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The quantum critical behavior and the Griffiths-McCoy singularities of random quantum
Ising ferromagnets are studied by applying a numerical implementation of the Ma-Dasgupta-
Hu renormalization group scheme. We check the procedure for the analytically tractable
one-dimensional case and apply our code to the quasi-one-dimensional double chain. For
the latter we obtain identical critical exponents as for the simple chain implying the same
universality class. Then we apply the method to the two-dimensional case for which we get
estimates for the exponents that are compatible with a recent study in the same spirit.

§1. Introduction

The effect of quenched randomness on disordered quantum magnets close to a
quantum phase transition is much stronger than on classical systems at temperature
driven phase transitions. As first observed by McCoy 1) in a somewhat disguised
version of a random transverse Ising chain, non-conventional scaling and off-critical
singularities that lead to divergent susceptibilities even away from the critical point
now appear to be a generic scenario in any dimension, at least in disordered quantum
magnets with an Ising symmetry. The reason for this, as pointed out by Fisher 2)

only recently, is a novel fixed point behavior of these systems under renormaliza-
tion, namely one which is totally determined by the randomness and its geometric
properties: the so-called infinite randomness fixed point. 2), 3)

Within this scenario the quantum critical behavior of disordered transverse Ising
models is essentially determined by strongly coupled clusters and their geometric
properties. 2), 3) Let L be the linear size of such a cluster. Then it contributes to the
low energy spectrum with an exponentially small excitation gap of size ln∆E ∼ L−ψ,
defining the exponent ψ. Moreover, at the critical point, it has a total magnetization
of size µ ∼ Lφψ defining the exponent φ. Finally the linear length scale of strongly
coupled clusters occurring at a distance δ away from the critical point is ξ ∼ |δ|−ν
giving rise to a third scaling exponent ν. All bulk exponents can now be expressed
via ψ, φ and ν, c.f. βb/ν = xb = d− φψ, νtyp = ν(1− ψ) and in the Griffiths phase
z′ ∝ δ−νψ. For the 1d case, as treated above, it is ψ = 1/2, φ = (

√
5 + 1)/2 and

ν = 2 for uncorrelated disorder.
The basic geometric objects, the strongly coupled clusters, still have to be de-

fined and this will be done within a renormalization group scheme. However, for
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site or bond dilution it is immediately obvious what these clusters are: simply the
connected clusters. Hence the critical exponents defined above are directly related
to the classical percolation exponents: 4) Let δ = p−pc be the distance from the per-
colation threshold, νperc the exponent for the typical cluster size, Dperc the fractal
dimension of the percolating cluster, βperc the exponent for the probability to belong
to the percolating cluster. Then one has for the critical exponents defined above

ν = νperc , ψ = Dperc , φ = (d − βperc/νperc)/Dperc. (1)

Next we consider the question, what happens for generic disorder (i.e. no dilution, but
random bonds and/or fields) and we consider the model defined by the Hamiltonian

H = −
∑
〈i,j〉

Jijσ
z
i σ

z
j −

∑
i

hiσ
x
i . (2)

Here the {σαi } are Pauli spin matrices, and the nearest neighbor interactions Jij and
transverse fields hi are both independent random variables distributed uniformly:

π(Jij) =
{
1, for 0 < Jij < 1,
0, otherwise,

ρ(hi) =
{
h−1

0 , for 0 < hi < h0,
0, otherwise,

For this case the distance δ from the critical point is conveniently given by δ =
1
2 ln h0. In one space dimension this model has been investigated intensively over the
recent years, 6), 5), 7) - 9) and many analytical as well as numerical tools are at hand to
analyze it. Beyond the simple one-dimensional geometry one has to rely on numerical
techniques like quantum Monte-Carlo simulations (as in the two-dimensional case 10))
or the numerical implementation of the renormalization group scheme, which we
outline in the next section.

§2. The renormalization-group scheme

The strategy of the renormalization-group à la Ma, Dasgupta and Hu 11) is to
decrease the number of degrees of freedom and reduce the energy scale by perform-
ing successive decimation transformation in which the largest element of the set of
random variables {hi; Jij} at each energy scale is eliminated and weaker effective
couplings are generated by perturbation theory.

The renormalization-group procedure is as follows: Find the strongest coupling

Ω ≡ max{Jij, hi}
in the system. If Ω = Jij, then the neighboring transverse fields hi and hj can be
treated as a perturbation to the term −Jijσzi σzj in the Hamiltonian (2). The two
spins involved are joined together into a spin cluster with an effective transverse field

h̃(ij) ≈
hihj
Jij
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~h(ij) =
hi hj

Jij

~�(ij) = �i + �j

hi hj

Jiji� 1 j + 1

i� 1 j + 1
~h(ij)


 = Jij

i

hj

kJij Jjk

i k

~Jik =
Jij Jjk

hj

~Jik


 = hj

Fig. 1. Schematic of renormalization-group decimation for spin chains.

and an effective magnetic moment

µ̃(ij) = µi + µj .

