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We present a scaling theory for the long time behavior of spontaneous imbibition in porous media

consisting of interconnected pores with a large length-to-width ratio. At pore junctions, the meniscus

propagation in one or more branches can come to a halt when the Laplace pressure of the meniscus

exceeds the hydrostatic pressure within the junction. We derive the scaling relations for the emerging

arrest time distribution and show that the average front width is proportional to the height, yielding a

roughness exponent of exactly � ¼ 1=2 and explaining recent experimental results for nanoporous Vycor

glass. Extensive simulations of a pore network model confirm these predictions.
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The dynamics of the imbibition front of an invading fluid
in disordered media has attracted substantial scientific atte-
ntion, from statistical physics [1–3] to material science [4].
Besides the scientific interest, understanding the mecha-
nisms of imbibition in a porous matrix is of importance in
industrial processes such as oil recovery, food processing,
impregnation, chromatography, and agriculture [3,5–7].

During imbibition the liquid-gas interface advances and
broadens. The time evolution of the invading front follows
simple scaling laws, which are independent of the micro-
structure and the details of the fluid [8–13], reminiscent of
the universality of critical phenomena. Various physical
aspects are involved in the imbibition of a liquid inside
a porous matrix, such as viscous drag, capillarity, gravity,
and volume conservation. The often complex topology of
the porous matrix induces local fluctuations in capillary
pressures at the interface as well as hydraulic permeabil-
ities in the bulk. Despite these complexities, the average
position of the front hhðtÞi during a purely spontaneous

imbibition evolves as hhðtÞi � t1=2, known as Lucas-
Washburn law [3,14,15]. This scaling behavior is valid
down to nanoscopic pore scales [16–18].

Whereas the invading front exhibits a common slow-
broadening dynamics for a wide range of materials [8–11],
the results of recent experiments on nanoporous Vycor
glass (NVG) reveal that the roughening dynamics might
depend on the microstructure [19]. The elongation of
pores, quantitatively described by their length-to-width
radius, appears to play an important role, and two extreme
limits can be distinguished. (i) Short pores with compa-
rable length and diameter. In materials such as paper, sand,
randomly packed glass beads, etc., where the pore space
is highly interconnected [8–11], neighboring menisci
coalesce, a continuous imbibition front forms, and an
effective surface tension emerges. Because of the latter,
menisci advancement is spatially highly correlated [20],
which reduces the height fluctuations of the front by limit-
ing menisci advancement beyond the average front posi-
tion and drawing forward the menisci lagging behind.

This forms a continuous liquid-gas interface and smoothes
the front. (ii) Elongated pores. Other porous materials such
as rock, soil, and porous glasses consist of spongelike top-
ologies with reduced connectivity and elongated pores
[5,21,22]. For example, NVG is a silica substrate with an
interconnected network of long cylindrical pores with char-
acteristic radii of 3–5 nm. In Ref. [19], an anomalously fast
interface roughening has been observed, representing a
new universality class for spontaneous imbibition, emerg-
ing for large pore aspect ratio. Here, the interface is not
able to establish an effective surface tension, leading to
strong height fluctuations of the menisci.
In this Letter, we present a scaling theory for sponta-

neous imbibition in porous media consisting of a network
of interconnected elongated pores (Fig. 1). It is based on
the observation that at pore junctions the meniscus propa-
gation in the branch with the larger radius can come to a
halt when the Laplace pressure of the meniscus exceeds the
hydrostatic pressure within the junction. This leads to the
emergence of voids behind the invasion front and concom-
itantly to anomalously fast front broadening as observed
experimentally in NVG [19]. It is predicted that the distri-
bution of the meniscus arrest times scales with the square
of the height of the meniscus, which implies that the ratio
of the average invasion front width and the average front
height is independent of time. This implies that roughening
is maximal with an exponent� ¼ 1=2, establishing a univ-
ersality class different from those known before for spon-
taneous imbibition [3]. We then test these predictions in
extensive simulations of a pore network model.
We analyze spontaneous imbibition of a wetting liquid

in a porous medium similar to porous glasses, which con-
sists of a network of elongated pores with a length-to-width
ratio on the order of 10, i.e., elongated, cylinder-like pores
with random radii interconnected at pore junctions as
sketched in Fig. 1. The bottom pores are connected to a
liquid reservoir with pressure p ¼ 0. We assume that in
each pore a liquid-gas interface forms, denoted as menis-
cus, that gives rise to a Laplace-pressure PL ¼ �2�=r,
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where � is the surface tension of the liquid and r is the
pore radius. If the pore radii vary between rmin and rmax,
the average radius is denoted by hri. Then, on large scales,
the average height is expected to vary as d=dthhðtÞi ¼
�hPLi=hhðtÞi, which implies the Lucas-Washburn law

hhðtÞi / t1=2.
Consider now a junction at height h0, where a pore

branches into two [see Fig. 1(a)]. One branch has radius
r1, the other r2 > r1, yielding the Laplace pressures PL;i ¼
�2�=ri. Let P0 be the hydrostatic pressure within the
junction. As long as PL;2 > P0, the meniscus in branch 2

is arrested. In the following, we will answer the question
of how long the meniscus in branch 2 will be arrested,
and we will implicitly assume that it does not get annihi-
lated by the filling of the pore from its other end. This
means that we assume the radius r2 also to be larger than
the radius of the other branch of the junction of the other
end. This reduces only the probability of this event by a
r2-dependent factor.

