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We consider multiple noninteracting quantum mechanical two-level systems coupled to a common bosonic bath
and study its quantum phase transition with Monte Carlo simulations using a continuous imaginary time cluster
algorithm. The common bath induces an effective ferromagnetic interaction between the otherwise independent
two-level systems, which can be quantified by an effective interaction strength. For degenerate energy levels
above a critical value of the bath coupling strength α all two-level systems freeze into the same state and the
critical value αc decreases asymptotically as 1/N with increasing N . For a finite number N of two-level systems
the quantum phase transition (at zero temperature) is in the same universality class as the single spin-boson
model; in the limit N → ∞ the system shows mean-field critical behavior independent of the power of the
spectral function of the bosonic bath. We also study the influence of a spatial separation of the spins in a bath of
bosonic modes with linear dispersion relation on the location and characteristics of the phase transition as well
as on correlations between the two-level systems.
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I. INTRODUCTION

The single spin-boson model [1,2] describes a two-level
system, such as a spin-1/2 or a q-bit, which is linearly coupled
to a bath of bosonic modes. In spite of its simplicity the
system shows a multifaceted behavior in statics, dynamics, and
quantum criticality, for which reason it became a paradigmatic
model in the field of quantum dissipation. For Ohmic and
sub-Ohmic dissipation the two-level system without energy
bias shows a transition at zero temperature from a delocalized
state (tunneling between the two states) at weak coupling
to the bath to a localized, classical behavior (frozen in one
state). The characteristics, in particular the universality class,
of this quantum phase transition are identical to those of the
thermal transition in the classical Ising chain with long-range
interactions [3–5].

An interesting question is, what happens to this transition if
one couples several two-level systems, such as impurities or q-
bits, to a bosonic dissipative bath? The simplest generalization
of this kind is a pair of two-level systems, which was studied
first in [6] and subsequently in [7–14]. In many studies
of the two-spin-boson model an additional ferromagnetic
coupling between the two-level systems of spins has been
taken into account. Arranging N two-level systems in a chain
with uniform ferromagnetic nearest-neighbor interactions and
coupling each two-level system to its own bosonic bath
yields the transverse Ising chain with dissipation that has
been studied for an Ohmic bath in [15]. There it was shown
that in the limit N → ∞ a new quantum phase transition
triggered by the bath coupling strength emerges, which is
different from the quantum phase transition in the transverse
Ising chain without dissipation and different from the single
spin-boson model. If the ferromagnetic couplings between the
two-level systems are not uniform but random the random
transverse Ising chain with dissipation is obtained, which has
been studied in [16,17]. Here not a sharp phase transition
occurs but a smeared transition in which connected clusters of
two-level systems undergo separate quantum phase transitions
at different coupling strengths [17,18].

These earlier investigations for arbitrary two-level system
number N assume an independent bath for each two-level

system. This might not always represent correctly the physical
situation, in which a single bath for all two-level systems
might be more appropriate, as for instance in cold atom or
trapped ion setups. In addition a direct coupling between the
two-level systems might be absent. This is the situation which
we address in this paper by studying the multi-spin-boson
model (MSBM) with a single bosonic bath. One expects that
in spite of the absence of a direct interaction between the
two-level systems the common bath will mediate an effective
interaction between the two-level systems that enhances the
tendency towards localization and thus decreases the critical
bath coupling strength. A related model is the large-spin-
boson model, where a single large spin (J > 1/2) is linearly
coupled to a bosonic environment [19–21]. The large spin
can be considered as an ensemble of 2J noninteracting
spin-1/2. In [21] it was shown that the model resembles
the spin-boson model phase diagram by rescaling the coupling
as α′

c = (2J )2αc. Since this model acts only on a 2J + 1
dimensional subspace in contrast to a 22J dimensional Hilbert
space in the multi-spin-boson model one might expect a
slightly modified behavior. In Sec. III A we show that the
universality class of the transition in the large-spin-boson
model remains the same as the one of the multi-spin-boson
model but the critical coupling strength αc is shifted.

For N = 2 and Ohmic bath a recent variational calculation
[13] obtained a critical coupling of αc ≈ 1/2, whereas a
numerical renormalization group (NRG) calculation [12]
predicted (for vanishing direct coupling between the two-level
systems) αc ≈ 1/4. Regarding such a large deviation between
the naive mean-field prediction of αc(N ) ∝ 1/N and the NRG
result for N = 2 a close look at larger values for N using exact
methods such as quantum Monte Carlo seems worthwhile.
Therefore in this paper we analyze quantitatively in which way
the location and characteristics of the quantum phase transition
varies with the number N and the separation of two-level
systems and also shed light on the correlations between the
two-level systems mediated by the bath in the different phases.

The paper is organized as follows: In Sec. II we introduce
the MSBM including its path-integral representation and
discuss the zero-tunneling limit as well as the mean-field limit.
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The quantum phase transition in the MSBM model is analyzed
in Sec. III for general number of two-level systems N , first
theoretically and then with the help of extensive quantum
Monte Carlo simulations. In Sec. IV the spin-spin correlations
in the MSBM in the different phases are discussed and in Sec. V
the effect of spatial separations of the two-level systems in
the MSBM is analyzed. Section VI contains a summary and a
discussion of open questions. Several details of the calculations
as well as a detailed description of the quantum Monte Carlo
algorithm are deferred to three Appendices.

II. THE MODEL AND MEAN-FIELD THEORY

For completeness and for further reference we first summa-
rize the characteristics of the quantum phase transition in the
single spin-boson model. Its Hamiltonian is given by (� = 1)

H = �

2
σx − ε

2
σ z +

∑
k

ωk a
†
kak + HI , (1)

where σx,z are the Pauli spin-1/2 operators, a
†
k(ak) are the

bosonic creation (annihilation) operators, � the bare tunneling
amplitude, ωk the frequency of the kth bath mode, and ε an
energy bias of one of the two states, which we set to zero
(ε = 0). The interaction term

HI = 1

2

∑
k

(λka
†
k + λ∗

kak)σ z (2)

describes the linear coupling between the spin and its environ-
ment. The bath spectrum J (ω) = π

∑
k |λk|2δ(ω − ωk) has a

power-law form J (ω) = 2παωsω1−s
c θ (ωc − ω), with the bath

exponent s > 0, the coupling strength α, and a sharp cutoff at
the frequency ωc.

The most prominent case is the Ohmic spectrum, s =
1, which has a phase transition in the Kosterlitz-Thouless
universality class between a delocalized phase with finite
effective renormalized tunneling amplitude �eff and a lo-
calized phase, where tunneling is completely suppressed, at
αc = 1 + O( �

ωc
) [1,2]. In the sub-Ohmic regime (0 < s < 1),

the phase transition is of second order, which is described by a
Gaussian fixed point with “classical” exponents for 0 < s � 1

2
and has nonclassical, s-dependent critical exponents for 1

2 <

s < 1 [3,4].
In this paper we consider the generalization of (1) to N

two-level systems coupled to a common bath. The Hamiltonian
of this multi-spin-boson model (MSBM) is given by

H =
N∑

m=1

(
�

2
σx

m − ε

2
σ z

m

)
+

∑
k

ωk a
†
kak + HI (3)

with the interaction term

HI =
N∑

m=1

1

2

∞∑
k=−∞

(λka
†
k + λ∗

kak)σ z
m. (4)

Note that this setup is different from the dissipative spin
chain [15,17,18], where every spin is embedded in its own
dissipative bath. The main effect of the common bath is
that each spin is simultaneously influenced by a polarization
of the bosonic degrees of freedom. From this picture one
gets the intuition that the localization of the multiple spin

system is enhanced in comparison to the single spin case. The
delocalized-to-localized transition point αc is hence expected
to become lowered as the number of contributing spins is
increased.

