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We present a quantitative semiclassical theory for the nonequilibrium dynamics of transverse Ising chains after
quantum quenches, in particular, sudden changes of the transverse field strength. We obtain accurate predictions
for the quench-dependent relaxation times and correlation lengths, and also about the recurrence times and
quasiperiodicity of time-dependent correlations in finite systems with open or periodic boundary conditions. We
compare the quantitative predictions of our semiclassical theory (local magnetization, equal-time bulk-bulk and
surface-to-bulk correlations, and bulk autocorrelations) with the results from exact free-fermion calculations, and
discuss the range of applicability of the semiclassical theory and possible generalizations and extensions.

DOI: 10.1103/PhysRevB.84.165117 PACS number(s): 64.70.Tg, 05.70.Ln, 75.10.Pq, 75.40.Gb

I. INTRODUCTION

The nonequilibrium quantum relaxation in many-body
systems has gained increased interest over the recent years, not
least because trapped cold-atom systems made its experimental
study possible. In principle, one asks for the fate of an
initial state that is not an eigenstate of the Hamiltonian under
the time evolution according to the Schrödinger equation. A
straightforward method to prepare such an initial state is the
instantaneous change of a global or local parameter of the
system such as an external field or the interaction strength,
denoted as a quantum quench or simply quench. Important
issues of interest are then as follows: (1) Is there an asymptotic
stationary state, what are its characteristics, is it describable by
a general Gibbs ensemble (i.e., does the system thermalize after
a quench)? (2) What are the characteristics of the dynamical
evolution of order, correlations, and quantum entanglement in
the system?

The first theoretical studies of quenches in quantum many-
body systems were performed for the quantum XY and quan-
tum Ising spin chains.1–3 Spectacular experimental results4

triggered an intensive research on quantum quenches in various
systems such as one-dimensional (1D) Bose systems,5–7 the
quantum sine-Gordon model,8 Luttinger liquids,9 and others.10

Aside from studies on specific models, there are also field-
theoretical investigations, in which relation with boundary
critical phenomena and conformal field theory are utilized.11–13

Progress in understanding thermalization, or absence thereof,
in a particularly well-studied integrable model, the transverse
Ising chain, has been achieved in Refs. 14 and 15. The
concept of an effective temperature depending on the quench
parameters is useful to parametrize the relaxation time and
correlation length determining the spin correlations after a
global quench. But, actually each excitation mode has its own
thermalization temperature,16 implying that the system never
thermalizes after a quench.

For the transverse Ising chain in thermal equilibrium,
Sachdev and Young17 introduced a semiclassical description
of the equilibrium quantum relaxation in terms of ballistically
moving quasiparticles. This description turned out to be
surprisingly accurate in predicting the temperature dependence
of relaxation time, correlation length, and scaling forms in the
ferromagnetic and paramagnetic phases.

For global quantum quenches, a picture of ballistically
moving quasiparticles spontaneously created after the quench
has been used11,18 to explain several features of the time
evolution of different quantities, in particular, that of the
entanglement entropy.19,20 This picture has also been used to
interpret results of exact calculations obtained with the free-
fermion technique14,15 or field theory (at the critical point).11,18

Obviously, it would be desirable to have a quantitative
semiclassical theory for the nonequilibrium dynamics after
quantum quenches, too. This is what we will present in this
paper for global quenches; for local quenches, a brief account
has been given by us recently in Ref. 21. Here, we present the
quantitative analog of the semiclassical theory for equilibrium
quantum relaxation of transverse Ising chains17 and generalize
it to the nonequilibrium dynamics in finite systems. By this,
we will not only obtain accurate predictions for the relaxation
times and correlation lengths, but also about the recurrence
times and quasiperiodicity of time-dependent correlations in fi-
nite systems with open or periodic boundary conditions. Since
in experimental setups of quantum quenches, as for instance
cold-atom systems, the number of particles is rather restricted
and far away from the infinite system size limit, the understand-
ing of finite-size effects in nonequilibrium quantum relaxation
is important and often may be, as we will show, drastic.

The paper is organized as follows: After the model
definition in the next section, we present the semiclassical
theory for the nonequilibrium dynamics of the transverse Ising
chain after a quench. Then, we derive the semiclassical formula
for the local magnetization, equal-time bulk-bulk and surface-
to-bulk correlations, and bulk autocorrelations and compare
the predictions with the results from exact free-fermion
calculations. Finally, we discuss the range of applicability
of the semiclassical theory and possible generalizations and
extensions.

II. MODEL

The system we consider in this paper is the quantum Ising
chain defined by the Hamiltonian22

H = −1

2

L−1∑
l=1

σ z
l σ z

l+1 − h

2

L∑
l=1

σx
l (1)
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in terms of the Pauli matrices σ
x,z
l at site l. In Eq. (1), the chain

has a finite length L and open boundaries; later we will also
discuss periodic boundary conditions. (Here, we use such a
representation of H, which is convenient in the ferromagnetic
phase, in particular, for h � 1.) We consider global quenches
in which the transverse field strength is suddenly changed
from h0 for t < 0 to h �= h0 for t > 0. For t < 0, the system
is in equilibrium, which means it is in its ground state |�0〉
and which we denote as its initial state. After the quench, for
t > 0, the state |�0〉 evolves according to the new Hamiltonian

|�0(t)〉 = exp(−ıHt)|�0〉. (2)

Similarly, we have for the time evolution of an operator σl(t) =
exp(−ıtH)σl exp(ıtH).

