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Search processes often involve multiple agents that collectively search a randomly located target. While
increasing the number of agents usually decreases the time at which the first agent finds the target, it also
requires resources to create and sustain more agents. In this paper, we raise the question of the optimal timing
for launching multiple agents in a search in order to reach the best compromise between minimizing the
overall search time and minimizing the costs associated with launching and sustaining agents. After introducing
a general formalism for independent agents in which we allow them to be launched at arbitrary times, we
investigate by means of analytical calculations and numerical optimization the optimal launch strategies to
optimize the quantiles of the search cost and its mean. Finally, we compare our results with the case of stochastic
resetting and study the conditions under which it is preferable to launch new searchers rather than resetting the
first one to its initial position.
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I. INTRODUCTION

The term “search processes” encompasses any phe-
nomenon in which the encounter of agents with a target is
important [1]. They are encountered in a wide variety of
systems across many length and time scales. This includes
chemical reaction kinetics [2,3], biological processes at the
molecular scale such as macromolecules searching for reac-
tive sites to trigger biochemical reactions [4], or at the cellular
level in the immune search for pathogens [5–7], ecological
phenomena such as animal foraging and hunting [8–12], or
even searches by artificial agents such as robot swarms used
in rescue missions [13,14].

Although stochastic search processes differ in nature, they
share common features that can be treated equally using the
tools of statistical physics. In particular, they share the need
of being optimized in a certain way, raising the following
question: How should one tune the free parameters of the
process in order to make the search as efficient as possible?
In a very large majority of studies, the search efficiency is
fully defined in terms of the search time, i.e., the time required
by the searchers to find and catch the target. Typically, the
inverse of the mean first-passage time is used as an estimator
of the search efficiency, which one attempts to maximize. For
individual agents evolving according to stochastic dynamics,
a lot of work has been dedicated over the past years to identify
search strategies, meaning parameter sets of the stochastic
search process, that minimize the mean first-passage time
(MFPT). Various classes of processes have been investigated,
among which are intermittent or Lévy walks [15–20], stochas-
tic resetting [21–25], and non-Markovian searches [26–30].
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However, it is only rarely that the search efficiency has been
defined to account for other quantities than the search time,
such as the energy deployed for the search to succeed or the
amount of external resources required.

More recently, some effort has been put into understanding
and quantifying collective searches, i.e., identifying optimal
strategies that multiple searchers should follow when they are
looking for a common target [31–35]. Most studies focused
on the MFPT of independent searchers [36–38], but also
a few instances for interacting searchers have been studied
[32,39–41]. In particular, similarly to individual searches, the
search efficiency is almost exclusively defined inversely pro-
portional to the overall search time. In addition, the number
of searchers has rarely been considered as a parameter to
optimize. However, while it is clear that for nearly all search
processes the mean search time decreases with the number of
searchers, adding more searchers may have a non-negligible
cost in terms of the required resources. For a human search
problem where one needs to pay agents and material resources
to perform the search, one can very easily understand that it
is not optimal to hire as many agents as possibly available, as
it would have a huge financial cost. Similarly, in an immune
response process, hiring more cells to find a pathogen requires
a substantial amount of metabolic energy. This is precisely
the motivation for the question that we are raising in this
paper: Given the cost associated with launching and sustaining
an agent in a collective search process, what is the optimal
number of them and when should they be launched?

To address this general question, the paper is organized
as follows. In Sec. II we formalize the problem and discuss
the assumption on which our work relies. We also introduce
a definition of the search cost and discuss its various con-
tributions. Section III is dedicated to the mean search cost.
We first treat the two-searcher problem to gain an intuition
of the problem, and show that a unique optimum exists if
the single-agent survival probability (SASP) and its derivative
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are logarithmically convex. We then derive general analytic
results on the optimal number of searchers to launch initially
and later perform numerical optimization on a selection of test
cases that combine relevant short- and long-time behavior of
the SASP to identify the details of the optimal launch strate-
gies. Section IV deals with the minimization of the quantiles
of the search cost, i.e., the probability that the cost does not
reach too large values. We show that the whole problem can
be solved for logarithmically convex SASPs and we therefore
derive the optimal strategies that minimize the quantiles of
the search cost. We then apply our result to a specific ex-
ample, namely, an exponentially decaying SASP. Section V
presents results of numerical simulations on an example of
the search process and compares the data with the predictions
made in the previous sections. Finally, in Sec. VI we draw
a comparison between our formalism and search processes
subject to stochastic resetting, which have attracted a lot of
attention in recent years. We show with the canonical example
of the one-dimensional diffusive search under which condi-
tions launching new searchers is preferable to resetting the
first searcher to its initial position. We conclude in Sec. VII,
in which we discuss possible adaptations of our work to more
complex problems.

II. GENERAL FORMALISM

A. Target survival probability

The general problem that we consider is the following. A
target is initially located at position rT in a search domain that
can be finite or infinite. We have at our disposal a supply of
N agents that are initially out of the search domain and ready
to be launched into the search. Once in the search domain,
each agent moves within it according to a certain stochastic
dynamics. The ith agent is launched at time ti � ti−1, referred
to as the launch time, and position ri. We set t1 = 0 and we
note �i = ti − ti−1 the ith launch interval. The overall process
terminates once one searcher finds the target. A sketch of the
setup is depicted in Fig. 1. Depending on the search process,
finding the target can be achieved whenever an agent comes
in the vicinity of the target for the first time, while it may take
several attempts for so-called reactive targets which need to
interact with the agents in a certain way in order to trigger the
initiation of a subsequent process, e.g., in chemical reactions.
This distinction will be irrelevant in what follows and both
scenarios can be treated by our formalism.

The individual processes can be arbitrary, provided that the
SASP of the target, si(T, ri, rT ), associated with the searcher
i, i.e., the probability that the searcher i has not found the
target until time t , is well defined. Note that si could be
different for each searcher if their dynamics is not identical.
Because the searchers are independent, the overall survival
probability of the target is given by

S(T, {ti, ri}, rT ) =
n∏

k=1

sk (T − tk, rk, rT ) (1)

for tn � T < tn+1. Defining �T (rT ) and �S (r1, . . . , rN ) as the
probability distributions for the target position rT and ini-
tial coordinates of each searcher r1, . . . , rN , respectively, the

FIG. 1. Sketch of the problem under study. A target is to be found
in a search domain and we have a supply of searching agents at our
disposal. Progressively, agents are launched into the search domain
until the target has been found by one of them. The main question
of the paper is then, given the probability for an individual agent to
find the target at a certain time after being launched, how should one
optimize the timing of the launches in order to minimize the total
cost of the process?

averaged survival probability is defined as

S̄(T, {ti}) =
∫

drT

∫
dr1 · · ·

∫
drN�T (rT )�S ({ri})

× S(T, {ti, ri}, rT ). (2)

In order to proceed we now assume that (i) the single-
agent survival probabilities are identical, i.e., sk = s, and (ii)
searchers’ launch positions are independent and identically
distributed, i.e., �S (r1, . . . , rN ) = ∏N

k=1 ρs(rk ). With this we
find

S̄(T, {ti}) =
∫

drT �T (rT )

(
n∏

k=1

∫
drkρs(rk )s(T − tk, rk, rT )

)

(3)

again for tn � T < tn+1. From here, a number of search pro-
cesses are such that Eq. (3) can be simplified into the form

S̄(T, {ti}) =
n∏

k=1

s̄(T − tk ). (4)

This includes two main classes of processes. First is for a tar-
get fixed at a deterministic position r0

T , i.e., �T (rT ) = δ(rT −
r0

T ). In this case we have s̄(T − tk ) = ∫
drkρs(rk )s(T −

tk, rk, r0
T ). Second is a finite translationally invariant search

domain V with periodic boundary conditions such that s̄ de-
pends on rk and rT through rk − rT , and where agents are
launched homogeneously in the domain, i.e., ρs(rk ) = 1/V
where V is the volume of the search domain. Then we obtain∫

V
drkρs(rk )s(T − tk, rk − rT )

= 1

V

∫
V+rT

drks(T − tk, rk )

= 1

V

∫
V

drks(T − tk, rk )

= s̄(T − tk ), (5)
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where the second equality comes from periodicity. Note that
these two examples are not necessarily the only possible ones
that would result in Eq. (4).