A. Path-integral representation

The partition function of the single spin-boson model can be
exactly written as a path integral [3], which is straightforward
to generalize to the multi-spin-boson model; see Appendix A.
The partition function Z of the quantum system is expressed
as a sum over all possible spin- 1

2 world lines s(τ ) ∈ {−1,1}
with 0 � τ < β:

Z = Tr[exp(−βH )] ∝
∫ N∏

m=1

D[sm(τ )] exp(−S). (5)

The positions of the kinks, where s(τ ) changes its sign, are
Poissonian distributed and the effective action (for symmetric
states, i.e., ε = 0) is

S = − 1

2β

N∑
m=1

N∑
m′=1

[ ∫ β

0

∫ τ

0
sm(τ )sm′(τ ′)Kβ(τ − τ ′)dτ ′dτ

]
,

(6)

where the integral kernel is given by

Kβ(τ ) =
∫ ωc

0

J (ω)

πω

{
βω

2

cosh
[

βω

2

(
1 − 2τ

β

)]
sinh

(
βω

2

) }
dω. (7)

This function decays algebraically as ∝τ−1−s for β → ∞ and
the finite cutoff frequency ωc ensures the convergence at τ = 0.

The path-integral representations of thermodynamic ob-
servables such as the order parameter (magnetization) m, the
susceptibility χ , and the dimensionless moment ratio Q of the
MSBM are then given by

m = 〈
σ z

i

〉
MSBM = 〈|Mi |〉PI, (8)

χ = 2
∂m

∂ε

∣∣∣∣
ε=0

= β
(〈
M2

i

〉
PI − m2

)
, (9)

Q = 〈
M2

i

〉2
PI

/〈
M4

i

〉
PI, (10)

where Mi is the magnetization of the ith world line,

Mi[si(τ )] = β−1
∫ β

0
dτ si(τ ) (11)

(note that the observables m, χ , and Q are independent of the
index i = 1, . . . ,N) and 〈· · · 〉 denotes expectation values with
respect to the classical action,

〈O〉PI =
∫ N∏

m=1

D[sm(τ )] O exp(−S). (12)

Our quantum Monte Carlo cluster algorithm [3] (see also
Appendix B) simply samples stochastically world line config-
urations according to the probability measure and the classical
action.
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B. Zero-tunneling limit

Let us consider the zero-tunneling limit � = 0. This
simplifies the terms in (6) and (7) drastically, because no
kinks can occur and hence the spin world lines are only spin
variables sm ∈ {−1,1} without any τ dependence. The path
integral becomes a sum over these variables and the double
integral over the curly brackets in Eq. (7) is just β2/2. The
remaining frequency integral over the spectral function can
performed elementarily and the resulting partition function
becomes

Z =
∑

s1,...,sN =±1

exp

(
β

2

N∑
m=1

N∑
m′=1

smsm′
αωc

s

)
. (13)

This partition function is identical to the one for a classical
Ising model in which N Ising spins interact with each other
with the ferromagnetic coupling strength

J = ωcα/s (14)

between all distinct spin pairs. This result can also easily be
obtained by a polaron transformation H ′ = U−1HU of the
form U = exp{−∑

k[λk/(2ωk)a†
k

∑
m σ z

m − H.c.]}. The ther-
modynamic limit (N → ∞) is not yet well-defined, because
the energy would grow quadratic with the system size. To
ensure a proper limit, we introduce the scaled coupling strength

α̃ = αN. (15)

Thus, for zero tunneling strength the MSBM model is identical
to the exactly solvable classical mean-field model [22], which
provides a paramagnetic to ferromagnetic phase transition of
mean-field type. Adapted to the present nomenclature in (13),
the transition point is

α̃c = s

ωc

T . (16)

C. Mean-field theory

The mean-field approximation consists of neglecting terms
that are quadratic in the fluctuations of the order parameter
m = 〈σ z〉, which means one sets (σ z

i − m)(σ z
j − m) ≈ 0.

Since the integral in Eq. (7) can be computed for τ = β

and yields K (1)(β) = 2αωc/s, the action (6) is in mean-field
approximation

SMF =
N∑

n=1

[
βα̃ωc

2s
m2−1

2

∫ β

0

(
ε + 2α̃ωc

s
m

)
sn(τ )

]
. (17)

Solving the self-consistent equation m
2 = 1

Nβ

∂ ln(Z)
∂ε

, one ob-
tains a critical coupling strength

α̃c = s�

2 tanh(β�/2)ωc

, (18)

which is identical to the result in Ref. [23] for N = 1. Note that
the mean-field approximation predicts a phase transition also
at nonvanishing temperatures (T > 0, i.e., β < ∞), which is
absent in the MSBM for any finite N (see next subsection).
Within the mean-field approximation the dependence of the
critical coupling αc on the number of spins N is fully
compensated by the rescaling of the coupling strength (15)

and Eq. (18) predicts a phase transition at the temperature

Tc = �

2 artanh[s�/(2α̃cωc)]
. (19)

At zero temperature one gets α̃c(T → 0) = s�/(2ωc). For
zero tunneling one obtains Tc(� → 0) = α̃ωc/s, which is
identical to the exact result (16) as expected, since for zero
tunneling the spins do not fluctuate and therefore the mean-
field approximation is exact.

Also in the limit N → ∞ one expects mean-field theory to
be exact (see Appendix C), which we checked with extensive
QMC simulations by finite N scaling at fixed temperatures
(see next subsection).

III. THE QUANTUM PHASE TRANSITION IN THE MSBM

In this section, we study the quantum phase transition (at
T = 0, i.e., β = ∞, and vanishing bias ε = 0) of the MSBM
for different values of N . First we argue in the next subsection
that the universality class is independent of N ; then we validate
this prediction with finite β scaling of QMC data.

A. Universality class: Theoretical considerations

The universality class of the transition of the MSBM for
general N is not known and before we embark on a QMC study
we argue in the following that for any finite N the transition
is in the same universality class as the single spin-boson
model (N = 1). Consider a single world line of a 1/2-spin
in a transverse field �σx/2. The field defines a characteristic
length 2/� between two kinks [26]. The mean number of
segments of the world line is hence L = β�/2. Therefore,
the partition function (5), (6) can approximately be written for
large β in a discretized form

Z=
∑
{sm,i }

exp

⎡
⎣ 1

2β

N∑
m,m′

1

2

L∑
i,j

sm,ism′,jKβ

(
|j−i| 2

�

)(
2

�

)2
⎤
⎦ ,

(20)

where sm,i ∈ {−1,1} denotes the spin variables of the mth
world line at the ith segment. Basically, the two integrals in (6)
are replaced by sums. The spin variables can be summed up to
a large spin variable Mi = ∑

m sm,i ∈ {−N,−N + 2, . . . ,N}
involving a combinatorial factor

Z =
∑
{Mi }

L∏
i=1

(
N

N+Mi

2

)
exp

⎡
⎣ 1

4β

L∑
i,j

MiMjKβ

×
(

|j − i| 2

�

)(
2

�

)2
⎤
⎦ . (21)

For large N the binomial coefficient tends to a Gaussian and
the normalized spin variable mi = Mi/N ∈ [1,−1] becomes
a continuous variable

Z =
∑
{Mi }

A exp

⎡
⎣N

2

L∑
i,j

Ji,jmimj − N

L∑
i=1

m2
i

2

⎤
⎦ (22)
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ANDRÉ WINTER AND HEIKO RIEGER PHYSICAL REVIEW B 90, 224401 (2014)

with

A =
(

22N+1

πN

) L
2

, Ji,j = 1

2β
K̃β

(
|j − i| 2

�

)(
2

�

)2

, (23)

and K̃β(τ ) = NKβ(τ ). The form in (22) shows a one-
dimensional continuous spin model with long-range interac-
tion, where the states mi ≈ 0 are favored due to the quadratic
term. One can extract the N dependence from this model,
even without having to solve it in detail. Without the last term
in (22), the factor N in the exponential would simply scale
the coupling. As a consequence, the critical coupling would
scale as α̃c ∝ N−1. In the following, we will therefore use
temporarily the replacement

˜̃α = Nα̃. (24)

Effectively, this replacement is only introduced for bookkeep-
ing the N dependence in the following argumentation.

The effect of the last term in (22) can understood by its
influence on the corresponding Ginzburg-Landau functional
(GLF) [25,27,28]

F [m(τ )] =
∫

dτ

[
r

2
m2 − N

2
m2 + u

4
m4

+ c

∫
dτ ′ m(τ )m(τ ′)

|τ − τ ′|1+s

]
, (25)

where

Z =
∫
D[m(τ )] exp{F [m(τ )]}.