We consider the general, time- and space-dependent corre-
lation function

C(r1,t1; r2,t2) = 〈�0|σ z
r1

(t1)σ z
r2

(t2)|�0〉, (3)

and study its behavior in special circumstances. The autocor-
relation function is obtained for r1 = r2 = r , which is denoted
as Gr (t1,t2), whereas for t1 = t2 = t , we have the equal-time
correlation function. This latter quantity for large separation
behaves as C(r1,t ; r2,t) ≡ Ct (r1,r2) = mr1 (t)mr2 (t), where
mr (t) is the local magnetization. In the initial state (and in
the thermodynamic limit L → ∞) for h0 < hc = 1, there is
a finite magnetization mr (0) > 0, whereas for h0 > 1 one has
mr (0) ∼ O(1/L).

A. Free-fermion representation

The Hamiltonian in Eq. (1) can be expressed in terms of
free-fermion creation η

†
p and annihilation operators ηp

22,23 as

H =
∑

p

εh(p)(η†
pηp − 1/2) , (4)

where the energy of modes is given by

εh(p) =
√

(h − cos p)2 + sin2p. (5)

The quasimomenta p has L quasiequidistant values in the
interval 0 < p < π for free boundary conditions, whereas for
closed chains, these are restricted to |p| < π . Time evolution
of the fermion operators are η

†
p(t) = eıtε(p)η

†
p and ηp(t) =

e−ıtε(p)ηp from which one can obtain the time evolution of
the spin operators. The correlation functions in the fermion
representations are expressed in terms of Pfaffians, which
are then calculated as the square root of the determinant
of the corresponding antisymmetric matrix, which has the
elements of the Pfaffian above the diagonal. For free boundary
conditions, these determinants have a dimension 2(r1 + r2).
Following Yang,24 the local magnetizations can be calculated
in the form of an off-diagonal matrix element mr (t) =
〈�0|σ z

r (t)|�1〉, where |�1〉 denotes the first excited state for
t < 0. Its numerical calculation necessitates the solution of a
2r × 2r determinant.

III. SEMICLASSICAL THEORY

In the absence of the transverse field in Eq. (1), h = 0,
the system is identical with the classical Ising spin chain.
The ground state is twofold degenerate and given by |�0〉 =

| + + + · · · +〉 and |�0〉 = | − − − · · ·−〉 and the first excited
states are (L − 1) fold degenerate given by the single-kink
states |n〉 = | + + · · · + + − − · · · − −〉, where n denotes the
kink position. Switching on a small transverse field h > 0, the
low-lying excitations are, in first-order degenerate perturbation
theory, superpositions of these single-kink states

∑
n an|n〉

with excitation energy εh(p). The actual perturbation calcu-
lation yields an = √

2/L sin(pn), with εh(p) = 1 − h cos p,
where p has L − 1 discrete values in the same region as
given below Eq. (5). Thus, the low-lying excitations of H
are Fourier transforms of localized single-kink states, similar
to the eigenstates of the Hamiltonian for free particles in a
box of length L. Analogously, freely moving single kinks
are therefore wave packets of the aforementioned low-lying
excitations. Their energy agrees to leading order in h with the
free-fermion energies in Eq. (5) and they move ballistically
with constant velocity ±vp given by

vp = ∂εp

∂p
= h sin(p)

εp

. (6)

Ballistically moving kinks are then the (fermionic) quasipar-
ticles (QPs), which we use in the following to formulate a
semiclassical theory of the quantum quench dynamics of the
transverse Ising model. Since by definition these QPs are well
defined at small fields in the ferromagnetic phase, the theory
is expected to be applicable for quenches in the ferromagnetic
phase. It will turn out that it actually holds in the whole
ferromagnetic region not too close to the critical point (h = 1).
In the paramagnetic phase, one can start with the h → ∞
ground state to introduce an analogous QP concept involving
individual spin flips instead of kinks,17 but the same dispersion
relation (5) and velocity (6). We will mention the necessary
modifications below.

Immediately after the quench, the time-dependent state of
the system in Eq. (2), which for small h and small t is given
by

|�0(t)〉 ∼ exp

(
−ıth

∑
l

σ x
l

)
|�0〉

=
∏

l

[
cos(th) + ı sin(th)σx

l

]
|�0〉. (7)

This indicates that, by the action of the σx
l operators, initially

single spins are flipped and thus pairs of kinks are created at
each lattice point, which then move ballistically with a speed
v ∼ h. The maximum velocity is vmax ≈ h for small h.

In a translationally invariant system, the creation probability
of QPs is uniform and will be denoted by fp(h0,h). For
open boundary conditions, there will be corrections to a
uniform creation probability close to the boundaries, which are
negligible for sufficiently large system sizes. In an equilibrated
system that is thermalized at temperature T , this would be
f

eq
p (h0,h) = e−εp/T . For zero temperature, quantum relaxation

fp(h0,h) is the probability with which the modes with
momentum number p are occupied in the initial state |�0〉,
i.e.,

fp(h0,h) = 〈�0|η+
p ηp|�0〉. (8)
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FIG. 1. (Color online) Typical semiclassical contribution to the
correlation function C(r1,t1; r2,t2). Note that the six trajectories of
the three QP pairs intersect the line (r1,t1; r2,t2) five, i.e., an odd
number, of times, which implies that σ z

r1
(t1) and σ z

r2
(t2) have opposite

orientation. Equivalently, one can say that the trajectories of the red
and the green QP pair intersect (r1,t1; r2,t2) an even number of times
(and thus do not contribute) and the trajectory of the blue QP pair an
odd number of times.