The bonds of the new cluster σ̃(ij) with other clusters σk are

J̃(ij)k ≈ max(Jik, Jjk) .

If instead Ω = hj , then the associated spin σj is eliminated and effective bonds
between each pair of its neighboring spins are generated by second-order perturbation
theory. The strength of the effective bonds for each pair (i, k) is

J̃ik ≈ max

(
Jik ,

JijJjk
hj

)
,

where the Jik are the bonds that may have already been present. This procedure is
sketched for the 1d case in Fig. 1. We continue the procedure until there is only one
remaining spin cluster.

At each stage of the RG, an effective field (bond) is a ratio of a product of some
number f of original fields (bonds) to a product of original f − 1 bonds (fields).
The f grows under renormalization at criticality. As a result, the log-field and
log-bond distributions RΩ(ln h̃) and PΩ(ln J̃) become broader and broader under
renormalization as the critical point is approached. This increasing width of the field
and bond distributions reduces the errors made by the second-order perturbation
approximation. The RG becomes thereby asymptotically exact.

§3. The one-dimensional case

The RG can be carried out analytically in one space dimension, 6) therefore we
can use the 1d case with periodic boundary conditions as a simple check for our
numerical implementation. In Fig. 3 we show the probability distribution of the
logarithm of the last remaining cluster field at the critical point h0 = 1, which
scales, according to Fig. 2, like AL−1/2, where L is the system size. From this one
concludes that the exponent ψ defined in the introduction, is given by ψ = 1/2.
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Fig. 2. Left: Distribution of the logarithmic strength of the last remaining cluster fields, Γ ≡
ln( Ω0

Ω
h̃
) (Ω0 denotes the energy scale of the original Hamiltonian). The distribution gets broader

on a logarithmic scale with increasing system size, indicating an infinite dynamical exponent z.

The data is obtained from 100 000 samples for each system size. Right: Scaling of the data in

the left figure, assuming the exponential scaling form obtained from the analytical work. 6)
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Fig. 3. Scaling of the number of active spins

(proportional to average magnetic moment

per spin, µ) in the last remaining spin clus-

ter at the critical point. We find µ ∼ L0.81

implying φ ≈ 1.62.

−3 −2 −1 0
ln |δ|

−1

−0.8

−0.6

−0.4

−0.2

0

ln
 M

0

β = 0.39

Fig. 4. In the ordered phase (δ < 0), the spon-

taneous magnetization scales as M0 = |δ|β
with β ≈ 0.39. This numerical estimate of

β is in agreement with the analytical pre-

diction: β = 3−√
5

2
. Our data is obtained

by averaging over 100 000 samples of size

L = 1024.

Inspecting the number of active spins in the last remaining cluster at the critical
point we obtain the size dependence µ ∼ L0.81 from Fig. 3, and thus φ ≈ 1.62.

In the Griffiths phase h0 
= 1, the probability distribution of the energy gap Ω
still has an algebraic singularity at Ω = 0, and its finite size scaling behavior is

ΩPL(Ω) ∝ LdΩd/z′(δ) = (Lz
′(δ)Ω)d/z

′(δ), (3)

where d is the space dimension (in this section d = 1) and z′(δ) a generalized dynam-
ical exponent that varies continuously with the distance δ from the critical point.
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Fig. 5. Left: Distribution of logarithmic effective fields Ωh of the last spin cluster in the disordered

phase at h0 = 2. The curves for different sizes look very similar but shifted horizontally related

to each other. Right: Scaling plot of the data in the left figure. The typical fields and spacing

of rare large strongly coupled clusters in the disordered phase is related via Ω ∼ Lz′
. The

dynamical exponent z′(h) is obtained from the asymptotic form lnP (lnΩh) = 1/z′(h)(lnΩh)+

const. 5)
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Fig. 6. The value of 1/z′(δ) for d = 1 obtained

from the probability distribution of loga-

rithmic effective fields of the last remain-

ing clusters in the Griffiths-McCoy region.

The solid line, which fits well, is a plot of

the exact z′(δ)-relation reported in Ref. 8):

z′ log(1− z′−2) = −2h0.

This exponent parameterizes the strength of all singularities in the off-critical region
δ 
= 0, for instance in the disordered phase δ > 0 one has for the imaginary time
autocorrelations Gloc(τ ) = [〈σxi (τ )σi(0)〉T=0]av ∼ τ−1/z′(δ), for the local susceptibil-
ity χloc ∼ T 1/z′(δ)−1, for the specific heat C ∼ T 1/z′(δ) and for the magnetization
in a longitudinal field M ∼ H1/z′(δ). The most convenient way to determine this
exponent is, however, via the distribution PL(Ω). At the critical point this distri-
bution has to merge with the critical distribution discussed above — and therefore
limδ→0 z

′(δ) = ∞. Using this finite-size scaling form for the distribution of the last
bonds/fields in the RG procedure we can extract the dynamical exponent as is done
in Fig. 5.