The first and third terms are the common second and fourth
order terms of the GLF and the last term represents the long-
range interaction in an integral form. The parameters r,u,c are
all functions of s,�, ˜̃α, but do not depend on N in an explicit
manner. The local term in (22) now enters the functional
as another quadratic term Nm2/2 that does not depend on
the coupling ˜̃α or on other system parameters, but depends
linearly on the number of spins N . The parameter r can always
be shifted in such a way that the phase transition occurs at
r = 0. In the case where the Nm2/2 term is neglected, this
parameter must then have the form r = b(s,�)[ ˜̃αc − a(s,�)],
with unknown functions a and b. In the full model with
included Nm2/2 term, the equation

r − N = b(s,�)[ ˜̃αc − a(s,�)] − N = 0 (26)

determines the transition point α̃c.
Even the offset function b(s,�) can be determined. Since

the spin variables in (22) are continuous and independent of N ,
a saddle point integration becomes exact in the limit N → ∞
and the onset of the magnetization of the most probable state
gives the phase transition point for N → ∞:∑

j

mjJi,j − mi = 0
m→0+⇒ α̃ = s�

2ωc

=: b(s,�)−1. (27)

Instead of the sum on the left-hand side, the integral over
the Kernel K̃β(τ )/(β�) is used (cf. Appendix C) and the
homogeneity of the spin variables at equilibrium m = mk is
assumed. With (24), (26), and (27), we arrive at the following
prediction of the asymptotic N , s, �, and ωc dependence of

the critical coupling strength:

αc � 1

N

s�

2ωc

+ a(s,�)

N2
. (28)

In the large-spin-boson model, the combinatorial factor in (21)
is absent but otherwise no change occurs. As a consequence the
universality class of the transition remains unchanged but the
critical coupling strength is αc ∝ 1/N2 as predicted in [21].

B. The critical point: QMC results

For a sub-Ohmic bath (0 < s < 1) one expects a second-
order phase transition characterized by the following scaling
laws (N , s, �, and ωc fixed):

m(α = αc,β) ∝ β−x/ν, (29)

χ (α = αc,β) ∝ βγ/ν, (30)

Q(α,β) ∼ Q̃(β1/ν(α − αc)/αc). (31)

At zero temperature (i.e., β → ∞), then m(α > αc,T = 0) ∝
(α − αc)x and χ (α,T = 0) ∝ (αc − α)−γ holds. The critical
exponents x (usually denoted as β, the order parameter
exponent, which we changed to avoid confusion with the
inverse temperature β = 1/T ), ν and γ obey the scaling
relation γ = ν − 2x and are expected to be independent of the
tunneling strength � and the cutoff frequency ωc, for which
reason we fix both to � = 0.1 and ωc = 1 in most calculations.
The dependence of γ and ν on s is known for N = 1 [3,4], but
not for general N .

We performed large scale QMC simulations for N =
1, . . . ,128 and β = 2000, . . . ,1 024 000 using a continuous
imaginary time algorithm based on the world line repre-
sentation (see Sec. II A) and [3]). To determine the critical
point αc it is most convenient to use the relation (31): For
fixed N , s, �, and ωc the quantity Q is at the critical point
α = αc asymptotically independent of β, which can be used to
locate the critical point. This is demonstrated for s = 0.75 and
s = 0.9 in Figs. 1 and 2 for N = 2 and N = 16, respectively.

As a check for accuracy we compare the estimates for αc

that we obtain in this way for N = 2 with the predictions
of the numerical renormalization group (NRG) calculation of
Ref. [12], which is shown in Fig. 3. The agreement is very
good in the sub-Ohmic regime for s = 1/2 but differs slightly
for an Ohmic spectrum (s = 1). The phase transition of the
latter case is known to be notoriously difficult to investigate
with Monte Carlo simulations, because it belongs to the
Kosterlitz-Thouless universality class. Throughout this paper,
we set � = 0.1 and ωc = 1, for which the two independent
methods coincide within 5% for the Ohmic case (which is
compatible with the error bar) and much less in the sub-Ohmic
regime.

Next we determined the critical bath coupling strength for
different values of N and s; the result is shown in Fig. 4.
For increasing N the rescaled critical bath coupling strength
appears to approach an s-dependent constant, which means
that asymptotically (for large N ) αc would decrease as 1/N .
In the last subsection we derived a more precise prediction for
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FIG. 1. (Color online) Top row: Fourth-order cumulant Q versus the rescaled bath coupling α̃ for s = 0.75 (left) and s = 0.9 (right) for
N = 2. Bottom row: Scaling plots of Q for the data in the top row for s = 0.75 (left) and s = 0.9 (right). The best data collapse is obtained for
1/ν = 0.47 for s = 0.75 and 1/ν = 0.34 for s = 0.9. The other parameters are � = 0.1 and ωc = 1.

the asymptotic behavior of αc in Eq. (28):

αc � 1

N

s�

2ωc

+ a(s,�)

N2
.

This prediction is checked in Fig. 5. The simulation results
show a quite good agreement with Eqs. (28) and (27) even at
comparatively small N .
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FIG. 2. (Color online) The same as Fig. 1, but for N = 16 instead of N = 2. The scaling plot in the lower row yields the best data collapse
for a different critical rescaled bath coupling but the same values for the exponent 1/ν = 0.47 for s = 0.75 and 1/ν = 0.34 for s = 0.9.

224401-5
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FIG. 3. (Color online) Comparison of QMC and NRG predic-
tions for the critical bath coupling αc as a function of the tunneling
amplitude for N = 2, s = 1/2, and s = 1. Squares are our QMC
estimates and triangles the prediction of the NRG calculation of
Ref. [12].

According to the theoretical considerations of the last
subsection, the universality classes of the MSBM model for
general, finite N < ∞ should be identical with the universality
class of the single spin-boson model. More precisely, one
expects a Gaussian fixed point for s < 1/2 (i.e., x = 1/2,
γ = 1, and ν = 1/s; see [24,25]), nontrivial exponents for
1/2 < s � 1, and no phase transition above s = 1. Since the
quantum phase transition of the single spin-boson model is
well described by the zero-temperature phase transition in
the mean-field model (17) (see also [23]), one expects in
the regime s < 1/2 mean-field exponents also for the MSBM
with N > 1. We confirmed with our QMC simulation that the
classical exponents x = 1/2, γ = 1, and ν = 1/s for s < 1/2
are indeed independent of N (data not shown) and focus here
on the more interesting, the nonclassical regime 1/2 < s � 1,
and show results for two explicit values: s = 0.75 and s = 0.9.

Figures 1 and 2 show scaling plots of Q according to the
scaling relation (31). Since corrections to scaling increase
noticeably if s approaches 1, we restricted the scaling plot
to β � 64 000 for s = 0.9, whereas for s = 0.75 the data for
β � 8000 have been included for scaling. The data collapse
is very good for the exponent values 1/ν = 0.47 and 1/ν =
0.34 for s = 0.75 and s = 0.9, respectively, for both N = 2
and N = 16. These estimates for ν also agree with those
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1

011

α̃ s
−

Δ 2
ω

c

N

∝ N−1
s = 0.1
s = 0.25
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s = 0.5
s = 0.6
s = 0.75
s = 0.9

FIG. 5. (Color online) Check of the prediction (28) for the
rescaled critical bath coupling α̃c/s − �/(2ωc) ∝ 1/N for several
bath exponents s = 0.1, . . . ,0.9 (from bottom to top). The solid lines
are a guide for the eyes.

that we obtained for N = 1 (data not shown; cf. [3]) and
therefore support our prediction of the last subsection that
the universality class of the MSBM is independent of N for
finite N .

We obtain a second independent exponent, namely γ , from
the behavior of the susceptibility χ (30) at the critical point.
The data are shown in Fig. 6 in a log-log plot. For both bath
exponents the asymptotic slope of the susceptibility χ � βγ/ν

stays unchanged as the number of spins is increased, which
confirms that the critical exponent is γ /ν = 0.78 for s = 0.75
and γ /ν = 0.975 for s = 0.9 is universal for any value of N .

