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Lattice model for spontaneous imbibition in porous media: The role of effective
tension and universality class
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Recently, anomalous scaling properties of front broadening during spontaneous imbibition of water in Vycor
glass, a nanoporous medium, were reported: the mean height and the width of the propagating front increase with
time t both proportional to t1/2. Here, we propose a simple lattice imbibition model and elucidate quantitatively
how the correlation range of the hydrostatic pressure and the disorder strength of the pore radii affect the scaling
properties of the imbibition front. We introduce an effective tension of liquid across neighboring pores, which
depends on the aspect ratio of each pore, and show that it leads to a dynamical crossover: both the mean height
and the roughness grow faster in the presence of tension in the intermediate-time regime but eventually saturate in
the long-time regime. The universality class of the long-time behavior is discussed by examining the associated
scaling exponents and their relation to directed percolation.
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I. INTRODUCTION

Moving interfaces in disordered media occur in various
physical situations and have been studied theoretically for
some decades now [1,2]. It has been demonstrated that a few
characteristics such as the embedding dimension, the conser-
vation laws, and the kind of nonlinearity emerging in a coarse
grained equation of motion determine the scaling behavior of
the moving interfaces and establish a few universality classes
regardless of the microscopic details [1–3].

Imbibition, the propagation of a fluid into the nonwetting
region found in, e.g., oil recovery, printing, irrigation, filtration,
etc. [4], is also characterized by the motion and morphology
of the interface between the liquid and the nonwetting region.
Contrary to other interfaces, the theoretical understanding
of the imbibition front dynamics is far from complete, as it
varies significantly between different experimental setups and
between different models [4–6]. Moreover, the global conser-
vation of the liquid volume generates nontrivial correlations
in the hydrostatic pressure in the liquid, which affects the
dynamics of the imbibition front. Pore-network models [7–11]
and dynamical equations [12–15] have been proposed and
analyzed to understand various features of imbibition.

Studies have found that the mechanisms underlying
drainage and imbibition are related to the diffusion-limited
aggregation [16] or the invasion percolation [17] depending
on the ratio of viscous and capillary force and the pore geom-
etry [6,7]. For spontaneous imbibition, when a wetting liquid
is drawn into a porous medium by capillary forces without
external force, it is well known that the balance between the
viscous drag and the pressure gradient in the bulk leads to the
Lucas-Washburn law [18,19] saying that the average height
of the imbibition front increases proportionally to the square
root of time. Far less clear is the roughening dynamics of
the imbibition front, i.e., the time dependence of the height
fluctuations: By focusing on the quenched disorder in the
medium, the relations to the directed-percolation-depinning
(DPD) model [20,21], the quenched Kardar-Parisi-Zhang
universality (QKPZ), or the quenched Edwards-Wilkinson

(QEW) universality classes [22] have been suggested. But,
recently it was emphasized that in addition to quenched
disorder, nonlocal interactions due to the fluid-conservation
law are crucial for the imbibition front roughening [11,23].

A novel universality class in the imbibition front broadening
was recently identified during the spontaneous imbibition of
water in nanoporous Vycor glass, a silica substrate of low
porosity consisting of nanometer-sized elongated pores [11]:
The mean height of the interface and its roughness are both
found to increase with time t as ∼ t1/2. Since the ratio of
the roughness to the mean height usually decreases with time
during roughening dynamics, but is constant in this case, the
interface roughening appears anomalously strong.

A pore-network model [11], in which liquid within the
pores propagates according to Hagen-Poiseuille’s law, was
capable to reproduce the experimentally observed features of
the imbibition front in Vycor glass. This suggested that the
imbibition front consists of disconnected menisci and that the
hydrostatic pressure in the bulk and the capillary pressure at
these menisci are essential for understanding the experimen-
tally observed anomalous roughening. An essential feature
of the pore-network model proposed in Ref. [11] was the
emergence of meniscus arrests at pore junctions with branches
of unequal radii. A subsequent scaling theory for the meniscus
arrest time distribution presented in Ref. [24] predicted, in
accordance with results from computer simulations or the
pore-network model, that arrest times of menisci in the thicker
branches of pore junction indeed scales with the height of the
junction where the arrest occurred. In this way, the proposed
theory could explain the proportionality between height and
roughness in random networks of elongated pores [24].

Nevertheless, the robustness of the observed scaling behav-
ior is not yet understood. Given many other kinds of kinetic
interfaces displaying scaling behavior different from those for
imbibition, it is natural to ask what factors are responsible
for these differences. To address this issue, we design in
this paper a minimal lattice model of imbibition and explore
how the structure and dynamics of the interface depend on
the parameters. The proposed lattice imbibition model has
similarities with other lattice growth models but involves
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as a new feature the hydrostatic pressure, which generates
long-range correlation. We adopt an approximation method of
estimating the hydrostatic pressure, which captures the essence
of the pressure profile generated by the liquid flow under the
Hagen-Poiseuille’s law and the volume conservation.