From this point on, we will focus on situations where the
joint probability S̄(t ) can be written in the form of Eq. (4) such
that our entire analysis will be made in terms of the averaged
single-agent survival probability s̄(t ). This will be the central
quantity of the paper. Note, however, that this object can still
depend on the initial distance between searchers and the target
if their respective initial probabilities are δ distributed. We fi-
nally make two assumptions on s̄(t ): (i) limt→∞ s̄(t ) = 0, i.e.,
the probability for one agent to find the target eventually is 1,
and (ii) the function s̄ : R+ → [0, 1] is bijective such that we
can define an inverse function s̄−1 which obeys s̄−1(s̄(t )) = t
for all t > 0.

Finally, we emphasize that the launch times ti are chosen
to be deterministic; i.e., they are not drawn from a certain
probability distribution and do not require to be averaged over.
This choice is motivated by the fact that search processes are
often optimized when control parameters are not random. This
is, e.g., well known for stochastic resetting where the resetting
times are deterministic in optimal strategies [22], or in random
search processes with memory where optimal transition rates
are also found to be deterministic [27].

B. Search cost

In order to identify optimal launch strategies, we first need
to define a search cost, i.e., an objective function of the launch
times {ti} that we will aim at minimizing. As mentioned in
the Introduction, we want to account not only for the overall
search time but also for the resources required to launch each
searcher and to sustain it. We thus aim at constructing a cost
function that depends on the total number N of searchers
launched before the target is found and the total time T spent
by all searchers in the search. These quantities can be defined
in terms of the total search time T , reading

N =
N∑

i=1

�(T − ti ), (6)

T =
N∑

i=1

(T − ti )�(T − ti ), (7)

where � is the Heaviside step function. A relevant search cost
K should be a function of T , N , and T , where each of them
should contribute independently. The simplest form that can
be constructed is thus a weighted sum of three contributions,
namely,

K = JT T + JST + KLN . (8)

The first term, weighted by the target cost rate JT , quantifies
a cost associated with the presence of the target and can be in-
terpreted as a rate of damage due to the presence of the target.
The second term, weighted by the searcher sustaining rate
JS , quantifies the amount of resources required to sustain one
searcher per unit time. Finally, the last term, weighted by the
searcher launch cost KL, quantifies the amount of resources
required to launch a searcher. The values of JT , JS , and KL

are constant for each specific search process and reflect the
relative importance of each contribution to the search cost. Of

course, more complicated definitions of the search cost can be
chosen where the dependence on T , N , and T are nonlinear,
but this would be beyond the scope of this paper and is briefly
discussed in the Conclusion. For compactness, we introduce
the normalized parameters γ = JS/JT and κ = KL/JT and set
JT = 1 as our cost rate unit for the rest of the paper.

Note that on the level of Eq. (8), K is a stochastic quan-
tity as T , N , and T differ from one trajectory to the other.
Optimizing a search strategy implies to minimize a statistical
estimate of K with respect to the launch times ti. In what
follows, we will first focus on the optimization of the mean
search cost, and then on the quantiles of the search cost. In
both cases, we will show that some general results can be
derived if one assumes the SASP to be logarithmically convex,
which is actually observed in many search processes.

III. OPTIMIZING THE MEAN SEARCH COST

We start by analyzing the mean search cost, the most com-
mon statistical estimate of the search cost. Given the joint
first-passage time distribution R̄(t ) = −S̄′(t ), the mean first-
passage time T̄ is classically obtained as T̄ = ∫ ∞

0 t R̄(t )dt =∫ ∞
0 S̄(t )dt using integration by parts. Similarly, we have

T̄ =
∞∑

n=1

∫ ∞

0

d

dt
((t − tn)�(t − tn))S̄(t )dt

=
∞∑

n=1

n
∫ tn+1

tn

S̄(t )dt, (9)

and finally

N̄ =
∞∑

n=1

∫ ∞

0

d�(t − tn)

dt
S̄(t )dt =

∞∑
n=1

S̄(tn). (10)

Combining the contributions, we obtain the mean search
cost as

K̄ ({ti}) =
N∑

n=1

[
κ S̄(tn) + (1 + nγ )

∫ tn+1

tn

S̄(t )dt

]
. (11)

Minimizing this quantity in general for an arbitrary SASP is
not possible. However, we can still derive interesting results if
we assume that there exists only one local minimum of K̄ . In
this section, we will first take a detour through the case N = 2
in order to get an intuition for the conditions for such a unique
minimum to exist. We will then derive general results under
this assumption, and finally perform numerical optimization
for certain test cases.

A. Two searchers

For two searchers, the mean search cost is a function of
only one variable, namely, the launch time t2 of the second
searcher. Although we do not aim at determining analytically
the optimal value for t2 in general, we want to understand
the conditions for which a unique optimal strategy can be
found.
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The mean search cost K̄ of the two-searcher process reads
as follows:

K̄ (t2) = κ (1 + s̄(t2)) + (1 + γ )
∫ t2

0
s̄(t )dt

+ (1 + 2γ )
∫ ∞

0
s̄(t )s̄(t + t2)dt . (12)

Upon integration by parts, the first derivative of K̄ can be
written as

K̄ ′(t2) = κ s̄′(t2) − γ s̄(t2) − (1 + 2γ )
∫ ∞

0
s̄′(t )s̄(t + t2)dt .

(13)

The extrema of K̄ are found such that K̄ ′ = 0. For reasons that
will become apparent later, we rewrite this condition as

κ = γ s̄(t2) + (1 + 2γ )
∫ ∞

0 s̄′(t )s̄(t + t2)dt

s̄′(t2)
. (14)

Differentiating Eq. (13) with respect to t2 and substituting κ

with the right-hand side of Eq. (14) we can write K̄ ′′(t2) as

K̄ ′′(t2) = −s̄′(t2)
d

dt2

[
g(t2)

s̄′(t2)
+ γ

s̄(t2) + g(t2)

s̄′(t2)

]
, (15)

where we have defined

g(t2) =
∫ ∞

0
s̄′(t )s̄(t + t2)dt . (16)

First, we have

d

dt2

(
g

s̄′

)
=

∫ ∞

0
s̄′(t )

s̄′(t + t2)s̄′(t2) − s̄′′(t2)s(t + t2)

s̄′(t2)2
dt .

(17)

If s̄ is logarithmically convex, then for any x, y ∈ R+ with
x < y it holds that s̄′′(x)s(y) > s̄′(x)s̄′(y) such that the right-
hand side of Eq. (17) is positive.

Then, we can write upon integration by parts

s̄(t2) + g(t2)

s̄′(t2)
= 2

∫ ∞

0

s(t + t2) − s̄(t )s̄(t2)

s̄(t2)

s̄′(t + t2)

s̄′(t2)
dt .

