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Nonequilibrium quantum relaxation across a localization-delocalization transition
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We consider the one-dimensional XX model in a quasiperiodic transverse field described by the Harper
potential, which is equivalent to a tight-binding model of spinless fermions with a quasiperiodic chemical
potential. For weak transverse field (chemical potential), h < hc, the excitations (fermions) are delocalized, but
become localized for h > hc. We study the nonequilibrium relaxation of the system by applying two protocols:
a sudden change of h (quench dynamics) and a slow change of h in time (adiabatic dynamics). For a quench into
the delocalized (localized) phase, the entanglement entropy grows linearly (saturates) and the order parameter
decreases exponentially (has a finite limiting value). For a critical quench the entropy increases algebraically
with time, whereas the order parameter decreases with a stretched exponential. The density of defects after an
adiabatic field change through the critical point is shown to scale with a power of the rate of field change and a
scaling relation for the exponent is derived.
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I. INTRODUCTION

Nonequilibrium relaxation in a closed quantum system
following a change of some parameter(s) in the Hamiltonian
[such as the amplitude of the transverse field, h(t)] is of recent
interest, both experimentally and theoretically. Considering the
speed of variation of the parameter, we generally discriminate
between two limiting processes. For the quench dynamics, the
parameter is modified instantaneously, which experimentally
can be realized in ultracold-atomic gases [1–11] using the
phenomenon of Feshbach resonance. In this process the
evolution of different observables after the quench is of
interest, as well as the possible existence and properties of the
stationary state, in particular in integrable and nonintegrable
systems [12–62]. In the other limiting relaxation process, in
the so called adiabatic dynamics the parameter is varied very
slowly, usually linearly in time, such as h(t) = t/τ across a
phase-transition point. In this case one is interested in the
density of defects, which are produced when the system falls
out of equilibrium close to the critical point [17,63–80].

Most of the results for nonequilibrium quantum relax-
ation are obtained for homogeneous systems, for which the
eigenstates are generally extended. As a consequence after a
quench the general (time- and space-dependent) correlation
functions decay exponentially, which can be explained (even
quantitatively) within a semiclassical theory [18,37,42,43].
In the stationary state thermalization is expected to hold for
nonintegrable models [16–26] whereas for integrable models
it was a general belief that the stationary state is described by
a so called generalized Gibbs ensemble (GGE). Very recent
studies [58–62] show, however, that the GGE is not generally
correct. When it does not work it is due to the fact that the
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generalized eigenstate thermalization hypothesis fails and it
strongly appears to be linked with the presence of bound states
in the spectrum.

Concerning adiabatic dynamics, variants of the Kibble-
Zurek scaling theory [63–65] are found to hold: the density
of defects scales as τ−κ and κ is related to the static critical
exponents z and ν, as well as to the dimension of the system.

Among inhomogeneous quantum systems, random quan-
tum spin chains have most frequently been studied in the con-
text of nonequilibrium relaxation [81–85]. In these disordered
one-dimensional systems, the eigenstates are localized even in
the presence of interactions, which prevents thermalization
after a quench. Consequently an unusual relaxation can
be observed: after a (noncritical) quench both the average
entanglement entropy and the magnetization approach a
nonvanishing stationary value. After a critical quench (i.e.,
a quench to the critical point), the dynamics is ultraslow: the
entanglement entropy grows in time as ln ln t [82–85], whereas
the magnetization behaves as [ln(t)]−A with a disorder-
dependent exponent, A [86]. For the adiabatic dynamics the
defect density is found to scale as [67] 1/ ln2(τ ), which is
a consequence of the equilibrium dynamical scaling relation
[87]: ξ ∼ ln2(τ ), ξ being the correlation length.

Localization of eigenstates can exist in nondisordered
systems, too, as for instance in quasiperiodic systems. A well
known example is the Aubry-André model [88], which is a
one-dimensional hopping model with a specific quasiperiodic
potential denoted as Harper’s potential [89]. This model could
be experimentally realized by ultracold-atomic gases in optical
lattices having two periodic optical waves with different
incommensurate wavelengths [90]. For weak quasiperiodic
potential the eigenstates are extended, but they become
localized for a sufficiently strong potential. A similar sce-
nario has been predicted for interacting particles: sufficiently
strong quasiperiodic potential leads to many-body localization
[91,92]. The quench dynamics in the Aubry-André model for
hard-core bosons has been studied recently [93], where the
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GGE scenario was shown to be valid in the extended phase but
fails in the localized phase.