We find that the disorder in the pore radii and the long
correlation length of the pressure, which will be explained
in detail in the next sections, are essential for the observed
scaling behavior of spontaneous imbibition. If the pore radii
are uniform or the pressure correlation spans only a short scale,
the roughness becomes very weak characterized by different
scaling exponents from those observed in the experiment. It
has been argued that the absence of an effective tension acting
across adjacent pores underlies the anomalous scaling in the
experiment. Computer simulations of our lattice imbibition
model show that both the mean height and the roughness
display a crossover in time and eventually saturate when the
effective tension is present. In particular, they grow commonly
as t0.7 in the intermediate-time regime before saturation, which
is a faster growth with time than without the tension. The
formation of voids is suppressed due to the effective tension,
making the cluster of filled pores appear compact. We discuss
the intermediate-time behavior and the universality class in
connection with the properties of the directed percolation (DP)
cluster.

The paper is organized as follows. The lattice imbibition
model is introduced in Sec. II. The impact of the strength of the
pore radii and the lateral pressure correlation range are studied
in Secs. III and IV. In Sec. V, we perform the finite-size scaling
analysis of the mean height and the roughness as functions of
time and present the associated scaling exponents. Our findings
are summarized and discussed in Sec. VI.

II. MODEL

We consider a two-dimensional network of N = N × L

pores inclined at 45◦ as shown in Fig. 1(a). Each pore, indexed
n = 0,1,2, . . . ,N − 1 from the bottom left to the top right,
is cylindrical and has radius rn selected randomly between
1 − � and 1 + � with 0 � � < 1. Here, � characterizes
the strength of the disorder in the pore radii. The area of
the intersections is supposed to be negligible, such that an
intersection is immediately filled once one of its adjacent pores
is filled [6,11].The configurations with larger intersections
compared to pores have been studied, e.g., in Ref. [8]. The
Boolean variable fn of pore n takes 1 or 0 if it is filled or empty,
respectively. The pressure p(x,y) represents the hydrostatic
pressure at (x,y). Initially, all the pores are empty, fn = 0 for
all n. The lower ends of the bottom pores (0 � n � N − 1)
are immersed in the liquid such that the hydrostatic pressure at
y = 0 is kept constant, here taken as zero, i.e., p(x,0) = 0. The
atmospheric pressure in the empty pores is also set to zero.
Periodic boundary conditions are applied in the x direction.

The time evolution of the liquid configuration {fn} de-
scribes the liquid propagation through the pore network. The
interface I between wet and dry regions is identified with the
set of empty pores having at least one filled nearest-neighbor
pore [see Fig. 1(a)]. In order to update the liquid configuration
{fn}, an empty pore s is chosen randomly among the interface
pores. Then, one of its filled neighbors s ′ is selected. The

FIG. 1. (Color online) Lattice imbibition model. (a) Two-
dimensional network of N = N × L pores with N = 6 and L = 4.
Pores are indexed n = 0,1,2, . . . ,N − 1 from the left bottom to the
right top. Solid (red) and dashed (blue) lines indicate filled and empty
pores, respectively. The coordinates (x̄n,ȳn) of the center of a pore n

are given by x̄n = n − N� n

N
� + 1

2 and ȳn = � n

N
� + 1

2 and with �x�
the integer not larger than x. The interface I consists of the pores
n = 7,9,10,11,12,13,14. (b) p

(L)
10 is the Laplace pressure at the free

end of the meniscus in pore n = 10 and p(5,1) is the hydrostatic
pressure at (5,1). (c) Six independent vertical columns from (a). For
the column at x = 5

2 , the pore n = 8 is the highest filled pore, the
upper end of which is at y = 2, and the pressure in the column is given
by p

(0)
(5/2,y) = (y/2)p(L)

8 for 0 � y < 2 and 0 for y � 2 according to
Eq. (3). (d) The effective tension Ts,s′ = I in case of fs� = 1,fsr = 0,
and fs′

r
= 1.

driving force Ps,s ′ acting on s from s ′ is computed. If Ps,s ′ is
positive, the pore s is filled with probability min{Ps,s ′ ,1}. If
Ps,s ′ is negative, the pore s ′ is evacuated by the retraction
of liquid with probability min{|Ps,s ′ |,1}. This procedure is
repeated as many as the number of interface pores, and then
the macroscopic time t is increased by 1.

The liquid propagates spontaneously upward (in the +y

direction) due to the capillary pressure [see Fig. 1(a)]. The
pressure at the free end of the meniscus of pore s is the Laplace
pressure

p(L)
s = −2σ

rs

, (1)
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where rs is the radius of pore s and σ is the surface tension set to
σ = 1

2 . Note that here the surface tension σ is different from
the effective tension acting across distinct pores considered
in this work. Such low pressure at the menisci generates
pressure gradient in the bulk and enables the liquid to propagate
through the pores; p(x,y) decreases with y (p(x,0) = 0). Let
(x,y) be the junction of the selected interface pore s and its
filled neighbor pore s ′. If liquid were to fill the pore s, the
difference between the hydrostatic pressure at the junction
and the Laplace pressure at the meniscus,