(18)

Now, note that

d

dt2

s(t + t2) − s̄(t )s̄(t2)

s̄(t2)

= s̄′(t + t2)s̄(t2) − s̄(t + t2)s̄′(t2)

s̄(t2)2
(19)

and

d

dt2

s̄′(t + t2)

s̄′(t2)
= s̄′′(t + t2)s̄′(t2) − s̄′(t + t2)s̄′′(t2)

s̄′(t2)2
. (20)

Assuming logarithmic convexity for both s̄ and −s̄′, both these
terms are positive, which implies that the integrand in h is
the product of two positive, increasing functions of t2, which
makes h also a positive, increasing function of t2. This proves
that the derivative of (s̄ + g)/s̄′ is positive.

We therefore conclude that if s̄(t ) and −s̄′(t ) are log-
convex then K̄ ′′ is the sum of two positive terms; i.e., K̄ ′′ > 0
for any local extremum of K̄ . Any local extremum is therefore

a local minimum. Now, suppose that there are two local min-
ima. By continuity and differentiability, there must also be a
local maximum between both of them, which is impossible.
We conclude that K̄ has at most one local minimum and no
local maximum. However, we cannot determine the value of
t2 that minimizes K̄ in general as Eq. (13) cannot be inverted
for an arbitrary SASP s̄(t ). Some simple practical cases can,
however, be treated analytically. For the sake of example,
let us consider an exponentially decaying SASP of the form
s̄(t ) = e−λt , where λ−1 is the single-agent mean first-passage
time. There, we have

K̄ (t2) =
(

κ − 1

2λ

)
e−λt2 + κ + (1 + γ )λ−1. (21)

If κλ > 1/2, then K̄ (t2) decreases monotonically with t2 such
that the optimal search cost is reached for t2 → ∞; i.e., one
should never launch a second searcher. However, if κλ < 1/2
the cost is minimized for t2 = 0; i.e., one should launch the
searcher together with the first one.

For an arbitrary number of searchers, N , it is much more
difficult to prove that the assumption of logarithmic convexity
on s̄(t ) is sufficient for the uniqueness of a local minimum of
the mean search cost. However, in the next sections we will
show numerically that this condition still holds for N > 2.

B. Conditions for simultaneous launching

Although we cannot analytically predict the details of op-
timal launch procedures for arbitrary SASPs, we can derive a
criterion to decide whether it is beneficial to launch searchers
simultaneously or not in order to minimize the mean search
cost. Before we proceed, let us first introduce some notations:

sk = S̄(tk ), (22)

Ink =
∫ tn+1

tn

S̄(t )ζ (t − tk )dt, (23)

rnk = skζ (tn − tk ). (24)

With these notations the gradient of K̄ reads

∇kK̄ = −γ sk −
N∑

n=k

(1 + nγ )Ink + κ

⎛
⎝k−1∑

n=1

rkn −
N∑

n=k+1

rnk

⎞
⎠,

(25)

where ∇k = ∂tk . We also note tN = {t2, . . . , tN }.
Let us first assume that the mean search cost K̄ (tN ) has

at most one unique local minimum located at a point t∗
N . At

this location, two possible configurations can in principle be
observed for the launch times i. Either t∗

i is strictly larger than
t∗
i−1 and the gradient ∇iK̄N (t∗

N) vanishes, i.e., it is an actual
local extremum of K̄ with respect to ti, or t∗

i = t∗
i−1, i.e., the ith

and (i − 1)th searchers are launched simultaneously, which
happens only if the derivative of K̄ with respect to ti at this
location is positive. Let us now proceed by contradiction.

Assume that K̄ is minimized at a point t∗
N , where t∗

k+1 =
t∗
k and t∗

k > t∗
k−1 for a certain k > 2. Following our previ-

ous observation, this implies that ∇k+1K̄ > 0 and ∇kK̄ = 0.
In addition, for tk+1 = tk , we have sk = sk+1, In,k = In,k+1,
rk,n = rk+1,n, rn,k = rn,k+1, and Ik,k = 0. When computing the
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difference between ∇kK̄ and ∇k+1K̄ with these constraints,
only two terms remain, namely,

∇kK̄ − ∇k+1K̄ = −κ (rk+1,k + rk+1,k )

= −2κ s̄′(0)Sk (tk ) > 0. (26)

Because s̄′(0) < 0, we therefore have ∇kK̄N > ∇k+1K̄N . This
inequality is valid at any point tN , provided that tk+1 = tk ,
and in particular at t∗

N , where we have ∇k+1K̄N > 0. We thus
obtain that ∇kK̄ > ∇k+1K̄ > 0 at the minimum of K̄ , which is
in contradiction with the original assumption.

We therefore conclude that if t∗
k = t∗

k−1 then for all j < k
we must have t∗

k = t∗
j = 0: in the optimal strategy, if searchers

are launched simultaneously it must necessarily be at the start
of the process and not later.

From this conclusion, we can now identify the optimal
number of agents, Ns, that should be launched simultaneously
at t = 0. To do this, we note that the optimal strategy must
be such that ∇pK̄N � 0 for p � Ns and ∇pK̄N = 0 for p > Ns.
We will therefore calculate the derivative ∇kK̄ for an arbitrary
k with two constraints, namely, tp = tk = 0 for p � k and
∇pK̄N = 0 for p > k. If this derivative is positive, we know
from Eq. (26) that all previous derivatives for p < k are also
positive. We therefore identify Ns as the largest value of k for
which ∇kK̄ is positive under the mentioned constraints.

We first evaluate ∇kK̄ with t2 = · · · = tk = 0 using
Eq. (25) and note that some terms can be simplified, namely,

sk = 1, (27)

Ink =
∫ tn+1

tn

s̄′(t )s̄(t )k−1
n∏

p=k+1

s(t − tp)dt for n > k, (28)

k−1∑
n=1

rkn = (k − 1)s̄′(0) for n > k. (29)

The integral term Ink can be transformed using integration by
parts, yielding

Ink = 1

k
[sn+1 − sn] − 1

k

n∑
p=k+1

Inp. (30)

Now, summing over all values of n � k yields

N∑
n=k

(1 + nγ )Ink = −1

k
− γ − γ

k

N∑
n=k+1

sn

− 1

k

N∑
p=k+1

N∑
n=p

(1 + nγ )Inp, (31)

where we have used sk = 1 and sN+1 = 0. We now use the
condition ∇pK̄ = 0 for p > k, which can be written using
Eq. (25) as

γ sp +
N∑

n=p

(1 + nγ )Inp − κ

⎛
⎝ p−1∑

n=1

rpn −
N∑

n=p+1

rnp

⎞
⎠ = 0.

(32)

Now, we note that the summand in the last term of Eq. (31)
is exactly the second term in the gradient of ∇pK̄ in Eq. (32).

