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Bosons in a two-dimensional bichromatic quasiperiodic potential: Analysis of the disorder in the
Bose-Hubbard parameters and phase diagrams
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Experimental realizations of disorder in optical lattices generate a distribution of the Bose-Hubbard (BH)
parameters, like on-site potentials, hopping strengths, and interaction energies. We analyze this distribution
for bosons in a two-dimensional bichromatic quasiperiodic potential by determining the generalized Wannier
functions and calculating the corresponding BH parameters. Using a local mean-field cluster analysis, we study
the effect of the corresponding disorder on the phase diagrams. We find a substantial amount of disorder in the
hopping strengths, which produces strong deviations from the phase diagram of the disordered BH model with
purely random on-site potentials.
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I. INTRODUCTION

Bosons in a regular optical lattice, which can be described
by the Bose-Hubbard (BH) model, show a transition from an
incompressible, noncoherent Mott insulator (MI) phase to a
compressible, coherent superfluid (SF) phase, which has been
shown experimentally [1] as well as theoretically [2,3]. In the
disordered case the Bose-glass (BG) phase occurs between the
MI and the SF, which is compressible, but not coherent and
whose existence has been shown experimentally [4,5].

Theoretically, disordered BH systems are modeled with
isolated on-site box disorder, while the other parameters have
precise values. Numerical methods like quantum Monte Carlo
(QMC) methods [6–14] and density-matrix renormalization
group techniques [15–19] have been applied to this system in
order to study the phase diagram. Based on the mean-field
approximation [20] various numerical techniques, such as
local mean-field (LMF) theory [21–23], stochastic mean-field
(SMF) theory [24,25], and LMF cluster analysis [26] have
been proposed. The phase diagram of the two-dimensional
(2D) disordered BH model with random on-site potentials
predicted by the LMF cluster analysis [26], which interprets
the BG-SF transition as a percolation of SF regions, agrees
very well with the one obtained from QMC methods [9]. The
authors of [27] apply the percolation criterion for their studies
on the BH model with random impurities.

Disorder in other BH parameters, like the tunneling rates
or the interparticle interactions, has not been studied as
intensively as disorder in the on-site potentials. Disorder in
the interparticle interaction can be realized experimentally
near a Feshbach resonance [28,29]. A uniform distribution
of this parameter has been studied in [28,30]. Disorder of the
tunneling rates has been studied within SMF theory [25] for
a uniform distribution. Other works on disordered tunneling
rates focus on bimodal distributions.

Experimentally, disorder can be introduced either by a
speckle field [31] or by a bichromatic quasiperiodic lattice pro-
duced by two lasers with incommensurate wavelengths [4,32].
While the distributions of the BH parameters resulting from
speckle fields have been studied in [31,33], in this paper we
focus on bosons in two-dimensional bichromatic quasiperiodic
potentials and analyze the distribution of all of the BH param-
eters, i.e., on-site potential, hopping strength, and interaction

energies, by determining the generalized Wannier functions
and calculating the corresponding BH parameters.

This paper is organized as follows: First, we discuss the
BH model and the LMF cluster analysis in Sec. II. In Sec. III
we determine the phase diagrams of the disordered BH model
for three different cases of uncorrelated disorder for com-
parison: exclusively random on-site potentials, exclusively
random hopping strengths, and exclusively random interaction
energies. In Sec. IV the BH parameters are calculated for a
two-dimensional bichromatic quasiperiodic potential and their
distributions are characterized. These are finally used in Sec. V
to determine the phase diagrams. The paper concludes with a
discussion.

II. THE BOSE-HUBBARD MODEL

The BH Hamiltonian describing bosons in an optical
lattice [34] is given by

Ĥ = −µ
∑

i

n̂i + U

2

∑

i

n̂i(n̂i − 1) − J
∑

⟨i,j⟩
â
†
i âj . (1)

The operator n̂i = â
†
i âi is the particle number operator of

bosons on site i, which are annihilated and created by the
operators âi and â

†
i . The site index i = 1, . . . ,M , where

M = L2 is the number of sites in a L × L 2D lattice, represents
a tuple of spatial coordinates (ix,iz) with ix,z = 1, . . . ,L. The
chemical potential is denoted by µ, the interparticle repulsion
by U . and the tunneling rate by J . The last sum runs over all
four (Z = 4) nearest neighbor pairs ⟨i,j ⟩ of the lattice.

In the ordered case, the µ/U -JZ/U phase diagram
displays the well-known Mott lobes with boundaries given
in LMF theory by [2,3]

µ±(J,Z,U,n) = − 1
2 [JZ − U (2n − 1)]

= ±
√

1
4 (JZ − U )2 − JZUn. (2)

Inside the Mott lobes the particle number is fixed to an integer
value n. They are aligned along the µ axis and the particle
number increases from lobe to lobe with growing µ. In this
region particle tunneling is prohibited due to the existence of an
energy gap in the particle excitation spectrum. The Mott lobes
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are surrounded by the SF phase, where particle tunneling is
favorable and coherence grows with increasing tunneling rate.