�ps,s ′ = max
{
p(x,y) − p(L)

s ,0
}
, (2)

contributes to the driving force Ps,s ′ pushing the liquid to
fill the interface pore s [see Fig. 1(b)]. If p(x,y) is lower
than p(L)

s , the pressure difference is taken to be zero as it
does not contribute to the driving force [11]. Such piston-
type displacement of meniscus is a main mechanism of
imbibition [25]. The snap-off, filling pores by the collapse
of wetting fluid creeping the pore wall, is another mechanism
but can be neglected in our model system; snap-off happens
when p > p(S) = −σ/r while the piston-type motion happens
when p > p(L) = −2σ/r [6,25]. Given such small radii of
pores as 4 nm in the experiment of [11], the impact of
viscosity or gravity can be also neglected compared with the
capillary force. The capillary number, the ratio of viscous
to capillary force given by Ca = ηv/σ with η viscosity of
water and v the velocity of the imbibition front, is ranging
between 10−6 to 10−8 decreasing with time as the velocity
is reduced. The Bond number is about 10−9, which is the
ratio of the gravity to the capillary force and defined as
B = (ρwater − ρair)gr2/σ with ρwater and ρair the density of
water and air and g the gravitational acceleration. Detailed
physical mechanisms of imbibition in various systems have
been investigated by Lenormand, Blunt, and others, including
the works by two of the authors [4,6–8,11,24,25].

The pressure p(x,y) is determined by the boundary condi-
tions, liquid-volume conservation, and Hagen-Poiseuille’s law
of incompressible fluid. Under the boundary conditions at the
bottom (p(x,0) = 0) and the update rules described above, the
pressure p(x,y) exhibits an important feature: it rarely varies
with x but decreases linearly with y as illustrated in Fig. 2 for
the pore-network model in Refs. [11,24].

Instead of calculating the pressure field p(x,y) as in
Refs. [11,24] we use the following simplified model for p(x,y).
Let us first consider the simple case that all the vertical columns
of pores are separated as in Fig. 1(c) and the pore s is filled.
In each column at x ′ = 1

2 , 3
2 , 5

2 , . . . ,N − 1
2 , the pressure p

(0)
(x ′,y)

decreases linearly from 0 to p
(L)
n̂x′ , where n̂x ′ is the index of the

highest filled pore in that column:

p
(0)
(x ′,y) =

{
y

ŷx′ p
(L)
n̂x′ for y < ŷx ′ ,

0 for y � ŷx ′ ,
(3)

where ŷx ′ is the y coordinate of the upper end of the filled
highest pore, indexed by n̂x ′ , in the given column at x ′. In
Eq. (3), we assumed that the pores beneath the highest filled
one are filled.

Since the columns at different lateral coordinates x ′ are
connected, the pressure field p(x,y) will be laterally correlated
due to fluid volume conservation. We therefore define the

FIG. 2. (Color online) Variation of the hydrostatic pressure with
height (y) obtained from the pore-network model [11,24]. The
pressure linearly decreases with height y in a specific time. The
dashed line is a linear fit to the data. Insets: Pressure variation in
terms of x at two different fixed heights. The pressure does not vary
considerably in the x direction.

true hydrostatic pressure field p(x,y) to be an average over
neighboring values of p

(0)
(x ′,y)’s at the same height:

p(x,y) =
∑

|x−x ′ |<R p
(0)
(x ′,y)∑

|x−x ′ |<R 1
, (4)

where R is a model parameter showing the lateral correlation
range of pressure. This approximation is motivated by the
observation that the pressure rarely varies with x as shown
in Fig. 2 and thus R is set to be infinite. We will set the
parameter R free, however, to study theoretically the effect of
its reduction from infinite to a finite value on the roughening
process. Actually, the correlation range R can be changed by
viscosity or depending on time and location, e.g., near the
imbibition front that is irregular and rough as shown in Fig. 2.

Finally, let us define an effective tension as a force which
reduces the energetic cost associated with the front width. In
Refs. [6,7], it was shown that the imbibition front becomes
compact and smooth as the capillary number increases, imply-
ing that the effective tension can be important depending on the
capillary number [4]. The viscosity η and the surface tension
σ of displacing and displaced fluids change the capillary
number. More relevant to the experiments in Ref. [11], the
aspect ratio �/(2r) with � the length and r the radius of
a pore can change the capillary number and the effective
tension. From the Hagen-Poiseuille’s law in the pore-network
model [11], it holds that the velocity of fluid inside a pore s

is given by v ∼ r2
s p(L)

s /(�sη) ∼ (rs/�s)(σ/η), which suggests
that the capillary number Ca = ηv/σ is inversely proportional
to the aspect ratio on the average. This relationship between
the aspect ratio and the effective tension is understandable
as follows. When the aspect ratio of each pore is small,
the adjacent menisci unite and form a continuous interface,
thus the interface roughening is mainly slowed down by the
effective tension. On the other hand, if the aspect ratio is
very large, this effective tension is negligible as there is no
continuous interface. In our model, when the filled neighbor
pore s ′ is right below the interface pore s, the effective tension
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can affect the liquid propagation. In this case, the pore s is
more likely to be filled if its left or right neighbor is already
filled. On the contrary, if the left or right neighbor of the filled
pore s ′ is empty, the pore s ′ may be evacuated to reduce the
interface length. These impacts of the effective tension can be
modeled by

Ts,s ′ = I × [
max

(
fs�

,fs ′
�
− 1

) + max
(
fsr

,fs ′
r
− 1

)]
, (5)

where s�(s ′
�) is the left neighbor of s(s ′) and sr (s ′

r ) is the right
neighbor of s(s ′). Ts,s ′ takes a value among −2I, −I, 0, I ,
and 2I depending on the liquid configuration around s and s ′
[see Fig. 1(d) for an example]. This specific implementation is
motivated by the discrete models of growing surface displaying
various self-affine structures [1,2].

