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Growing Length Scales during Aging in 2d Disordered Systems

H. Rieger, G. Schehr and R. Paul

Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany

The non-equilibrium dynamics of three paradigmatic models for two-dimensional systems
with quenched disorder is studied with a focus on the existence and analysis of a growing
length scale during aging at low temperatures: 1) The random bond Ising ferromagnet, 2)
the Edwards-Anderson model for a spin glass, 3) the solid-on-solid model on a disordered
substrate (equivalent to the sine-Gordon model with random phase shifts). Interestingly, we
find in all three models a length scale that grows algebraically with time (up to the system
size in cases 1) and 3), up to the finite equilibrium length in case 2)) with a temperature
dependent growth exponent. Whereas in cases 1) and 2) this length scale characterizes a
coarsening process, it represents in case 3) the growing size of fluctuations during aging.

§1. Introduction

The non-equilibrium dynamics of disordered, in particular of glassy systems has
become a very rich field in recent years and despite many efforts the understanding
of non-equilibrium dynamics of disordered and glassy systems in finite dimensions
remains a challenging problem. In particular in glasses and spin glasses the aging
process displays a very rich phenomenology demanding new theoretical concepts.1)

But already less complex — and apparently less glassy — systems, like disordered but
non-frustrated systems2) or even pure systems3) reveal interesting and unexpected
aging phenomena. One of the most intriguing questions in this context is whether the
out-of-equilibrium dynamics is essentially fully determined by a coarsening process (a
question that even arises in the more complex spin glass situation4)), describable by
a growing length scale that characterizes essentially all out-of-equilibrium processes.
In this paper we will consider three paradigmatic models for two-dimensional systems
with quenched disorder with a focus on existence and analysis of a growing length
scale during aging at low temperatures: the random bond Ising ferromagnet, the
Edwards-Anderson (EA) model for a spin glass, and the solid-on-solid model on
a disordered substrate which is equivalent to the sine-Gordon model with random
phase shifts.

§2. The random bond Ising ferromagnet

As the first example for two-dimensional disordered system we consider the ran-
dom bond Ising ferromagnet. It is defined by the Hamiltonian

H = −
∑
(ij)

JijSiSj , Si = ±1, (2.1)

where the couplings Jij are non-negative quenched random variables of variance
ε and the sum is over all nearest neighbor pairs (ij) on a square lattice of size
L×L with periodic boundary conditions. This paradigmatic model for a disordered
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Fig. 1. Domain growth in the RBIM with Glauber kinetics. We show evolution pictures at t = 102,

104 and 106 MCS for a 512 × 512 lattice, after a quench from T = ∞ to T = 0.5 and Jij

uniformly distributed between 0 and 2 (Jij ∈ [0, 2]). The up spins are marked in black, and the

down spins are marked in grey.

magnetic system (with bond- or temperature randomness) with an Ising symmetry
has a second order phase transition from a paramagnetic to a ferromagnetic phase at
a critical temperature Tc(ε) that decreases with increasing disorder strength ε. For
temperatures T below Tc the magnetization 〈mi〉T , where 〈· · · 〉T means the thermal
average and · · · the average over the disorder, takes on a non-vanishing value.

Non-equilibrium dynamics at temperatures below Tc arises for instance via an
instantaneous quench of the systems from the paramagnetic phase to a temperature
below Tc. A stochastic process defined by single spin-flip transition rates defined for
instance by the Metropolis rules w(Si → −Si) = 1/(1 + exp(−β(H(Si)−H(−Si))))
models a non-conserved order parameter dynamics and can be studied by computer
simulations. For a quench below Tc the dynamics is a coarsening process during
which ferromagnetic domains of a typical lateral extension R(t) form, where t is the
time elapsed after the quench (see Fig. 1). A standard way to extract this time
dependent length scale is via the spatial two-point correlation function C(r, t) =
〈mi(t)mi+r(t)〉T , which is expected to scale like C(r, t) = c̃(r/R(t)).

An important study of the non-conserved random bond Ising model (RBIM) is
due to Huse and Henley (HH).5) HH argued that coarsening domains are trapped
by energy barriers EB(R) � E0R

ψ, with exponent ψ = χ/(2− ζ), where χ and ζ are
the pinning and roughening exponents. For d = 2, these exponents are known to be
χ = 1/3 and ζ = 2/3,6) yielding ψ = 1/4. As a consequence of the HH scenario one
expects the following scaling scenario for the length scale R(t):

R(t)/R0 = h(t/t0) with h(x) ∼
{
x1/2 for x� 1,
(lnx)4 for x� 1,

(2.2)

where R0 ∼ T 4 and t0 ∼ T 8. Instead we find (via an extensive Monte Carlo study,
see Ref. 7)) that R(t) grows algebraically with a temperature and disorder strength
dependent exponent 1/z(T, ε):