In a finite system with open boundaries a QP with momentum
p moves uniformly with velocity vp until it reaches one of the
boundaries, where it is reflected and moves with velocity −vp

thereafter, and so forth. The trajectory of the kink is periodic
in time; after a time 2Tp with

Tp = L/vp (9)

(including a reflection at the right and left boundaries), it
returns to the starting point x0 with the initial direction and
velocity vp (see Fig. 1). Due to conservation of momenta after
a global quench, QPs emerge pairwise at random positions
with velocities +vp and −vp, as indicated in Fig. 1 for three
QP pairs.

For a given QP pair created (at t = 0) at position x0 ∈ [0,L],
let x1(t) be the position of the initially right-moving QP (i.e.,
with initial velocity vp) at time t and x2(t) be the position of the
initially left-moving one (i.e., with initial velocity −vp). We
define ta as the time when the left-moving particle reaches the
left wall the first time and tb as the time when the right-moving
particle reaches the right wall the first time:

ta = x0/vp, tb = (L − x0)/vp. (10)

Then, for t � Tp,

x1(t) =
{

x0 + vpt for t � tb,

2L − x0 − vpt for tb < t � Tp,
(11)

x2(t) =
{
x0 − vpt for t � ta,

vpt − x0 for ta < t � Tp.

At t = Tp, the two QPs meet at x = L − x0. For Tp < t < 2Tp

the trajectories are defined accordingly (see Fig. 2), and for
t > 2Tp, one notes that x1 and x2 are 2TP periodic.

Since QPs represent kinks or domain walls, σ z changes sign
each time a QP passes. Therefore, the correlation function
in Eq. (3) can be evaluated in terms of classical particles
moving according to (11) by using a similar reasoning as in
equilibrium,17 the difference being that here (1) QP trajectories

l

p

0 L

t

p2T

+

+

−

−

+

−

T

l0

t
l/v

l/v
t

0

vt

t
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vt

2l

2l−vt vt

l
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p
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p

q = 2vt / L

q = 2l / L
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FIG. 2. (Color online) Left: Typical semiclassical contribution to
the time dependence of the local magnetization ml(t). Full lines are
quasiparticles or kinks moving with velocity vp through the chain.
The ± signs denote the sign of the spin at site l. Right: Sketch of the
trajectories of kink pairs that flip the spin at position l exactly once
for times t < Tp/2. Kink pairs with initial position x0 outside the
marked region either do not flip the spin at l (since they do not reach
the position l within time t) or they flip it twice. qp is the fraction of
the marked intervals on the t = 0 axis.

can intersect the line (r1,t1; r2,t2) several times, (2) QP
trajectories come always in pairs with a common off spring at
t = 0, and (3) the occupation number of QPs is not thermal.

If a QP trajectory intersects the line (r1,t1; r2,t2) an odd
number of times, the spins at (r1,t1) and (r2,t2) have the op-
posite orientations [i.e., σ z

r1
(t1) = −σ z

r2
(t2)], which contributes

to the decay of the correlation between σ z
r1

(t1) and σ z
r2

(t2) (see
Fig. 1). If the two trajectories pass an even number of times,
the spins have the same orientation, as if the trajectories did
not pass the line (r1,t1; r2,t2) at all. Let Q(r1,t1; r2,t2) be the
probability that the QPs, which have started from the same
site, have passed the line (r1,t1; r2,t2) a total odd number of
times. Then, the probability that for a given set of n sites the
kinks have passed (for each site total odd times) this line is
Qn(1 − Q)L−n. Summing over all possibilities, we have

C(r1,t1; r2,t2)

Ceq(r1,r2)
=

L∑
n=0

(−1)nQn(1 − Q)L−n L!

n!(L − n)!

= (1 − 2Q)L ≈ e−2Q(r1,t1;r2,t2)L, (12)

where Ceq(r1,r2) is the equilibrium correlation function in
the initial state and, in the last step, we have used that
the probability Q(r1,t1; r2,t2) is small. To calculate Q, one
should average over the QPs with momenta p ∈ [−π,π ] or,
equivalently, one can average over QP pairs, which is restricted
to p ∈ [0,π ]. In this second method, we have the expression

Q(r1,t1; r2,t2) = 1

2π

∫ π

0
dp fp(h0,h)qp(r1,t1; r2,t2) (13)
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HEIKO RIEGER AND FERENC IGLÓI PHYSICAL REVIEW B 84, 165117 (2011)

in terms of the occupation probability [see Eq. (8)] and
the passing probability qp(r1,t1; r2,t2). This latter quantity
measures the probability that the two trajectories x1(t) and
x2(t) of any QP pair with momentum p intersect the line
(r1,t1; r2,t2) together an odd number of times. The same
probability for a given QP pair, which is emitted at site
x0 ∈ [0,L], is denoted by qp(x0|r1,t1; r2,t2). If we assume that
the generation of QPs at the quench is homogeneous in space,
then we obtain

qp(r1,t1; r2,t2) = 1

L

∫ L

0
dx0 qp(x0|r1,t1; r2,t2). (14)

In most cases of interest (see below), it is possible to provide
an analytical form for the function qp(r1,t1; r2,t2). If not, the
number of intersections can straightforwardly be determined
numerically and averaged over x0, yielding qp(r1,t1; r2,t2) and,
thus, Q(r1,t1; r2,t2) in Eq. (13) and the correlation function in
Eq. (3).