In the case of on-site disorder, the BG phase occurs between
the MI and SF phase. In this phase the system is compressible,
but not SF. In the present paper we will not restrict to on-site
disorder, but rather study the influence of disorder on all BH
parameters. Therefore, all BH parameters, except the chemical
potential µ, which is a global parameter fixing the particle
number, now become site dependent:

Ĥ =
∑

i

(ϵi − µ)n̂i + Ui

2

∑

i

n̂i(n̂i − 1) −
∑

⟨i,j⟩
Jij â

†
i âj . (3)

The SF parameter

ψi = ⟨âi ⟩ (4)

is defined as the expectation value of the annihilation operator
and can be chosen to be real because of the U(1) symmetry
of the BH Hamiltonian. With the help of the LMF approxima-
tion [20]

âi â
†
j ≈ âiψj + â

†
jψi − ψiψj , (5)

the Hamiltonian can be transformed into a sum of local
Hamiltonians Ĥ =

∑
i Ĥi ,

Ĥi = (ϵi − µ)n̂i + Ui

2
n̂i(n̂i − 1) − ηi(âi + â

†
i − ψi), (6)

which are effectively coupled by a local hopping rate ηi :=∑
j JijAijψj , which depends on the local SF parameter

of the neighboring sites with Aij = 1 for i and j being
nearest neighbors on the square lattice with periodic boundary
conditions and zero otherwise. One should note that mean-field
approximations, as the one used here, neglect spatial correla-
tions of quantum fluctuations, which is less severe in high
space dimensions. Actually it is exact in infinite dimensions
and reproduces the exact critical behavior already above the
upper critical dimension, which is unknown for the system
we consider here but certainly larger than 4. Consequently,
we expect the approximation to be critically inaccurate for
one-dimensional (1D) systems and therefore, focus on two
space dimensions. We would expect the predictions of our
LMF analysis to be even more accurate for three dimensions,
but three-dimensional systems are computationally much more
demanding.

Since the Hamiltonian itself depends on the SF parame-
ter [22], the self-consistency equation (4) is solved recursively
in order to find the ground state of the LMF Hamiltonian (6).
In turn all local parameters of interest, in particular the local
particle number ni = ⟨â†

i âi⟩, can be computed. In order to
determine the phase boundaries, several steps are needed [26]:
First, we define and identify so-called MI and SF sites. Sites
with an integer number of particles are called MI sites. Note
that the LMF approximation neglects quantum fluctuations
and predicts an integer expectation value for the local particle
number for some site even in the presence of disorder in
the BH parameters. Sites with a noninteger expectation value
of the local particle number are denoted as SF sites. In a
second step all three occurring phases are identified: In the
MI phase the system only consists of MI sites and no SF
site occurs. The BG is characterized by a mixture of MI and

SF sites, more precisely by isolated clusters (islands) of SF
sites within a sea of MI sites. In [26] we discussed how this
definition is physically plausible regarding the conventional
hallmarks of the BG phase, namely, the lack of coherence
and a gapless spectrum. Since the particle number fluctuates
within the isolated SF clusters only the sites within a single
cluster can be phase coherent; sites in different clusters are not,
which establishes the lack of macroscopic phase coherence.
Moreover, the BG phase is actually the Griffiths phase of the
BH model (see [26] for a discussion), where the isolated SF
clusters behave like finite systems within the SF phase and
therefore, have a very small gap that decreases quickly with
the size of the SF cluster. Since SF clusters can be arbitrarily
large there is no lower bound for the gap and thus the BG
phase is gapless. While approaching the BG-SF transition the
regions with SF sites grow, form connected clusters, which
finally percolate. The percolation of the SF sites marks the
transition to the SF phase. We call this scheme the LMF cluster
analysis approach, which is described and discussed in [26].
In contrast to other LMF approaches, we show that the LMF
cluster analysis reproduces the phase diagram predicted by
quantum Monte Carlo [6] with excellent accuracy.

III. BOX DISTRIBUTED DISORDER AND DIFFERENT
SCENARIOS

Before we focus on the bichromatic quasiperiodic potential,
we analyze the effect of uncorrelated disorder in each of the
BH parameters ϵi , Jij , and Ui separately. Here we determine,
with the LMF cluster analysis, the phase diagram for a
uniform distribution p(α) = %(&α/2 − |α|)/&α for each BH
parameter α = ϵi ,Jij ,Ui separately. While all three phases
can be found in each disorder scenario, we find substantial
differences in the phase diagrams.

A. Disorder in ϵ

The most common disorder scenario is diagonal disorder
introduced by site-dependent local on-site energies ϵi , which
are drawn from a box distribution p(ϵi) = %(&ϵ/2 − |ϵi |)/&ϵ .
This has been widely studied via quantum Monte Carlo
methods [6–8,12], mean-field techniques [22,24,26], and
analytic approaches [9,35].

Figure 1 shows the phase diagram for different disorder
strengths resulting from the LMF-cluster analysis [26]. The
Mott lobes with a fixed particle number of n = ⟨n̂i⟩av extend
from µ− = (n − 1)U + &ϵ/2 to µ+ = nU − &ϵ/2 (see [2]).
Thus, all Mott lobes simultaneously disappear at a critical
disorder strength of &c

ϵ/U = 1. The Mott lobes are surrounded
by a BG region. For larger tunneling rates a phase transition
to the SF regime occurs. While all three phases appear for
&c

ϵ/U < 1, in the strong disorder limit only the BG in the
small tunneling and the SF phase in the high tunneling regime
survive.

B. Disorder in J

The influence of disordered tunneling rates has mainly
been studied for bimodal distributions, where two values
of the tunneling rate are chosen and distributed randomly
among the lattice [10,25,36,37] leading to fundamentally
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FIG. 1. (Color online) Phase diagram for box distributed dis-
ordered on-site energies ϵi with the disorder strength &ϵ/U =
0.35, 0.6, 1.5.

different phase diagrams compared to the one discussed here.
In contrast, here we focus on a general approach, where the
local tunneling rates are uniformly distributed according to
p(Jij ) = J + %(&J /2 − |Jij |)/&J symmetric around a fixed
value J .