Summing Eq. (32) over p > k yields

N∑
p=k+1

N∑
n=p

(1 + nγ )Inp = −
N∑

p=k+1

γ sp + κ

N∑
p=k+1

×
⎛
⎝ p−1∑

n=1

rpn −
N∑

n=p+1

rnp

⎞
⎠. (33)

By swapping the order of summation in the terms proportional
to κ we can show

N∑
p=k+1

⎛
⎝ p−1∑

n=1

rpn −
N∑

n=p+1

rnp

⎞
⎠ = k

N∑
p=k+1

rpk, (34)

where we have used the fact that rpn = rpk for n � k. We
therefore obtain

N∑
p=k+1

N∑
n=p

(1 + nγ )Inp = −
N∑

p=k+1

γ sp + kκ

N∑
p=k+1

rpk . (35)

Now, substituting Eq. (35) into Eq. (31) and inserting
Eqs. (27), (29), and (31) into Eq. (25) finally yields

∇kK̄ = 1

k
+ κ (k − 1)s̄′(0). (36)

Ns is therefore found as the largest value of k for which this
quantity is positive, i.e.,

Ns =
⎢⎢⎢⎣1

2
+

√
1

2
− 1

κ s̄′(0)

⎥⎥⎥⎦ |κ s̄′(0)|→0� 1√−κ s̄′(0)
. (37)

Surprisingly, Ns does not depend on γ at all. No matter how
much it costs to sustain a searcher, the number of agents to be
introduced into the system at t = 0 will only be governed by
the launch cost κ and the initial slope of s′, i.e., the initial value
of the first-passage time distribution: if s̄(t ) is very sharply
decreasing at short times, i.e., if the probability to find the
target quickly is high, there is no interest in launching multiple
searchers initially as the benefit in the search time would be
overcompensated by the launch cost.

C. Numerical optimization

1. Test cases

While the statistical properties of the search cost depend
on the details of the SASP, in a vast majority of single-agent
search processes s̄(t ) has a functional form that falls into only
a few different classes. At long times s̄(t ) either decays expo-
nentially (e.g., in confined domains [42,43]) or algebraically
(e.g., in open space [44]). Faster decays are extremely rare.
Note that we consider here only SASPs whose probability to
eventually find the target is 1, i.e., limt→∞ s̄(t ) = 0. At short
times, three cases can be distinguished. First, the initial slope
of s′(t ) can be very low and asymptotically close to zero.
This happens for searches that cannot be infinitely fast, e.g.,
when the target and the searchers are initially always at a finite
distance from one another, and leads to nonmonotonic—and
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nonconvex—first-passage-time distributions [45,46]. Second,
−s′(0) is finite but sufficiently large for s̄(t ) to be convex.
This is a frequent feature of search processes with random
initial positions of the searchers [47]. Third, s′(t ) decays in-
finitely fast at t = 0 and the first-passage-time distribution
diverges at t = 0, as it is observed in some simple diffusive
processes [48].

In order to reach a broad understanding of possible optimal
launch strategies, we construct test cases which combine spe-
cific short- and long-time behaviors. To do this, we compose
t 
→ e−λt and t 
→ (1 + λθ−1t )−θ characterizing the long-
time behavior with either x 
→ sin(πx/2), x 
→ 1 or x 
→
2 arcsin(x)/π that characterize the short-time behaviors. The
six resulting SASPs we focus on are therefore

smild
exp (t ) = e−λt , (38)

sflat
exp(t ) = sin

(
π

2
e−λt

)
, (39)

ssharp
exp (t ) = 2

π
arcsin(e−λt ), (40)

smild
alg (t ) = 1

(1 + λtθ−1)θ
, (41)

sflat
alg (t ) = sin

(
π

2(1 + λtθ−1)θ

)
, (42)

ssharp
alg (t ) = 2

π
arcsin

(
1

(1 + λtθ−1)θ

)
. (43)

In practice we used θ = 2. We show these six functions in
Fig. 2 for visualization, as well as the mean search cost K̄ as
a function of t2 in a two-searcher process.

To identify optimal launch strategies, we performed stan-
dard gradient descent optimization. We start with N = 2 and
we initialize t2 to a random value t2 = t (0)

2 . At each step,
we calculate the gradient of K̄ with respect to t2 and update
t (n+1)
2 = t (n)

2 − r∂t2 K̄|t2=t (n)
2

, where r is the learning rate. We
stop the iteration either if t2 has converged to a constant value
or if t2 = 0 and ∂t2 K̄ > 0. We then add a new degree a free-
dom, t3, that we initialize to a random value t (0)

3 > t2. At each
step we now compute the full gradient of K̄ with respect to t2
and t3, which we use to update both of the degrees of freedom
until convergence. We continue this process by adding more
and more degrees of freedom until we reach N − 1 degrees of
freedom that are such that S̄(tN ) < 0.001.

Among the six test cases under study, four of them had
unique local minima of the mean search cost, namely, the
mild and sharp cases. They correspond to log-convex SASPs,
which is consistent with the prediction for two searchers. No
local maximum was found such that Eq. (37) holds for these
cases. The two other cases, i.e., nonconvex SASPs, led to more
complex structures for the mean search cost and are analyzed
separately.

2. Convex SASP

We first start with the convex test cases. Before we pro-
ceed with the numerical optimization, we first treat the mild

FIG. 2. Top: Test cases of single-agent survival probabilities for
the numerical optimization of the mean search cost. They combine
two long-time with three short-time behaviors and allow to dis-
criminate between possible optimal launch strategies. Bottom: Mean
search cost K̄ as a function of t2, normalized by its value for t2 = 0,
for the six test cases of SASP. We use here κλ = 0.55 and γ = 0.1.
Some SASPs lead to nontrivial minima for the mean cost while
others are minimized for t2 = 0 or t2 → ∞.

exponential case s̄(t ) = e−λt separately as it can be fully ana-
lyzed analytically. In this case we have

T̄ = λ−1

[
1 −

∞∑
n=2

e−λ
∑n−1

k=1 tn−tk

n(n − 1)

]
, (44)

T̄ = λ−1, (45)

N̄ = 1 +
∞∑

n=2

e−λ
∑n

k=1(tn−tk ). (46)

Now, note that
∑n

k=1(tn − tk ) = ∑n−1
l=1 l�l , where �k =

tk+1 − tk is the time interval between two consecutive
launches. K̄ can thus be fully expressed as a function of these
time intervals and its partial derivative with respect to �k

reads then

∂K̄

∂�k
= λk

∞∑
n=k+1

e−λ
∑n−1

l=1 l�l

(
λ−1

n(n − 1)
− κ

)
. (47)

Here, the terms for which κλn(n − 1) < 1 contribute pos-
itively to the gradient. Let Ns = � 1

2 (1 +
√

1 + 4
κλ

)� be the
lowest value of n such that the latter equality is verified.
Then, for any k � Ns the derivative ∂�k K̄ is negative such that
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FIG. 3. Top: Launch intervals �n normalized by λ in the optimal strategies, as identified by numerical optimization, as a function of the
index of the nth agent. Different panels correspond to different values of κ and γ while different curves correspond to different SASPs. The
inset shows the relative variation δN

n as a function of N − n, for which �N+1
n − �N+1

n was found larger than the tolerance of the gradient descent
algorithm. We find that the optimal launch interval for low n is governed by the short-time behavior of s̄(t ). For mild ones, multiple searchers
may be launched initially, which is shown here with vertical lines as �n = 0 for n � Ns. For sharp ones, only one searcher is launched at
t = 0 and subsequent searchers are launched at later times. For large n, the launch interval is governed by the long-time behavior of s̄(t ). For
algebraic ones, �n reaches a constant value, while for exponential ones, �n diverges. We do not observe this divergence on the last plot as
it occurs at very large values of n. Bottom: Optimal introduction intervals �n as a function of κ (left) and γ (right) for three test cases. The
values are normalized by �n for γ = 0 in the second plot for better visualization. We find that optimal launch intervals increase with κ but
decrease with γ .

the optimal strategy is such that �k → ∞. In this limit, the
contributions of all terms with n � Ns vanish because of the
exponential factor. Therefore, for all k < Ns the gradient will
be positive such that the cost will be minimized for �k = 0.
The optimal strategy is therefore such that Ns searchers should
be launched at t = 0 and none later. In this case, the mean
search cost is found as

K̄opt = γ +
√

κλ

(
2√

κλ + √
κλ + 4

+
√

κλ + √
κλ + 4

2

)
,

(48)

which is obtained by neglecting the floor part in Ns. As κ → 0,
the terms between brackets tend to 1 and the overall cost
grows as

√
κλ. However, as κλ  1, the brackets are dom-

inated by the second term, which tends to
√

κλ, making the
cost grow linearly with κλ.