In the present paper we revisit the nonequilibrium relaxation
properties of the Aubry-André model. Features of our study
are the following. We consider a magnetic model, the S = 1/2
XX chain in a quasiperiodic transverse field, which—after
a Jordan-Wigner transformation—is equivalent to a tight-
binding model of spinless fermions in a quasiperiodic chemical
potential. We study the nonequilibrium dynamics after a
sudden change of the amplitude of the transverse field and
compute the dynamical evolution of the entanglement entropy,
as well as the relaxation of the magnetization. We investigate
separately when the quench is performed to the extended
or to the localized phase, as well as to the transition point.
We also study adiabatic dynamics and calculate the density
of defects which are created during the process, when the
amplitude of the transverse field is passed linearly through the
localization-delocalization transition point.

The paper is organized as follows: The model and the
observables of interest are introduced in Sec. II. Results for
the quench dynamics and the adiabatic dynamics are shown
in Secs. III and IV, respectively. Our paper is closed by a
discussion in the last section.

II. MODEL AND OBSERVABLES

A. Quasiperiodic X X chain

We consider the spin-1/2 XX chain in the presence of a
position-dependent transverse field, which is defined by the
Hamiltonian

H = −J

4

L∑

n=1

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1

)
−

L∑

n=1

hnσ
z
n , (1)

in terms of the σ
x,y,z
n Pauli matrices at site n. In the calculation

we apply either periodic boundary conditions, thus σ x
L+1 ≡ σ x

1
and σ

y
L+1 ≡ σ

y
1 , or free boundary conditions, when the first

sum in Eq. (1) runs up to L − 1. In the following we fix J = 1
and use a quasiperiodic potential:

hn = h cos(2πβn), (2)

where β is an irrational number: typically we use β =√
5−1
2 the inverse of the golden mean, which is the “most”

irrational number. Using the Jordan-Wigner transformation
the Hamiltonian is expressed in terms of fermion creation (c†n)
and annihilation (cn) operators [94]:

H = −1
2

L−1∑

n=1

(c†ncn+1 + c
†
n+1cn) − h

L∑

n=1

cos(2πβn)c†ncn; (3)

thus in Eq. (3) we have a tight-binding model of spinless
fermions in a quasiperiodic chemical potential. [For periodic
boundary conditions there is an extra term in Eq. (3): (c†Lc1 +
c
†
1cL) exp(ıπN )/2, where N =

∑L
n=1 c

†
ncn is the number of

fermions.]
This type of potential appears first in Harper’s paper [89],

in which he showed that the Hamiltonian in Eq. (3) for h = 1
describes an electron on a square lattice in a perpendicular
magnetic field. Introducing a new set of fermion operators ηq

through the canonical transformation

ηq =
L∑

n=1

φq,ncn, (4)

with
∑L

q=1 φq,nφq,n′ = δn,n′ , the Hamiltonian in Eq. (3) is
transformed to a diagonal form:

H =
∑

q

ϵq(η†
qηq − 1/2). (5)

Here the energy of modes, ϵq , and the components of vectors,
φq,n, satisfy the almost Mathieu equation [95]:

1
2φq,n−1 + hnφq,n + 1

2φq,n+1 = −ϵqφq,n. (6)

There is a vast literature about properties of the almost
Mathieu equation, as well as on the properties of quasiperiodic
Hamiltonians both from mathematical [96] and physical [97]
points of view.

B. Aubry-André duality

Following Aubry and André [88] a new set of fermion
operators is introduced:

ck = 1√
L

∑

n

exp(i2πkβn)cn, (7)

which are eigenstates of the momentum operator with eigen-
value k = kFn−1modFn, where Fn is the nth Fibonacci number
and L = Fn. In terms of these the Hamiltonian is given by

H = −h

2

⎡

⎣
L∑

k=1

(c†
k
ck+1 + c

†
k+1

ck) − 2
h

L∑

k=1

cos(2πβk)c†
k
ck

⎤

⎦ .