The pre-asymptotic behavior (β � 104) displays small
systematic deviations from the straight line. For small N the
asymptotic straight line is approached from below indicating
corrections to scaling. For large N it is approached from above
indicating a crossover from the N = ∞ mean-field critical
behavior to the asymptotic single spin-boson behavior N = 1.

Finally we study the N → ∞ limit of the MSBM model, for
which we expect the mean-field theory described in Sec. II C

FIG. 4. (Color online) Left: Scaled critical coupling α̃c/s versus the number of spins for several bath exponents s = 0.1, . . . ,0.9 (from
bottom to top). The solid line indicates the limiting value of �

2ωc
for N → ∞. Right: α̃c/s versus the bath exponent s. The parameters are

� = 0.1 and ωc = 1.
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FIG. 6. (Color online) Susceptibility at the critical point versus
the inverse temperature β for s = 0.75 (top) and s = 0.9 (bottom) for
different N . The straight line represents the asymptotic behavior χ ∝
βγ/ν with γ /ν = 0.78 for s = 0.75 and γ /ν = 0.975 for s = 0.9.

to be exact. Since the latter has a phase transition also at
nonvanishing temperature (19) we performed extensive QMC
simulations for fixed temperatures (fixed β) and � = 0.1,
ωc = 1. Figure 7 shows the fourth-order cumulant Q =
〈m2〉2/〈m4〉 versus the control parameter (i.e., α̃ in our case)
for multiple numbers of spins N for two exemplary cases. One

FIG. 8. (Color online) Temperature versus tunneling amplitude
� (both in unit of ωcα̃/s) for different bath exponents s. The thick
black curve shows the analytic mean-field result (18) and the data
points are obtained by QMC in the limit of N → ∞ (see text).
The results for s = 0.75,1,2 have been shifted by 0.2, 0.4, and 0.6,
respectively (indicated by the dashed lines) for better visibility. The
blue cross is the zero-temperature limit (32). The fixed parameters
are � = 0.1 and ωc = 1.

can clearly see that the curves intersect in a single point, which
determines the phase transition very similarly to the previous
zero-temperature analysis, where N was held fixed.

The resulting temperature versus tunneling plot (both in
units of the scaled coupling J̃ = ωcα̃

s
) is shown in Fig. 8. All

points coincide to a single master curve [cf. Eq. (19)]. One can
see an excellent agreement with the expected transition line.
All curves tend to the zero-temperature limit of (18)

�c = 2α̃ωc

s
, (32)

which is marked as a blue cross in Fig. 8. It should be
noted that this transition point exists for arbitrary s due to
the N → ∞ limit in contrast to the finite N case, where
a transition only exists for s � 1. At low temperatures and
bath exponents s � 1, an increase of the size of the statistical
error (for constant computational effort) is clearly visible.
This is an indication of the onset of the crossover regime
between mean-field universality at finite T and N → ∞ and
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FIG. 7. (Color online) Fourth-order cumulant Q versus the rescaled critical coupling α̃ for several numbers of spin N for the parameters
β = 20 and s = 0.75 (left) and β = 200 and s = 2 (right).
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the nonclassical critical behavior governed by the quantum
critical point at T = 0. For the same reason one observes the
asymptotic behavior at the quantum critical point for large N

only for large β, i.e., low temperatures T .

IV. SPIN-SPIN CORRELATION

In this section, we investigate the effective interaction
between the two-level systems mediated by the common bath
by calculating the spin-spin correlation functions of the MSBM
via QMC. It is defined as

〈
σ z

1 σ z
2

〉 = 1

Z
Tr
[
σ z

1 σ z
2 exp(−βH )

]
, (33)

which is easily accessible by the quantum Monte Carlo
algorithm, since the operator σ z

1 σ z
2 is diagonal in the used

representation.
In Fig. 9 the order parameter 〈σ z〉 = 〈σ z

1 〉 = 〈σ z
2 〉, the

correlation function (33), and the connected correlation func-
tion C1,2 = 〈σ z

1 σ z
2 〉 − 〈σ z

1 〉〈σ z
2 〉 are plotted. The vertical lines

display the phase transition points αc with respect to the
different bath exponents s. As already shown in Sec. III, αc is
shifted towards larger coupling strengths as s is increased.
At zero temperature (β = ∞) the order parameter 〈σ z〉 is
zero in the delocalized phase (α < αc) and increases with
an algebraic singularity ∝(α − αc)x in the localized phase
(α > αc). For finite β this sharp transition is smoothed as
is visible in Fig. 9(a).

The correlation function 〈σ z
1 σ z

2 〉 in Fig. 9(b) is nonzero
even in the delocalized phase α < αc due to the effective
ferromagnetic interaction mediated by the common bath. We
will quantify this behavior for small coupling strengths at the
end of this section. For α > αc the nonzero order parameter
[Fig. 9(a)] superposes with the correlation function. This leads
to a kink at αc that is clearly pronounced if s is small, and
smeared out if s becomes larger.

In Fig. 9(c), the connected correlation function C1,2 is
shown. This property displays the fluctuation around the
mean value. One can see that this function grows until the
phase transition point is reached and decreases rapidly to zero
after passing it. The larger the bath exponent is, the higher
the maximum of the curve is until the phase transition to
the localized phase suppresses the fluctuations. For s > 1,
where no phase transition takes place, C1,2 is monotonically
increasing and saturates at C1,2 = 1 for large α. In this case,
the spins are strongly correlated, but not able to perform
a localization. In the path-integral representation, the two
world lines arrange themselves in a synchronized way, where
their kinks occur at nearly equal times, separating identically
orientated world line segments from each other.

Figure 10 displays C1,2 for a larger range of α, where the
behavior for an Ohmic bath spectrum is also covered. Plotted
are curves for different inverse temperatures. One observes that
even the largest system size with β = 4 096 000 still shows
strong finite β effects in contrast to systems in the sub-Ohmic
regime, where, e.g., for s = 1/2 the curves for β = 32 000
and β = 64 000 collapse already quite well. The origin of this
slow convergence to the infinite β limit can be understood
by the particular critical behavior at s = 1. At this point, the
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FIG. 9. (Color online) Order parameter 〈σ z〉 (top), spin-spin cor-
relation function 〈σ z

1 σ z
2 〉 (middle), and connected correlation function

C1,2 = 〈σ z
1 σ z

2 〉 − 〈σ z
1 〉〈σ z

2 〉 versus the coupling strength α for various
bath exponents s. The vertical lines correspond to the phase transition
points. The inverse temperature is β = 32 000.

kernel Kβ(τ ) falls off in imaginary time with an inverse-
square law. This kind of long-range interaction is known to
produce a Kosterlitz-Thouless transition, where the spin-spin
correlation function decays logarithmically with the distance
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FIG. 10. (Color online) Connected correlation function C1,2 ver-
sus the coupling strength for the Ohmic case s = 1, where data
from β = 32 000 to β = 4 096 000 are shown and for s = 1

2 with
β = 32 000 and β = 64 000. The vertical solid line marks the phase
transition point and the dashed lines its error.

in imaginary time [29,30]. Therefore, finite size effects survive
over many decades causing much larger deviations in the
numerically determined properties. The determination of the
phase transition point is performed by an extrapolation of the
fourth-order cumulant Q = 〈m2〉2/〈m4〉 to infinite β and is
for s = 1 accompanied by a much larger error bar than for the
sub-Ohmic regime (s < 1).

The observed behavior of the connected correlation func-
tion is reminiscent of the entanglement entropy

E = − Tr[ρs log2 ρs], (34)

with the reduced density matrix ρs = TrB ρ, where the bath
degrees of freedom were traced out. The entanglement entropy
was recently studied in Ref. [12], where Fig. 6 shows also a
cusp for the sub-Ohmic case s = 1/2 whereas Fig. 5 therein
shows a smooth maximum for the Ohmic spectrum (note that
vanishing direct spin-spin coupling K = 0 corresponds to the
case considered by us).

We will now discuss some particular regimes of the model.
In Ref. [12] it was shown that a polaron transformation
U = exp[− 1

2 (σ z
1 + σ z

2 )
∑

k
λk

ωk
(b†k − bk)] applied to the two-

impurity spin-boson model will renormalize a bare (antifer-
romagnetic) Ising coupling term K

4 σ z
1 σ z

2 to (K
4 − αωc

s
)σ z

1 σ z
2 .