In Fig. 2 the phase diagrams resulting from LMF-cluster
analysis in dependence of the chemical potential µ/U and
the mean tunneling rate JZ/U are shown. It is important to
notice that here the width of the disorder distribution is one
order of magnitude smaller than for on-site disorder. Here
two new unique features occur in the phase diagram: First, the
BG regions are separated into individual regions by SF regions
reaching down to JZ/U → 0. Secondly, the distance between
the Mott lobes increases with their number n and the number
of Mott lobes is finite. For an intuitive explanation, we recall
the perturbative result of the ordered case, given in Eq. (2),
which is the limiting result for vanishing disorder strength
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FIG. 2. (Color online) Phase diagram for box distributed dis-
ordered tunneling rates Ji with the disorder strength &J /U =
0.035, 0.06, 0.095. The black line is the perturbative result for MI-SF
transition in the ordered system given by (2).

&J → 0. For a small but nonzero disorder strength &J , the
first SF regions in the lattice occur at sites with J + &J /2.
Consequently, the boundary of the MI region is shifted to the
left by −&J /2 with respect to ordered case with tunneling
rate J . Since in the ordered case the tip of the Mott lobes [at
tunneling rate Jmax(n)] decreases with increasing µ as 1/µ
the shifted Mott lobes for tunneling disorder strength &J must
disappear when 1/µ gets smaller than &J resulting in only a
finite number of Mott lobes. In other words, even at a vanishing
average tunneling rate (J = 0) a nonvanishing disorder in the
tunneling rate produces an increasing fraction of SF sites when
µ is sufficiently large.

To put it quantitatively, along the µ/U axis (J = 0) the MI
lobes exist between µ−(&J /2,Z,U,n) and µ+(&J /2,Z,U,n),
with µ± given by Eq. (2). For fixed disorder strength
&J the height of the Mott lobes is given by &MI

µ =
2
√

1
4 (&J Z

2U
− 1)2 − &J Z

2U
n, which decreases with n. The width

becomes zero for nMI
c = 1

2 (&J Z
2U

− 1)2 U
&J Z

, which means that
only a finite number nMI

c of Mott lobes exist. As a consequence,
the Mott lobes disappear one after the other for increasing
disorder strength &J . The last Mott lobe (n = 1) disappears
at &J

U
= 3−2

√
2

2 ≈ 0.0858. This is different from the on-site
disorder case, where all vanish at the same critical disorder
strength. In Fig. 2(a) (&J /U = 0.035) three Mott lobes exist,
two of which are visible, while in (b) (&J /U = 0.06) only
one remains. In the last diagram (&J /U = 0.095) no Mott
lobe exists, as the critical disorder strength is exceeded.

The Mott lobes are surrounded by the BG phase. As a new
feature in comparison to the on-site disorder case, we find
disconnected BG regions between µ−(&J /2,Z = 1,U,n) and
µ+(&J /2,Z = 1,U,n), with µ± given by Eq. (2), which are
separated from each other by the SF region in the vicinity of
integer values of µ/U . The fact that the SF region survives in
the limit J → 0, is a unique feature of tunneling disorder. The
width of the BG regions along the µ/U axis is given by &BG

µ =
2
√

1
4 (&J

2U
− 1)2 − &J

2U
n, which also decreases for growing n.

The number of BG regions is given by nBG
c = 1

2 (&J

2U
− 1)2 U

&J
.

Even though the BG regions survive for even higher disorder
strength than the MI lobes, they analogously disappear one
after the other and finally disappear completely at &J

U
= 2(3 −

2
√

2) ≈ 0.3431. The SF phase exists for infinitesimal small
tunneling rates between these BG regions. At the ends of the
BG regions narrowing tips occur, which are located along the
line of mean integer filling but finally end in the SF region.

C. Disorder in U

Disorder in the interparticle interaction can be realized near
the Feshbach resonance [28,29] and a uniform distribution
of this parameter has been studied in [28,30]. The phase
diagrams for this case resulting from LMF cluster analysis
are shown in Fig. 3 for increasing disorder strength, where
U is the mean value of the disorder distribution p(Ui) =
U + %(&U/2 − |Ui |)/&U . Analogously to the disordered
tunneling case we find a finite number of Mott lobes. Intuitively
this can be understood by recalling the MI boundaries (2) of
the ordered case, as we have already discussed for tunneling
disorder. For small tunneling rates, the first SF sites occur,
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FIG. 3. (Color online) Phase diagram for box distributed disor-
dered two-particle interactions Ui with the disorder strength &/U =
0.35, 0.6, 0.95 and a blowup for & = 0.6 showing the tricritical point
at µ/U = JZ/U = 0. The black line is the perturbative result for
MI-SF transition in the ordered system given by (2).

where the tunneling rate J overcomes the reduced interparticle
interaction U − &U/2. Thus, the Mott lobes shrink all by the
same amount for fixed disorder strength &U . Therefore, the
smallest Mott lobes of the ordered system disappear leading
to a finite number of Mott lobes. Along the µ/U axis they
extend from µ− = (n − 1)(U + &U

2 ) to µ+ = n(U − &U

2 ) and
they disappear at a critical disorder strength &c

U/U = 2
2n−1 ,

where µ− and µ+ meet [28]. As the critical disorder strength
&c

U depends on the number n of the specific Mott lobe, they
vanish one after another, until for &c

U/U = 2 the first Mott
lobe is the last to disappear. For all disorder strengths there is
only one connected BG region (respectively, one SF region).
This is different from the system with tunneling disorder, but
analogous to the on-site disordered case.