(8)

Note that Eq. (8) is in the same form as that in Eq. (3); thus
the Hamiltonian satisfies the duality relation:

H(h) = hH(1/h). (9)

Through Eq. (9) the small-h regime of the Hamiltonian, in
which the eigenstates are extended in real space, is connected
with the large-h regime, in which the eigenstates have extended
properties in the Fourier space; thus these are in real space
localized. The localization transition takes place at the self-
duality point; thus the critical amplitude of the field is hc = 1.
For h > 1 the localized states have a finite correlation length,
ξ , which is given by [88]

ξ = 1
ln(h)

, h > 1, (10)

for all eigenstates of H. A similar conclusion holds for the
eigenvectors φq,n in Eq. (6), which are used to diagonalize the
Hamiltonian in Eq. (5). The φq,n’s are localized in the h > 1
regime with the same correlation length given in Eq. (10) and
for large |h| these are given by

φq,n = δn,nq
, ϵq = −h cos(2πβnq ), |h| ≫ 1. (11)
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C. Observables in the quench dynamics

In the quench process the amplitude of the transverse field
is suddenly changed from a value of h0 for t < 0 to another
value, say h for t > 0, and the Hamiltonians are denoted by
H0 and H, respectively. For t < 0 the system is in the ground
state of the initial Hamiltonian, |,(0)

0 ⟩, while for t > 0 its
time evolution involves the new Hamiltonian, H, and given
by |,0(t)⟩ = exp(−iHt)|,(0)

0 ⟩; thus generally |,0(t)⟩ is not
an eigenstate of H. We set ! to unity through out this paper.
The expectation value A(t) of an observable, Â, is given by
⟨,(0)

0 |ÂH (t)|,(0)
0 ⟩, where ÂH (t) = exp(iHt)Â exp(−iHt) is

Â in the Heisenberg picture. One can calculate time-dependent
correlation functions in a similar way.

In the actual problem we calculate the entanglement entropy
Sℓ(t) of the first ℓ spins of the chain and the rest of the
system, which is defined as: Sℓ(t) = Trℓ[ρℓ(t) ln ρℓ(t)]. Here
ρℓ(t) = Trn>ℓ|,0(t)⟩⟨,0(t)| is the reduced density matrix with
|,0(t)⟩ being the state of the complete system at time t obtained
after solving the Schrödinger equation. In a homogeneous
chain for L → ∞ and ℓ ≫ 1 the entanglement entropy has
two different regions [37]. For t < ℓ/vmax, where vmax is
some maximal velocity of quasiparticles, the entanglement
entropy increases linearly: Sℓ(t) ∼ t , while for t > ℓ/vmax, it
saturates as Sℓ(t) ∼ ℓ. For random quantum spin chains, due
to localized excitations the entanglement entropy saturates
at a finite value, except at the critical point, where there is
an ultraslow increase of the form [82] Sℓ(t) ∼ ln ln t . In the
one-dimensional Fibonacci quasicrystal, where the spectrum
of excitations is singular continuous [96], the entropy grows
in a power-law form: Sℓ(t) ∼ tσ , with 0 < σ < 1 being a
function of the quench parameters [98].

Another observable we calculate is the local order pa-
rameter (magnetization), ml(t), at a position l in an open
chain. Here we follow the method of Yang [99] and define
ml(t) for large L by the off-diagonal matrix-element: ml(t) =
⟨,(0)

0 |σ x
l (t)|,(0)

1 ⟩, where |,(0)
1 ⟩ is the first excited state of

H0. In a homogeneous chain of infinite length (L → ∞),
the magnetization for a bulk site l ≫ 1 has an exponential
decay [42,48], both in time, ml(t) ∼ exp(−t/τ̃ ) for t < l/vmax,
and in space, ml(t) ∼ exp(−l/ξ̃ ) for t ≫ l/vmax. Here the
nonequilibrium relaxation time, τ̃ , and the nonequilibrium
correlation length, ξ̃ , are given functions of the quench
parameters, h0 and h. For random quantum spin chains the
local magnetization relaxes to a finite limiting value, except at
the critical point, where the decay is logarithmically slow [86]:
mb(t) ∼ [ln t]−A and A depends on the form of the disorder.
In the one-dimensional Fibonacci quasicrystal the relaxation
of the bulk magnetization is given in a stretched-exponential
form [98]: mb(t) ∼ exp(−C/tµ). Here the exponent µ and the
exponent of the entanglement entropy, σ , are found to be close
to each other, at least in the so called nonoscillatory phase.

