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The entanglement entropy of the two-dimensional random transverse Ising model is studied with a
numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the
entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an
infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the
area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-
randomness fixed point in the diluted transverse Ising model in higher dimensions.
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Extensive studies have been devoted recently to under-
standing ground state entanglement in quantum many-
body systems [1]. In particular, the behavior of various
entanglement measures at or near quantum phase transi-
tions has been of special interest. One of the widely used
entanglement measures is the von Neumann entropy,
which quantifies entanglement of a pure quantum state in
a bipartite system. Critical ground states in one dimension
(1D) are known to have entanglement entropy that diverges
logarithmically in the subsystem size with a universal
coefficient determined by the central charge of the associ-
ated conformal field theory [2]. Away from the critical
point, the entanglement entropy saturates to a finite value,
which is related to the finite correlation length.

In higher dimensions, the scaling behavior of the entan-
glement entropy is far less clear. A standard expectation is
that noncritical entanglement entropy scales as the area of
the boundary between the subsystems, known as the ‘‘area
law’’ [3,4]. This area relationship is known to be violated
for gapless fermionic systems [5] in which a logarithmic
multiplicative correction is found. One might suspect that
whether the area law holds or not depends on whether the
correlation length is finite or diverges. However, it has
turned out that the situation is more complex: numerical
findings [6] and a recent analytical study [7] have shown
that the area law holds even for critical bosonic systems,
despite a divergent correlation length. This indicates that
the length scale associated with entanglement may differ
from the correlation length. Another ongoing research
activity for entanglement in higher spatial dimensions is
to understand topological contributions to the entangle-
ment entropy [8].

The nature of quantum phase transitions with quenched
randomness is in many systems quite different from the
pure case. For instance, in a class of systems the critical
behavior is governed by a so-called infinite-randomness
fixed point (IRFP), at which the energy scale � and the
length scale L are related as ln�� L with  > 0. In these
systems the off-critical regions are also gapless and the
excitation energies in these so-called Griffiths phases scale

as �� L�z with a nonuniversal dynamical exponent z <
1. Even so, certain random critical points in 1D are shown
to have logarithmic divergences of entanglement entropy
with universal coefficients, as in the pure case; these in-
clude infinite-randomness fixed points in the random-
singlet universality class [9–13] and a class of aperiodic
singlet phases [14].

In this Letter we consider the random quantum Ising
model in two dimensions (2D), and examine the disorder-
averaged entanglement entropy. The critical behavior of
this system is governed by an IRFP [15,16] implying that
the disorder strength grows without limit as the system is
coarse grained in the renormalization group (RG) sense. In
our study, the ground state of the system and the entangle-
ment entropy are numerically calculated using a strong-
disorder RG method [17,18], which yields asymptotically
exact results at an IRFP. To our knowledge this is the first
study of entanglement in higher dimensional interacting
quantum systems with disorder.

The random transverse Ising model is defined by the
Hamiltonian

 H � �
X
hi;ji

Jij�
z
i�

z
j �

X
i

hi�
x
i : (1)

Here the f��i g are spin-1=2 Pauli matrices at site i of an
L� L square lattice with periodic boundary conditions.
The nearest neighbor bonds Jij�� 0� are independent ran-
dom variables, while the transverse fields hi�� 0� are
random or constant. For a given realization of randomness
we consider a square block A of linear size ‘, and calculate
the entanglement between A and the rest of the system B,
which is quantified by the von Neumann entropy of the
reduced density matrix for either subsystems:

 S � �Tr��Alog2�A� � �Tr��Blog2�B�: (2)

The basic idea of the strong-disorder RG (SDRG) ap-
proach is as follows [17,18]: The ground state of the system
is calculated by successively eliminating the largest local
terms in the Hamiltonian and by generating a new effective
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Hamiltonian in the frame of the perturbation theory. If the
strongest bond is Jij, the two spins at i and j are combined
into a ferromagnetic cluster with an effective transverse
field ~h�ij� �

hihj
Jij

. If, on the other hand, the largest term is

the field hi, the spin at i is decimated and an effective bond
is generated between its neighboring sites, say j and k, with
strength ~Jjk �

JijJik
hi

. After decimating all degrees of free-
dom, we obtain the ground state of the system, consisting
of a collection of independent ferromagnetic clusters of
various sizes; each cluster of n spins is frozen in an
entangled state of the form

 

1���
2
p �j"" � � � "|���{z���}

ntimes

i 	 j## � � � #|���{z���}
ntimes

i�: (3)

In this representation, the entanglement entropy of a block
is given by the number of clusters that connect sites in-
side to sites outside the block [Fig. 1]. We note that
correlations between remote sites also contribute to the
entropy due to long-range effective bonds generated under
renormalization.