A new feature occurs below the first Mott lobe, which is
shown as a blowup in Fig. 3(d): In this region the BG-SF
transition widely follows the MI-SF transition of the ordered
case. Between this transition line and the MI-BG transition
line the BG phase forms a narrowing strip. Both transition
lines approach each other tightly for small tunneling rates and
form a tricritical point in the limit µ/U → 0 and JZ/U → 0,
which does not contradict the fact that a direct transition from
MI to SF is impossible in the disordered case [9,38].

This phenomenon can be understood recalling Eq. (2) and
studying the behavior of this equation under a variation of
U : From its derivation, Eq. (2) describes the transition line,
at which the SF order parameter ψ becomes nonzero in
the ordered case. In the disordered case this takes place at
the BG-SF transition. Therefore, the BG-SF transition line
in the disordered case follows Eq. (2) in regions where it is
stable against variation of U . This variation of µ±(J,Z,U,n),
which results from perturbation theory for small J [3], under
a change of U is given by the derivative ∂µ±

∂U
. The expansion

of the derivative for small J is given by

∂µ±

∂U
≈

{
x2n(n + 1) + n upper branch
−x2n(n + 1) + n − 1 lower branch, (7)

in powers of x = JZ
U

. Notice that the linear term cancels and
in general is different from zero. Only in the case of the
lower branch of the first Mott lobe (n = 1) it vanishes for
zero tunneling rate. For increasing tunneling rates it grows
less than linearly, since x is smaller than 1. This means that
the lower branch of the first Mott lobe is fairly stable against
variation of U . For all other Mott lobes n > 1 the absolute
value of the derivative is positive for small tunneling rates
J . This feature of the lower branch of the first Mott lobe is
unique and does not occur for other branches of the disordered
interparticle interaction case. Therefore, the BG-SF transition
of the interparticle interaction disordered system below the
first Mott lobe widely follows the transition line of the ordered
system, which is given by Eq. (2), leading to the tricritical
point at the origin of the phase diagram.

IV. BICHROMATIC POTENTIAL

Experimentally, disorder can be introduced either by a
diffuser [31] or by a bichromatic potential [4,31,32]. The
diffuser modifies the intensity of the laser, which leads
to inhomogeneities in the resulting optical lattice. For a
detailed comparison with theoretical predictions a thorough
characterization of the diffuser is necessary. In particular, the
width of the disorder distribution is a crucial system parameter,
which is fixed by the diffuser and cannot be tuned freely.
Alternatively a quasiperiodic potential is formed by a main
optical lattice with a high intensity, which is superposed by a
second weaker one with slightly different wavelength [32]. The
resulting lattice is not periodic but quasiperiodic and displays
local inhomogeneities. Such a quasiperiodic potential is the
basis for our calculation, from which we will extract all BH
parameters and finally discuss the resulting phase diagram in
dependence of the laser intensities of both lattices for integer
filling (Fig. 4).

The quasiperiodic potential in two dimensions is given by

V (x,z) = V1[cos2(k1x) + cos2(k1z)]

+V2[cos2(k2x) + cos2(k2z)], (8)

0 5 10 15 20
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10

15

20

x/a

V
(x

)/
E

R
1

FIG. 4. (Color online) A quasiperiodic potential in one dimen-
sion according to V (x) = V1 cos2(k1x) + V2 cos2(k2x) with s1 = 16,
s2 = 2.5, and V2/V1 ≈ 0.09.
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where ki = 2π
λi

(i = 1,2), the lattice constant a = π
k1

, and
the intensities Vi = siERi are given in units of the recoil
energy ERi = !2k2

i

2m
. The wavelengths are chosen to be λ1 =

830 nm and λ1 = 1076 nm with reference to the experimental
setup of [4]. In experiments 87Rb, which has a mass of
m = 1.443 10−25 kg, is widely used. The amplitude of the main
lattice s1 determines the depth of the lattice. The amplitude of
the second lattice s2 ≪ s1 is by far smaller than the first one
and increases the influence of the disorder strength.

A. Wannier functions

In order to map the quasiperiodic potential (8) to the BH
Hamiltonian the Wannier functions for each site are computed
individually. We first focus on a regular periodic (V2 = 0)
lattice. According to the Bloch theorem the Bloch functions

ψ q⃗
n (r⃗) = uq⃗ eiq⃗ r⃗ , uq⃗(r⃗) =

∑

G⃗

cq⃗−G⃗
n e−iG⃗ r⃗ (9)

solve the stationary Schrödinger equation. For every wave
vector k⃗ there exists a unique decomposition k⃗ = q⃗ − G⃗,
where q⃗ lives in the first Brillouin zone (1BZ). The Bloch
coefficients uq⃗(r⃗) are periodic functions with the same peri-
odicity as the lattice. The Bloch functions, which spread over
the hole lattice, form an orthonormal basis. Thus, the Wannier
functions localized at site i⃗ = (ix,iz) can be construed as

Wi
n(r⃗) =

√
2π

a

1
M

∑

q⃗∈1.BZ

ψ q⃗
n (r⃗) eiq⃗ x⃗l , x⃗l = l⃗ a. (10)

They are real functions, which fulfill
∫
V

dV Wi
n

2(r⃗) = 1.
Moreover, they are symmetric due to the underlying lattice
symmetry. In Fig. 5(a) a Wannier function for a regular 1D
lattice is shown exemplarily. This wave function shows a
dominant occupation probability at one single site and small
probability at the neighboring sites.