The driving force is the sum of the pressure difference
[Eq. (2)] and the effective tension [Eq. (5)]:

Ps,s ′ = �ps,s ′ + Ts,s ′ . (6)

If Ps,s ′ > 0, the liquid can fill pore s with probability
min{Ps,s ′ ,1} or just stays with probability 1 − min{Ps,s ′ ,1}. In
case Ps,s ′ < 0, the liquid is retracted from s ′ with probability
min{|Ps,s ′ |,1} or stays with probability 1 − min{|Ps,s ′ |,1}.

III. DISORDER-INDUCED STRONG ROUGHENING
OF THE IMBIBITION FRONT

In this section, we study the impact of the disorder in the
pore radii on the scaling behavior of the mean height and the
roughness. We perform simulations of the lattice imbibition
model for different lateral system sizes N , pore radii disorder
strengths �, lateral correlation ranges of pressure R, and
effective tension strengths I . The mean height H and the
interface width (roughness) W are defined as

H = 〈y〉 =
〈

1

n(I)

∑
s∈I

ys

〉
,

W =
√

〈y2 − y2〉 (7)

=
√√√√〈

1

n(I)

∑
s∈I

y2
s −

(
1

n(I)

∑
s∈I

ys

)2〉
,

where ys is the y coordinate of the bottom end of a pore s, I is
the interface, and n(I) is the number of the pores belonging to
the interface. . . . indicates the average over the interface pores
and 〈. . .〉 indicates the average over different realizations of
simulation. We typically average over 1000 realizations.

Given that p(x,0) = 0 and p(L) ∼ −1, the pressure gradient
�ps,s ′ scales as 1/H . Without the effective tension, one finds
that

dH

dt
∼ �ps,s ′ ∼ 1

H
, (8)

which leads to the Lucas-Washburn’s law H ∼ √
t . In our

simulations, we observe the same behavior of height and
pressure as above. We set R = N/2, i.e., the lateral correlation
range of pressure equals the system size, as the sum in Eq. (4)
runs over all possible x ′ values. We assume I = 0, i.e., there
is no effective tension. Simulation results for average height
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FIG. 3. (Color online) Time evolution of the mean height H and
the roughness W for N = 32, R = N/2, I = 0, and different values
of �. (a) Plots of H versus time t . Inset: The same plots in logarithmic
scales showing that H ∼ t1/2. The bottom dashed line has slope 1

2 .
(b) Plots of W versus t . Inset: The same plots in logarithmic scales
showing that W ∼ t1/2. The smaller � is, the later the regime showing
the square-root scaling appears. The top dashed line has slope 1

2 .
(c) Plots of the relative roughness w = W

H
versus t . Inset: The ratio

w

wth(�) becomes independent of � in the long-time limit as predicted
in Eq. (13).

and roughness are plotted in Figs. 3(a) and 3(b), respectively.
We find that

H ∼ tB, B = 0.53(5) (9)

and

W ∼ tβ, β = 0.46(8). (10)

The values of the scaling exponents B and β are both
close to 1

2 , in agreement with the results obtained for the
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FIG. 4. (Color online) Liquid configuration at time t = 104 in the
lattice imbibition model for N = 32,� = 0.1,R = N/2, and I = 0.

pore-network model in Ref. [11]. The roughness W and the ra-
tio W/H increase with disorder strength �, while the average
height H decreases in accordance with [11]. For an ordered
lattice, i.e., � = 0, the roughness remains at a small value,
meaning that the interface is smooth, while the mean height
increases. A typical liquid configuration for a disordered lattice
is shown in Fig. 4. One observes a large number voids gener-
ated by thick pores with a Laplace pressure p(L) that is larger
than the hydrostatic pressure at the junction, preventing the
filling of the pore [24]. For any nonvanishing disorder strength
� > 0, the interface is rough and the ratio W/H is nonzero.

Along the boundaries of voids the Laplace pressure p(L)

is larger than the hydrostatic pressure within the nearest pore
junction. Since the hydrostatic pressure p(x,y) decreases with
increasing y, the voids are more likely to emerge as the height
y increases. The lowest possible height ymin for which voids
may exist can be obtained by equating the hydrostatic pressure
and the largest possible value of the Laplace pressure p

(L)
(max).

The hydrostatic pressure at y is estimated as 〈p〉(y) � 〈p(L)〉 y

H

with H the mean height. Therefore, at y = ymin, it holds that

〈p(L)〉ymin

H
= p(L)

max. (11)

The pore radii are distributed uniformly between 1 − �

and 1 + �, and therefore 〈p(L)〉 = −〈 1
r
〉 = − 1

2�
ln 1+�

1−�
and

p(L)
max = − 1

1+�
. Using these relations in Eq. (11), we find that

H
ymin

= 1+�
2�

ln( 1+�
1−�

). H − ymin is an estimate for the front width
and the relative width wth obeys

wth � H − ymin

H
= 1 − 2�

1 + �

[
ln

(
1 + �

1 − �

)]−1

. (12)

We conjecture that the relative roughness w = W/H scales in
the same way as wth:

w � wth � � for � � 1, (13)

which is consistent with the simulation results in Figs. 3(b)
and 3(c), where W/H � 0 for � = 0 and W/H increases
with �. In addition, the long-time limit of w/wth becomes

independent of � as shown in the inset of Fig. 3(c) in
agreement with Eq. (13). From the simulation results and the
analytical argument we conclude that the disorder in the pore
radii is crucial for the interface roughening of imbibition in
the elongated-pore systems.