D. Density of defects in the adiabatic dynamics

In adiabatic dynamics, the amplitude of the transverse
field in Eq. (2) is varied linearly: h = h(t) = t/τ and we
are interested in the density of defects created during this
process. At the starting point, at t = −∞ the ground state of the
system, denoted by ,0(−∞), is a classical product state, since

the spins follow the direction of the local field. It is σ z
n = 1

(c†ncn = 1) for cos(2πβn) > 0 and σ z
n = −1 (c†ncn = 0) for

cos(2πβn) < 0.
In the following we consider the length of the chain

an even number, so that in that state ,0(−∞) the total
magnetization is zero and it is half filled in terms of fermions.
As time goes on the system evolves according to the time-
dependent Schrödinger equation: its state at time t satisfies the
relation d,/dt = −iH(t),(t), with the boundary condition
,(−∞) = ,0(−∞). Solving the eigenvalue problem of the
Hamiltonian at time t results in a ground state ,0(t),
which generally differs from ,(t), obtained through dynamic
evolution. Our goal is to determine how far is ,(t) from the
true ground state as a function of the parameter τ . This is
quantified by the total excitation probability, P , which can be
calculated in the fermionic description in the following way.
First, we notice that the Heisenberg equation of motion for
the operators cn,H (t) are linear [67], since the Hamiltonian in
Eq. (3) is quadratic. From this follows that the evolution of
vectors, φ̃q,n(t), which enters in the the diagonalization of the
Hamiltonian in Eq. (6), satisfies the differential equation

i
dφ̃q,n

dt
= 1

2
φ̃q,n−1 + hnφ̃q,n + 1

2
φ̃q,n+1, (12)

with the boundary condition φ̃q,n(−∞) = φq,n(−∞), where
the latter are given in Eq. (11). Note that φq,n(t), which
denotes the equilibrium value of the vector evaluated with
the potential at time t through Eq. (6), is generally different
from its dynamically evolved value, φ̃q,n(t), and from this can
we calculate the excitation probability.

To do so we note that at the starting state at t = −∞ half of
the fermionic states in Eq. (8) are occupied, these are denoted
by Q−, whereas the other half of the fermionic states, the
excited ones, denoted by Q+, are empty. By strictly adiabatic
time evolution the excited states would stay empty. The amount
of excitations then can be measured through the excitation
probability,

Pt = 2
L

∑

q∈Q+

∑

q ′∈Q−

pq,q ′ , (13)

in terms of the partial excitation probabilities,

pq,q ′ =
∣∣∣∣
∑

n

φ̃q,n(t)φq ′,n(t)
∣∣∣∣
2

. (14)

Note that Pt is normalized in the sense that 0 ! Pt ! 1.
In the actual calculation we have taken two limiting final

states: (i) t = 0, when the quench is performed at the middle
of the extended phase, and (ii) t = ∞, when the quench
goes across the extended phase and ends at the other limiting
side of the localized phase. In the first case the localization-
delocalization transition point is crossed once at h = −1, while
in the second protocol it is crossed twice, at h = ±1.

III. QUENCH DYNAMICS

In the (sudden) quench dynamics we have used β =
(
√

5 − 1)/2, the inverse golden-mean ratio for the parameter
of the Harper potential, and the lengths of the finite chains
were fixed to a Fibonacci number Fn. We have calculated
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FIG. 1. (Color online) Dynamical entanglement entropy after a
quench from h0 = 0 to different values of h (upper panel). Saturation
values of the entanglement entropy and the limiting value of the
width of the wave packet (diffusion) in the localized phase show a
power-law divergence close to the transition point (lower panel).

the entanglement entropy and the local magnetization up to
L = F17 = 1597.

A. Entanglement entropy

The entanglement entropy,Sℓ, is calculated between a block
of length ℓ = Fn−2 and its environment of length Fn−1 with
periodic boundary conditions. (For details of the calculation
of the entanglement entropy in the free-fermion basis see
the Appendix of Ref. [100].) We used the ground state
corresponding to the initial field h0 = 0 as the initial state
and then made quenches to the extended (0 < h < 1) and to
the localized phases (h > 1), as well as to the critical point
(h = 1). Numerical results for Sℓ(t) are shown in Fig. 1.

