
the fractal properties of the tumor vasculature in our model
is the stochastic removal of vessels via vessel collapse and
regression. In conventional percolation a critical cluster
emerges only for an exactly tuned bond concentration. In
our model the network is dynamically driven into this
critical state without such fine-tuning since the removal
of vessels is correlated with the blood flow: the collapse of
weakly perfused vessels stabilizes the remaining ones due
to an increase in blood flow. We propose that this mecha-
nism is also at work in real tumors. Indeed, the fractal
analysis of two-dimensional photographs of vessel net-
works in human carcinoma yields a value of Df � 1:89�
0:04 [5], which agrees with Df for the percolation cluster
in 2d random percolation [18] and also with the value we
obtain for the 2d version of our model [8]. It has been
suggested [5] that the origin of the fractal architecture of
tumor vasculature might be based on an underlying inva-
sion percolation process [20] due to inhomogeneities in
the growth supporting matrix. Since our theoretical model
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does not involve any such matrix inhomogeneities, we
propose that it is rather the flow correlated percolation
process that determines the fractal properties of the tumor
vasculature. Neovascularization mainly occurs at the tu-
mor perimeter, and a drastic reduction of vessel density is
commonly observed in the interior of the tumor; therefore
it appears unlikely that the fractal properties attained dur-
ing growth in the periphery, independent of having char-
acteristics of invasion percolation or not, survive the
random dilution process in the tumor center. This suggests
also for a large class of real solid tumors with decreased
central MVD that the basic mechanism leading to the
fractal features of the tumor vasculature is the random
vessel collapse inside the tumor and not a stochastic vessel
growth process.
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