IV. IMPACT OF THE PRESSURE CORRELATION

In this section, we explore the impact of the correlation
range of pressure R on the roughness of imbibition front. If
R = 1, only the zeroth-order pressures p(0) of the two pores
touching the junction point (x,y) are used to evaluate p(x,y)

according to Eq. (4). p(x,y) may fluctuate not only with y,
but also with x as if the vertical columns were separated.
On the contrary, if R � N/2, p(x,y) is the average of p

(0)
(x ′,y)’s

for all x ′, which does not vary with x for given y. It seems
plausible to assume that the liquid-volume conservation in
the elongated-pore systems makes the lateral correlation of
pressure long ranged, i.e., R � N/2 in our model.

For R = 1, one expects a roughening exponent β = 1
4 :

In this case, the height in each column evolves with time
independently from the neighbor and one can expect random
deposition behavior, in which case the height-height fluc-
tuations between the columns evolve as W ∼ √〈h〉 ∼ t1/4,
which can also be seen as follows. The interface height h in a
single column evolves with time as dh

dt
= 1

ξ (h)h , where 〈ξ 〉 = c

and 〈ξ (h)ξ (h′)〉 − 〈ξ 〉2 = dδ(h − h′) with c and d some con-
stants [11]. The time taken for the interface to reach h satisfies
statistically 〈t〉 ∼ h2 and 〈t2〉 − 〈t〉2 ∼ h3/2, which yields
equivalently 〈h〉 ∼ t1/2 and W ∼

√
〈h2〉 − 〈h〉2 ∼ t1/4 [11].

Our lattice imbibition model demonstrates that the mean
height H (t) is not affected by the correlation range R. On
the other hand, the roughness is strongly affected by R. The
scaling exponent β introduced in Eq. (10) turns out to be very
close to 1

4 for R = 1 and increases to 1
2 with increasing R

as shown in Fig. 5. The data shown in Fig. 5 indicate that in
the infinite system size limit N → ∞ the universality class of
the roughening process changes from the random deposition
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R/N
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FIG. 5. (Color online) Roughness W as a function of time t

for N = 32, I = 0, � = 0.1, and different ranges R of pressure
correlation. The roughness increases with time as W ∼ tβ with β

increasing with R. The top dashed line and the bottom dotted line
have slopes 0.45 and 0.3, respectively. Inset: The exponent β as a
function of R/N for different N ’s.
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(a)

(b)

FIG. 6. (Color online) Time evolution of the liquid configuration
with (a) I = 0 and (b) I = 0.08 for N = 32, � = 0.4, R = N/2.
The insets show magnified views at t = 2 × 104 (a) for 280 � y �
380 and (b) for 130 � y � 230. The effective tension makes the
cluster of filled pores more compact than without tension and leads
the front to stop in the long-time limit.

universality class (β = 1
4 ) for finite R (i.e., R/N → 0) to the

spontaneous imbibition universality class (β = 1
2 ) for infinite

R (i.e., R ∝ N ).

V. IMPACT OF THE EFFECTIVE TENSION

The driving force Ps,s ′ consists of the effective tension
Ts,s ′ as well as the pressure difference �ps,s ′ . Ts,s ′ in Eq. (5)
ranges between −2I and 2I , thus, it may contribute to both
filling an empty pore s or emptying a filled pore s ′. While the
effective tension remains of order I , the pressure difference
decreases with time as �ps,s ′ ∼ H−1. The evolution of the
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FIG. 7. (Color online) Time evolution of the mean height H

and the roughness W under the effective tension for N = 64, R =
N/2, � = 0.4, and different values of I . (a) Plots of H versus time t .
H grows faster with I > 0 than with I = 0 in the intermediate-time
regime and saturates in the long-time limit. Inset: The estimated
exponent B in the relation H ∼ tB increases from 0.5 to 0.7 before
the saturation of H . (b) Plots of W versus t . The roughness is not
larger with I > 0 than that with I = 0 in the whole time regime.
As the mean height does, the roughness increases faster with I > 0
than with I = 0 in the intermediate-time regime and saturates in the
long-time limit. Compared with the mean height, the time-dependent
behavior of W is complicated. Inset: The estimated exponent β in the
relation W ∼ tβ finds its maximum value around 0.7.

liquid configurations with and without the effective tension
at different times is presented in Fig. 6. The time evolution
of the mean height H and the roughness W are shown in
Fig. 7 for different strengths of the effective tension I . The
most important impact of tension is that the imbibition front
propagation stops at some point and its roughness saturates.
Moreover, the tension smoothes the interface. The roughness
is smaller with tension (I > 0) than without it (I = 0). The
clusters of filled pores in presence of tension are more compact
than those without tension (see Fig. 6). For I � 1, in the
early-time regime, the pressure differences are larger than the
effective tension and the dynamical evolution of height and
roughness is similar to the case without tension (I = 0). For
longer times, the pressure differences decrease and become
comparable to the effective tension. In the intermediate-time
regime, H and W grow faster with tension than without.
The liquid propagation eventually stops because the pressure
differences drop below the effective tension. The larger I ,
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the earlier the long-time regime begins and the smaller the
saturation values of H and W . These observations also depend
on the system size N .