In the nonsymmetric case (0 ̸= V2 ≪ V1) the functions

ψ q⃗
n (r⃗) =

∑

G⃗

cq⃗−G⃗
n ei(q⃗−G⃗) r⃗ (11)

still form an orthonormal basis, but their coefficients uq⃗(r⃗) are
no longer periodic. But still, localized functions according to
generalized Wannier functions can be constructed according
to Eq. (10). As one can see in Fig. 5 on the right, these
functions are still localized at a specific lattice site, but they
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FIG. 5. (Color online) Wannier functions for an ordered symmet-
ric lattice on the left (s1 = 2, s2 = 0) and a disordered asymmetric
lattice on the right (s1 = 2, s2 = 1 with V2/V1 ≈ 0.3).

are asymmetric, reflecting the asymmetry of the underlying
lattice.

With this generalization of the Wannier function for
asymmetric lattice systems we follow the common derivation
introducing the BH model in literature [39,40] and thus
fundamentally introduce disorder via quasiperiodic potentials.
Other approaches avoid this step and describe this effect on
the BH parameter effectively [15,16,41–43]. As we were able
to show, it is not sufficient to use the symmetric Wannier
functions [44,45] as an approximation in the disordered case;
this is only accurate for s2 < 0.1. Thus, in the following we will
use these generalized Wannier functions in order to determine
the BH parameters.

B. Bose-Hubbard parameter

1. Determination

Bosons in any potential V (r⃗) in the quasi-ideal regime are
described by the quantum field theory Hamiltonian

Ĥ =
∫

dr⃗ *⃗†(r⃗)
(

− !2∇2

2m
+ V (r⃗)

)
*⃗(r⃗)

+ 1
2

∫
dr⃗ dr⃗ ′ *⃗†(r⃗)*⃗†(r⃗ ′)U*⃗(r⃗ ′)*⃗(r⃗), (12)

where U (r⃗ ,r⃗ ′) describes the two-particle interaction [39]. The
field operator in tight-binding approximation

*⃗(r⃗) =
∑

i

Wi(r⃗)âi (13)

can be composed by the Wannier functions Wi(r⃗) = Wi
0(r⃗) of

the lowest band (n = 0) and the creation operator âi creating
particle at site i⃗ = (ix,iz). In the tight-binding approximation
the interparticle interaction reduces to a pointlike interaction
U (r⃗ ,r⃗ ′) = U0δ(r⃗ − r⃗ ′) [40]. The effective interparticle inter-
action in 2D is given by

U0 = !2as

m

√
8mπωz

!
= 5.56 × 10−11!, (14)

where as = 5.2 nm is the scattering length, m = 1.443 10−25

kg is the mass of the 87Rb atoms, and ωz = 6π kHz is
the frequency of the vertical confinement [46–48]. The BH
parameters may be calculated using the ground state Wannier
function Wi(r⃗) = Wi

0(r⃗) and the actual potential V (r⃗):

ϵi =
∫

dr⃗ Wi(r⃗)
(

− !2∇2

2m
+ V (r⃗)

)
Wi(r⃗),

Ui = U0

∫
dr⃗ Wi

4(r⃗),

Jij =
∫

dr⃗ Wj (r⃗)
(

− !2∇2

2m
+ V (r⃗)

)
Wi(r⃗). (15)

In contrast to the symmetric potential, all these integrals are
not necessarily positive in the asymmetric case. Here the
generalized Wannier functions (11) as well as the potential
are asymmetric and rarely configurations occur, in which
especially the tunneling rate is negative. Finally, the chemical
potential µ as a Lagrange multiplier for the condition of a fixed
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FIG. 6. (Color online) BH parameter for a quasiperiodic poten-
tial according to Eq. (8) with s1 = 10 and s2 = 0.5. The tunneling
rate at site i = (ix,iz) gives the value for the tunneling rate to the
neighbor j = (ix + 1,iz). Note that this contains all information, since
the tunneling rate Jij (15) is symmetric under a change of the indices
and the potential V (x,z) (8) under a change of the coordinates x

and z.

particle number N =
∑

i⟨n̂i⟩ = M of on average one particle
per site is determined recursively within LMF theory.

2. Distributions

The result of this procedure is a set of individual BH
parameters α = ϵ,J,U for each fixed parameter set (s1,s2).
Exemplarily the BH parameters for s1 = 10 and s2 = 0.5 are
shown in Fig. 6. In the figures each pixel represents the value

of ϵi ,Jij ,Ui at a specific site. The BH parameters follow
the modulation of the lattice potential. Therefore, we now
deal with distributions P (α), which depend on the parameter
set (s1,s2) chosen for the amplitudes of the lasers. We will
especially focus on their mean value α =

∫
dα αP (α) and

the variance σ 2
α =

∫
dα α2P (α). Since we want to compare

results to the box distributed case from Sec. III, where the
variance is given by σ 2

α = &2
α

12 , we define the width of the
distribution &α according to this equation. With the help of
both benchmarks we are able to compare the distributions
with the scenarios of disorder in only one BH parameter, as
introduced in Sec. III. The mean value of the distribution P (α)
here matches the site-independent BH parameters α = ϵ,J,U
from Sec. III, while the width of the distribution &α =

√
12σ 2

α

corresponds to the disorder strength given as a free parameter
in Sec. III.

