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The interplay between disorder, quantum fluctuations, and dissipation is studied in the random
transverse Ising chain coupled to a dissipative Ohmic bath with a real space renormalization group. A
typically very large length scale L� is identified above which the physics of frozen clusters dominates.
Below L� a strong-disorder fixed point determines scaling at a pseudocritical point. In a Griffiths-McCoy
region frozen clusters produce already a finite magnetization resulting in a classical low temperature
behavior of the susceptibility and specific heat. These override the confluent singularities that are
characterized by a continuously varying exponent z and are visible above a temperature T� � L��z.
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The presence of quenched disorder in a quantum me-
chanical system may have drastic effects, in particular,
close to and at a quantum critical point. The appearance
of Griffiths-McCoy singularities [1,2], leading to the di-
vergence of various quantities like the susceptibility at zero
temperature even far away from a quantum critical point,
has received considerable attention recently [3–7]. This
quantum Griffiths behavior is characteristic for quantum
phase transitions described by an infinite randomness fixed
point (IRFP) [8], which was shown to be relevant for many
disordered quantum systems [9].

Quantum Griffiths behavior was proposed to be the
physical mechanism responsible for the ‘‘non-Fermi-
liquid’’ behavior observed in many heavy-fermion materi-
als [10,11]. However, it was also argued that in a dissipa-
tive environment, as in metals due to the conduction
electrons, such a quantum Griffiths behavior might essen-
tially be nonexistent [12,13]. Moreover, even the under-
lying sharp quantum phase transition itself was shown to be
rounded in dissipative model systems [14]. Obviously there
is a need to examine carefully the effect of dissipation on a
quantum system displaying IRFP and quantum Griffiths
behavior in the nondissipative case, which is what we
intend to do in this Letter.

The properties of a single spin coupled to a dissipative
bath has been extensively examined [15]. Upon increasing
the coupling strength between spin and bath degrees of
freedom it displays at zero temperature a transition from a
nonlocalized phase, in which the spin can still tunnel, to a
localized phase, in which tunneling ceases and the spin
behaves classically. Such a transition is also present in an
infinite ferromagnetic spin chain coupled to a dissipative
bath, as it was recently shown numerically [16]. Here we
want to focus on the interplay of disorder, quantum fluc-
tuations, and dissipation and study the random transverse-
field ising chain (RTIC) where each spin is coupled to an
Ohmic bath of harmonic oscillators [17]. It is defined on a
chain of length Lwith periodic boundary conditions (PBC)
and described by the Hamiltonian H:
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where �x;zi are Pauli matrices and the masses of the oscil-
lators are set to one. The quenched random bonds Ji (and
transverse fields hi) are uniformly distributed in �0; J0� and
�0; h0�, respectively. The properties of the bath are speci-
fied by its spectral function Ji�!	 �
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�!=�i , where �i is a cutoff frequency.
Initially the spin-bath couplings �i and cutoff frequencies
are homogeneous, i.e., �i � � and �i � �, but become
site dependent under renormalization.

To characterize the ground state properties of this system
(1), we follow the idea of a real space renormalization
group (RG) procedure introduced in Ref. [18] and pushed
further in the context of the RTIC without dissipation in
Ref. [3]. The strategy is to find the largest coupling in the
chain, either a transverse field or a bond, compute the
ground state of the associated part of the Hamiltonian,
and treat the remaining couplings in perturbation theory.
The bath degrees of freedom are dealt with in the spirit of
the ‘‘adiabatic renormalization’’ introduced in the context
of the (single) spin-boson (SB) model [15], where it de-
scribes accurately its critical behavior [19].

Suppose that the largest coupling in the chain is a
transverse field, say h2. Before we treat the coupling of
site 2 to the rest of the system �J1�
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perturbatively as in [3] we consider the effect of the
part �h2�x2 �
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Hamiltonian, which represents a single SB model. For
this we integrate out frequencies !k that are much larger
than a lower cutoff frequency ph2 
 �2 with the dimen-
sionless parameter p� 1. Since for those oscillators
!k � h2 one can assume that they adjust instantaneously
to the current value of�z2 the renormalized energy splitting
is easily calculated within the adiabatic approximation [15]
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FIG. 1. (a) ~PL�log��0=h	� as a function of log��0=h	 for differ-
ent system sizes L for ��0:03 (h0 � 1, J0�0:34), i.e., far from
the pseudocritical point. (b) ~PL�log��0=h	� as a function of
log��0=hL