To understand the impact of the effective tension on the
roughening of the imbibition front, we explore quantitatively
the behavior of H and W on I and N . We take the scaling
ansatz for the behavior of H and W and estimate the associated
scaling exponents by their data collapse around the boundaries
of the distinct time regimes, which allows us to see the width
of each time regime. As the mean height and the roughness
behave in different ways, we study them separately.

A. Scaling behavior of the mean height H

As shown in Fig. 7(a), three regimes appear in the time
evolution of H with characteristic time scales t1 and tH . In
the short-time regime t � t1, H ∼ tB with the same exponent
as in Eq. (9) regardless of I . In the intermediate-time regime
t1 � t � tH , the mean height grows faster than the former
case, i.e., H ∼ tB∗ with B∗ > B. In the long-time limit t � tH ,
the liquid does not propagate anymore and the height saturates
to Hsat. In summary,

H ∼
⎧⎨
⎩

tB for t � t1,

tB∗ for t1 � t � tH ,

Hsat for t � tH .

(14)

The effective scaling exponent B(t), given in the inset of
Fig. 7(a), can be estimated as B(t) = ln[H (t+δt)

H (t) ]/ ln[ t+δt
t

] for
a time window δt around time t . By averaging B(t) around its
maximum, we estimate B∗ as1

B∗ = 0.70(5) (15)

for � = 0.4, which is not significantly different from B∗ =
0.73(10) for � = 0.1.

We find that around the first crossover time t1, the simulation
data for different values of I and N collapse onto a single curve
showing the crossover behavior under the following scaling
form:

H = tB1 
1

(
t

t1

)
, where

t1 = I−η1 and (16)


1(x) ∼
{
xB for x � 1,

xB∗ for x � 1.

The corresponding scaled data are shown in Fig. 8. The
exponent η1 equals 2.0(1).

After the fast growth in the intermediate regime (H ∼ tB∗),
H eventually saturates to its maximum value over the crossover
time tH . The saturation values shown in Fig. 9 scale with the
system size N and the effective tension I as

Hsat ∼ I−νH NαH . (17)

The values of exponents νH and αH are given in Table I for
� = 0.1 and 0.4.

1B is estimated by the average value of B(t) in the very early-time
regime and B∗ by the average value of B(t) around the time when
B(t) is maximum. These average values still vary with I and N , and
these variations are included in their error bars.
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FIG. 8. (Color online) Collapse of the scaled data H/tB
1 =

HIBη1 as functions of t/t1 = tI η1 with η1 = 2.0 and B = 0.53 for
� = 0.4 and different values of system size N and the effective
tension I [see Eq. (16)]. Two lines with slopes B = 0.53 and
B∗ = 0.70, respectively, as in Eqs. (9) and (15) are also drawn.

Using Eq. (17), one finds the following scaling functions
for H (t) in the case of finite t/tH :

H = I−νH NαH 
H

(
t

tH

)
, where

tH = I−ηH NzH and


H (x) ∼
{
xB∗ for x � 1,

1 for x � 1
with (18)

ηH = η1(B∗ − B) + νH

B∗
and

zH = αH

B∗
.
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FIG. 9. (Color online) Scaling behavior of the saturation height
Hsat with respect to the system size N and the effective tension
strength I . (a) Collapse of the plots of HsatI

νH versus N for different
I ’s and given �. The upper collapsed data are for � = 0.1 and the
lower for � = 0.4. (b) Collapse of HsatN

−αH versus I for different
N ’s and given �. The upper collapsed data are for � = 0.4 and the
lower for � = 0.1. The data collapse in both plots are found with
νH = 0.47 and αH = 1.0 for � = 0.1 and νH = 0.36 and αH = 0.4
for � = 0.4.
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TABLE I. The scaling exponents for the mean height H and the
roughness W . See the main text for their definitions.

H W

� = 0.1 � = 0.4 � = 0.1 � = 0.4

B 0.53(5) 0.53(3) β 0.46(5) 0.46(6)
B∗ 0.73(10) 0.70(5) β∗ 0.76(10) 0.67(5)
η1 2.0(1) 2.0(1) η2 1.2(1) 1.2(1)
αH 1.0(1) 0.4(1) αW 1.1(1) 0.5(1)
νH 0.47(10) 0.36(4) νW 0.45(9) 0.33(8)
ηH 1.2 1.0 ηW 1.3 1.1
zH 1.4 0.6 zW 1.1 0.45

θ 0.40(5) 0.43(5)
ζ 0.3(1) 0.2(1)

The data collapse is shown in Fig. 10. All exponents obtained
from the simulation are presented in Table I.

Equations (16) and (18) indicate that the fast growth H ∼
tB∗ with B∗ ∼ 0.7 appears in a wide range of times when I has
a nonzero finite value and N is large: the intermediate regime
begins at t1 = I−η1 = O(1) and ends at tH = I−ηH NzH � 1
for N � 1. The intermediate regime is observed as long as
tH � t1 or, equivalently,

I � N
− zH

η1−ηH . (19)

If the effective tension is so small as to violate Eq. (19), the
square-root growth of the mean height would persist until
saturation occurs.