Since we consider no bare direct coupling between the spins
(K = 0), it is convenient to plot the data against the rescaled
coupling strength J = αωc/s to eliminate the global ∝s−1

scaling of the bath-induced spin-spin interaction, if one is
comparing the behavior for different s. In Fig. 11 the data
of Fig. 9(b) are plotted versus J . By means of this plot, one
can see that the curves for high s > 1 tend to a master curve.
This master curve corresponds to the analytic result of two
nondissipative and Ising-coupled spins driven by a transverse
field

H = �

2

(
σx

1 + σx
2

)− Jσ z
1 σ z

2 . (35)
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FIG. 11. (Color online) Correlation function of two spins in a
common bath versus the rescaled coupling parameter J = αωc/s for
various bath exponents s. The solid lines are the analytic results of the
pure Ising coupling or the mean-field interaction, respectively (see
text). The inset shows the effective direct interaction Jeff versus J for
small coupling strengths (α = 0 . . . 0.1). The solid line is the identity
Jeff = J .

This toy model is exactly solvable and one could calculate the
spin-spin correlation to be

〈
σ z

1 σ z
2

〉
Ising = J√

J 2 + �2
(36)

in the zero-temperature limit.
For s → 0 the data are compatible with mean-field behavior

as can be seen by solving the MSBM in the mean-field
approximation [cf. Eq. (17)] for finite N . Within this approx-
imation, the model shows a phase transition at Jc = �/(2N )
as discussed in Sec. II C, and the correlation function, which
is in this case simply the order parameter squared, reads

〈
σ z

1 σ z
2

〉
MF = 〈σ z〉2 =

{
0 if J � Jc = �

2N
,

1 − �2

4N2J 2 if J > Jc.
(37)

The data for 〈σ z
1 σ z

2 〉 for the lowest bath exponent s = 0.1 are
quite close to the mean-field results (37) in the localized phase.
In the delocalized phase 〈σ z

1 σ z
2 〉 does not vanish, in contrast

to mean-field behavior, and also deviates from the behavior
of the two coupled spins without bath (36). To shed light on
this weak-coupling regime, we recast Eq. (36) and define an
effective direct coupling

Jeff = �
〈
σ z

1 σ z
2

〉
√

1 − 〈
σ z

1 σ z
2

〉2 , (38)

which is a measure for the effective ferromagnetic coupling
mediated by the common bath.

The inset of Fig. 11 shows the effective direct coupling
(38) versus the rescaled coupling J = αωc/s. Again, one
sees the approach of the curves for high s to the identity
(Jeff = J ), whereas for small s the effective direct coupling
develops significantly slower than J , but still linear. The data
imply that the ratio Jeff/J decreases to zero for s → 0, which
is compatible with the mean-field approximation, since the
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FIG. 12. (Color online) Correlation function of multiple spins in a common bath versus the coupling parameter J = αωc/s for bath
exponents s = 0.25,0.5,0.75 and s = 1 at an inverse temperature of β = 32 000.

results (37) predict Jeff = 0 in the delocalized phase. For
s > 1 the ratio Jeff/J approaches 1; the effective interaction
mediated by the common bath is just Jeff = J = αωc/s.
Note that even for s → ∞, i.e., short-ranged interactions
in the imaginary time direction, the two-level systems are
still ferromagnetically correlated due to the effective bath
interaction at equal imaginary times. The s → ∞ limit of the
MSBM for N = 2 is thus simply the pair of two-level systems
without bath but with a ferromagnetic coupling J = αωc/s.

Finally, we had a look at the correlations for more than
two spins. Figure 12 shows the connected correlation function
for N = 2 to N = 8 for different bath exponents. One can
see that the maximum becomes lower and more sharp as the
number of spins is increased. For larger N the maximum takes
place at the mean-field prediction of Jc = �/(2N ) (37). The
initial slope for J → 0 is quite similar for all curves, but raises
super-linearly for N > 2 instead of linearly for N = 2, when
the coupling is increased. That means that the spins build up
their cooperative polarization successively.

V. SPATIAL SEPARATION

In this section we consider spatially separated two-level
systems in a common bath. As originally proposed in Ref. [6]
the two-level systems are now coupled to a phase-shifted po-
larization of the bosonic modes. The phase shift arises from the
time t = R/v that is needed to propagate the information from
one spin to another spin at a distance R with the propagation
velocity v. Such a situation arises for instance if the bosonic
modes are represented by standing waves in a box with a linear
size L and periodic boundary conditions (Fig. 13). In this case,
the bath is fully described by a complete set of harmonic modes

k = n·2π/L with n = (n1, . . . ,nd ), and ni = 1,2,3, . . . for
i = 1, . . . ,d, and d the dimension of the box. After performing
L → ∞, this approach is basically a continuous version of
phonon-induced interaction between localized electrons [32].
The same distance-dependent interaction has also been used
for two harmonic oscillators in a common bath instead of two
spins [33].

A. The dissipative spin array

The generalization of interaction term of the MSBM (4) to
a system where the N spins are located at the positions rm is
given by [13,31]

HI =
N∑

m=1

1

2

∑
k

λk(a†
ke

ik·rm + ake
−ik·rm )σ z

m. (39)

Without loss of generality, the coefficients λk are assumed
to be real numbers, because a complex phase carries no
information. In contrast to the previous model without any
relation to spatial variables, the indices have now the meaning
of actual wave numbers rather than a simple counter for
the frequencies. In principle, this would involve a dispersion

FIG. 13. (Color online) Sketch of two spins at a distance R

embedded in a one-dimensional common bosonic bath. The bath
is fully described by a complete set of harmonic modes, that are
restricted to a box with linear size L.
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relation ω → ω(k), which would also affect the couplings
λk → λω(k). Equation (39) describes hence a bath of modes
propagating in vacuum, where ω ∝ |k|.

For a pair of spins at a distance R = |R| = |r − r ′|, one
can show (cf. Appendix A) that the dependence on R can be
completely integrated into the spectral function

J (ω,R) = π
∑
k>0

λ2
k cos (k·R) δ(ω − ωk) (40)

such that the form of the kernel (7) remains unchanged. The N

spin problem is just a superposition of all of these pair kernels
for every distinct spin pair. The sum in (40) can be replaced by
an integral in the limit L → ∞ and the couplings are assumed
to follow a power-law function λki

∝ k
(2+s−d)/2
i (i = 1, . . . ,d).

Absorbing all constants into the bath coupling strength α

leads to the form

J (ω,R) = 2παωsω1−s
c f d (R̄), (41)

where we have introduced the scaled distance R̄ = Rωc/v. The
dependence on the spatial separation is thus absorbed into a
single function f d (R̄). For the different dimensions d = 1,2,3
of the bath, this function is

f d (R̄) =
⎧⎨
⎩

cos(R̄) d = 1,

J0(R̄) d = 2,

sin(R̄)/R̄ d = 3,

(42)

where J0(R̄) is the Bessel function of the first kind.
Let us focus on the separation-dependent part and consider

the zero-tunneling limit � = 0. The approach of Sec. II B
can easily be generalized and the resulting partition function
corresponds to the one of a long-range Ising model

Z =
∑

{σ1,...,σN }
exp

⎡
⎣β

2

N∑
m=1

N∑
m′=1

σmσm′
αωc

s
Xd

×
(

s,
ωc

v
|rm − rm′ |

)⎤⎦ , (43)

where the Ising interaction is defined as

Xd (s,R̄) =
∫ 1

0
sxs−1f d (xR̄)dx. (44)

For every dimension d = 1,2,3, these functions reproduce
the MSBM case from Sec. II B, if the scaled distance R̄ → 0. In
Fig. 14, Xd (s,R̄) is plotted for different s in one, two, and three
dimensions. For small s they decay monotonically, whereas
for higher s oscillations become dominant. The asymptotic
behavior of the former case can be determined by recasting
(44) to Xd (s,R̄) = R̄−sI d (s,R̄) and noting that the remaining

integral I d (s,R̄) = ∫ R̄

0 sxs−1f d (x)dx converges to a finite
(nonzero) value as R̄ → ∞. It turns out that

Xd (s,R̄) � R̄−s (45)

for 0 < s < (d + 1)/2.
Above this value s > (d + 1)/2 this analysis breaks down

and one should rather focus on the envelop function of
Xd (s,R̄). One way is to use the form (e.g., in d = 1) X1(s,R̄) =

FIG. 14. (Color online) Xd (s,R̄) in one, two, and three dimen-
sions for various s. For d = 3, the curve for s = 2 coincides with one
for s = sAF .