P0 ¼ P0ðtÞ is a function of time and depends on how far
the front has propagated and can be estimated as follows:
Let the average front height be hhðtÞi. On average one
expects the bulk pressure to decrease linearly from bottom
to top by

PðhhðtÞiÞ=P0 ¼ hhðtÞi=h0: (1)

Therefore, with PðhhðtÞiÞ ¼ hPLi ¼ �2�h1=ri the average
Laplace pressure, one obtains P0 ¼ �2�h1=rih0=hhðtÞi,
and the condition P0 ¼ PL;2 for the arrested meniscus to

resume propagation (at time tresume) reads

hhðtresumeÞi ¼ h0r2h1=ri: (2)

This equation has far reaching consequences as follows:
(1) The greater the r2 value, the longer the meniscus is
arrested, and the average height that the front has to reach
before the meniscus resumes propagation is proportional to
the height where it stopped with a proportionality constant
larger than one. (2) The time � for which the meniscus is
arrested is proportional to the time tstop, when it stopped,

� / tstop: (3)

To see this, we note that with Eq. (2) one has
hhðtstopþ�Þi¼hðtstopÞr2h1=ri. With Lucas-Washburn

hhðtstop þ �Þi / ðtstop þ �Þ1=2, and assuming that hðtstopÞ /
t1=2stop, too, for the relation between the height and the

time when the considered meniscus stopped, one obtains
Eq. (3). (3) Consequently, from Eq. (3),

� / h2ðtstopÞ ¼ h20; (4)

which implies that the probability distribution of arrest
times for menisci arrested at height h will scale as

phð�Þ ¼ h�2 ~pð�=h2Þ: (5)

(4) The height difference w0ðtresumeÞ ¼ hhðtresumeÞi � h0 is
a measure for the local width of the propagation front
(at the lateral coordinates of the position of the arrested
meniscus) at time tresume. The ratio of this local width
and the average height is w0ðtresumeÞ=hhðtresumeÞi ¼
1� ðr2h1=riÞ�1, which is independent of the time tresume.
Thus, all arrested menisci will contribute a time-
independent amount to the ratio of the average width
wðtÞ and average height. Since the width cannot grow faster
than hðtÞ, this implies

wðtÞ=hhðtÞi ¼ const; (6)

implyingwðtÞ / t1=2, i.e., a roughening exponent� ¼ 1=2.
The constant in Eq. (6) depends on the pore radius distri-
bution via the ratio of the minimal and maximal pore radius
and approaches 1 for an unbounded radius distribution
(i.e., the front extends over the whole occupied volume).
Note that the invasion front dynamics is now expected

to be be completely determined by the meniscus arrests,
which in turn depend exclusively on the pore radii distri-
bution and the height-dependent hydrostatic pressure.
Consequently, one expects no lateral correlations in the
meniscus heights to emerge, as observed in Ref. [19].
The scaling theory presented here neglects all geometric

and topological details of a pore network. To test its
predictions, in particular the strongest in Eqs. (5) and (6),
we analyzed the following microscopic model for sponta-
neous imbibition in a pore network with elongated pores
[19,23,24]: A two-dimensional square lattice of cylindrical
capillaries inclined at 45� is considered, which consists
of Nx and Ny nodes in horizontal and vertical directions,

respectively. Capillaries, interconnected at nodes, have the
same length L and random radii uniformly distributed over
½rav � �; rav þ ��. The average aspect ratio 2rav=L is set
to 5. The pressure at the bottom nodes attached to the
liquid reservoir is set to zero, and the pressure at a moving
meniscus is the Laplace pressure. Here, we neglect gravity,
which is justified as long as capillary forces are much
greater than gravitational forces 2�=r � �NyL, where �

(a) (b)

FIG. 1 (color online). Sketch of a junction (a) in a pore net-
work with elongated pores (b). ri and PL;i denote the radius and

Laplace pressure, respectively, in pore i, and P0 denotes the
hydrostatic pressure in the junction. In (b), hhðtÞi and hPLi
denote the average height at time t and the average Laplace
pressure.
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is the specific weight of the liquid. This is the case, for
instance, in experiments with NVG [25].