B. Scaling behavior of the roughness W

The behavior of the roughness is more complicated than
the mean height as seen in Fig. 7(b). Here, four regimes are
observed which display distinct behavior of W as

W ∼

⎧⎪⎨
⎪⎩

tβ for t � t0,

slowly increasing for t0 � t � t2,

tβ∗ for t2 � t � tW ,

Wsat for t � tW .

(20)
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FIG. 10. (Color online) Collapse of the scaled data HIνH N−αH

as functions of the scaling variable t/tH = tI ηH N−zH for � = 0.4 and
different values of N and I [see Eq. (18)]. The values of the scaling
exponents are νH = 0.36, αH = 0.4, ηH = 1.0, and zH = 0.6. The
bottom dashed line has slope B∗ = 0.70.

Among these regimes, the first two are rather difficult to
identify. We expect W ∼ tβ in the first regime, t � t0, but
its duration is rather short. For the same reason, the behavior
of W is not clearly seen in the second regime. To make these
early-time regimes long enough, the model with much smaller
values of I for much longer time should be simulated than in
this study. We restrict ourselves to the scaling behavior of W

around t = t2 and t = tW . In the third regime, t2 � t � tW ,
fast growth W ∼ tβ∗ with β∗ > β ∼ 0.5 is observed, which
eventually saturates over t � tW .

We estimate the effective scaling exponent β(t) [inset of
Fig. 7(b)] in a similar way we argued for height. While we
observe a nearly constant value β(t) � 0.46 for I = 0 for the
whole time period, β(t) varies with time when I > 0. We find
β∗ = 0.67(5) for � = 0.4 and β∗ = 0.76(10) for � = 0.1.

Around t = t2, the curvature of W (t) changes and W (t)
grows as tβ∗ for t � t2. Assuming that the value of W (t2) scales
with the tension I and the system size N as W (t2) ∼ I−θNζ ,
where θ and ζ are new scaling exponents, we find that the
scaled data of the roughness for different N ’s and I ’s collapse
onto a curve in the regime t � t2 as

W = I−θNζ 
2

(
t

t2

)
, where

t2 = I−η2 , and (21)


2(x) ∼ xβ∗ for x � 1

as presented in Fig. 11. Here, the scaling exponents are θ �
0.43, ζ � 0.2, and η2 � 1.2 for � = 0.4. In these exponents,
there is no significant difference between � = 0.1 and 0.4 (see
Table I).

The saturation value of the roughness Wsat for t � tW scales
as

Wsat ∼ I−νW NαW (22)

with the exponents given by νW = 0.33(8) and αW = 0.5(1)
for � = 0.4 as shown in Fig. 12. Around tW , the following
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W
 I

θ  N
−ζ

t/t 2=tI η2 N-z2

N=16 I=0.02
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N=16 I=0.4
N=32 I=0.02
N=32 I=0.08
N=32 I=0.4
N=64 I=0.02
N=64 I=0.08
N=64 I=0.4
slope  β*=0.67

FIG. 11. (Color online) Collapse of the scaled data of WIθN−ζ

as functions of t/t2 = tI η2 for t/t2 � 1 with η2 = 1.2, θ = 0.43,

and ζ = 0.2 for � = 0.4 and different values of system size N and
the effective tension I [see Eq. (21)]. The top dashed line has slope
β∗ = 0.67 as in Eq. (10).
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FIG. 12. (Color online) Scaling behavior of the saturation rough-
ness Wsat with respect to the system size N and the effective tension
strength I . (a) Collapse of the plots of WsatI

νW versus N for different
I ’s and given �. The upper collapsed data are for � = 0.4 and the
lower for � = 0.1. (b) Collapse of WsatN

−αW versus I for different
N ’s and given �. The upper collapsed data are for � = 0.4 and the
lower for � = 0.1. The data collapse in both plots are found with
νW = 0.45 and αW = 1.1 for � = 0.1 and νW = 0.33 and αW = 0.5
for � = 0.4.

scaling function 
W (x) characterizes the behavior of W :

W = I−νW NαW 
W

(
t

tW

)
, where

tW = I−ηW NzW and


W (x) ∼
{
xβ∗ for x � 1,

1 for x � 1
with (23)

ηW = η2 − θ − νW

β∗
and

zW = αW − ζ

β∗
.

The resulting scaled data are presented in Fig. 13 and the
exponents are given in Table I.

The mean height and the roughness have quite similar
scaling properties in the intermediate- and long-time regimes;
both H and W grow as a power law with B∗,β∗ � 0.7 which
is larger than 0.5 obtained in absence of effective tension I ,
and saturate at the values which scale as I−νNα with ν � 1
and 0.4 � α � 1.4 and thus diverge in the limits N → ∞ and
I → 0.