IV. LOCAL MAGNETIZATION

The time-dependent local magnetization at a site l (here we
consider l � L/2) can be formally expressed to a correlation
between a spin that is fixed at time t = 0 (to, say, σ z

l =
+1) and the same spin at later times t , i.e., ml(t) = m

eq
l ·

C|σ z
l (t=0)=+(l,0; l,t). Then, with Eq. (3),

ml(t) = m
eq
l e−2q(t,l)L (15)

with q(t,l) = Q|σ z
l (t=0)=+1(l,0; l,t), which is, with Eq. (13),

q(t,l) = 1

2π

∫ π

0
dp fp(h0,h) qp(t,l), (16)

where

qp(t,l) = 1

L

∫ L

0
dx0 qp(x0,t,l) (17)

as in Eq. (14). To calculate qp, one concentrates first on times
t < Tp/2 = L/2vp. Now, qp is just the fraction of possible
initial positions from which kink pairs can start with velocity
+vp and −vp that flip the spin at position l exactly once. This
region is marked in the sketch of Fig. 2. One sees that, for
t < l/vp, one gets qp = 2vt/L, and for l/vp < t < Tp/2, one
gets qp = 2l/L, independent of time.

For Tp/2 < t < Tp, one observes that a kink pair that
started (at t = 0) at position x0 reunites after a time t =
Tp at position L − x0. Since the origins of kink pairs are
distributed uniformly over the chain, the probability qp(t,l)
is Tp periodic (note: the kink trajectories themselves are only
2Tp periodic). Moreover, qp(t,l) is symmetric with respect to
time inversion since it is symmetric under the QP velocity in-
version qp(−t,l) = qp(t,l), therefore, qp(Tp − t,l) = qp(t,l).
Defining the reflection times t1 = l/vp and t2 = Tp − t1, one
then has, for the period 0 � t < Tp for l < L/2,

qp(t,l) =

⎧⎪⎨
⎪⎩

2vpt/L for t � t1,

2l/L for t1 � t � t2,

2 − 2vpt/L for t2 � t < Tp.

(18)

For l > L/2, one uses the symmetry qp(t,l) = qp(t,L − l)
and, for t > Tp, one makes use of the Tp periodicity of qp(t,l):

qp(t + nTp,l) = qp(t,l) (n = 1,2, . . .). (19)

Although qp(t,l) is Tp periodic, q(t,l) is not periodic, since all
QPs have different speed. Nevertheless, the maximum speed
vmax = h + O(h2) determines the onset of magnetization
reconstruction and, therefore, a quasiperiodicity of q(t,l)
and concomitantly ml(t), the (quasi)period of which is then
expected to be

Tperiod = L/vmax ≈ L/h. (20)

With Eqs. (16), (18), and (19), one obtains ml(t) via numerical
integration (or summation over the discrete p values for a
lattice of finite size L).

For an actual calculation, one needs to know the occupation
probability fp(h0,h) in Eq. (8), which can be calculated
numerically in a straightforward manner using the free-
fermion technique. Since for large system sizes the occupation
probability is not expected to depend strongly on the boundary
condition, we will use in the following the expression for
fp(h0,h) for periodic boundary conditions, which can be given
in analytical form as shown in the Appendix [see Eq. (A8)].
In Fig. 3, the prediction of the semiclassical computation is
shown. One observes the predicted quasiperiodicity for finite
lattices and the expected exponential decays in l and t as
discussed below.

In Fig. 4, we compare the semiclassical prediction with
the exact results obtained with the free-fermion technique and
find that the agreement is remarkably good. We observe that
small deviations occur in the bulk (l ∼ L/2) for t > Tperiod/2,
which is when the first QP reflections are involved in the
dynamical evolution of ml(t). For sites close to the boundary,
i.e., small l, we observe small deviations already in the plateau
region (cf. also the surface-to-bulk correlations discussed
further below). Here, a spatially inhomogeneous QP creation
probability would have the most significant effect, which is
negligible for bulk spins.
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FIG. 3. (Color online) Semiclassical prediction for the local
magnetization ml(t) quench. Here, L = 1024, h0 = 0, h = 0.2. The
(quasi)periodicity (20) is Tperiod = L/h = 5120.
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FIG. 4. (Color online) Relaxation of the local magnetization
log ml(t) at different positions in a L = 256 chain with free ends
after a quench with parameters h0 = 0.0, h = 0.2, and L = 256.
(a) Exact (free-fermion calculation). (b) Semiclassical prediction (15)
with the passing probability (18) and the occupation probability (A8).
(c) Comparison between exact and QP calculation for ml(t) for
L = 256, l = 128 for a quench from h0 = 0 to 0.1. (d) Semiclassical
prediction using a thermal occupation number probability in Eq. (21)
with an effective temperature Teff (see the text).

When the system after the quench would be thermalized at
some effective temperature Teff(h0,h),14 this would imply that
the occupation probability is

fp(h0,h) = e−εp(h)/Teff (h0,h). (21)

The effective temperature is determined from the condition
that the relaxation time in equilibrium τT (h,T ) (with transverse
field h and temperature T ) is the same as in quantum relaxation
at T = 0, but after a quench from h0 to h. In the limit
T � 
(h), 
(h) being the gap of the system, we have17

τT (h,T ) ≈ π
2T

e
/T , which should be compared with τ (h0,h),
which for small h and h0 is given in Eq. (39). The result of the
semiclassical calculation using (21) is also shown in Fig. 4(d)
and compared with the exact data for a quench form h0 = 0 to
0.2. One sees that, using the proper effective temperature,
the initial exponential decay agrees perfectly, but as soon
as the first reflections are involved, large deviations occur.
An effective temperature can describe the initial relaxation
well because essentially it is a fit parameter for the initial
exponential decay, which stops after some (l-dependent) time
in a finite system.