z	 for different L for � � 0:03 (h0 � 1, J0 � 0:34).
The straight dashed line has slope 1=z with z � 1:65�5	.
(c) ~PL�log��0=h	� as a function of log��0=h	 for different L
for � � 0:052 (h0 � 1, J0 � 0:34), i.e., at the pseudocritical
point. (d) L ~PL�log��0=h	� as a function of log��0=h	=L

 for
different L for � � 0:052,  � 0:32.
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and one gets an effective transverse field ~h2 < h2:

~h 2 � h2�ph2=�2	
�2 ; ~�2 � ph2: (2)

If ~h2 is still the largest coupling in the chain the iteration
(2) is repeated. Two situations may occur depending on the
value of �2. If �2 < 1 this procedure (2) will converge to a
finite value h�2 � h2�ph2=�2	

�2=�1��2	 and the SB system
at site 2 is in a delocalized phase in which the spin and the
bath can be considered as being decoupled (formally �2 �
0), as demonstrated by an RG treatment in [19].

If h�2 is still the largest coupling, the spin on site 2 will be
aligned with the field. As in the RTIC without dissipation,
this spin is then decimated (as it will not contribute to the
magnetic susceptibility), which gives rise, in second order
perturbation theory, to an effective coupling ~J1 between the
neighboring spins at site 1 and 3 [3]

~J 1 � J1J2=h�2: (3)

If �2 > 1, ~h2 can be made arbitrarily small by repeating (2)
implying that the SB system on site 2 is in its localized
phase [19] and essentially behaves classically: the decima-
tion rule (2) indeed amounts to set ~h2 � 0. Such a moment,
or cluster of spins, will be aligned with an infinitesimal
external longitudinal field and is denoted as ‘‘frozen.’’

Suppose now that the largest coupling in the chain is a
bond, say, J2. The part of the Hamiltonian that we focus on
is �J2�
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i.e., a subsystem of two spin bosons coupled via J2. We
find that in second order perturbation theory the ground
state of this subsystem is equivalent to a single SB system
coupled to both baths leading to the additive rule

~� 2 � �2 � �3: (4)

Integrating out the degrees of freedom of both baths with
frequencies larger than pJ2 the two moments at 2 and 3 are
replaced by a single one ~�2 with an effective field ~h2:

~h 2 �
h2h3

J2

�
pJ2

�2

�
�2
�
pJ2

�3

�
�3

(5)

~� 2 � �2 ��3; ~�2 � pJ2; (6)

where �i is the magnetic moment of site i (in the original
model, one has �i � 1 independently of i). Combining
Eqs. (4) and (6) one clearly sees that ~�i � ~�i�.

In the following we analyze this RG procedure defined
by the decimation rules (2)–(6) numerically. This is done
by considering a finite chain of size L with PBC and
iterating the decimation rules until only one site is left.
This numerical implementation has been widely used in
previous works [9], and it has been shown, in particular, to
reproduce with good accuracy the exact results of Ref. [3]
for the RTIC. We fix h0 � 1 and concentrate on the pa-
rameter plane ��; J0	. All data were obtained by averaging
over 105 different disorder realizations (if not mentioned
otherwise), and the disorder average of an observable O is
22720
denoted by �O. The decimation rules (2)–(6) depend ex-
plicitly on the ad hoc parameter p (or more precisely on the
ratio �=p). For the moment we fix �=p � 104 and discuss
the weak dependence on this parameter below.

The transverse field h acting on the last remaining spin is
an estimate for the smallest excitation energy. Its distribu-
tion, PL�h=�0	, where �0 is the largest coupling in the
initial chain of size L, reflects the characteristics of the gap
distribution [6]. Since the last spin can either be frozen
(i.e., the last field h is zero) or nonfrozen we split PL�h=�0	
into two parts:

~PL�h=�0	 � AL ~PL�h=�0	 � �1� AL	��h=�0	; (7)

where ~PL�h=�0	 is the restricted distribution of the last
fields in the samples that are nonfrozen and AL is the
fraction of these samples. It, or equivalently
~PL�log��0=h	�, represents the distribution of the smallest
excitation energy in the ensemble of nonlocalized spins.