The resulting mean value and width of the distribution are
shown in Fig. 7. The amplitude of the main lattice s1 is one
order of magnitude larger than that of the second lattice s2. In a
shallow lattice (s1 small) the mean value of the on-site energy
ϵ and the interparticle interaction U are small and grow with
increasing depth of the lattice (s1 large). The mean value of
the tunneling rate J reaches its maximal value in a shallow
lattice and decreases in a deep lattice. All mean values are
independent of the strength s2 of the second lattice. The width
of the distribution of the on-site energy &ϵ is independent of
the amplitude s1 of the main lattice, but increases with the
amplitude s2 of the second one. As expected, the amplitude s2
of the second lattice indeed increases the disorder strength in
the system. The width of the distributions of the tunneling
rate &J and the interparticle interaction &U show similar
behavior, depending on both parameters s1 and s2; however,
their maximal values differ substantially. Both show increasing
widths for increasing s2 and adopt the maximal values
for a shallow (s1 small) and strongly disordered (s2 large)
lattice.
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FIG. 7. (Color online) The mean value α (first row) and the width &α =
√

12σ 2
α (second row) with the variance σ 2

α of the distributions
of the BH parameters α = ϵ,J,U in units of the recoil energy ER1. Notice that in the figures of ϵ and U the s1 and s2 axis are switched in
comparison to the other figures.
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FIG. 8. (Color online) The width &α =
√

12σ 2
α of the distributions of the BH parameters α = ϵ,J,U in units U . The white line shows the

the critical width &c
J , where the last Mott lobe disappears, which is stated below the plot.

The critical disorder strength at which the last Mott lobe
disappears, is &c

ϵ/U = 1 for pure on-site energy disorder and
&c

J /U = 3−2
√

2
2 ≈ 0.0858 for pure tunneling disorder. Above

these values only the BG and SF phase remain. A comparison
of the width of the distribution in units of U (see Fig. 8) with
the results on disorder in only one BH parameter in Sec. III
shows that both the width of the distribution of the on-site
energy, as well as the tunneling rate, reach the region where
all three phases occur in the phase diagram. Even though the
occurring width of the distribution of the tunneling rate &J is
small, it reaches the parameter range, where all three phases
compete in the phase diagram. In contrast, the width of the
interparticle interaction &U is indeed small in comparison to
the range in which all three phases occur in the phase diagram
and thus may be neglected.

V. PHASE DIAGRAMS OF THE BICHROMATIC
POTENTIAL

A. Intensity phase diagrams

With the help of the determined BH parameters we have
determined the phase diagram for fixed average number
N =

∑
i⟨n̂i⟩ = M of one particle per site in dependence

of the laser intensities s1 and s1 by adjusting the chemical
potential µ. The resulting phase diagram is shown in Fig. 9(a).
Here the BH parameters are correlated according to the lattice
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FIG. 9. (Color online) Left: Phase diagram for the bichromatic
quasiperiodic potential (8) for particle density ⟨n̂i⟩ = 1 in dependence
of the laser intensities s1 and s2 for a system with 32 × 32 sites.
Right: The same phase diagram as on the left side but for a BH
model with uncorrelated on-site, hopping strengths and interaction
energy disorder with the distribution parameters determined for the
bichromatic quasiperiodic potential in Sec. IV B 2.

potential (8), exemplarily displayed in Fig. 6. According to
the LMF cluster analysis described in Sec. II, the MI phase
is characterized by the absence of any SF site, which means
that every site in the MI region has an integer particle number.
In the SF region sites with a noninteger particle number
percolate. In between, in the BG region, the system consists
of both sites with an integer and others with a noninteger
particle number, which do not percolate.

Next we compare the obtained phase diagram for the
bichromatic quasiperiodic potential with the one obtained for
a BH model with uncorrelated disorder according to identical
distributions of the BH parameters P (α) with α = ϵ,J,U .
These distributions depend on both of the laser intensities s1
and s2. We start with one parameter set for ϵ, J , and U given
by fixed s1 and s2, which we have determined and discussed in
Secs. IV B 1 and IV B 2. We produce 200 different samples, by
randomly choosing new site indices. In other words, we study
200 samples according to the same distribution by switching
lattice sites thereby erasing local correlations in the parameter
set. After performing the LMF cluster analysis we determine
the BG-SF boundary with finite size scaling. The resulting
phase diagram in Fig. 9(b) does not differ much from Fig. 9(a),
only the BG-SF transition line for uncorrelated disorder is
slightly distorted in comparison with the quasiperiodic case.

In the resulting phase diagram, shown in Fig. 9(b), all three
phases occur in dependence of the lattice parameters s1 and
s2. Along the s1 axis (s2 = 0) the direct SF-MI transition of
the ordered system occurs. For values below this point in a
shallow lattice the SF phase covers the whole parameter region
independent of s2. This corresponds to the fact that in this
region the tunneling rate is largest, as shown in Fig. 7. Above
this point the MI occurs, which is completely surrounded by
the BG for intermediate s2, which in turn is enclosed by the
SF phase for even larger amplitudes of the second lattice s2.
Notice that the potential (8) reduces to the ordered case for
s2 = 0 as well as for s1 = 0. Therefore, along the s2 axis the
system also undergoes a direct MI-SF transition. In the region
where s1 ≪ s2 the second lattice is dominant and a similar
structure occurs.