In the infinite system size limit L → ∞, the time t2
in Eq. (18) is infinite for all momenta p. Thus, the
(quasi)periodicity of ml(t) is lost and the functional form of
ml(t) as predicted by (18), (16), and (15) is

ml(t) = m
eq
l exp

(
−t

2

π

∫ π

0
dp vp fp(h0,h) θ (l − vpt)

)

× exp

(
−l

2

π

∫ π

0
dp fp(h0,h) θ (vpt − l)

)
, (22)

which defines, in analogy to17 the quench-specific length and
time scales

τ−1
mag(h0,h) = 2

π

∫ π

0
dp vp fp(h0,h),

(23)

ξ−1
mag(h0,h) = 2

π

∫ π

0
dp fp(h0,h).

In the small h and h0 limits, these are calculated in Eqs. (39)
and (32), respectively.

In a finite system, there is a quasiperiodicity and the
magnetization after the first relaxation period is reconstructed.
Due to the p dependence of the velocity of the QPs in the
reconstruction regime, the rate of exponential increase of the
magnetization τ ′

mag is increasing in time. Its maximal value is
reached at t = Tperiod, which is given by

1

τ ′
mag(h0,h)

= 2

π

[ ∫ π

π/6
−

∫ π/6

0

]
dp vp fp(h0,h)

≈ h(h − h0)2 9
√

3 − 8

12π
, (24)

where the second expression is valid in the small h and
h0 limits. One can see that τ (h0,h) < τ ′(h0,h), thus, the
reconstruction is slower than the relaxation. While QPs with
large energy and high velocity contribute to the reconstruction,
the other QPs with smaller energy and lower velocity still
reduce the magnetization. These processes with opposite
effect are responsible for the decay of the amplitude of the
quasiperiodic oscillations of the profile (see Figs. 3 and 4).

After quenches into the disordered phase (h > 1), the
relaxation (and recurrent) dynamics of the longitudinal mag-
netization is superposed by oscillations from the ground-state
correlations17 and one has to replace m

eq
l in Eq. (15) by

m
eq
l → m

eq
l K(t
) , (25)

where K(x) is the modified Bessel function. The results for
the corresponding QP calculation and comparison with the
exact data are shown in Fig. 5. One observes again that the
relaxation and recurrent dynamics is well described by the
semiclassical picture also for quenches into the paramagnetic
(disordered) phase. The superposed oscillations have a slightly
larger amplitude and frequency. Note also that for quenches
from the paramagnetic phase [Figs. 5(c) and 5(d)], the
equilibrium profiles (meq

l ) shift the curves for ml(t) downward
for increasing l since in the paramagnetic phase, the surface
magnetization is larger than the bulk magnetization in a finite
chain (both vanishing only in the infinite system size limit).

V. CORRELATION FUNCTIONS

As mentioned before, it is possible to perform the semiclas-
sical calculation for the two-spin correlations C(r1,t1; r2,t2)
for any pair of sites r1, r2 and any pair of times t1, t2 with
the formulas (3), (13), and (14). Here, we want to focus on
the time dependence of equal-time correlations between spins
separated by a distance r and arranged symmetrically within
the bulk, i.e., we consider

Ct (r) = C(L/2 − r/2,t ; L/2 + r/2,t) (26)
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FIG. 5. (Color online) Relaxation of the local magnetization
ml(t) after quenches into the disordered phase, from the ordered
phase (h0 = 0.5, h = 1.5) (a) exact, (b) semiclassical, and from the
disordered phase (h0 = 1.5, h = 2.0) (c) exact, (d) semiclassical.
The legend of (a) and (b) holds also for (c) and (d), the system size is
L = 256.

for quenches within the ordered phase (h < 1), which is, within
the semiclassical theory, given by

Ct (r) = Ceq(r) exp

(
− L

2π

∫ π

0
dp fp(h0,h)qc

p(t,r)

)
. (27)

As sketched in Fig. 6, the function qc
p(r,t) for Ct (r) is

Tp/2 periodic, and for the period 0 � t < Tp/2, given by (for
r < L/2)

qc
p(t,r) =

⎧⎪⎨
⎪⎩

4vpt/L for t � t1,

2r/L for t1 � t � t2,

2 − 4vpt/L for t2 � t < Tp/2

(28)

with t1 = r/2vp and t2 = Tp/2 − t1. (For r > L/2, one should
replace in the above formulas r to L − r .) Note that the relevant
times occurring in this expression are all multiplied with a
factor 1/2 as compared to those determining qp for the local
magnetization (18). In particular, qp(t,r) is Tp/2 periodic (in
contrast to the Tp periodicity of qp for the local magnetization):
qp(t + nTp/2,r) = qp(t,r) for n = 1,2,3, . . . . As a result,
the (quasi)period of Ct (r) for fixed r is one half of the
(quasi)period of the local magnetization ml(t):

T C
period = L/2vmax ≈ L/2h . (29)

With (28) and fp(h0,h) from the Appendix, the semiclassical
calculation can be performed; the results and the comparison
with exact data are shown in Figs. 7 and 8.