For the three other convex test cases, we perform the anal-
ysis numerically. First we investigate to which extent the total
number of available agents impacts the optimal introduction
times by defining the relative variation δN

n = 1 − �N+1
n /�N

n
upon having a new available searcher, where the superscript

N refers to the total number of searchers. As shown in the
insets of Fig. 3, δN

n decays roughly exponentially with N − n
starting with a relatively low amplitude. The optimal launch
times tn obtained in the limit N → ∞ are therefore a good
approximation of the actual optimal ones for a finite number
N of available searchers.

In the limit N → ∞, our results allow to identify the op-
timal launch strategies and to classify them, as shown in the
top panel of Fig. 3. We observe that the short-time behavior
governs the launch time of the first agents while the long-
time behavior governs the introduction of later agents. For
the initially mild SASP, we have Ns � 1 in accordance with
Eq. (37); i.e., multiple walkers may optimally be introduced
simultaneously at the start of the process. For the sharp SASP,
it holds on the contrary that Ns = 1: one necessarily has to
wait a certain time before launching a second walker. For
searchers introduced at later times, the optimal launch inter-
vals �n diverge for exponentially decaying SASP: as one adds
more and more searchers in the system, the probability to find
the target in a short amount of time becomes so high that it
would cost more to introduce a new searcher quickly than to
simply wait for the ones already lauched to find the target.

064112-7



HUGUES MEYER AND HEIKO RIEGER PHYSICAL REVIEW E 111, 064112 (2025)

FIG. 4. Optimal launch strategies for nonconvex SASP. Left: In the case of an exponential decay, the best strategy is to launch n searchers
initially and none after. We show the corresponding optimal number of searchers as a function of κ and γ . Right: For the algebraic decay,
finite optimal launch times are observed. We show all launch intervals �n that are locally optimal as a function of κ for N = 4 and γ = 0.01λ.
Different dashed line styles indicate different local minima while the solid line indicates the global one. Colors indicate the second, third, and
fourth searchers.

On the contrary, �n reaches a constant value as n grows for
algebraically decaying SASP. Here, even as one adds new
searchers in the system, the probability to wait a long time
may still remain non-negligible. It is therefore preferable to
launch searchers at a constant pace even if it is at a certain
cost.

The number of agents around which the transition between
early and late agents occurs decreases with κ and increases
with γ and roughly corresponds to introduction times tn such
that λtn ∼ 1. This is consistent with the dependence of the
optimal launch intervals with the cost contributions; namely,
it increases with κ and decreases with γ as shown in the
lower panel of Fig. 3. While the dependence on κ is not
surprising as a large launch cost should reward a longer wait
before launching a new searcher, the dependence on γ is less
intuitive. It is in fact preferable to launch searchers at a higher
frequency when the sustaining rate γ is larger, indicating that
the gain in the overall search time overcompensates the larger
rate of resources required to sustain the new searchers. This
trend holds for all tested SASPs and appears to be a general
result for a wide variety of search processes.

3. Nonconvex case

The case of nonconvex SASP is more complex to treat
as multiple local minima may exist. A first straightforward
locally optimal strategy can be identified using Eq. (36). This
equation still holds for nonconvex SASP but the conclusion
that we draw from it is different. In fact, if s′(0) > − 1

κk(k−1) ,
the gradient ∇kK̄ for t2 = · · · = tk = 0 is negative, provided
that the derivatives with respect to later launch times vanish.
This is in particular true for any k if s′(0) = 0. There, for any
k � N , there exists a locally optimal strategy that consists in
launching k searchers initially and the next searchers later;
i.e., K̄ is at a local minimum at this location. To rationalize
this, we note that since the probability for the first searcher to
find the target at very short times is low, there is no gain in

waiting a short amount of time for launching next searchers
compared to launching it together with the first one. However,
this locally optimal strategy is not necessarily the globally best
one, especially if the launch cost κ is high.

For the exponential test case sflat
exp, we observe that all local

minima are such that ti = 0 for i � k and ti → ∞ for i > k:
similarly to the mild exponential case, the optimal strategy
is to launch a certain number of searchers initially and none
after. However, this optimal number of initial searchers is not
given by Eq. (37) but can be found numerically by minimizing
the mean search cost of the form nκ + (1 + nγ )

∫ ∞
0 s̄(t )ndt

with respect to n. We show the resulting optimal number of
searchers to be launched in the (κ, γ ) plane in Fig. 4 and note
that it does depend on γ , unlike the convex case.

In the case of an algebraic decay, i.e., the test case sflat
alg , we

observe that the situation is more complex as finite, nonzero
launch times can be optimal. We show in Fig. 4 an example of
the optimal strategies for N = 4. For low values of κ , the only
local minimum is located at �2,3,4 = 0: the optimal strategy is
to launch all searchers simultaneously. As one progressively
increases κ , a local minimum with �4 > 0 appears at κ =
κ∗

4 but only becomes the global minimum for κ = κ∗∗
4 > κ∗

4 .
Increasing again κ , local minima with �2,3 > 0 appear at κ∗

2,3
and again become the global minima at κ∗∗

2,3. Because of the
high number of local minima, the numerical optimization for
a larger number of searchers becomes challenging. However,
one can legitimately expect from our results in the convex case
that the launch time of later searchers should be governed by
the long-time behavior of the SASP, which is here algebraic.
We thus conjecture that the time interval between consecutive
launches should optimally reach a constant value, similarly to
the convex SASPs that decay algebraically.

IV. OPTIMIZING THE QUANTILES

Beyond the mean search cost, one plausible criterion
for optimizing the search strategy may be to minimize the
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FIG. 5. Quantile optimization for N = 3 and s̄(t ) = e−λt with γ = 1 and κλ = 1. Left: We show FK as a function of k for various choices
of t2 and t3. The dashed line indicates z = 0.5, i.e., the median. Each of the curves is located in a different subdomain �n in the (t2, t3) plane.
Right: Median cost in the (t2, t3) plane for the same values of κ and γ . The boundaries �1 and �2 are shown as the solid lines and the three
dots correspond to the three curves shown in the left panel. Here, the minimum of kz is located on �1 defined as λt2 = − ln(z), where kz is
constant. The optimal strategy consists here in launching the first searcher and waiting a time at least longer than − ln(z) to launch the second
and third searchers in order to minimize the quantile.

probability that the search cost reaches too large values. This
can be quantified through the q quantile of the search cost
distribution. Given the probability distribution rK (k) of the
search cost, the q quantile k̂q is defined as the solution of∫ k̂q

0
rK (k)dk = 1

q
. (49)

In particular k̂2 is known as the median cost. Denoting FK (k)
the probability that the search cost is greater than k, Eq. (49)
can also be written as FK (k̂q) = 1 − q−1. Let us now note z =
1 − q−1 and let kz be the solution of the equation

FK (kz ) = z. (50)

With these notations, the probability that the search cost is
larger than kz is z. Technically, we have kz = k̂ 1

1−z
, i.e., kz is

the ( 1
1−z ) quantile. Let us now show how to minimize it for a

given value of z.