R̄−1
∫ R̄

0 s(x/R̄)s−1 cos(x)dx and analyze the asymptotic be-
havior of the maxima at R̄n = 2πn + π/2 for large n. One
obtains the s-independent power-law decay

Xd (s,R̄) � R̄−(d+1)/2, (46)

for the envelop function, if s > (d + 1)/2.
In addition to the asymptotic behavior another upper bound

for the bath exponent is important that also depends on the
dimension of the bath. We define sd

AF such that for all s > sd
AF

the coupling interaction Xd (s,R̄) is not restricted to positive
values for all distances any more. Intervals of the distance R̄

occur, for which antiferromagnetic interactions occur. The on-
sets of antiferromagnetism are in this sense s1

AF = 0.6923(9),
s2
AF = 1.3545(2), and s3

AF = 2.001(2). For bath exponents
smaller than these values the spin-spin interactions are always
ferromagnetic and decay asymptotically as discussed above.

The lower bound for feasible values of the bath exponents
follows from the following consideration: It is known that a D-
dimensional Ising model with algebraic decaying long-range
interaction does only have a nondiverging energy per spin, if
the decay is faster than 1/RD (see Ref. [25] and references
therein). That means for example that in the present case the
one-dimensional infinite spin chain in a d-dimensional bosonic
bath can only exist if s � 1.

These considerations are summarized in Fig. 15. For 1 �
s � sd

AF , the system has strict ferromagnetic interactions and
is equivalent to the classical Ising spin chain with algebraically
decaying long-ranged interactions [25]. This regime exists
in the range of bath exponents 1 < s < 2 in the case of a
three-dimensional bath and vanishes for d = 1. For s � sAF

the behavior depends on the details of the lattice spacings
|rm − rm+1| between the spins. Two possible cases are for
instance when the spins are either arranged near the maxima
of the underlying oscillation of Xd (s,R̄) or, on the other hand,
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FIG. 15. (Color online) Sketch of the phases of the dissipative
spin array in the zero-tunneling limit for a one-, two-, and three-
dimensional bath. White lined: A decay slower than ∝R−1 is ther-
modynamically not possible in an infinite chain. Red: Ferromagnetic
interaction (FM) with ∝R−s decay. Blue: Antiferromagnetic interac-
tion (AFM) with s-independent ∝R− d+1

2 decay. Gray: Intermediate
regime between FM and AFM.

when ferromagnetic and antiferromagnetic contributions are
mostly canceling each other resulting in alternating signs of
the interactions.

B. A pair of spatially separated spins

In this section we study the MSBM for N = 2 with spatially
separated spins in a distance R̄. For a pair of spins, the action
(6) separates into four parts S = S1 + S2 + 2SR , namely the
self-energy for each spin

Sm =
∫ β

0

∫ τ

0
σ z

m(τ )σ z
m(τ ′)Kβ(τ − τ ′,0)dτ ′dτ (47)

for m = 1,2, and twice the interaction between the two spins

SR =
∫ β

0

∫ τ

0
σ z

1 (τ )σ z
2 (τ ′)Kβ(τ − τ ′,R̄)dτ ′dτ. (48)

The Monte Carlo cluster algorithm (see Appendix B) can be
adapted to the present case by taking all of these actions
into account. The key step is to evaluate the integral kernel
Kβ(τ,R) (7) with the spectral function (41), which is modified
by the spatial function f d (R̄). The kernel must be nonnegative
in order to apply the algorithm, which is designed for
ferromagnetic interaction only. The condition for that can be
obtained by calculating the values of s, for which Kβ(τ,R)
begins to exhibit roots with respect to τ . At these onset values
of s, the roots are at τ = 0 and τ = β. In the limit β → ∞,
the values of kernels at these points are

Kβ(0,R) = Kβ(β,R) =
∫ ωc

0
2αωs−1ω1−s

c f d

(
ωR

v

)
β

2
dω

= 2ω2
cα

s + 1
Xd (s + 1,R̄)

β

2
. (49)

The function Xd (s,R̄) exhibits roots at s � sd
AF (Sec. V A).

This means that the kernel is nonnegative only for bath
exponents s < sd

AF − 1. If we restrict ourselves to the case of
a three-dimensional bath, we can safely explore the complete
(sub-)Ohmic regime (0 < s � 1). The integral kernel is plotted

FIG. 16. (Color online) Integral kernel Kβ (τ,R̄) at d = 3 for low
imaginary time 0 � τ � 30 and scaled distances 0 � R̄ � 8π for
different bath exponents [s = 0.25 (top), s = 0.75 (middle), and s =
1 (bottom)].

in Fig. 16 for several parameters for d = 3. At the s = 1, one
can see the roots at R̄ = 2π,4π,6π, . . . .

1. Phase transition point

As already known from [12,13], the transition point from
delocalization to localization of two spins in a common
bath is lowered in comparison to the single spin case. If
one introduces a finite spatial separation, the transition point
increases up to the single spin case, if R̄ = ∞. We determined
the phase diagram as in Sec. III B via finite β scaling of
the fourth-order cumulant Q. Figure 17 shows the phase
diagram for various distances. One can see that the spins are
influencing each other over relatively large distances. Even at
R̄ = 1000, the transition point is still clearly distinguishable
from the single spin case. The localization is strongly enhanced
by the presence of a second impurity in the bath. Note
that the model neglects retardation effects, which are more
important the further the spins are separated. At this point
retardation effects mean all corrections that are caused by
the finiteness of the propagation speed of the modes and
change the effective interaction between spins. Therefore, the
bath-mediated spin-spin influence at large distances may be
less prominent in a real experimental setup.
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FIG. 17. (Color online) Phase diagram of the MSBM for N =
2 with spatial separation for various distances R̄. The case R̄ = 0
corresponds to the MSBM with N = 2 from Sec. II and the case
R̄ = ∞ represents the common single spin-boson model.

2. Order parameter and spin-spin correlation

We will now focus on the observables. First we will
address extrapolation to zero temperature. In Fig. 18 the
order parameter 〈σ z〉, the fourth-order cumulant Q, and the
correlation function 〈σ z

1 σ z
2 〉 versus the distance R̄ are shown

for several inverse temperatures and for two different points
in the parameter space, namely s = 0.75,α = 0.1 and s =
1,α = 0.3. There are two things to realize: The fourth-order
cumulants intersect for s = 0.75 and merge with each other
smoothly for s = 1, which is a characteristic that the former
case is an ordinary continuous phase transition whereas the
latter one is expected to be a phase transition of a Kosterlitz-
Thouless type. The second things is that the correlation
function is nearly not affected by the finite size.

In Fig. 19 we plot the order parameter and the correlation
function versus the distance for several coupling strengths and
for the two selected parameters s = 0.75 and s = 1. Basically
the observables behave typically when driven through the
phase transition by increasing the control parameter R̄. As a
special feature, the curves show an underlying wiggling that is
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FIG. 18. (Color online) Order parameter 〈σ z〉 (top), fourth-order cumulant Q (middle), and the correlation function 〈σ z
1 σ z

2 〉 (bottom) versus
the distance R̄ for different inverse temperatures. In the left column the parameters s = 0.75 and α = 0.1 are used whereas in the right column
s = 1 and α = 0.3 are assumed.
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FIG. 19. (Color online) Order parameter 〈σ z〉 (top) and the correlation function 〈σ z
1 σ z

2 〉 (bottom) versus the distance R̄ for the parameter
s = 0.75 (left) and the Ohmic spectrum s = 1 (right). The inverse temperature for all data is β = 256 000. The coupling strengths used in the
lower row correspond to values of the upper row.

caused by the oscillations of the spatially dependent interaction
(cf. Sec. V A). Also worth mentioning is the observation that
the phase transition is not really recognizable by the correlation
function curves despite the significant jump of the order
parameter. This fact is however also present without spatial
separation as one can see Fig. 9(b) for the same s.