In Fig. 9, we show the semiclassical prediction for Ct (r) for
larger system sizes and long times, scaled by the (quasi)period
T C

period [Eq. (29)], which demonstrates the persistence of the
recurrence for very long times in finite systems. Note that the
recurrence amplitude decreases with increasing system size
and vanishes completely for L → ∞.

In the infinite system size limit L → ∞, the time t2
in Eq. (18) is infinite for all momenta p. Thus, the
(quasi)periodicity of Ct (r) is lost, and the functional form

L0 2vt 2vt

L/2

tt < r/2v

r r0 L

t

L−xx0 0

t

T /2−tp

T /4p

t > r/2v
t < T /4p

q = 4vt / L

q = 2r / Lp

p

L/2−r/2 L/2+r/2

L/2+r/2

T

L/2−r/2

p

T /2p

FIG. 6. (Color online) Semiclassical contributions to the equal-
time correlation function Ct (r) = C(L/2 − r/2,t ; L/2 + r/2,t).
Left: Sketch of the trajectories of kink pairs that reverse the orientation
of the spins at r1 and r2 for times t < Tp/4. Kink pairs with initial
position x0 outside the marked region either do not intersect the
line (r1 = L/2 − r/2,t ; r2 = L/2 + r/2,t) (red) (since they do not
reach the red line within the time t) or they flip it twice. qc

p is the
fraction of the marked intervals on the t = 0 axis. Right: Sketch of
the additional symmetry of qc

p(t) that reduce its periodicity from Tp

to Tp/2. For each QP pair created at position x0 intersection, the red
line at time t < Tp/4 there is a QP pair created at position L − x0 that
intersects the red line at time Tp/2 − t . Hence, qc

p(t) = qc
p(Tp/2 − t)

for t < Tp/2. At t = Tp/2, the QP pair created at x0 meets again at
L − x0 and the one created at L − x0 meets again at x0, which implies
after averaging over initial position that qc

p(t + Tp/2) = qc
p(t).

of Ct (r) as predicted by (28) and (27) is

Ct (r) = Ceq(r) exp

(
−t

4

π

∫ π

0
dp vp fp θ (l − vpt)

)

× exp

(
−r

2

π

∫ π

0
dp fp θ (vpt − l)

)
, (30)
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FIG. 7. (Color online) Equal-time correlation function Ct (r) for
fixed r as a function of time t after the quench: comparison between
the exact result (left) and the semiclassical prediction (right). L =
256, h0 = 0, h = 1.5 (a) exact, (b) semiclassical; h0 = 0.3, h = 0.5
(c) exact, (d) semiclassical. The legend of (a) and (b) holds also for
(c) and (d).
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FIG. 8. (Color online) Equal-time correlation function Ct (r) for
fixed time t after the quench as a function of distance r: comparison
between the exact result (points) and the QP calculation (black broken
lines). L = 256, h0 = 0, and h = 0.25.

with fp = fp(h0,h). This agrees to first order in fp to the
prediction of Ref. 16, where fp is replaced by −1/2 log(1 −
2fp) = fp + O(f 2

p ) (see the Appendix). Equation (30) defines
the quench-specific length and time scales

τ−1
c (h0,h) = 4

π

∫ π

0
dp vp fp(h0,h),

(31)

ξ−1
c (h0,h) = 2

π

∫ π

0
dp fp(h0,h).

Note that τc = τmag/2 and ξc = ξmag. For a small h0 and h, this
yields to leading order

ξ−1(h0,h) = (h − h0)2

2π

∫ π

0
dk sin2 k = (h − h0)2

4
. (32)
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FIG. 9. (Color online) QP prediction for the equal-time correla-
tion function Ct (r) plotted against time after the quench scaled with
the (quasi)period T C

period = L/2h for different fields h (h0 = 0). The
three curves for each field h correspond to different system sizes:
L = 256, 512, and 1024 (from the top curve to the bottom curve).

 0.01

 0.1

1

0  50  100  150  200  250  300

C
tsu

rf
(r

)

t

r = 16
r = 32
r = 48
r = 64

e-t/τ

FIG. 10. (Color online) Surface-to-bulk correlation function
Csurf

t (r) for fixed time r as a function of the time after the quench.
Comparison between the exact result (points) and the QP calculation
(black broken lines). L = 256, h0 = 0.75, and h = 0.25.

A. Surface-to-bulk correlation

The surface-to-bulk correlation function Csurf
t (r) =

C(0,t ; r,t) is within semiclassical theory given by

Csurf
t (r) = Csurf

eq (r) exp

(
− L

π

∫ π

0
dp fpqsurf

p (t,r)

)
(33)

with fp = fp(h0,h). Similar considerations that lead to (18)
and (28) yield an analytical expression for qsurf

p (t,r), which is
equivalent to qp(t,l) for the local magnetization in Eq. (18),
however, with l = r:

qsurf
p (t,r) = qp(t,l = r). (34)

Consequently,

Csurf
t (r) = Csurf

eq (r)
ml=r (t)

m
eq
l=r

, (35)

which implies that the surface-bulk correlation is dominated
by the relaxation of the magnetization at the bulk site and
that it is Tp periodic [in contrast to Ct (r), which is Tp/2
periodic].

In Fig. 10, we show a comparison of this semiclassical
result with the exact data. We observe that small deviations
occur in the plateau region for small distances r where the
bulk correlations still agree very well with the semiclassical
prediction. Since for small r both sites in the surface-to-bulk
correlation function are close to the boundary, a spatially
inhomogeneous QP creation probabilities would have the most
significant effects here.