A. Minimizing a single q quantile

Because the search cost K is a piecewise affine function of
the first-passage time T , we can straightforwardly relate FK

to S̄ and in turn to s̄ via

FK (k) =
{∏n

i=1 s̄(χn(k) − ti ) if k−
n � k < k+

n∏n
i=1 s̄(χn(k+

n ) − ti ) if k+
n � k < k−

n+1,
(51)

where we have defined

χn(k) = k − nκ + γ
∑n

k=2 tk
1 + nγ

, (52)

k+
n = nκ + (1 + nγ )tn+1 − γ

n∑
k=2

tk, (53)

k−
n = k+

n−1 + κ. (54)

FK (k) consists in an alternation of monotonically decreasing
parts and of constant plateaus corresponding to the launch of
a new searcher, as shown in Fig. 5.

Let � be the (N − 1)-dimensional space of possible values
taken by {t2, . . . , tN }. Because FK (k) is a piecewise function
of k whose intervals are functions of the times ti, the solution
kz of FK (kz ) = z is also a piecewise function in �. We note
�n the subspace of � such that kz ∈ [k−

n , k+
n ]. Subdomains

�n and �n+1 are adjacent; i.e., they share a border �n defined
as kz = k+

n , or equivalently kz = k−
n+1. A visual representation

of these subdomains is shown in Fig. 5 (right-hand panel).
In �n, kz is found as the solution of

n∏
i=1

s̄(χn(kz ) − ti ) = z. (55)

If there is a local minimum of kz in �n it must be such
that ∂ti kz = 0 for all i � n. Differentiating this equation with
respect to ti we find after some algebra

(
∂ti kz + γ

) n∑
j=1

ξ
(n)
j − (1 + nγ )ξ (n)

i = 0, (56)

where we have defined

ξ
(n)
i = s̄′(χn(kz ) − ti )

s̄(χn(kz ) − ti )
. (57)

Noting 〈ξ (n)〉 = 1
n

∑n
j=1 ξ

(n)
j the mean of all ξ

(n)
j , the condition

∂ti kz = 0 for all i � n for the existence of a local minimum in
�n imposes

ξ
(n)
i = 〈ξ (n)〉 nγ

1 + nγ
� 〈ξ (n)〉. (58)

This cannot be realized for all i as all ξ
(n)
i cannot simul-

taneously be larger than their mean, which implies that
there cannot be a local minimum within �n. kz is therefore
minimized at the boundaries of �n, i.e., one of the lower-
dimensional subspaces �n. There, the function kz({ti}) is
discontinuous, jumping from a value k+

n to a larger value k−
n+1.

The global minimum will therefore be such that kz = k+
n for a

certain value of n.
Using the definition of k+

n = nκ + (1 + nγ )tn+1 −
γ

∑n
k=1 tk and substituting it into Eq. (51), the equation that
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defines the (N − 2)-dimensional subspace �n reads
n∏

i=1

s̄(tn+1 − ti ) = z. (59)

This constrains the value of one of the ti and we can choose in
particular to express tn + 1 as

tn+1 = s̄−1

(
z∏n

i=2 s̄(tn+1 − ti )

)
, (60)

where we have used t1 = 0. Substituting this expression into
the definition of k+

n yields

k+
n = nκ + (1 + nγ )s̄−1

(
z∏n

i=2 s̄(tn+1 − ti )

)
− γ

n∑
i=2

ti.

(61)

If there exists a local minimum in �n, then it should be such
that ∂ti k

+
n = 0 for all i � n. After some algebra, we can write

∂ti k
+
n as

∂ti k
+
n = (1 + γ )

s̄′(tn+1 − ti )s̄(tn+1)

s̄(tn+1 − ti )s̄′(tn+1)
− γ . (62)

If s̄ is logarithmically convex, then s̄′/s̄ is a negative, mono-
tonically growing function, leading to ∂ti k

+
n > 1. We therefore

conclude that k+
n decreases monotonically with each ti such

that there cannot be any local extremum of kz within �n. The
minimum of kz has thus to be found for ti = 0.

To find the global minimum of kz we finally need to com-
pare k+

n for all values of n where we set ti = 0 for i � n and
tn+1 = s̄−1(z

1
n ) as imposed by Eq. (59). This yields

k+
n = nκ + (1 + nγ )s̄−1

(
z

1
n
)
. (63)

We finally conclude that the optimal strategy that minimizes
the q quantile with q = 1 − z−1 is therefore to initially launch
the Ñs(z) searcher where n minimizes the right-hand side of
Eq. (63) and launch the next searchers at times later than

t̃s(z) = s̄−1
(
z

1
Ñs (z)

)
. (64)

This general result holds for any log-convex SASP.

B. Subsequent quantiles

Following the optimal strategy that minimizes kz as de-
cribed in the previous paragraph, we note that the launch
times ti for i > Ñs(z) do not impact the optimized quantile
as long as they are larger than t∗

z . One is therefore free to
launch subsequent searchers arbitrarily without altering the
result presented in the previous section. One might in partic-
ular want to optimize their launch times in order to minimize
a subsequent q′ quantile with z′ = 1 − q′−1

< 1 − q−1 = z,
provided that the q quantile has already been optimized.

We can perform the same analysis as in the previous sec-
tion by setting all ti = 0 for i � Ñs(z) and check whether a
local minimum with respect to later launch times can be found
within one of the subdomains �n with n � n∗

z . Following sim-
ilar calculations, we show that the condition ∂ti kz′ = 0 within
a subdomain �n with i � n � Ñs(z) leads to

ξ
(n)
i = γ

1 + nγ

[
(n − Ñs(z))〈ξ (n)〉n

Ñs (z) + Ñs(z)ξ (Ñs(z))
z

]
, (65)

where 〈ξ (n)〉n
Ñs (z)

is the mean of the ξ
(n)
j for Ñs(z) + 1 �

j � n. Using again the logarithmic convexity of s̄, we have
〈ξ (n)〉n

Ñs (z)
� ξ (Ns(z))

z . Because ξ
(n)
i � 0 for any i, multiplying

the equation with −1 and using the latter inequality yields∣∣ξ (n)
i

∣∣ � nγ

1 + nγ
〈|ξ (n)|〉n

Ñs (z) � 〈|ξ (n)|〉n
Ñs (z). (66)

Similarly to Eq. (58), this cannot be realized for all i > Ñs(z)
and we conclude that there cannot be a local minimum of
kz′ within one of the subdomains �n. The minimum must
therefore be found in one of the boundaries �n. In this case,
following the same line of calculations that led to Eq. (62), we
obtain

∂ti k
+
n = γ − 1 + γ

Ñs(z)

s̄′(tn+1 − ti )s̄(tn+1)

s̄(tn+1 − ti )s̄′(tn+1)
. (67)

Here, we cannot conclude in general on the sign of the latter
quantity. Using the logarithmic convexity of s̄ we can simply
bound ∂ti k

+
n from above by γ (1 − Ñs(z)

−1
) − 1, which can

take positive values if γ is large enough.
However, if γ < (1 − Ñs(z)

−1
)−1, kz′ cannot be minimized

within any of the �n and its minimum is found for ti = t∗
z for

all Ñs(z) < i � n. In this case, the optimal strategy is therefore
as follows. After having launched Ñs(z) searchers at t = 0 to
minimize kz,

≈
Ns(z, z′) new searchers should be launched at

time t̃s(z) to minimize kz′ , where
≈
Ns(z, z′) is defined as

≈
Ns(z, z′) = argminn[nκ + (1 + nγ )

≈
t

(n)
(z, z′)] − Ñs(z)

(68)

and
≈
t

(n)
(z, z′) is defined through Eq. (59) that in this situation

reads

s̄(
≈
t

(n)
(z, z′) − t̃s(z))n−Ñs (z)s̄(

≈
t

(n)
(z, z′))Ñs (z) = z′. (69)

Later searchers should then be introduced at a time later than
≈
t s (z, z′) =≈

t
(

≈
Ns (z,z′ )+Ñs (z))

(z, z′). The procedure can then be
repeated to again minimize subsequent quantiles.