R(t) ∼ t1/z(T,ε) for t� t0 with z(T, ε) = 2 + ε/T, (2.3)
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Fig. 2. Left: Log-log plot of the correlation length R vs time t in the 2d random bond Ising model

for different temperatures and Jij ∈ [0, 2]. Right: Estimates of the exponent z vs 1/T for the

data shown left (note that for T > 1 ≈ Tc, i.e. for 1/T < 1 the system is in the paramagnetic

phase). Inset shows z vs the disorder strength ε for fixed temperature T = 0.5 (the distribution

P (J) is chosen to be uniform over [1− ε/2, 1 + ε/2]). The straight lines (in the main figure and

in the inset) represent the analytical prediction z = 2 + ε/T .

where the time t0 does not depend on T and ε (see Fig. 2). This algebraic growth law
with a temperature and disorder strength dependent growth exponent θ indicates
a logarithmic barrier scaling form EB(R) ∼ ε ln(1 + R) in contrast to the algebraic
form EB ∝ Rψ assumed in the HH picture.

§3. 2d EA spin glass

Here we consider the two-dimensional Ising spin glass with nearest-neighbor
interactions distributed according to a Gaussian with zero mean and variance one

H = −
∑
〈ij〉

JijSiSj with P (Jij) =
1√
2π

exp

(
−J

2
ij

2

)
. (3.1)

This model is in a paramagnetic state for all temperature T > 0 but displays a
very slow dynamics at low temperatures which can be observed for instance in the
non-equilibrium dynamics occurring after a quench from high temperatures. It turns
out8) that this aging process can be characterized by a coarsening process up to a
maximum domain size given by the equilibrium correlation length ξeq.

It is possible to calculate exactly the ground state (GS) of this system using
for instance a minimal weight perfect matching algorithm.9) Denoting the GS for
a particular disorder realization with {S0

i } we define the local overlap with it as
qgsi (t) = Si(t)S0

i . For a ferromagnetic system (i.e. Jij = J > 0) the GS obviously
has S0

i = 1 and therefore qi corresponds to the (time dependent) local magnetization.
In Fig. 3 snapshots of the time evolution of the local GS overlap are depicted, showing
an increasing average domain size. In contrast to the time evolution of a random bond
ferromagnet shown in Fig. 1 even for very large waiting times very small domains
exist. These are either very stable clusters because strong bonds have to be broken
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Fig. 3. Domain growth in the 2d EA model with Gaussian couplings for T = 0.3. The system size

is L = 100, i.e. much smaller than in Fig. 1. The snapshots show the domains relative to the

ground state after t = 102, 104 and 106 Monte Carlo sweeps.

Fig. 4. Correlation length in the 2d EA SG model as a function of time tw for different temperatures.

Left: Fits to an algebraic growth law ξ(tw) ∼ t1/z(T ) with 1/z(T = 0.2) = 0.046, 1/z(T =

0.3) = 0.068 and 1/z(T = 0.4) = 0.090. Right: For sufficiently large temperatures the time

dependent correlation length ξ(t) saturates at the equilibrium correlation length ξeq(T ) within

the accessible time window.

to flip the spins or new domains within the bigger ones appear since less strongly
bound spins initialize the formation of a new domain.

The spatial correlation function

G(r, t) = 〈qgsi (t)qgsi+r(t)〉 (3.2)

allows for a quantitative analysis of the domain size evolution. It turns out that
it scales like G(r, t) = g(r/ξ(t)) and we can obtain an estimate for the correlation
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length (or typical domain size) via an integral of G(r, t) over r. The result is shown
in Fig. 4. Note that for increasing temperatures a) the domain growth speeds up, b)
the equilibrium correlation length gets smaller. As a consequence of both tendencies
one can observe the saturation of the time dependent correlation length at the finite
equilibrium correlation length for higher temperatures on the right panel.

We observe that the data for ξ(t) (in the non-equilibrium regime ξ(t) � ξeq(T ))
can very well be fitted by an algebraic growth law with a temperature dependent
exponent z(T ):

ξ(t) ∝ t1/z(T ) with z(T ) ≈ (0.23 · T )−1 (3.3)

which displays again the 1/T behavior that we have encountered already in the
last section for the random bond ferromagnet, indicating also here the presence of
logarithmic barriers.