B. Autocorrelations

The autocorrelation function

Gl(t) = C(l,0; l,t) (36)

is (up to an extra factor m
eq
l ) identical to the time-dependent

local magnetization ml(t):

Gl(t) = Geq
ml(t)

m
eq
l

. (37)
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For l = L/2 (bulk autocorrelation) in the limit L → ∞, the
QP prediction is

GL/2(t) ∝ exp

(
− 2

π

∫ π

0
dp fp(h0,h) · vpt

)
= e−t/τauto

(38)

with the relaxation time τauto = τmag [Eq. (23)], which cor-
responds to the leading order of the result from Calabrese
et al.16 (see the Appendix), in which fp is again replaced
by −1/2 log(1 − 2fp) = fp + O(f 2

p ). For a small h0 and h,
Eq. (23) yields to leading order

τ−1 = h(h − h0)2

2π

∫ π

0
dk sin3 k = h(h − h0)2 2

3π
. (39)

This has already been found numerically in Ref. 15.

VI. PERIODIC BOUNDARY CONDITIONS

In a chain with periodic boundary conditions instead of the
open boundaries that we considered so far, one has to replace
the QP trajectories (11) by the appropriate expressions

x1(t) = (x0 + vpt) mod L,
(40)

x2(t) = (x0 − vpt) mod L,

where the modulo operation is defined in the obvious manner:
Shift the real number xi by multiples of L such that it lays
in the interval [0,L]. With this, the evaluation of the local
magnetization and correlation functions is straightforward.

The chain with periodic boundary conditions is translation-
ally invariant, therefore, the equal-time correlation C

p.b.c.
t (r) =

Cp.b.c.(r1,t1; r1 + r,t2) is independent of r1. One sees immedi-
ately that the expression for q

p.b.c.
p (t,r) is identical to qc

p(t,r) in

Eq. (28), and, therefore, C
p.b.c
t (r) is identical, up to prefactors

from the ground state or equilibrium correlation function, to
Copen(L/2 − r/2,t ; L/2 + r/2,t):

C
p.b.c.
t (r) = C

p.b.c.
eq (r)

C
open
eq (r)

C
open
t (r). (41)

It should be noted that this relation only holds for the symmet-
ric correlation function C

open
t (r) = Copen(L/2 − r/2,t ; L/2 +

r/2,t).
The local magnetization ml(t) is independent of the site l

in a system with periodic boundary conditions, as is the QP
passing probability q

p.b.c.
p (t,l) = q

p.b.c.
p (t). We find

qp.b.c.
p (t) =

{
2vpt/L for t � Tp/2,

2 − 2vpt/L for Tp/2 < t � Tp.
(42)

For t > Tp, one uses the Tp periodicity q
p.b.c.
p (t + nTp) =

q
p.b.c.
p (t) (n = 1,2, . . .). With Eqs. (15) and (16), the local

magnetization is then given by

mp.b.c.(t)

m
p.b.c.
eq

= exp

(
− 2

π

∫ π

0
dp fp vpt θ [sin(2πt/Tp)]

+ 2

π

∫ π

0
dp fp (L − vpt) θ [−sin(2πt/Tp)]

)
.

(43)

In the infinite system size limit, this yields

mp.b.c.(t) ∝ exp

(
−t

2

π

∫ π

0
dp fp vp

)
∝ e−t/τmag , (44)

which agrees to first order in fp with the prediction of Ref. 16.
As for open boundary conditions, the autocorrelation function
Gp.b.c.(t) is given, up to prefactors, by the same expression as
the local magnetization (43).

VII. DISCUSSION

We have formulated a semiclassical theory for the nonequi-
librium quantum relaxation of the transverse Ising chain after
a global quench via an instantaneous change of the transverse
field. It is applicable to systems of finite and infinite length
and describes properly the relaxation dynamics as well as
the recurrence and reconstruction properties of dynamical
correlations in finite systems. For infinite systems, our theory
agrees to lowest order with a recent prediction by Calabrese
et al.16 In particular, the form-factor approach developed in
Ref. 16 for the time evolution of the local magnetization leads
to results equivalent to our semiclassical theory in Sec. IV.
It is expected that other semiclassical theory result, such as
those for the correlation function, can be rederived with the
form-factor approach.

Our results indicate that the global quantum quench induces
a unique length scale ξ and a unique time scale τ in the system,
both dependent upon the quench parameters h0 and h. These
characteristic scales appear also in half-infinite geometry and
in finite systems, provided the length of the system is larger
than ξ . In a finite system, this semiclassical theory not only
explains the recurrence and reconstruction properties of the
local magnetization,15 but describes the dynamical behavior
quantitatively.

The semiclassical theory can be used to define an effective
temperature for the quantum relaxation process. If we compare
the expressions obtained by Sachdev and Young17 for the
correlation length and the relaxation time in equilibrium
at finite temperatures with our results for zero-temperature
quantum quenches, one obtains a node-dependent effective
temperature Teff(p), defined by the condition

fp(h0,h) = exp

(
− εh(p)

Teff(p)

)
. (45)

This relation agrees to first order in fp with the prediction
of Ref. 16 (i.e., for small effective temperatures or small h

and h0). In Ref. 16, the Boltzmann factor on the right-hand
side of Eq. (45) is replaced by the Fermi function with zero
chemical potential, as shown in the Appendix in Eq. (A11),
thus replacing classical kinks simply by free fermions.