The hydrostatic pressures at the nodes of the network
drive the dynamical evolution of the menisci configura-
tions. To calculate the temporal change of the filling heights
in the partially filled capillaries, one needs to know the
node pressures which themselves depend on the menisci
configuration. The node pressures Pi are determined by the
boundary conditions and the conservation of volume flux at

each node:
P

jQ
j
i ¼ 0, which is equivalent to Kirchhoff’s

law. Here, Qj
i is the volume flux flowing from node i into

the capillary j attached to it. The sum runs over all of the
four capillaries of node i and is valid for all wet nodes in the

system. According to the Hagen-Poiseuille law [26], Qj
i ¼

�cji�P
j
i=h

j
i , with cji ¼ �ðrji Þ4=8� and �Pj

i ¼ Pi � Pj
L;i.

Here, rji , h
j
i , and Pj

L;i are the radius, the length, and the

Laplace pressure of the meniscus in capillary j of node i,
respectively, and � is the viscosity of the liquid. By
numerically solving the resulting set of linear equations,

we compute Pi and thus Qj
i . These are then inserted into

the equation of motion for the heights given by Qj
i ¼

�ðrji Þ2dhji=dt. To integrate these differential equations, an
implicit Euler scheme with variable time step �t is

employed giving the new positions hji . When a meniscus
reaches the end of a capillary, it immediately moves
an infinitesimal distance � ’ 0:01L into the adjacent capil-
laries, creating new menisci, as shown in Fig. 2(a). This
avoids the microscopic treatment of the filling of the

junction [27] and is valid as long as the filling time of the
node is negligible. The filling time was estimated in
Ref. [27] and is indeed orders of magnitude smaller than
the meniscus arrest times as long as capillary forces are
much greater than gravitational forces. When two menisci
meet, they vanish; thus, the capillary is entirely filled. If,
because of a negative pressure difference, a meniscus
retracts, it proceeds backward as long as its distance from
the back node is larger than � [see Fig. 2(b)]. When it
reaches �, the meniscus is stuck there until the driving
pressure difference is again positive. During this arrest
time, the pressure calculation is modified with the corre-
sponding capillary being blocked. We made sure that the
simulation results we present in the following are indepen-
dent of the choice of �.
Figure 2 shows three snapshots of the propagating and

arrested menisci in the invasion front at three different
times. The fraction of arrested menisci grows fast with
increasing height and approaches one around hhi � 500.
First we checked the essential assumptions underlying

our mean field description of the imbibition process, namely
that the pressure in a junction can be approximated by the
average of the pressure field P � hPLih=hhðtÞi. Figure 3(a)
shows the probability distribution ph;tðhPi=hPLiÞ of the

pressure in the junctions at height h and time t. For a fixed
time, we have chosen the height such that the ratio
h=hhðtÞi ¼: C is constant (C ¼ 1=4, 1=2, 3=4 correspond-
ing to the bottom, middle, and upper third of the system).
One sees that the distribution of P=hPLi is centered around
C, reflecting that the average pressure indeed is given by
hPi ¼ C hPLi (see inset) and that the width systematically
shrinks with t. The width, given by the variance of the
pressure distribution �hðtÞ ¼ ðhP2ih;t � hPi2h;tÞ, is analyzed
in Fig. 3(b). The inset shows that it scales as

�hðtÞ ¼ ~�h=hhðtÞi ���!t!1
0: (7)

(c)

(b)(a)

FIG. 2 (color online). [(a) and (b)] The mechanisms of menisci
advancement in the pore-network model (a) after reaching a
node and (b) during backward motion and arrest of a meniscus
due to negative pressure difference. (c) Snapshots of the arrested
(blue circles; dark circles) and advancing (red circles; bright
circles) menisci in the invasion front at three different times.
Broken (full) lines represent empty (full) pores, and H is the
average height at the corresponding time.

(a) (b)

FIG. 3 (color online). (a) Probability distribution pðPÞ ¼
ph;tðPÞ of the pressure at junctions at height h and time t.
Heights are chosen such that for a given time C :¼ h=hhðtÞi is
constant; data are shown for C ¼ 1=4, 1=2, and 3=4 and different
times. Inset: Average pressure in junctions at height h at different
times. (b) Variance of the pressure distribution for different times
as a function of h. Inset: Scaling plot, ~�h ¼ �hðtÞ=hhðtÞi vs h.
For all data, Nx ¼ 16.
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Consequently, the pressure distribution becomes increas-
ingly sharp with increasing time, which implies that
neglecting pressure fluctuations is a good approximation
and leads asymptotically to correct results.