§4. 2d SOS model on a disordered substrate

Here, we investigate the non equilibrium relaxational dynamics of a solid-on-
solid (SOS) model on a disordered substrate, defined on a two dimensional square
lattice and described by the following elastic Hamiltonian in terms of height variables
hi

HSOS =
∑
〈ij〉

(hi − hj)2, hi ≡ ni + di, (4.1)

where ni are unbounded discrete variables, i.e. ni ∈ {0,±1,±2, · · · } and di ∈ [0, 1]
are uniformly distributed quenched random offsets, uncorrelated from site to site.
In the absence of disorder, i.e. di = 0, the model exhibits a roughening transition in
the same universality class as the Kosterlitz-Thouless transition,10) at a temperature
Tr separating a flat phase at low T from a logarithmically (thermally) rough one
above Tr. The presence of disorder is known to modify significantly the nature of
the transition.11) The so-called superroughening transition occurs at a temperature
Tg = Tr/2 = 2/π. Above Tg, where the disorder is irrelevant on large length scales,
the surface is logarithmically rough again, although below Tg the system exhibits a
glassy phase where the pinning disorder induces a stronger roughness of the interface.

The spatial (2-point) connected correlation function is defined as

C(r, t) =
1
L2

∑
i

〈hi(t)hi+r(t)〉 − 〈hi(t)〉〈hi+r(t)〉, (4.2)

which scales as

C(r, t) = F (r/L(t)) with L(t) ∼ t1/z . (4.3)

Therefore one can estimate L(t) by integrating C(r, t) over r. In Fig. 5 we show
the value of L(t) computed in this way for different temperatures. One obtains
a rather good fit by a power law L(t) ∼ t1/z(T ), thus obtaining a value of the T
dependent dynamical exponent. One notices also that L(t) approaches an algebraic
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Fig. 5. Left: Growing length scale L(t) for different temperatures. The solid lines are guides to

the eyes. Right: 1/z(T ) as a function of T/Tg. The dashed line which shows the result of the

one loop RG is drawn without any fitting parameter.

growth after a pre-asymptotic regime which increases with decreasing temperature.
Figure 5 shows our estimate for 1/z(T ) as a function of T (for details see Ref. 13)). As
expected, the dynamical exponent is a decreasing function of the temperature. One
expects that z = 2 for T > Tg and that it becomes T -dependent below Tg with z =
2+2eγEτ+O(τ2) as predicted by a one loop RG calculation.12) At high temperature
T > Tg and in the vicinity of T−

g , it is numerically rather difficult to extract a reliable
estimate for the dynamical exponent due to finite size effects. Therefore we restrict
ourselves here to lower temperatures T < 0.8Tg. For temperature T � 0.7Tg, the
value of z is still in reasonable agreement with the RG prediction. Around the value
T ∗ � 0.63Tg, where z � 4, the curve 1/z(T ) shows an inflection point, below which
1/z decreases linearly with T . In this regime, z(T ) is well fitted by

z(T ) ≈ 4 · T ∗/T for T ≤ T ∗ ≈ 0.63Tg. (4.4)

This behavior z ∝ 1/T is compatible with an activated dynamics over logarithmic
barriers, i.e. an Arrhenius type behavior ttyp ∼ eBLtyp/T with BLtyp ∼ logLtyp.

One would like to relate the length scale L(t) to the size of spatially correlated
structures like domains or droplets. We first explored the idea that at low temper-
ature, the nonequilibrium dynamics could be understood as a coarsening process
reflected in a spatially growing correlation with the ground state (GS). Interestingly,
computing the GS of the SOS model on a disordered substrate (4.1) is a mini-
mum cost flow problem for which exits a polynomial algorithm and can therefore
be computed exactly.14) After determining one GS n0

i (note that the GS, which is
computed with free boundary conditions, is infinitely degenerated since a global shift
of all heights by an arbitrary integer is again a GS), we define for each time t the
height difference mi(t) = ni(t)−ni(0) and identify the connected clusters (domains)
of sites with identical mi(t) using a depth-first search algorithm. Notice that for the
comparison with the ground state, the Monte Carlo simulations are performed here
using free boundary conditions.

In Fig. 6 we show snapshots of these domains for T < Tg. Starting from a
random initial configuration one can for T < Tg very quickly (t � 100) identify large



Growing Length Scales in 2d Disordered System 117

Fig. 6. Snapshot of the height field of the random SOS model relative to the ground state mi(t) =

ni(t) − n0
i for T = 0.47 Tg. The system site is L = 128. Different colors correspond to different

values of mi(t) : mi(t) = −2 in green, mi(t) = −1 in white, mi(t) = 0 in black and mi(t) = +1

in blue and so on. Note that large domains in white and black persist and change only slowly

in time.
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Fig. 7. Left: Size distribution Pth(S, t) (see definition in the text) for different times t. Here T =

0.47Tg. Right: SαPGS
droplet(S, t) with α = 1.9±0.1 as a function of S/t2/z with 2/z = 0.26±0.03.