The dynamics of the entanglement entropy has two different
regimes (as for homogeneous chain): for short times it is an
increasing function of time and for long times it saturates
to some value. For quenches to the extended phase the time
dependence in the initial period is linear, Sℓ(t) ≈ α(h)t , and
the saturation value is S̃ℓ ∼ ℓ. This behavior is qualitatively
similar to homogeneous system. Estimates of the prefactor of
the linear term, α, are shown in Fig. 2. Starting from h = h0 =
0 α is first increasing, has a maximum around h = 0.5, and
then is decreasing to 0 at h = 1.

After a quench into the localized phase the entropy saturates
quickly to an ℓ-independent value: S̃ℓ = S̃(h),h > 1. We have

0
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0 0.2 0.4 0.6 0.8 1.00.0

0.01

0.02

0.03

0.04

0.05

α(
h)

τ~

h

α(h) τ~

FIG. 2. (Color online) Prefactor of the linear part of the dynam-
ical entanglement entropy (left axis) and the relaxation time (right
axis) after a quench from h0 = 0 to different values of h.

checked that close to the transition point S̃(h) diverges:

S̃(h) ∼ | ln(h)|−σ ′
, (15)

with an exponent σ ′ = 0.50(4); see in the lower panel of Fig. 1.
Finally, if the quench is performed to the transition point

the growth of the entropy is given in a power-low form:

S(t) ∼ tσ , (16)

with an exponent σ = 0.43(5). Using phenomenological scal-
ing theory a relation between the exponents σ ′ and σ can be
derived in the following way. Under uniform scaling transfor-
mation, when lengths are rescaled by a factor b > 1 the entan-
glement entropy behaves as S̃(ln h,t) = bs S̃(b/ ln h,t/bz) for
h " 1, where we have used the form of the correlation length in
Eq. (10) and z = 1 is the dynamical exponent. Now taking the
scale factor b = t1/z we obtain S̃(ln h,t) = t s/zŜ(t1/z ln h). At
the critical point, h = 1, the scaling function has the limiting
value limu→∞ Ŝ(u) = constant; thus σ = s/z = s. Similarly,
taking b = 1/ ln(h) we can show that σ ′ = s, thus σ = σ ′ in
agreement with the numerical results.

The properties of the dynamical entropy can be ex-
plained in terms of anomalously diffusing quasiparticles; see
in Sec. III C.

B. Local magnetization

The local magnetization ml(t) is measured in a free chain of
length L = Fn at a position l = Fn−2; for technical details see
the Appendix of Ref. [98]. In this region of the chain the local
magnetization is practically independent of l and we consider
it as the bulk magnetization and will be denoted by mb(t). The
numerically calculated time-dependent bulk magnetizations
after a quench from h0 = 0 to different values of h are shown
in Fig. 3. If the quench is performed to the extended phase (0 <
h < 1) the decay of magnetization is exponential: mb(t) ∼
exp(−t/τ̃ ), as in the homogeneous system. Estimates for the
characteristic time τ̃ (h) are given in Fig. 2: with varying h it
has similar characteristic as the prefactor of the linear part of
the entanglement entropy. If the quench is performed to the
localized phase h > 1 the magnetization approaches a finite
limiting value. Finally, for the critical quench (h = 1) the decay
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FIG. 3. (Color online) Bulk magnetization after a quench from
h0 = 0 to different values of h. In the inset quench to the critical
region is shown in agreement with the stretched-exponential form in
Eq. (17) (the straight lines have a slope µ = 0.47).

is stretched exponential:

mb(t) ∼ A(t) exp(−Ctµ), (17)

where A(t) is some oscillatory function and µ = 0.47(5). This
is illustrated in the inset of Fig. 3. This behavior is interpreted
in terms of quasiparticles in the following section.

C. Quasiparticle interpretation

Nonequilibrium quench dynamics is well described within
the framework of a semiclassical theory [18,37,42,43]. It
is based on the concept of quasiparticles that are produced
uniformly in the system during the quench and which move
classically after production. We regard these quasiparticles
as wave packets, which are localized at some site at t = 0
and which perform afterwards a diffusive motion. Following
previous studies on quasicrystals [98,101] we construct the
wave packet connecting sites n and n′ at time t in the form:

Wn,n′ (t) =
∑

q

cos(ϵq t)φq,nφq,n′ , (18)

in terms of the eigenvectors and eigenvalues of Eq. (6)
calculated with the amplitude h, i.e., after the quench. Due to
normalization of the eigenvectors Wn,n′ (0) = δn,n′ . The width
of the wave packet created at site n after time t is given by

d(n,t) =
[∑

n′

(n − n′)2|Wn,n′ (t)|2
]1/2

, (19)

which is then averaged over the starting positions; thus d(t) =
d(n,t).