C. Canonical example: The exponential SASP

Let us illustrate the results of the previous sections in
a specific example, namely, for an exponentially decaying
SASP s̄(t ) = e−λt , although similar calculations can still be
performed for any log-convex SASP.

Here, the boundaries �n defined through Eq. (59) are
found as

tn+1 = 1

n

[
n∑

k=1

tk − λ−1 ln(z)

]
. (70)

We show them as lines in the (t2, t3) plane for N = 3 in Fig. 5.
There, the minimum of kz is found either in the �1 subdomain
where kz is constant, or on the line t2 = 0 in �2 as kz does
not depend on t3 there, or at t2 = t3 = 0. In either of these
locations, we have kz = k+

n with

k+
n = nκ −

(
1

n
+ γ

)
ln(z). (71)
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The value Ñs(z) that minimizes this quantity and the corre-
sponding launch time t∗

z are found as

Ñs(z) =
√− ln(z)

λκ
, t̃s(z) =

√
−κ ln(z)

λ
. (72)

Optimally, Ñs(z) searchers should be introduced at t = 0
while the next searchers should be introduced at a time later
than t∗

z . Interestingly, this result does not depend at all on
γ . Whatever the cost for sustaining the searchers, it will not
impact how many should be launched initially in the optimal
strategy.

When it comes to launching later searchers in order to
minimize a subsequent quantile kz′ , we first need to evalu-
ate Eq. (67), reading ∂ti k

+
n = (1 + γ )/Ñs(z) − γ for i � n <

Ñs(z). If γ > Ñs(z)/(Ñs(z) − 1), then ∂ti k
+
n < 0 and the mini-

mum is found for ti = tn+1. In this case, k+
n increases linearly

with n such that the value n � Ñs(z) that minimizes it is
n = Ñs(z): optimally no new searcher should be introduced.
On the other hand, if γ < Ñs(z)/(Ñs(z) − 1), the minimum of
kz in each �n is found for ti = t̃s(z). In this case, Eq. (69) reads≈(n)
t (z, z′) = t̃s(z)(1 − Ñs(z)/n) − ln(z′)/nλ and we can show
that k+

n is minimized for a value

ms(z, z′) =
√

− ln(z) − ln(z′)
κλ + γ

√−κλ ln(z)
. (73)

If this number is larger than Ñs(z) one should launch
≈ns(z, z′) = ms(z, z′) − Ñs(z) new searchers at time

≈
t

(ms (z,z′ ))

(z, z′). Otherwise, we launch no new searcher at time
≈
t

(Ñs(z) + 1)(z, z′). Again, we can then continue to look for
optimal ways to launch the next searchers and minimize sub-
sequent quantiles.

V. PROOF OF PRINCIPLE

In order to verify the validity of our results, we now com-
pare our prediction with data from numerical simulations in
an example of a search process. We consider a Lévy flight
process, a class of random walks that has been extensively
studied for target searches and which are generally known
to lead to lower fist-passage times than random walks with
short-ranged jumps [49]. In a two-dimensional square box of
size L with periodic conditions, we place a target at the origin
r0. Searchers are initialized at random positions ri = (xi, yi )
where both xi and yi are drawn from a Gaussian distribu-
tion centered in r0 and with standard deviation σx,y. At each
time step, the searcher jumps from its position rt to a new
position rt+1 = rt + �r where �r = l (cos θ, sin θ ). θ is a
random angle uniformly distributed between 0 and 2π while
l is a random jump length drawn from a Pareto distribution
pl (l ) ∝ l−α for l > 1 and α > 1. The process stops whenever
the searcher reaches a position r such that |r − r0| < 1; i.e., it
has reached the vicinity of the target.

We start by running simulations for a single searcher using
α = 5, L = 100, and σx = σy = 10 and evaluate the SASP
s̄(t ), which we show in Fig. 6. At short times, it decays very
sharply. As the probability for the searcher to be initialized

very close to the target is high, many trajectories are such that
the searcher finds the target almost immediately after being
launched, and thus the probability for the target to be not
reached yet after a certain time decreases fast initially. At
long times, we observe an exponential decay, which is also
consistent with most SASPs of searches in closed domains.
The corresponding single-search mean first-passage time is
found to be T̄1 = 19423.

Based on this observation, our results from the previous
section suggest that only one searcher should be launched
initially, and later searchers should be launched at finite times
with increasing consecutive launch intervals that eventually
diverge. As an example, for κ = 0.15T̄1 and γ = 0.01, the
numerical optimization performed in the previous section pre-
dicts that the optimal launch strategy for multiple searchers
is obtained for �2 = 0.015T̄1, �3 = 0.041T̄1, and �4 → ∞.
In order to verify this prediction, we ran simulations with
three searchers in which the second and third are launched at
various times, and for each set of launch intervals (�2,�3)
we computed the resulting MFPT. We plot it in Fig. 6 in
the (�2,�3) plane in which we also indicate the location of
the predicted optimal strategy and we observe a very good
agreement as this predicted point coincides with the minimum
obtained via numerical simulations.

Similarly, we compare the predicted optimal strategy to
minimize the median cost (i.e., the quantile with z = 0.5). For
the same values of κ and γ , our prediction is such that the
second searcher should be launched at t = 0 and the third after
t = 0.22T̄1, knowing that any later time does not impact the
median cost. This prediction matches perfectly the simulation
data, which also coincide very well with the predicted domain
lines �n defined and described in Sec. III, as shown in Fig. 6.

VI. COMPARISON WITH STOCHASTIC RESETTING

The process of launching a new searcher until a target has
been found is reminiscent of search processes with stochastic
resetting. Instead of launching new searchers at the initial
position in intervals, one could instead reset the first searcher
to its initial position at a certain rate. Such processes have
attracted a lot of interest recently, both on the theoretical
and experimental sides [24,50–53]. Fine tuning the time at
which the searcher is subject to resetting can have a significant
impact on the overall search efficiency [54–57]. Given the
cost for resetting a searcher and sustaining it over time, we
can legitimately wonder whether resetting the first searcher is
more cost effective than launching a new one. While the time
it takes to find the target will be reduced by launching a new
searcher, the cost for sustaining multiple agents rather than a
single one may overcompensate the gain in the overall search
time.

Let us first define the search cost Kr of a resetting process
in accordance with our search cost for the launch process,
reading

Kr = (1 + γr )T + κrNr, (74)

where T is the first-passage time and Nr is the number of
resetting events. Here γr = γ is the sustaining rate of the
searcher, and κr may vary from one trajectory to the next
depending on the process. There exist, e.g., processes where

064112-11



HUGUES MEYER AND HEIKO RIEGER PHYSICAL REVIEW E 111, 064112 (2025)

FIG. 6. Numerical simulations of a Lévy flight process with α = 5 in which the target is placed at the origin of a box with periodic boundary
conditions and searchers are launched from a position that is Gaussian distributed around this target. Top left: SASP s̄(t ) as a function of t .
The inset expands the short-time behavior. Bottom left: Median search cost for a three-searcher process as a function of �2 and �3 as sampled
from the numerical simulations for κ = 0.15T̄1 and γ = 0.01. The dotted lines are the boundary lines �1 and �2 as predicted by Eq. (59)
while the green dot is the location of the minimum median cost as predicted by our theory, which coincides with the minimum obtained by
numerical simulations. Right: The same analysis is shown for the mean search cost. Again, the theoretical prediction for the minimum search
cost matches the simulation data.

the cost for resetting a searcher depends on the distance that
it needs to be displaced in order to place it back to its initial
position. While it is unlikely to derive general relevant results
for the comparison between launching and resetting strategies,
we will treat a canonical example in the next lines, namely, the
one-dimensional diffusive search, that the reader could then
adapt to their favorite random search process.