In the ordered phase h0 < 1 the distribution of fields and bonds are related to
the distribution in the disordered phase h0 > 1 via duality, see Fig. 7.
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−40 −30 −20 −10 0
ΩJ

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P(
Ω

J)
L = 64
L = 128
L = 256
L = 512
L = 1024

h0 = 0.5

−30 −20 −10 0 10
ln(L

z’
 ΩJ)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P(
ln

(L
z’
 Ω

J)

L = 64
L = 128
L = 256
L = 512
L = 1024

h0 = 0.5

z’ = 1.8

Fig. 7. Distribution of last log-bonds (left) in the ordered phase at h0 = 0.5 for d = 1 and its

scaling plot (right). One observes that the scaling behavior of bonds in the ordered phase and

that of fields in the disordered phase (see Fig. 5 ) are related through duality.

§4. The double chain

The RG scheme for double chains with some new elements (compared to the 1d
case treated above) is depicted in Fig. 8.

As in 1d, we observe that the log-field and log-bond distributions get broader
with increasing system size at criticality. To estimate the critical point we compute
the field distribution at the last stage of the RG varying the initial transverse field
h0. We estimate the critical point to be at h0 = 1.9, beyond which the broaden-
ing of the log-field distribution appears to be saturating, as for 1d in the Griffiths
phase. Moreover at hc = 1.9 the log-field and the log-bond distributions become
asymptotically identical except for a constant multiplicative factor that reflects the
short-ranged non-universal physics (see Fig. 9). This is obvious in the single chain,
where it follows from the self-duality of the simple chain at the critical point. How-
ever, the double chain is not self-dual, nevertheless the scaling forms of the two
distributions become identical at the critical point. We speculate that this remains
true also in the two-dimensional case to be discussed below.
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Fig. 8. Schematic of renormalization-group decimation for double chains used in the numerical

simulations.
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Fig. 9. The log-field (left) and log-bond (right) distribution for the double-chain at hc = 1.9. The

data is obtained from 25 600 samples for each system size.
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Fig. 10. Scaling plots of the distribution of log-fields (left) and of log-bonds (right) for the double-

chain at the critical point (hc = 1.9). The data scales quite well with the same form Γh(J) ≡
ln
(

Ω0
Ωh(J)

)
∼ √

L as in 1d.

The scaling of the critical distributions depicted in Fig. 9 yields the critical
exponent ψ = 0.5, as shown in Fig. 10. This is the same as for the simple chain. In
addition, for the average magnetic moment of the last remaining cluster at hc = 1.9,
we find the same system size dependence for the double chain as for the 1d case, i.e.
the same critical exponent φ, see Fig. 11. This implies that the double chain and
the simple chain belong to the same universality class.

In the Griffiths phase h0 > hc = 1.9 we extracted the generalized exponent
z′(h0), which is depicted in Fig. 12. Close to the critical point hc we observe the
same linear dependence of 1/z′(δ) on the distance δ = h0 −hc from the critical point
as in 1d. Since for δ � 1 one expects z′(h0) ∝ δ−ψν this implies that ν = 2 the same
as the simple chain.
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Fig. 11. A log-log scaling plot of the average

magnetic moment per cluster, µ, with the

linear system size L at the estimated criti-

cal point hc = 1.9 for the double chain. We

find the same exponent φ as in 1d.
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Fig. 12. Estimates for 1/z′ against h0 for the

double chain.

§5. The square lattice (2d)

Next we present our preliminary results for the two-dimensional (2d) case with
periodic boundary conditions, where we, in contrast to the treatment in Motrunich
et al., 3) keep all bonds generated during renormalization. The RG scheme for the
2d case is very similar to the one for the double chain and is depicted in Fig. 13.

In comparison to 1d and the double chain models, the location of the critical
point cannot be fixed precisely for two dimensions according to our numerical obser-
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Fig. 13. Renormalization-group decimations for the two-dimensional (square) lattice used in the

numerical simulations.
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the last stage of the RG at what we esti-
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Fig. 15. A scaling plot of the number of the

active spins in the last remaining cluster at

our candidate critical point h0 = 5.3.

vation so far. We obtain a critical field approximately at h0 = 5.3 by applying the
criterion that field and bond distribution should have the similar scaling form (as for
the 1d case and the double chain). The scaling of the last log-field distribution yields
ψ ≈ 0.5 and the scaling plot of the number of the active spins in the last remaining
cluster yields φ ≈ 2.0 and µ ∼ L1.06.

Our preliminary results for the two-dimensional case agree with those obtained
recently by Motrunich et al. 3) and with those obtained by us via quantum Monte-
Carlo simulation. 10)
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F. Iglói, D. Karevski and H. Rieger, Europ. Phys. J. B5 (1998), 613.
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T. Ikegami, S. Miyashita and H. Rieger, J. Phys. Soc. Jpn. 67 (1998), 2761.
11) S. K. Ma, C. Dasgupta and C.-K. Hu, Phys. Rev. Lett. 43 (1979), 1434.

C. Dasgupta and S. K. Ma, Phys. Rev. B22 (1980), 1305.