We have calculated d(t) for different values of the amplitude
of the transverse field and these are shown in Fig. 4. In
agreement with previous studies [102] d(t) grows linearly in
the extended phase (0 < h < 1); thus the quasiparticles move
ballistically. From this follows—repeating the arguments of
the semiclassical theory [43]—that the dynamical entropy
grows linearly and the bulk magnetization has an exponential

1

 10

 100

 1000

100 102 104 106

d(
t)

t

h=0.5
h=1.0
h=1.5

t1.0

t0.477

FIG. 4. (Color online) Time-dependent width of the wave packet
at different amplitudes of the transverse field.

decay. In the localized phase (h > 1) the width of the wave
packet stays finite, d(t) → d̃ . We have checked that close to
the transition point this limiting value scales as the localization
length in the system: d̃ ∼ ξ ; see in the lower panel of
Fig. 1.

Finally, at the transition point (h = 1) the width of the
wave packet grows algebraically with time: d(t) ∼ tD , where
the diffusion exponent is estimated as D = 0.477(10). In the
semiclassical theory the anomalous diffusion of quasiparticles
manifests itself in the modified form of the dynamical
entanglement entropy in Eq. (16) and of the bulk magnetization
in Eq. (17). The corresponding exponents, σ , µ, and D, should
be equal, which is indeed satisfied within the error bars of the
numerical estimates.

IV. ADIABATIC DYNAMICS

The adiabatic dynamics is calculated numerically in
systems of finite size L = 2Fn with β = Fn−1/Fn as an
approximant of the inverse golden mean ratio. (In the fermionic
representation in Eq. (3) for simplicity we used the so called
c-cyclic boundary condition; see in Ref. [94].) We set |hmax| =
10 for the largest amplitude of the transverse field and checked
that the numerical results are stable: they do not change if
we use instead |hmax| = 20. The differential equation in Eq.
(12) is integrated numerically using a Runge-Kutta method
with adaptive step size in time to keep the relative error less
than 10−6.

Numerical results of the excitation probability as a function
of the time scale τ are shown in Fig. 5 for the two types of final
states, with t = 0 and t = ∞, respectively. In the first case, t =
0, the largest Fibonacci parameter in the calculation was n =
18, while for t = ∞ it was n = 17. In both cases the excitation
probability has an asymptotic power-law dependence:

Pt (τ ) ∼ At (τ )τ−κ , (20)

but the prefactors, At (τ ), have different functional forms. In
the first case with t = 0 when the localization-delocalization
transition is crossed once (at h = −1) the prefactor has a
weak, approximately log-periodic oscillating form: A0(τ ) ∼
sin2[log(τ/τ0)]. This type of log-periodic oscillation is due
to discrete scale invariance and these are often present
in quasiperiodic and aperiodic systems [103]. Due to this
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FIG. 5. (Color online) Excitation probability as a function of the
time scale, τ , after an adiabatic process from h = −∞ to h = 0 (upper
panel) and to h = ∞ (lower panel) calculated in finite systems of sizes
L = 2Fn with n = 13,14, . . . ,18.

correction the decay exponent κ can only be estimated with
some uncertainty:

κ = 0.45(5). (21)

In the second protocol with t = ∞ when the localization-
delocalization transition is crossed twice (at h = −1 and h =
1) the prefactor has oscillations in τ , A∞(τ ) ∼ sin2(τ/τ∞ +
const.) with τ∞ ≈ 0.15, to which also a log-periodic correction
is supplemented. This oscillatory phase is analogous to the
Stückelberg oscillations [104,105] of a periodically driven
two-level system which arises due to the interference of
probability amplitude between the ground and the excited
state, when the region of avoided level crossing is passed
twice. In the second case due to the oscillations the estimate
of κ is somewhat less accurate. We checked, however, that the
numerical data in Fig. 5 are compatible with the estimate for
κ in Eq. (21).