B. BH parameter phase diagrams

Let us now have a look at the phase diagram in dependence
of the BH parameters. In the case of only one disordered BH
parameter two possible representations of the phase diagram
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FIG. 10. (Color online) Phase diagram for a quasiperiodic poten-
tial (8) in dependence of the BH parameter.

are common: For the first one [6,26] the particle number is fixed
to one particle per site, which fixes the chemical potential µ.
Then, the phase transitions are shown in dependence of the
interparticle interaction U/J and the disorder strength &/2J .
The second representation [21–23,26] shows the Mott lobes
in dependence of the tunneling rate JZ/U and the chemical
potential µ/U for fixed disorder strength &/U . In this section
we will discuss our results in both representations, keeping in
mind that all BH parameters as well as all disorder strengths
are functions of s1 and s2, and thus are not independent of each
other.

The data from the (s1,s2)-phase diagram shown in Fig. 9 can
be translated into a diagram similar to the first representation:
According to Fig. 7 the mean parameters ϵ, J , U as well as
the widths &ϵ , &J , &U are functions of the two amplitudes
s1 and s2. Since &U is two orders of magnitude smaller
than the other widths, the interparticle interaction U can
be treated as a sharp value to a good approximation. As a
result the phase diagram can be visualized as the surface
(U/J,&ϵ/2J,&J /2J ) in three dimensions. This is shown
in Fig. 10, where each phase is colored differently. Notice
that with a quasiperiodic potential (8), which depends on
the two amplitudes s1 and s2, only this surface in the BH
parameter space can be reached, since all BH parameters
are functions of s1 and s2 and dependent on each other. As
a consequence, disorder—e.g., where only one parameter is

disordered while the others are fixed—cannot be reached in
the phase diagram. Either it is an ordered (&ϵ = &J = 0) or a
completely disordered (&ϵ ̸= 0,&J ̸= 0) system. This has two
important implications: With a quasiperiodic potential neither
the whole parameter space nor a pure on-site disorder can be
realized.

The phase diagram in Fig. 10 shows all three phases: The
BG phase (blue) separates the MI (dark gray) phase at strong
interparticle interaction U/J from the SF regime (light gray)
at weak interparticle interaction U/J . In Fig. 10(b) the same
phase diagram is shown as a projection on the (U/J,&ϵ/2J )
plane.

The phase boundaries differ substantially from those of the
BH model with uncorrelated disorder exclusively in the on-site
energies [6,26] due to the additional presence of disorder in
the hopping strengths. More drastic is the difference between
Fig. 10 and the V2/J -U/J phase diagram predicted for a one-
dimensional BH model with bichromatic quasiperiodicity only
in the on-site potential [15]. Since according to Fig. 7(d) &ϵ

is proportional to V2 = s2ER2, the phase diagram in Fig. 10 is
directly comparable to Fig. 1 (left) of [15] and Fig. 3 (bottom)
of [16], both of which show that a direct MI-SF transition
occurs. The latter is absent in Fig. 10, where an intervening
BG phase occurs between the MI and SF phase. This might be
explained by the fact that already a small amount of disorder
in the hopping strengths strongly enlarges the BG regions in
the phase diagram, as Fig. 2 demonstrates.

For the second representation we fix the weaker amplitude
s2, which introduces disorder to the system, and study the
system in dependence of s1 and µ. Since the tunneling rate J
is a unique function of s1 and independent of s2, as shown in
Fig. 11(b), the s1 axis can easily be converted into a J axis. In
theoretical works disorder is usually introduced by bounded
distributions with zero mean values. In the quasirandom case
the mean value of the distributions P (α) of the BH parameters
α = ϵ,J,U are nonzero, as shown in Fig. 7. In order to take this
into account, we use µ − ϵ instead of simply µ. Thus, from
the data in the (s1, µ) plane, we can extract a phase diagram
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FIG. 11. (Color online) The on-site energy ϵ/U and the widths &ϵ/U,&J /U,&U/U of the BH parameter for different values of s2 =
0.0354(−), 0.0758(−·), 0.1162(−−) as a function of JZ/U . In (b) the tunneling rate JZ/U is shown as a function of s1. The tunneling rate
is independent of s2 and a unique function of s1. The on-site energy ϵ/U as well as all widths increase with the tunneling rate JZ/U and the
amplitude s2.
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FIG. 12. (Color online) Phase diagram for different s2 =
0.0354, 0.0758, 0.1162 as a function of the mean tunneling
rate JZ/U and the chemical potential (µ − ϵ)/U .

in dependence of JZ/U and (µ − ϵ)/U , as shown in Fig. 12.
Notice that J,U,ϵ as well as &J ,&U ,&ϵ are all functions of
s1 and s2 and not independent from each other, as they are
assumed to be in most simulations of disordered systems.

In Fig. 11 the behavior of the system parameters for
different values of s2 = 0.0354, 0.0758, 0.1162 is shown as
a function of JZ/U . Figure 11(b) shows the tunneling rate
in dependence of s1. While the tunneling rate JZ/U is
independent of s2, the on-site energy ϵ/U varies for different
values of s2. In a shallow lattice (s1 small) the tunneling rate
JZ/U is large, while for increasing s1 it approaches zero and
finally in a deep lattice (s1 large) the tunneling rate JZ/U
becomes infinitesimally small. This means that in the phase
diagram the µ/U axis at JZ/U = 0 may be approached
with arbitrary accuracy, but can never be reached. In a deep
lattice (JZ/U small, s1 large) the on-site energy ϵ/U is small
and increases with growing JZ/U . The disorder strengths
&ϵ/U,&J /U,&U/U increase with JZ/U and the amplitude
s2.