By counting the number of menisci arrested at height h
for a time �, we obtained the arrest time distribution phð�Þ,
which is shown in Fig. 4(a). Three regimes can be identi-
fied: A short time regime, where phð�Þ is nearly constant,
an intermediate time regime extending over �1:5 decades
for all heights hwith a slope close to�1 in the log-log plot,
and a large time regime, extending over �1 decade in �
with a slope close to �1=2. Finally, the distribution is cut
off at a time proportional to h2. A closer look at the arrest
events shows that the main contribution for the interm-
ediate regime comes from pores with a single (arrested)
meniscus in a pore [see inset of Fig. 4(a)]. Pores that have
(arrested) menisci at both ends cause the large time regime
of phð�Þ, which decays much slower but has a smaller
amplitude. These pores have statistically a larger radius
than pores with only one arrested meniscus; consequently,
their probability is lower but arrest times are longer.

The intermediate and large time regime of the distribu-
tion, including the cut off, scale nicely with h2 as predicted
by Eq. (5), as shown in Fig. 4(b). The intermediate and
large arrest times dominate the mean, which is therefore
proportional to h2, as expected from Eq. (4); see inset of
Fig. 4(b). Events with a brief arrest time, which make
for the short time regime that does not scale with h2 [see
Fig. 4(b)], are caused by secondary arrests of menisci and
by small radii differences in adjacent pores and dynamic
fluctuations in the node pressures due to the propagation
and release of nearby menisci.

We also computed the average height hhðtÞi and width

wðtÞ ¼ ðhh2ðtÞi � hhðtÞi2Þ1=2 of the imbibition front and
found that the ratiowðtÞ=hhðtÞi approaches a constant value
for large times, which confirms the prediction (6). Since

hhðtÞi / t1=2, the width also increases as wðtÞ / t1=2,

implying a roughness exponent of � ¼ 1=2. The initial
decrease of wðtÞ=hhðtÞi indicates a preasymptotic increase
of wðtÞ with an exponent slightly smaller than 1=2, as
reported in Ref. [19].
The invasion front thus involves a finite fraction of the

occupied volume and comprises connected clusters of
empty pores whose size distribution gets broader with
increasing time. On the basis of the conditions for meniscus
arrests presented above, one can derive a scaling form for
the distribution of cluster sizes as follows. Consider an
empty cluster that contains S pores at time t [i.e., with width

wðtÞ]. Its lateral size scales as L� S1=df , and its surface

area scales asF � Sds=df , where df and dS are the bulk and

surface fractal dimension of the empty clusters (df ¼ d and

ds ¼ d� 1 in the case of compact clusters). Almost all
pores in the boundary F of the cluster have arrested
menisci, and for a meniscus to be arrested the radius of its
pore has to be greater than the radius of an adjacent pore,
which is an event that occurs with some probability q < 1.
Assuming that the conditions for meniscus arrest in all
boundary pores are independent from one another and the

boundary consists of the order of Sds=df pores, the proba-
bility for collective meniscus arrests in boundary pores is

proportional to expð��Sds=df Þ, where the constant �
involves lnq and a geometric factor. Since the lateral di-

mension S1=df of the cluster must not exceed thewidthwðtÞ,
one obtains the probability of an arbitrary empty pore in
the front region to belong to a connected cluster with S
empty pores

qS ¼ N �1S expð��Sds=df Þ ~gðS1=df=wðtÞÞ; (8)

where N is a normalization factor and ~gðxÞ is a scaling
function that is 1 for x � 1 and 0 for x ! 1. A cluster
analysis of our simulation of the 2d pore network
model confirms the stretched exponential behavior of qS
at large times (wðtÞ � S1=df ) with ds=df close to

0:5 ¼ ðd� 1Þ=d.
In conclusion, we have presented a scaling theory for the

imbibition of an arbitrary wetting liquid through any
porous medium consisting of random networks of elon-
gated pores. We tested the predictions in extensive simu-
lations of a pore network model. Meniscus arrest times
at pore junctions are shown to scale with the age of the
invasion front whose width is therefore proportional to its
average height. This establishes a universality class for
invasion front broadening that is realized in nanoporous
Vycor glass [19] and is expected to determine roughening
dynamics in similar porous media. Since meniscus arrest
is solely determined by the relation of radii of the pores
emanating from one junction, it should be possible to relate
dynamical quantities accessible via light or neutron scat-
tering to characteristics of the pore radius distribution of
the porous medium.
We thank P. Huber and D.-S. Lee for stimulating

discussions.

(a) (b)

FIG. 4 (color online). (a) The probability distribution phð�Þ of
the arrest times � of menisci arrested at fixed height h in log-log
scale. Inset: arrest time distribution of single meniscus in a pore.
(b) Scaling plot according to Eq. (5). Inset: Average arrest time
h�i at a given height h, with the dashed line proportional to h2;
see Eq. (4). Parameter for all data are �r=r ¼ 0:1, Nx ¼ 8, 100
disorder realization.
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