Let us first present data obtained for J0 � 0:34.
Figure 1(a) shows ~PL�log��0=h	�, for � � 0:03. For a
system close to, but not at, a quantum critical point de-
scribed by an IRFP, one expects indications of Griffiths-
McCoy singularities characterized by the following scaling
behavior for ~PL

~PL�log��0=h	� � P �log��0=hLz	�; (8)

where z is a dynamical exponent continuously varying with
(J0, �, etc.). Figure 1(b) shows a good data collapse with
z � 1:65 for the chosen coupling constant � � 0:03. The
slope of the dotted line in Fig. 1(b) is identical to 1=z and
upon increasing � we observe that the slope, 1=z, de-
creases. Our numerical estimates for 1=z��	 are shown in
1-2
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Fig. 2; they indicate that 1=z approaches zero for some
critical value �c, which implies formally z! 1 for �!
�c. This is also characteristic for an IRFP, where
~PL�log��0=h	� is expected to scale as

~PL�log��0=h	� � L� P IRFP�L
� log��0=h	�: (9)

 is a critical exponent characterizing the IRFP. Figure 1(c)
shows ~PL�log��0=h	� for � � 0:052: one observes that it
broadens systematically with increasing system size, in
contrast to the data shown in Fig. 1(a). Figure 1(d) displays
a good data collapse according to (9) with  � 0:32.
Varying � only slightly worsens the data collapse substan-
tially; therefore, we take �c � 0:052 as our estimate for
the putative critical point (for h0 � 1 and J0 � 0:34) and
denote by � � ��c � �	=�c the distance from it.

The magnetic moment � of the last remaining spin in
the decimation procedure represents an estimate of the
total magnetization �meqL of the chain. In Fig. 3, we show
� ���L	 as a function of L for different values of �. For
small L, ���L	 / La with a ’ 1=3 up to a length scale L� �
O�104	 beyond which the effective coupling between
strongly coupled clusters and the bath, � ��, gets larger
than 1 and the clusters become localized. Above this value
���L	 � �meqL (see inset of Fig. 3), which suggests a finite

magnetization �meq before the putative critical point is
reached. This is a manifestation of the ‘‘frozen’’ clusters
and lead to the concept of rounded quantum phase tran-
sitions in the presence of dissipation [14]. The typical
size of a frozen cluster turns out to be rather large L� �
104 for this range of parameters �� � 0:03–0:052; J0 �
0:34	. Consequently, the fraction of nonfrozen samples,
AL, in (7) is close to 1 for the system sizes that we could
study numerically.

A stronger dissipation strength � reduces L� and gives
us the possibility to study the crossover to a regime that is
dominated by frozen clusters, in particular, the L depen-
dence of AL in (7), and we consider � � 0:2 as an example
now. For the restricted distribution ~P�log��0=h	�, we ob-
tain the same scenario as for smaller dissipation, as shown
in Fig. 4(a) for the putative critical point J0c � 0:025.
Figure 4(b) shows � ���L	 indicating that ���L	 / �meqL
for L> 100, which implies L� � 100. The fraction of
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FIG. 2. Magnetization �meq and inverse dynamical exponent
1=z as a function of � (for h0 � 1, J0 � 0:34).
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nonfrozen samples, AL, shows a clear deviation from unity
already for the system sizes we study here: Fig. 4(c) shows
AL as a function of L for different values of J0. The data
imply an exponential decay AL / e�L=

~L. The characteristic
decay length fits well to ~L / J�

��

0 , with� ’ 0:8, meaning a
very rapid increase of ~L with decreasing dissipation
strength �. By comparing ~Lwith L� for various parameters
��; J0	 we find that ~L � �L�, with � a dimensionless
number of order one, weakly dependent on � and J0.