In the following we explain the numerical value of the
decay exponent in Eq. (21) and relate it to the combination
of other exponents. First, let us recapitulate the reasoning of
traditional scaling theory [65]. The amplitude of the transverse
field at time t̃ is given by h(t̃) = 1 + t̃/τ , and therefore the
distance from the critical point δ(t̃) = t̃/τ . This implies that
the equilibrium relaxation time of the system at time t̃ is t̃ ′ ∼
ξ z ∼ δ−νz = (t̃/τ )−νz, where ξ is the equilibrium correlation
length. When the relaxation time t̃ ′ is of the same order as
the time t̃ the system falls out of equilibrium; i.e., the ground

state cannot follow adiabatically the field change any more.
The condition t̃ = t̃ ′ implies

t̃ ∼ τ
νz

νz+1 . (22)

For |t | < t̃ defects are produced and transitions to excited
states occur. The typical distance between neighboring defects
is then given by ξ (∼ t̃1/z); thus the phase space of excitations
in a d-dimensional system is 0 ∼ ξ−d ∼ τ− dν

νz+1 . Then, it is
usually expected that the elementary transition probabilities,
such as pq,q ′ in Eq. (14), are independent of the scale; thus
P (τ ) ∼ 0 and we arrive at the scaling relation

Psc(τ ) ∼ τ− dν
νz+1 . (23)

For the Aubry-André model with d = 1 and ν = z = 1 the
prediction of traditional scaling theory is κsc = 0.5, which is
somewhat larger than (although at the border of) the numerical
estimate in Eq. (21). However, the assumptions used in the
derivation of Psc(τ ) are not valid for the Aubry-André model
since the ground state of the Hamiltonian in Eq. (5) is not
a continuous function of the amplitude of the transverse
field at h = ±1. Therefore we study numerically the scaling
behavior of the the elementary transition probabilities, pq,q ′ ,
calculated at t = 0, i.e., for the first protocol. First we notice
that pq,q ′ = pq ′,q and arrange the pq,q ′ ’s in decreasing order.
Then in Eq. (13) we sum up the contribution of the largest
N terms:

P (N,L,τ ) = 2
L

N ′∑

q∈Q+q ′∈Q−

pq,q ′ , (24)

which is denoted by the prime at the summation and this
quantity is called the partial excitation probability. For large-N
we can rearrange the parameters q (and also q ′), such that in
Eq. (13) by restricting the summations to q,q ′ !

√
N we get

(asymptotically) P (N,L,τ ). Generally, for q1 < q2 (q ′
1 < q ′

2)
the free-fermionic energies in Eq. (6) satisfy ϵq2 < ϵq1 < 0
(0 < ϵq ′

1
< ϵq ′

2
).

We have calculated the partial excitation probability,
P (N,L,τ ), normalized with its limiting value P0(τ ) for
different sizes and for different decay parameters. For large N
and L the partial excitation probability is found to be a function
N/L2; thus P (N,L,τ ) = P̃ (N/L2,τ ), as illustrated in the
upper panel of Fig. 6 for different values of L at a fixed value of
τ . The τ dependence of P̃ (N/L2,τ ) is shown in the lower panel
of Fig. 6 at a fixed (large) L and for different values of τ < L.
With increasing τ the scaling functions appear to approach the
same limiting curve; thus P (N,L,τ ) is factorized as

P (N,L,τ ) = π (N/L2)P0(τ ), (25)

for large enough τ .
As seen in the lower panel of Fig. 6 in the log-log plot

π (N/L2) has a linear section over several decades and then it
saturates for large arguments, say for N > Neff . Thus we can
approximate

P (N,L,τ )
P0(τ )

≈
{

P (N,L,τ )
P (Neff ,L,τ ) ∼ (N/Neff)ω, N ! Neff,

1, N > Neff .
(26)

From the data in the lower panel of Fig. 6 we estimate
ω = 0.90(2). Now let us consider the scaling behavior of
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FIG. 6. (Color online) Normalized partial excitation probabili-
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n = 13,14, . . . ,18 at τ = 100 (upper panel) the same at L = 2F18

for different values of τ (lower panel) both in log-log scale.