The phase diagram for different values of s2 as a function
of JZ/U and (µ − ϵ)/U is shown in Fig. 12. Notice that the
BH parameters and their widths vary along the JZ/U axis
corresponding to Fig. 11. For all values of s2 we find a regular
structure of Mott lobes, surrounded by individual BG regions.
The number of Mott lobes as well as the number of BG regions
decreases with increasing disorder amplitude s2, which is equal
to the increase of the disorder strengths &ϵ/U,&J /U,&U/U .
The regular pattern of Mott lobes and BG regions repeats itself
in intervals of length one along the (µ − ϵ)/U axis. The lower
and the upper extent of the Mott lobes have the same distance
to the next integer number for fixed s2. Thus, the Mott lobes
have the same width along the (µ − ϵ)/U axis, while their
extension in the JZ/U direction shrinks with their number
n. Except for the first BG region, all the others are separated
from each other by SF regions, reaching down to very small
tunneling rates JZ/U . This is a unique feature of disorder
only in the tunneling rates, which was discussed in Sec. III B.
The fact that we see this special phenomenon here in the phase
diagram of a quasirandom potential, once more promotes our

finding from Sec. IV B 2 that the influence of disorder in the
tunneling rate cannot be neglected.

VI. CONCLUSION

The main result of this paper is that disorder in the tunneling
rate must be taken into account in setups using 2D bichromatic
quasiperiodic potentials. It influences the phase diagram just
as much as the on-site disorder. This claim is supported by
several findings in this paper: First, in Sec. III we showed
that the disorder strength, where all three phases compete
in the phase diagram, is one order of magnitude smaller for
tunneling disorder than for on-site interaction. We found that
each scenario, in which only one BH parameter is disordered,
yields different features in the phase diagram. In particular, the
characteristics of tunneling disorder are a finite number of Mott
lobes and the existence of SF regions even for JZ/U = 0.

Secondly, we discussed bichromatic quasiperiodic poten-
tials in Sec. IV and showed (see Fig. 7) that the width of
the distribution of the tunneling rate as well as that of the
on-site energy reach the physical interesting region, where all
three phases compete. This is true even though the width of
the distribution of the tunneling rate is one order of magnitude
smaller than that of the on-site energy. The influence of
disordered interparticle interaction is negligible, since its width
remains four orders of magnitude below the critical disorder
strength. This is in agreement with the results for distributions
of BH parameters produced by a random diffuser pattern
overlapping the main lattice [31,33]. Correspondingly to our
work, in these papers the authors also showed, that the width of
the tunneling rate and the interparticle interaction are several
orders of magnitude smaller than that of the on-site energy.
Moreover, it is important to keep in mind that in a bichromatic
quasiperiodic potential it is not possible to study exclusively
on-site disorder. For growing intensity of the second laser s2,
the widths of the disorder distributions of both the on-site and
the tunneling rate increase simultaneously.

Thirdly, the influence of tunneling disorder is obvious in the
phase diagram of the quasiperiodic potential in dependence of
the BH parameters. The transition lines, shown in Fig. 10,
deviate from pure box distributed on-site disorder, discussed
for example in [6,26]. In the quasirandom case the SF region is
smaller, while the BG and the MI regions cover a larger region.
In the µ-J -phase diagram of Fig. 12 we find individual BG
regions, which are separated by SF regions, which is a unique
feature exclusively occurring in systems with disordered
tunneling rates (see Fig. 2).

While the field of box on-site disorder was studied
widely [6–26,35], the works on tunneling disorder are rare
and mainly deal with bimodal distributions [10,36,37]. A
phase diagram far above the critical disorder strength &c

J /U ≈
8.58 × 10−2 for equally distributed tunneling disorder is
shown in [25].

The one-dimensional BH model with a bichromatic on-site
potential with incommensurable wavelengths was studied
in [15,16]. The motivation there was, as also in this paper,
to qualitatively understand the phase diagram of bosons in a
bichromatic quasiperiodic potential, but it was argued that the
variations in the hopping strengths as well as in the interaction
energies were only minor and could be neglected. Although
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we have shown here by explicit calculation that the disorder
strength in the tunneling strengths is indeed one order of
magnitude smaller than the on-site disorder, it nevertheless has
a strong effect on the 2D phase diagram. The most striking dif-
ference is that the phase diagrams of [15,16] show a direct MI-
SF transition (which for quasiperiod disorder is not in contra-
diction with general predictions for uncorrelated disorder [9]),
whereas we find an intervening BG phase between the MI and
the SF phase for all values of the laser intensities s1 and s2. A
reason for this, in addition to potentially qualitative differences
between one and two dimensions, could be that our results for
uncorrelated disorder in Sec. III show that a modest amount of
disorder in the hopping strength already generates relatively
large BG regions in the phase diagram (see Fig. 2). Conse-

quently, disorder in the hopping strengths cannot be neglected
studying bosons in a bichromatic quasiperiodic potential.

Conversely, one should be aware that experimental realiza-
tions of the disordered potential by a bichromatic quasiperiod
potential, as in [4,32], produce a phase diagram that is qual-
itatively very different from the predictions of the disordered
BH model with exclusively on-site disorder.
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[47] P. Krüger, Z. Hadzibabic, and J. Dalibard, Critical Point of an
Interacting Two-Dimensional Atomic Bose Gas, Phys. Rev. Lett.
99, 040402 (2007).

[48] H. Habibian, A. Winter, S. Paganelli, H. Rieger, and G. Morigi,
Quantum phases of incommensurate optical lattices due to cavity
backaction, Phys. Rev. A 88, 043618 (2013).

043632-11