C. Understanding the scaling behavior in the
intermediate and long times

The scaling of interface height and roughness in the
intermediate-time regime, their saturation in the long-time
regime, as well as the values of the exponents B∗ and β∗
(�0.7) are reminiscent of what is observed during the motion
of interfaces in random environments close to the depinning
transition point [20]. The dynamics and roughening of the
interface vary with the density of pinning centers and are
governed by the mechanism of directed percolation (DP) in the
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FIG. 13. (Color online) Collapse of the scaled data WIνW N−αW

as functions of the scaling variable t/tW = tI ηW N−zW for � = 0.4
and different values of N and I [see Eq. (23)]. The scaling exponents
are νW = 0.33, αW = 0.5, ηW = 1.1, and zW = 0.45. The top dashed
line has slope β∗ = 0.67.

vicinity of the pinning-depinning transition point. The pinned
nodes form a cluster which is qualitatively equivalent to the
DP cluster, and the scaling behavior of the latter determines
various properties of the interface. In the imbibition model
studied in this work, the driving force is provided by the
Laplace pressure, which depends on the pore radii and is thus a
random force. Pinning appears when the hydrostatic pressure
is much lower than the Laplace pressure of the meniscus which
is relevant in thick pores, and when the effective tension forbids
the liquid from propagating or even retracts the liquid that has
proceeded.

Let us compare our results to the scaling properties of the
DP clusters. Suppose the pinning cluster, the cluster of pores
suppressing the liquid propagation, is as large as ξ⊥ in the
perpendicular (y) direction and as ξ‖ in the lateral (x) direction.
If this cluster is a DP cluster, those length scales scale as

ξ⊥ ∼ |q − qc|−ν⊥ , ξ‖ ∼ |q − qc|−ν‖ (24)

with q being the density of pinning center and qc the critical
point. The mean height and the roughness are set commonly by
ξ⊥ and the time scale is set by ξ‖ as H ∼ W ∼ ξ⊥
(t/ξ‖) [20].
If the pinning density is so close to the critical point that ξ is
larger than the lateral system size N , the lateral size of the
cluster is set by N and

H ∼ Nν⊥/ν‖


(
t

N

)
, W ∼ Nν⊥/ν‖�

(
t

N

)
, (25)

where the scaling function behaves as


(x) ∼ �(x) ∼
{
xν⊥/ν‖ for x � 1,

const for x � 1.
(26)

Note that the scaling exponent ν⊥/ν‖ � 0.633 and the dynamic
exponent z is 1 in this argument [26].

The scaling behavior of H and W in the lattice imbibition
model with tension (I > 0) is similar to Eqs. (25) and (26)
in the intermediate regime: Both the scaling exponent B∗ and
β∗ are close to the value of ν⊥/ν‖ � 0.633, which indicates
that our imbibition model with tension might be in the same
universality class as the DP clusters. However, in contrast
to interface growth in a disordered environment (DPD), the
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pinning in our model is not static but dynamically generated
and the driving force decreases with time as the pressure
gradient decreases. Moreover, the dynamic exponents zH and
zW deviate from 1 for the case of strong disorder (� = 0.4) of
the pore radii considered in this work.

VI. CONCLUSION AND DISCUSSION

In this work, we introduced a lattice model for spontaneous
imbibition, which follows the same design principles as other
interface growth models on a lattice. The emergent similarities
facilitate a comparison of the characteristics of imbibition front
propagation with other growth models in random environments
and help to identify a minimal set of physical mechanisms
that could explain the experimental observations [11]. In
particular, we have shown quantitatively how the disorder in
the pore thickness and the lateral correlation of hydrostatic
pressure caused by liquid-volume conservation affect the
roughening of the imbibition front in the elongated-pore
systems. Also, we found that the presence of an effective
tension changes the scaling properties of the front and leads to
multiple crossovers in the dynamical evolution of height and
roughness. The effective tension suppresses the formation of
voids and smoothes the clusters of filled pores. As a result,
with tension the imbibition front propagates faster and the
roughness increases faster in the intermediate-time regime than
that without the effective tension. Ultimately, the imbibition
front stops to propagate. By extensive simulations, we have
identified the scaling behavior depending on the strength of
the tension and the system size.

Despite the approximation adopted in computing the
hydrostatic pressure, the simulation is still time consuming,
which restricted the study to small system sizes. As a result,
it is hard to increase the accuracy of the estimated scaling
exponents. While some scaling exponents in this study are
close to those of the directed percolation class, there are

differences as well: the pinning centers are not quenched but
dynamically generated and the dynamic exponent is found to
deviate from that of the DP class for strong disorder in the pore
radii, suggesting a new universality class. Thus, it remains an
open question as to whether the proposed lattice imbibition
model belongs to the directed percolation universality class or
represents a novel one.

While we introduced the correlation range and the effective
surface tension strength as free parameters, a rigorous deriva-
tion and their comparison with real systems would be desirable.
Since our model predicts that an effective tension changes the
asymptotic behavior of the front propagation drastically, it
would be interesting to study experimentally the spontaneous
imbibition of nanoporous materials in which one could change
the aspect ratio of pores (i.e., the typical ratio between pore
radius and pore length): The Vycor glass studied in Ref. [11]
contained a network of elongated pores (aspect ratio around
5) and one would expect an effective tension to be absent
since menisci in different pores are well separated. For aspect
ratios around 1, the size of the menisci becomes comparable
to the length of the pores (depending on wetting angle) and the
menisci at junctions start to coalesce leading to a connected
liquid-air interface. We propose that our imbibition model
captures this situation by a nonvanishing effective tension,
and predict that in this case neither the Lucas-Washburn law
nor the roughening exponent β = 1

2 continues to hold. With
nanoporous materials one should even be able to reach the
predicted asymptotic late-time regime, for which our model
predicts the imbibition front propagation to cease.
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