In 1D the RG calculation can be carried out analytically
and the disorder-averaged entropy �S‘ of a segment of
length ‘ has been obtained as ~S‘ �

ln2
6 log2‘ [9]. In higher

dimensions, the RG method can only be implemented
numerically. The major complication in this case is that

the model is not self-dual and thus the location of the
critical point is not exactly known. To locate the critical
point, we can make use of the fact that the excitation
energy of the system has the scaling behavior ln�� L 

at criticality, while it follows �� L�z in the off-critical
regions. In the numerical implementation of the SDRG
method, the low-energy excitations of a given sample can
be identified with the effective transverse field ~h1 of the
last decimated spin cluster, or with the effective coupling
~J1 of the last decimated cluster pair.

In our implementation we set for convenience the trans-
verse fields to be a constant h0 and the random bond
variables were taken from a rectangular distribution cen-
tered at �J � 1 with a width � � 0:5. The critical point was
approached by varying the single control parameter h0.
Although this initial disorder appears to be weak, the
renormalized field and bond distributions become ex-
tremely broad even on a logarithmic scale [Fig. 2] at the
critical point h0 � hc � 1:175. This indicates the RG flow
towards infinite randomness. Slightly away from the criti-
cal point, both in the disordered Griffiths phase with h0 �
1:18 and in the ordered Griffiths phase with h0 � 1:17, the
distributions have a finite width and obey quantum-
Griffiths scaling h1 � L�z. At the critical point one has
IRFP scaling lnh1 � L and we estimate the scaling ex-
ponent as  � 0:55, quite close to the value  � 0:5 for
the 1D case [17].

Now we consider the entanglement entropy near the
infinite-randomness critical point. To obtain the disorder-
averaged entanglement entropy �S‘ of a square block of size
‘, we averaged the entropies over blocks in different
positions of the whole system for a given disorder realiza-
tion and then averaged over a few thousand samples. In
Fig. 3 we show the entropy per surface unit �S‘=‘ � �s‘ for
different values of h0. This average entropy density is
found to be saturated outside the critical point, which
corresponds to the area law. At the critical point �s‘ in-
creases monotonously with ‘, and the numerical data are
consistent with a log-log dependence:

 

�S ‘ � ‘log2log2‘ (4)

as illustrated in Fig. 3. In this way we have identified an
alternative route to locate the infinite-randomness critical
point: it is given by the field h0 for which the average block
entropy at ‘ � L=2 is maximal. Indeed the numerical
results in Fig. 3 predict the same value of hc as obtained
from the scaling of the gaps. We note that the same
quantity, the position of the maxima of the average entropy,
can be used for the random quantum Ising chain to locate
finite-size transition points [19].

The log-log size dependence of the average entropy in
Eq. (4) at criticality is completely new; it differs from the
scaling behavior observed in 2D pure systems, like the area
law, S‘ � ‘, for critical bosonic systems [6,7], or a loga-
rithmic multiplicative correction to the area law, S‘ �
‘log2‘, as found in free fermions [5–7,20]. This double-

(a)

(b)

FIG. 1 (color online). An example of the typical ground state
in the random quantum Ising model (a) in 1D, and (b) in 2D; it
contains a collection of spin clusters of various sizes, which are
formed and decimated during the RG. The entanglement of a
block (shaded area) is give by the number of decimated clusters
(indicated by red loops) that connect the block with the rest of
the system.
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logarithmic correction can be understood via a SDRG
argument: In the 1D case a characteristic length scale r
at a given RG step is identified with the average length of
the effective bonds, i.e., the average size of the effective
clusters. At the scale r�<‘� the fraction of the total number
of spins, nr, that have not been decimated is given by nr �
1=r [17]; these active (i.e., undecimated) spins have a finite
probability to form a cluster across the boundary of the
block (a segment ‘ in the 1D case) and thus to give
contributions to the entanglement entropy. Repeating the
renormalization until the scale r� ‘, the contributions to
the entropy are summed up: �S‘ �

R
‘
r0
drnr � ln‘, leading

to the logarithmic dependence of the 1D model [9]. For the
2D case with the same type of RG transformation with a

length scale r < ‘, the fraction of active spins in the
renormalized surface layer of the block is nr � ‘=r. Here
we have to consider the situation in which some of these
active surface spins would form clusters within the sur-
face layer and thus contribute zero entanglement entropy;
the number of the active spins that are already engaged
in clusters on the surface at RG scale r is proportional to
lnr, as known from the 1D case, and only O�1� of the
active surface spins would form clusters connecting the
block with the rest of the system. Consequently, the
entropy contribution in 2D can be estimated as �S‘ �R
‘
r0
drnr= lnr� ‘ ln ln‘, i.e., a double-logarithmic ‘ de-

pendence, as reflected by the numerical data in Fig. 3.
Based on the SDRG argument described above, the

double-logarithmic correction to the area law appears to
be applicable for a broad class of critical points in 2D with
infinite randomness. For instance, the critical points of
quantum Ising spin glasses are believed to belong to the
same universality class as ferromagnets since the frustra-
tion becomes irrelevant under RG transformation, and the
same type of cluster formations as observed in our nu-
merics for the ferromagnet is expected to be generated
during the action of the RG. The entanglement entropy at
the IRFP is completely determined by the cluster geome-
tries occurring during the SDRG.

Another type of IRFP in higher dimensions occurs in the
bond-diluted quantum Ising ferromagnet: The Hamiltonian
is again given by (1), but now Jij � 0 with probability p
and Jij � J > 0 with probability 1� p. At percolation
threshold p � pc there is a quantum critical line along
small nonzero transverse fields, which is controlled by the

FIG. 3 (color online). Left panel: The disorder-averaged block
entropy per surface unit �S‘=‘ vs the linear size of the block ‘ for
a system size L � 64 for various values of h0. We observe that
the entropy for ‘ � L=2 reaches its maximum at the critical
point hc � 1:175 (cf. Fig. 2). Right panel: The block entropy per
surface area vs ln‘ on a log-scale for different system sizes L at
the critical point. The data show a straight line (guided by the
dashed line), corresponding to the scaling obeying the area law
with a double-logarithmic correction, as given in Eq. (4).

FIG. 2 (color online). The distribution of the last decimated
effective log-fields ln ~h1, and the distribution of the last deci-
mated effective log-bonds ln~J1 in the RG calculations. At h0 �
1:175, the distributions, shown in (a) and (b), get broader with
increasing system sizes, indicating the RG flow towards infinite
randomness; i.e., the system is critical. A scaling plot of the data
in (a) using energy-length scaling ln~h1 � L

 with  � 0:55 is
presented in (c). The solid line is just a guide to the eye. The
subfigures (d) and (e) show the log-field distribution at h0 �
1:18 and the log-bond distribution at h0 � 1:17, respectively; the
distributions show a power-law decaying tail in the low-energy
region, which is clear evidence that the system is in the Griffiths
phases.
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classical percolation fixed point, and the energy scaling
across this transition line obeys ln�� L , implying an
IRFP [21]. The ground state of the system is given by a
set of ordered clusters in the same geometry as in the
classical percolation model—only nearest neighboring
sites are combined into a cluster. In this cluster structure,
the block entropy, determined by the number of the clusters
connecting the block and the rest of the system, is bounded
by the area of the block, i.e., �S� ‘d�1 with d being the
dimensionality of the system. To examine this, we deter-
mined the entanglement entropy by analyzing the cluster
geometry of the bond-diluted transverse Ising model.
Figure 4 shows our results for the square lattice, which
follow a pure area law with an additive constant: �S‘ �
a‘	 b	O�1=‘�.

To summarize, we have found that the entanglement
properties at quantum phase transitions of disordered sys-
tems in dimensions larger than 1 can behave quite differ-
ently. Generalizing our arguments for the 2D case, we
expect for the random bond transverse Ising systems a
multiplicative d-fold logarithmic correction to the area
law in d dimensions at the critical point, whereas for
diluted Ising model at small transverse fields the area law
will hold in any dimension d > 1 at the percolation thresh-
old. Although both critical points are described by infinite-
randomness fixed points, the structure of the strongly
coupled clusters in both cases is fundamentally different,
reflecting the different degrees of quantum mechanical
entanglement in the ground state of the two systems.
This behavior appears to be in contrast to one-dimensional
systems governed by IRFPs [9].

Other disordered quantum systems in higher dimensions
might also display interesting entanglement properties: For

instance, the numerical SDRG has also been applied to
higher dimensional random Heisenberg antiferromagnets
which do not display an IRFP [22]. The ground states
involve both singlet spins and clusters with larger mo-
ments; therefore, we expect the correction to the area law
to be weaker than a multiplicative logarithm and different
from the valence bond entanglement entropy in the Néel
phase [23].
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FIG. 4 (color online). The entropy per surface area �S‘=‘ � �s‘
vs ‘ near the percolation threshold pc � 0:5 for the 2D bond-
diluted Ising model at small transverse fields for L � 512. The
curves converge to finite values for ‘! 1, corresponding to the
area law. The inset shows �s‘ � �s1 as a function of ‘. �s1 is
estimated from �sL=2 at L � 512. The dashed line corresponds to
‘�1.
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