VI. CONCLUSIONS

With the help of analytic considerations and large-scale
QMC simulations we have shown that the quantum phase tran-
sition in the (unbiased) multi-spin-boson model, describing N

independent two-level systems coupled to a common bosonic
bath, falls in the universality class of the single spin-boson
model, i.e., is independent of the number of two-level systems
for any finite N . In the limit N → ∞ the universality class
of the transition changes to mean-field behavior and the
system has a phase transition also at finite temperatures.
Consequently for large values of N one observes a crossover
from mean-field to finite N MSBM critical behavior for
decreasing temperature.

The leading N dependence of the critical bath coupling
is shown to be αc � 1

N
s�
2ωc

+ a(s,�)
N2 ; i.e., asymptotically the

critical bath coupling is proportional to 1/N . This confirms
that the common bath mediates a ferromagnetic interaction
between the two-level systems, reduces fluctuations and thus
also the critical bath coupling. We showed that the effective
interaction between the two-level systems can be quantified by
the spin-spin correlation function, which interpolates smoothly
between mean-field behavior for s → 0 (including a transition
from uncorrelated to correlated two-level systems) and a

simple ferromagnetically coupled two-spin system without
bath for s � 1. For s � 1 the short-ranged interactions in
imaginary time still mediate an instantaneous ferromagnetic
interaction of strength J = αωc/s. For s < 1 the behavior of
the connected spin-spin correlation function is reminiscent of
the entanglement entropy of the two-level systems: approx-
imately linearly increasing with the bath coupling α in the
delocalized phase α < αc and then rapidly decreasing in the
localized phase (α > αc).

For spatially separated two-level systems the critical bath
coupling monotonically increases with the distance R from the
value for the MSBM without spatial separation for R = 0 to
the value for the single spin-boson model for infinite separation
R → ∞. No indication is found for an alteration of the
universality class of the transition by the spatial separation.
The order parameter as well as the spin-spin correlation
function decreases systematically with the distance R but
shows superimposed oscillations.

The results reported in this paper are for the MSBM
without a direct ferromagnetic interaction between the two-
level systems, and one obvious question arises immediately:
Will the universality class of the transition change if a direct
coupling between the two-level systems is introduced? NRG
results for a pair of spins (N = 2) reported in [12] are confined
to the transition triggered by the ferromagnetic coupling for
fixed bath coupling and predict exponents (e.g., β = 0.09 for
s = 0.9 and β = 0.2 for s = 0.75), which cannot be compared
directly with the bath coupling triggered critical behavior of
the MSBM (for which we found β = 0.037 for s = 0.9 and
β = 0.23 for s = 0.75). An alternative view was obtained
recently [14] with a renormalization group calculation for a
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pair of spins each with its own bath, which might behave
differently than the case we are considering here. Note that
the quantum critical point of a chain of ferromagnetically
coupled spins, each with its own bath, was studied in the
limit N → ∞ in Ref. [15]. Again the question is whether
the reported universality class changes for a common bath.
Certainly it will be worthwhile to study these questions with
the method that we used in this paper.
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APPENDIX A: DERIVATION OF THE ACTION

We are using the Caldeira-Leggett formulation [2] for quan-
tum dissipative systems, where the 1/2-spins are represented
by spinless particles at positions Qm and momentum Pm in a
symmetric double-well potential V (Qm). The full Hamiltonian
of N spatially separated spins in a common bosonic bath can
written as

H = HS + HB + HI + Hc (A1)

with

HS =
N∑

m=1

(
P 2

m

2M
+ V (Qm)

)
, (A2)

HB =
∞∑

k=−∞

pk
2

2mk
+

∞∑
k=−∞

mkω
2
k

2
xk

2, (A3)

HI =
∞∑

k=−∞
ckxk

N∑
m=1

Qm exp(ik·rm), (A4)

HC =
∞∑

k=−∞

|ck|2
2mkω

2
k

N∑
m=1

N∑
m′=1

QmQm′ exp[ik·(rm − rm′ )],

(A5)

where HS is the (inner) system part, HB denotes the bath
degrees of freedom, HI is the interaction term, and HC the
so-called counterterm, that compensates a global energy shift.
The linear coupling between the particles and the bath mode
is imposed by the coefficients ck. The common procedure is
to express the partition function as a path integral [1]

Z ∝
∫ ∏

m

D[Qm]D[Pm]
∏

k

D[xk]D[pk] exp(−S) (A6)

and switch to Fourier space Qm(τ ) = ∑
n Qm,n exp(iωnτ )

(Pm,n,pk,n, and xk,n similarly), where ωn = 2πn/β are the
Matsubara frequencies and τ the imaginary time coordinate.
The bath degrees of freedom and the particle momenta can
now be eliminated by Gaussian integration. The resulting
interacting (nonlocal) part of the action is then given by

SI = β

N∑
m,m′=1

[ ∞∑
n=−∞

α(n,rm−rm′ )Qm,nQm′,−n

]
(A7)

with the kernel

α(n,R) =
∑

k

|ck|2ω2
n exp(−ik·R)

2mkω
2
k

(
ω2

n + ω2
k

) . (A8)

Transforming back by means of the identity [34]

∑
n

ω2
k

(ωn)2 + ω2
k

eiωn(τ−τ ′) = β

2
ωk

cosh
[

βωk

2

(
1 − 2|τ−τ ′|

β

)]
sinh

(
β

2 ωk

)
(A9)

leads to the representation of Eqs. (6), (7), (40) with |λk|2 =
|ck|2/(2mkωk). The (local) system part (A2) becomes in
the spin-boson limit a two-state system whose path-integral
representation is a Poissonian distribution of an even number
of kinks [36–38].

APPENDIX B: THE CONTINUOUS TIME CLUSTER QMC
ALGORITHM

In this appendix we describe the essential steps of the QMC
procedure we are using. To demonstrate the principle of the
algorithm we start with a discretized (Trotter) representation
of the action

S = −1

2

L′∑
i,j=1

J|i−j |sisj − K

L′∑
i=1

sisi+1 (B1)

with a ferromagnetic long-range and a nearest-neighbor part

Ji = �τ 2

2β
Kβ(i�τ ) and K = −1

2
log

[
tanh

(
�

2
· �τ

)]
(B2)

and perform the continuous time limit afterwards. Within
this discretization, the world line is divided into spins with
infinitesimal lattice spacing �τ = β/L′ → 0 in contrast to
the approximative discretization of Sec. III A which would
correspond to �τ = 2/�. Cluster Monte Carlo methods
for classical Ising spins models involve a cluster building
procedure, that adds equally aligned (up or down) spins si

and sj with a bond activation probability (BAP)

p|i−j | = 1 − exp(−2J|i−j ] − 2Kδ1,|i−j |) (B3)

to a cluster [35]. The two parts of the interaction can be treated
separately in the cluster building process since the separation
of long-range and nearest-neighbor BAPs

p
(lr)
i = 1 − exp(−2Ji), (B4)

p
(nn)
i = 1 − exp(−2Kδ1,i) (B5)

yields the correct global BAP (B3) via

pi = p
(lr)
i + p

(nn)
i − p

(lr)
i p

(nn)
i (B6)

= 1 − (
1 − p

(lr)
i

)(
1 − p

(nn)
i

)
. (B7)

We will now focus on the long-range interaction and will
describe how the cluster building process can be performed
quickly [25]. The probability for activating a bond to the kth
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FIG. 20. (Color online) Sketch of the arrangement of the skip-
ping probabilities P n

k and the array of the cumulative probabilities
Ck for two world lines. The neighbors are counted to the right
meaning that the left neighbor of the same world line has the label
L′. In this example, the reference spin to which the bonds shall be
connected is depicted by the square. The skipping probabilities to the
spins of the second world line are concatenated with the cumulative
probability array. The draw of a random number CL′+1 < g � CL′+2

would correspond to the selection of the nearest-neighbor spin to the
right of the other world line.