We consider a one-dimensional infinite system. A target is
placed a position xT > 0, and searchers are initialized at x = 0
and evolve according to standard diffusive Brownian motion
with diffusion coefficient D. In this case, it is well known that
the SASP is found to be

s̄(t ) = erf(xT /2
√

Dt ). (75)

When it comes to resetting the first searcher to its initial posi-
tion, two resetting costs have been considered in the literature.
Either the resetting is proportional to the work one needs to
perform to reset which typically scales like the distance it
has reached just before being reset, or it is constant. In Ref.
[22], Chechkin et al. showed that in a resetting process where
the time between two resetting events was not conditioned on
anything and was drawn from a single probability distribution,
the optimal strategy is to make this distribution as narrow as
possible around a mean value �. Following the same method-
ology, we can show that the mean search cost K̄r is minimized

for a fixed resetting time interval �, in which case it reads

K̄r (�) = (1 + γr )G(�) + κ̄r (�)

F (�)
, (76)

where F (�) = 1 − s(�) and G(�) = ∫ �

0 s(τ )dτ and κ̄r is the
average of the resetting costs over all possible resetting events.
In the case of a resetting cost proportional to the distance |�x|
between the searcher and its initial position upon resetting as
used, e.g., in Refs. [58,59], we obtain

κ̄r (�) = f

∫ xT

−∞ dx|x|c(x,�)∫ xT

−∞ dxc(x,�)
, (77)

where f is the cost per unit length and c(x, t ) is the par-
ticle density in an experiment with absorbing boundary at
x = xT , i.e.,

∫ xT

−∞ c(x, t )dx = s̄(t ). In particular for the one-
dimensional (1D) diffusion model, c(x, t ) is known to be [60]

c(x, t ) = 1√
4πDt

(
e− x2

4Dt − e− (x−2xT )2

4Dt
)
, (78)

which allows to then determine s̄(t ), F (t ), G(t ), and eventualy

κ̄r (�) = f ld

[
2√
π

(1 − e−η2
) + η

(
1 − 2erf(η) + erf

(
η

2

))]
,

(79)
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FIG. 7. Preferential strategy (resetting or launching new agents)
for the one-dimensional diffusive search in the (κ, γ ) plane, where
we have used κ = κr = frxT .

where we have defined ld = √
D� and η = xT /ld , which is

equivalent to f xT as � → ∞. For a constant resetting cost,
we simply have κ̄r (�) = κc

r .
For both constant and linear resetting costs, we can min-

imize the total search cost K̄r with respect to � in order to
find the optimal resetting time. We can then compare the cor-
responding optimal search cost with the optimal cost that one
would find if one would launch new searchers at a constant
time interval instead of resetting the first one. This optimal
search cost in the launch process can be found by setting
ti = (i − 1)�, calculating the corresponding search cost, and
minimizing it with respect to �. Figure 7 shows for which
values of κ and γ the optimal cost in the launch process is
lower than the optimal search cost in the resetting process. To
do this comparison, we need to set κc

r and fr to a value which
we choose as κ = κc

r = frxT . It appears that launching new
searchers is preferable to resetting the first one as long as the
costs for sustaining a searcher, γ multiplied with the diffusive
timescale, x2

T /D, is sufficiently small, provided the costs for
creating new searchers, κ , is also small enough. For linear
resetting cost, there is even a value of κ above which resetting
is always better than launching regardless of the value of γ .

Although we cannot draw general quantitative conclusions
about the efficiency of launching compared to resetting from
this single example since it is based on a specific model, it
seems reasonable to assume that if κ and γ are not too large,
the gain in the overall search time will dominate the costs of
launching and sustaining new searchers. Note, however, that
in practical applications, it could be much harder, if not unfea-
sible, to reset searchers, in contrast to adding new searchers.

VII. DISCUSSION AND CONCLUSION

In this paper, we have discussed the optimal strategies for
when to launch noninteracting agents in a collective search
process. We have defined a search cost that accounts for
the overall search time, the amount of resources used by
the searchers as they search and the cost for launching a

searcher. We have quantified when one should launch consec-
utive searchers in order to minimize the search costs, either its
mean or its q quantiles—that is, the cost value for which the
probability of observing lower costs is q−1—and described it
in terms of the single-agent survival probability of the target,
i.e., the probability that the target has not been found after a
certain time in a process with just one searcher. For both the
mean and the quantiles, we have shown that if the SASP is
logarithmically convex, there exists a unique local minimum
of the search cost with respect to the launch times. Regarding
the optimization of the quantiles, we have derived analytically
the optimal launch strategy to minimize the probability for the
search cost to be larger than a certain fixed value, which con-
sists in launching an optimized number of agents initially and
the next ones later than a certain time defined in terms of the
SASP. We have also shown that this optimal strategy does not
fix the launch times of later agents such that they can be ad-
justed to minimize subsequent quantiles. Regarding the mean
search cost, we have shown that for situations where only
one local minimum exists, the only instance where multiple
searchers should be introduced simultaneously is at the start
of the process and their optimal number is entirely governed
by the launch cost and the initial slope of the SASP. Then,
the details of the entire launching strategy were analyzed on a
variety of test cases combining short- and long-time behaviors
of the SASP. In particular, we have shown that the steeper
the initial decay of the SASP is, the longer the time interval
between the early searchers. However, the optimal time inter-
val between launches of late searchers diverges if the SASP
decays exponentially, while it reaches a constant value for
algebraically decaying SASP. Finally, we have compared our
results with search processes subject to stochastic resetting.
Using the example of the one-dimensional diffusive search,
we showed that launching searchers is preferable to resetting
the first one to its initial position as long as the launch cost
and sustaining cost are not too large.

Our work is the first to investigate in detail the optimization
of a search process with respect to its number of searchers.
The results exposed apply to a wide variety of processes but it
must not be forgotten that some important assumptions were
made along the way. In addition to the absence of interactions
between agents, we also assumed that the SASP decays to
zero, implying that each agent would eventually find the target
if it would search for long enough. This is, e.g., not the case in
diffusive searches in open space in dimension 2 or more, and
it would be interesting to check to which extent the optimal
strategies identified in this paper perform for such cases.

While the timing for the launches matters a lot for the
overall search cost, as we have shown in this work, one might
also wonder about the locations of the launches. Is there an
optimal way to select initial positions of each searcher in order
to minimize the search cost? This question is again reminis-
cent of stochastic resetting but in the context of collective
searchers and should undoubtedly be treated in depth in the
future. The analogy with recent studies on stochastic resetting
can be stretched even further as one could also construct
processes where the launching of new agents is conditioned
on the evolution of external quantities, such as the proportion
of the search domain that has been scanned at a certain time,
or the current position of the agents already launched. This
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type of questions enter the realm of decision making, a cross-
disciplinary research field that can be used to substantially
increase search efficiency and is a perfect playground for
developing machine-learning algorithms. We believe that our
work is a step in this direction and will motivate future studies
to develop more and more refined collective search strategies.
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