It is interesting to notice an analogous expression for the
time evolution of the entanglement entropy S(t), measured
after the quench between two semi-infinite parts of the system,
say A and B. The analytical result by Fagotti and Calabrese19

can be written into the form

S(t) = t
1

π

∫ π

0
dp vp sp(h,h0) , (46)

with

sp(h,h0) = −(1 − fp) ln(1 − fp) − fp ln fp (47)
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being the entropy of the fermionic mode with occupation
number fp(h0,h). In the semiclassical theory, this expression
can be interpreted as the result of ballistically moving QP pairs,
which are created say at A at t = 0 and one of them is reaching
B before the actual time t . Each of these QPs brings an entropic
contribution as a free fermion. It would be interesting to see
if the relations in Eqs. (A11) and (46) are valid for another
integrable quantum spin system, too.

The semiclassical approach is accurate if the occupation
probability fp(h0,h) is small, which is valid if the initial and the
finite states are close to each other and both are ferromagnetic.
As shown in Ref. 15 for h,h0 < 1, the magnetization profile
ml(t) for any finite l and t is non-negative. In the other
domains of the quench (h0 and/or h is larger than 1), during
relaxation ml(t) takes negative values, too. This type of
oscillating relaxation is described qualitatively well by the
semiclassical theory. The amplitude of the oscillations as well
as the recurrence of the magnetization and the correlations
are correctly described, but there are differences in the
actual value of the frequencies. For quenches close to the
critical point, we expect the concept of isolated QPs to
become invalid or at least quantitatively inaccurate due to the
diverging correlation length either in the initial and/or final
state.

In the finite system with open boundaries and for half-
infinite systems, we find small deviations between the exact
and the semiclassical results either when sites close to the
boundaries are involved or for times t > Tperiod/2, when QPs
reflected at the boundaries contribute to the magnetization
or correlation reconstruction. A possible source for the
deviations in the first case is the lack of translational invariance
in chains with open boundaries, which results in spatially
inhomogeneous creation probability of QP pairs, at least
close to the boundaries. The second kind of deviations could
originate in the dynamical processes during the reflection
at the open boundaries, which might be more complicated
than just momentum inversion. Both effects are absent in
systems without boundaries, the reason for which we expect
our predictions to be accurate for all times in finite chains with
periodic boundary conditions.

Our semiclassical theory can be generalized in several
directions. This theory is also valid for transverse Ising
chains involving a sum over more ferromagnetic short-range
interactions than only nearest neighbors, as has been argued
for the equilibrium relaxation dynamics at finite temperatures
by Sachdev and Young.17 The semiclassical theory should
be applicable to nonintegrable models, too, for which one
has to include QP collision and scattering processes. Here,
the quantum Boltzmann equation seems to be a promising
approach,25 as has been demonstrated recently for a bosonic
system in Ref. 26.
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APPENDIX

Here, we compare our semiclassical calculation with the
predictions by Calabrese et al.16 First, we recapitulate the exact
solution of the free-fermion representation, the Hamiltonian in
Eq. (4), for periodic boundary conditions. In this case, there
are pairs of fermions with quasimomenta p and −p, and in the
ground-state sector, these are p = π

L
, 3π

L
, 5π

L
, . . . , 0 < p < π .

Here, we define the functions

uh(p) =
√

εh(p) + h − cos p

2εh(p)
,

(A1)

vh(p) =
√

εh(p) − (h − cos p)

2εh(p)
,

and

Up = uh0 (p)uh(p) + vh0 (p)vh(p), (A2)

Vp = uh0 (p)vh(p) − vh0 (p)uh(p) (A3)

in terms of which the ground state for t < 0 (|�0〉) is expressed
with the ground state at t > 0 (|0〉) as

|�0〉 =
∏
p

[Up + iVpη†
pη

†
−p]|0〉. (A4)

Then, the density of quasiparticle excitations is given by the
nonequilibrium occupation number

fp = 〈�0|η†
pηp|�0〉 = |Vp|2. (A5)

This can be expressed as

fp = 1
2 [1 − cos 
p], (A6)

where 
p is the difference between the Bogoliubov angles
diagonalizing H(h) and H(h0), respectively:

cos 
p = h0h − (h0 + h) cos p + 1

εh0 (p)εh(p)
. (A7)

For small h0 and h, we obtain, in leading order for the
occupation number,

fp = 1
4 (h − h0)2 sin2 p. (A8)

The results by Calabrese et al.16 can be formally obtained
from our semiclassical expressions if an effective occupation
number is used. For example, in Eq. (32) for the correlation
length and in Eq. (39) for the relaxation time, one should
simply replace

fp → − 1
2 ln |cos 
p|. (A9)

The semiclassical results then represent the leading term of
the exact expressions.

According to Calabrese et al.,16 there is an effective thermal
(Gibbs) distribution or generalized Gibbs ensemble (GGE),
which is obtained in integrable models by maximizing the
entropy, while keeping the energy and other conservation laws
fixed. This leads to an effective, node-dependent temperature
Teff(p), which is given by

cos 
p = tanh
εh(p)

2Teff(p)
, (A10)
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or expressed with fp, we have

fp = 1

exp
(

εh(p)
Teff (p)

) + 1
. (A11)

At the right-hand side, we have the Fermi distribution function
with zero chemical potential, thus, the GGE condition is
expressed in the form that the nonequilibrium occupation
number of the given mode is equal to its thermal occupation
at the effective temperature Teff(p).
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