P (N,L,τ ) = P̃ (N/L2,τ ), when lengths are rescaled by a
factor b > 1. Keeping in mind that Neff/L

2 ∼ 0 is the phase-
space of excitations given by 0 ∼ ξ−1 we obtain

P̃ (N/L2,τ ) = b−ωP̃
(
bN/L2,b− νz+1

ν τ
)
. (27)

Here the prefactor b−ω follows from Eq. (26) and the scaling
dimension of τ can be read from Eq. (22). Now taking b =
τ

ν
νz+1 we get

P̃ (N/L2,τ ) = τ− ων
νz+1 π

(
τ

ν
νz+1 N/L2); (28)

thus at N ≈ Neff

P0(τ ) ∼ τ− ων
νz+1 , (29)

and κ = κscω (also Neff/L
2 ∼ τ− ν

νz+1 ). With the measured
value of ω we get κ ≃ 0.45 in agreement with the direct
estimate in Eq. (21).

V. DISCUSSION

In this paper we have studied the nonequilibrium dynamics
of the Aubry-André model for the S = 1/2-spin XX chain
in the presence of a quasiperiodically modulated transverse
field, which is equivalent to a tight-binding model of spinless
fermions in a quasiperiodic chemical potential. In this model
there is a localization-delocalization quantum phase transition
separating the extended and the localized phases. By varying
the amplitude of the transverse field in time, h(t), we have
studied the properties of nonequilibrium quantum relaxation

at zero temperature. We considered in detail two limiting cases
of the dynamics.

First we studied quench dynamics, in which h(t) is
changed suddenly at t = 0 and focused on the dynamics of
the entanglement entropy, as well as on the relaxation of the
local order parameter. For quenches to the extended phase the
nonequilibrium dynamics turns out to be qualitatively similar
as in the homogeneous model: the entanglement entropy
increases linearly, while the local order parameter decays
exponentially. The characteristic parameters, the prefactor of
the linear part of the entanglement entropy, as well as the
relaxation time are found to depend on the details of the quench
process. This type of nonequilibrium behavior is consistent
with the GGE scenario. In contrast to this, after a quench
into the localized phase there is no thermalization in the
stationary state: both the entanglement entropy and the local
order parameter approach a finite limiting value. Finally, for a
critical quench the entanglement entropy increases as a power
law, whereas the local order parameter decays with a stretched
exponential. This type of behavior is related to the singular
continuous form of the spectrum of the critical Hamiltonian, as
already noticed in the quench dynamics of quantum Fibonacci
quasicrystals [98]. The properties of the critical quench have
been explained in the frame of a semiclassical theory in terms
of anomalously diffusing quasiparticles, which are created
uniformly in space during the quench.

In the second type of nonequilibrium process we have varied
h(t) linearly in time with a rate 1/τ and studied the density
of defects in the ground state created during this process. If
the localization-delocalization transition point is passed once
the density of defects follows a power-law dependence, ∼τ−κ ,
while if two symmetrically placed transition points are passed
then the density of defects has a multiplicative oscillating
correction, similar to the Stückelberg phase of periodically
driven two-level systems. Using scaling arguments we have
related κ to other critical exponents as given in Eq. (29). In
this expression also the scaling dimension ω of the excitation
probability enters. For homogeneous systems it is generally
expected that ω = 1. In our case, when the spectrum of the
Hamiltonian is not continuous at the transition point, and the
spectrum of the critical Hamiltonian is singular continuous,
we have ω < 1. It is expected that ω ̸= 1 is a general rule for
quasiperiodic and aperiodic Hamiltonians.

Finally, we discuss the question of the nonequilibrium
dynamics of the Hamiltonian in Eq. (1) for different values
of the quasiperiodicity parameter β in Eq. (2). If β is a rational
number of the form β = 1/(2q) with q being an integer, then
in the adiabatic process the decay exponent is given by [80]
κ = q/(q + 1). The same result holds for β = p/(2q), when p
is an odd integer and p and q are relative primes, at least for not
too large values of q. Thus these results cannot be analytically
continued to the case when β is an irrational number. If β is an
irrational number and different from the inverse of the golden
mean ratio studied in this paper, then the critical exponents of
the nonequilibrium dynamics are expected to be β dependent.
Some hint in favor of this assumption can be found in the
diffusion properties of the quasiparticles; see in Sec. III C.
Indeed the diffusion exponent D is measured to be β dependent
[102] and the same is expected to hold for the nonequilibrium
exponents σ and µ.
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[87] For a review see F. Iglói and C. Monthus, Phys. Rep. 412, 277

(2005).
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