As long as L < L� the restricted distribution is not
significantly different from the full distribution of non-
vanishing excitation energies, since the probability for a
frozen sample is small for L
 L�. Since ~PL has a power
law tail down to excitation energies exponentially small in
L, the specific heat, susceptibility, etc., in finite size sys-
tems display a singular low temperature behavior charac-
terized by the dynamical exponent z��	 down to very low
temperatures (actually down to TL � e�aL). This intermit-
tent singular behavior, ��T	 � T�1�1=z��	 for the suscepti-
bility and c�T	 � T1=z��	 for the specific heat, persists for
larger system sizes as well as for L! 1, but as soon as
L> L� it will eventually compete with the temperature
dependence of the (quantum mechanically) frozen clus-
ters—e.g., 1=T for the susceptibility. Since the latter has a
small amplitude proportional to 1=L�, classical tempera-
ture dependence will only set in below T� � L��z��	 and
Griffiths-like behavior is visible (also in the infinite sys-
tem) above T�.

It is instructive to consider the RTIC without dissipation,
but with a finite fraction 	 of zero transverse fields [i.e.,
p�h	 � 	��h	 � h�1

0 �1� 		
�h	
�h0 � h	]. The sites
with h � 0 then correspond to frozen clusters that have
an average distance L� / 	�1. Indeed the distribution
P�h=�0	 shows the same behavior as in Eq. (7) with AL �
e�L=L

�
. But, in contrast to the dissipative case, the re-

stricted distribution ~P�log��0=h	� is naturally identical
with the one for the nondiluted (	 � 0) RTIC, which
shows the IRFP scaling (9) at h0 � J0 with  RTIC � 0:5,
different from the one we obtain here.
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FIG. 4. (a) L ~PL�log��0=h	� as a function of log��0=h	=L
 

with  � 0:31 for different system sizes L for � � 0:2 and J0 �
0:025. (b) Magnetic moment � ���L	 as a function of the system
size L for � � 0:2 and J0 � 0:025 suggesting �meq > 0 and L� �
100. (c) AL as a function of L on a linear-log plot for different
values of J0 and � � 0:2. (d) Phase diagram for h0 � 1 and
�=p � 104 characterized by a single phase with �meq > 0. The
dotted line represents the line of smeared transitions character-
ized by an IRFP scaling (7) and (9).
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The connected correlation function �C�r	 �
h�zi�

z
i�ri � h�

z
i ih�

z
i�ri decays exponentially for r� L�,

given that the quantum fluctuations are exponentially sup-
pressed beyond this length scale (7), consistent with [14]. It
should also be noted that the connected correlation func-
tion of the restricted ensemble of nonfrozen samples �~C�r	
does not behave critically since the number of nonfrozen
spins belonging to the same cluster is here bounded by
1=�. Thus, the origin of the systematic broadening of the
distribution ~P�log�0=h	 is here different from a standard
IRFP and probably stems from the nonlocalized clusters
with �i close to (but smaller than) one [see Eq. (2)].

We have checked that the behavior of the gap distribu-
tion characterized by Eq. (7) and (9) depends very weakly
on the ad hoc parameter �=p in the range 10–104. In this
range, the relative variations of the estimated exponent  is
of the order of 5%, although the values of L� and ��c; J0c	
are more sensitive, and probably nonuniversal. We re-
peated the previous analysis for different values of
��; J0	 (keeping h0 � 1). In contrast to the pure case
[16], the entire plane is here characterized by a single
phase where �meq > 0, beyond a length scale L� 
L���; J0	, everywhere [except on the boundaries ��; 0	
and �0; J0	]. One can identify a line of smeared transitions
associated with the broadening of the restricted gap distri-
bution ~P�log��0=h	�, according to (9): this is depicted in
Fig. 4(d). We find that the associated exponent  vary
weakly along this line, its relative variation being less
than 10%.

To conclude, our strong-disorder RG study of the RTIC
coupled to a dissipative Ohmic bath revealed that non-
frozen samples display an IRFP scaling of the distribution
of excitation energies. With this we computed a continu-
22720
ously varying exponent z��	 that determines an intermit-
tent singular temperature dependence of thermodynamic
quantities above a temperature T� � L��z��	. L� is a char-
acteristic length scale above which the ground state dis-
plays a nonvanishing magnetization, as predicted by the
smeared transition scenario [14], and that we determined to
increase exponentially with the inverse strength of the
dissipative coupling. This implies that numerical studies
can hardly track the asymptotic behavior [17] and that
experiments at very low but nonvanishing temperatures
might still show indications for quantum Griffiths behavior
[10,12,13]. In higher dimensions we expect a similar sce-
nario as the one discussed here and it would be interesting
to extend our study to Heisenberg and XY systems.
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