neighbor without making any bond to neighbors in between is

Pk = p
(lr)
k

k−1∏
i=1

(
1 − p

(lr)
i

)
(B8)

and will be called skipping probability in the following. Note
that only the equal alignment of the reference spin and its
kth neighbor is required to add the candidate sk to the cluster,
so that the spins s1, . . . ,sk−1 can be skipped without being
touched. The cumulative probability

Cl =
l∑

k=1

Pk = 1 − exp

(
−2

l∑
i=1

Ji

)
(B9)

enables one to draw directly (without rejections) the next
candidate l for making a bond by a formal inversion

l = C−1(g), (B10)

where g = ran(0,C(L′)) is a random number uniformly dis-
tributed between 0 and C(L′). This rejection-free procedure
can build up for arbitrary ordered probabilities. If we label
the different world lines in a way that we can address them
by a fixed and ordered sequence, every world line possesses
its well-defined neighbor world lines. The extended skipping
probability for activating a bond to the lth neighbor spin but of
the nth neighbor world line where all spins of all world lines
in between have been skipped can defined by (cf. Fig. 20)

P n
k =

(
n−1∏
m=0

L′∏
i=1

(
1 − p

(lr),m
i

))
p

(lr),n
k

k−1∏
i=1

(
1 − p

(lr),n
i

)
. (B11)

Note that for n = 0 the first product is empty and (B8) is
recovered. We can now append these probabilities (B11) to the
cumulative probability

Cn·L′+l =
n∑

m=0

l∑
k=1

P m
k (B12)

and process as in the single world line case. For later purposes
a cumulative probability for groups of spin has to be defined.
Consider a certain number r with the labels s−r+1, . . . ,s0

of adjacent and equally orientated spins. The probability for
activating at least one bond between these spins and another
one si (i > 0) is

p
(lr)
i (r) = 1 −

r−1∏
j=0

(
1 − p

(lr)
i+j

) = 1 − exp

⎛
⎝−2

r−1∑
j=0

Ji+j

⎞
⎠ .

(B13)

Based on this probability modified skipping probabilities and
cumulative probabilities can be defined in the same way as
described above leading to

Cl,r = 1 − exp

⎛
⎝−2

l∑
i=1

r−1∑
j=0

Ji+j

⎞
⎠ . (B14)

We will now perform the continuous time limit �τ → 0,
which means that a sequence of equally aligned spins
si,si+1, . . . ,sj is represented as a continuous segment
[s(i),s(j )] of length t = |j − i|. The nearest-neighbor BAP
becomes pnn

i = 1 − (�/2)�τ in the �τ → 0 limit and the
probability for adding all equally aligned spins up to a distance
t is

pseg(t) = lim
�τ→0

(
1 − �

2
�τ

)t/�τ

= exp

(
− �

2
t

)
. (B15)

FIG. 21. (Color online) An exemplary part with four kinks of an
arbitrary world line is shown in step (1). In step (2) exponentially
distributed random numbers according to (B15) are drawn and
sequentially inserted into the world line (two dash-dotted lines).
These “cuts” together with the already existing kinks divide the
world line into segments. Every segment is able to initiate a cluster
building process. Without loss of generality the first (↓) segment
to the left (blue) is chosen and its end point defines the origin of
coordinates. Drawing an exponentially distributed random number
in step (3) gives the value Tr (l) = Tr (0) − log [ran(0,1)] [cf. (B18)].
Determining numerically the point l and its corresponding segment
(red) leads to the next candidate for adding to the cluster, which will
be rejected in the present case due to its incompatible (↑) orientation.
Proceeding likewise with l as the starting point leads to another
candidate (green) in step (4), which is this time actually added to the
cluster. Finally, if this cluster is flipped and the redundant “cuts” are
removed the world line would look like in step (5).
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The cumulative long-range probability can be expressed by
inserting (B2) in (B14) and reads

C(l,r) = 1 − exp

(
− 1

β

∫ l

0
dτ

∫ 0

−r

dτ ′Kβ(τ − τ ′)
)

. (B16)

This is the cumulative distribution probability for activating a
bond between a reference segment at [−r,0] and the segment
which is located at a distance l. Note that for multiple world
lines Kβ(τ − τ ′) has the meaning of a concatenated function
of the different Kβ’s. Without giving the derivation, the
cumulative distribution function for activating the segment
at the distance l′ under the condition that the point l has been
selected before is

Cl(l
′,r) = 1− exp

(
− 1

β

∫ l′

l

dτ

∫ 0

−r

dτ ′Kβ(τ − τ ′)

)
.

(B17)

For the required inversion we recast (B17) to the form

− log[1 − C(l,r)] = Tr (l′) − Tr (l), (B18)

where the function Tr (l) = [K (2)
β (l + r) − K

(2)
β (l)]/β contains

the second integral of the kernel Kβ(t).
In practice, we pre-calculate K

(2)
β (τ ) by means of an

adaptive spline interpolation for quicker evaluation during
the simulation. The essential steps of the algorithm are
summarized in Fig. 21.

APPENDIX C: LOW-TEMPERATURE MEAN-FIELD
SOLUTION

We start with the discretized form of the partition function
(20) with the abbreviation for the interaction (23)

Z =
∑
{sm,i }

exp

⎡
⎣ 1

2N

N∑
m,m′

L∑
i,j

Ji,j sm,ism′,j

⎤
⎦ .

Introducing continuous variables mi by means of delta func-
tions leads to

Z =
∑
{sm,i }

exp

⎡
⎣N

2

L∑
i,j

Ji,j

(
N∑

m=1

sm,i

N

)(
N∑

m′=1

sm′,j

N

)⎤⎦

=
∑
{sm,i }

∫ L∏
i=1

[
dmiδ

(
mi −

N∑
m=1

sm,i

N

)]

× exp

⎡
⎣N

2

L∑
i,j

Ji,jmimj

⎤
⎦ .

The delta functions can substituted by

δ

(
mi −

N∑
m=1

sm,i

N

)
= Nδ

(
Nmi −

N∑
m=1

sm,i

)

= N

2π

∫
exp

[
im̂i

(
Nmi−

N∑
m=1

sm,i

)]
dm̂i,

which leads to

Z =
∫ L∏

i=1

[
dm̂idmi

2πN−1

]∑
{sm,i }

exp

(
iN

L∑
i=1

m̂imi

)

× exp

(
−i

∑
i,m

m̂ism,i

)
exp

⎡
⎣N

2

L∑
i,j

Ji,jmimj

⎤
⎦ .

Now, the trace over the spin variables sm,i can performed
directly:

Z =
∫ L∏

i=1

[
dm̂idmi

2πN−1

]∏
i

[2 cos (m̂i)]
N

× exp

(
iN

L∑
i=1

m̂imi

)
exp

⎡
⎣N

2

L∑
i,j

Ji,jmimj

⎤
⎦

=
∫ L∏

i=1

[
dm̂idmi

2πN−1

]
exp [N f ({mi},{m̂i})] ,

where in the last line the function

f ({mi},{m̂i}) = ln[2 cos (m̂i)] + i

L∑
i=1

m̂imi + 1

2

L∑
i,j

Ji,jmimj

was defined. In the limit N → ∞, a saddle point integration
leads finally to the common mean-field relation for the
magnetization

∂f

∂mi

= 0 = ∂f

∂m̂i

⇒ mi = tanh

⎛
⎝ L∑

j=1

Ji,jmj

⎞
⎠ . (C1)

In equilibrium, all mi = m are equal and the phase transition
point can calculated from (C1) by the condition

∑
j Ji,j = 1.

Substituting back Ji,j (23), one obtains

L∑
j=1

Ji,j =
∫ β

0

1

�β
K̃β(τ − τ ′)dτ = 2ωcα̃

�s
, (C2)

where the replacement of the sum by the integral is valid for
O(1) � �β. Setting Eq. (C2) equal to 1 recovers the critical
point.
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ANDRÉ WINTER AND HEIKO RIEGER PHYSICAL REVIEW B 90, 224401 (2014)

[3] A. Winter, H. Rieger, M. Vojta, and R. Bulla, Phys. Rev. Lett.
102, 030601 (2009).

[4] A. Alvermann and H. Fehske, Phys. Rev. Lett. 102, 150601
(2009).

[5] Y. Zhang, Q. Chen, and K. Wang, Phys. Rev. B 81, 121105
(2010).
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