Here the initial condition is the ground state and T = 0.3 Tg.

domains that evolve only very slowly at later times. On the other hand for T > Tg
the configurations decorrelated very quickly in time. To make this analysis more
quantitative, we determined the cluster size distribution Pth(S, t) for one realization
of the disorder (and for different realizations of the thermal noise).

As shown on Fig. 7, Pth(S, t) starts to develop a peak at a rather large value
S∗(t) on the earlier stage of the dynamics (this peak also develops if we start with
a random initial configuration). It turns out that S∗(t) is the size of the largest
connected flat cluster of the ground state configuration n0

i = Cst. On the time scales
presented here, as time t is growing, this peak remains stable S∗(t) � Cst, implying
that the system is not coarsening. At later times, as suggested by simulations on
smaller systems, this peak progressively disappears and the distribution becomes
very flat. We also checked that the mean size of these connected clusters is not
directly related to L(t). One has however to keep in mind that we are computing
the connected correlation functions, i.e. we measure the thermal fluctuations of the
height profile around its mean (typical) value 〈hi(t)〉. Therefore, we believe that
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these connected correlations are instead related to the broadening of this “stable”
peak (Fig. 7), i.e. the fluctuations around this typical state at time t.

To characterize more precisely the fluctuations around this cluster, we identify
“droplets” by initializing the system in the ground state itself ni(t = 0) = n0

i . At
low temperature, and on the time scales explored here, one expects that the ground
state represents a good approximation of a typical configuration, i.e. 〈ni(t)〉 � n0

i .
We compute the distribution PGS

droplet(S, t) of the sizes of the connected clusters with
a common value of mi(t) �= 0. It turns out, as shown in Fig. 7, that PGS

droplet(S, t)
obeys the scaling form

PGS
droplet(S, t) =

1
Sα

FGS
droplet

(
S

L2(t)

)
, α = 1.9 ± 0.1, (4.5)

where α is independent of T within the accuracy of our data and L(t) ∼ t1/z. The
value of z in Eq. (4.5) is in good agreement with the one extracted from the 2-point
correlation function C(r, t) = F(r/L(t)) [Eq. (4.3)].

§5. Conclusion

We studied the time dependent correlation length R(t) in three models of dis-
ordered systems in two dimensions that are characterized by distinct features: 1)
The random bond Ising ferromagnet as an example for a random system that has
long range order at low temperatures and is expected to perform a simple (but
slow) coarsening process after a temperature quench into the ordered phase. 2) The
Edwards-Anderson spin glass model as an example for a frustrated system without
a finite temperature critical point and an ordered phase but with an extremely slow
dynamics and a large correlation length at very low temperatures. 3) The disordered
SOS model as a model with a critical point and a low temperature phase without
long range order but infinite correlation length. Surprisingly, in spite of the pro-
nounced differences between these systems we find that all three show an algebraic
dependence of the correlation length on the age t of the system R(t) ∼ t1/z(T ) and
that the exponent z (which would be identical to the dynamical exponent if the
system is critical) depends linearly on the inverse temperature:

z(T ) ∝ 1/T . (5.1)

If the dynamics at low temperatures in all three systems is thermally activated, this
behavior hints at a logarithmic scaling behavior of the energy barriers as a function of
their size. In the disordered SOS model one would actually expect such a scaling.13)

For the EA spin glass (in 2d) the situation is complicated by the fact that the ground
state is not expected to be stable with respect to thermal fluctuations, i.e. in principle
excitations of increasing size would cost less and less energy — therefore a logarithmic
barrier scaling comes a bit as a surprise. Finally for the random bond Ising model
a simple scaling picture5) based on the scaling behavior of the domain walls in this
model would predict an algebraic energy scaling — resulting in a formally infinite
value for z, which is not confirmed by our results.7) Hence we have to conclude



Growing Length Scales in 2d Disordered System 119

with the observation that the common behavior (5.1) of the growth exponent z in
2d disordered models indicates a more complicated and yet hidden mechanism that
is active in the non-equilibrium dynamics of these systems at low temperatures at
least during the first 10 decades of the aging process.

We also would like to emphasize the fact that the physical interpretation of
the growing length scale in the three systems under consideration in this paper is
quite different: In the random bond ferromagnet it is simply the typical transverse
domain size, where domains are easily identified as connected clusters of common
magnetization sign. In the EA spin glass model the length scale is also determined
by a domain size — where domains are defined as connected clusters of spins with
common orientation with respect to one of the two ground states. These domains
grow steadily up to a maximum size set by the equilibrium correlation length. In the
disordered SOS model, however, the growing length scale is not connected to growing
domains — actually the system settles quite fast after the temperature quench into a
configuration that has a pretty large overlap with one of the ground states. Instead of
growing further these initially very large domains thermal fluctuations of increasing
size destroy these domains — and it is the spatial extent of these fluctuations that
is characterized by the growing length scale studied here.
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