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The explanation for why helium doesn’t solidify at low temperatures may be more complicated than
previously thought.
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Under their own vapor pressure, all known liquids
eventually freeze into a crystalline state if they are
cooled to sufficiently low temperatures. The exception is
helium-4, which crystallizes below 2 degrees kelvin only
at the much higher pressure of 25.3 bar. (The pressure
needed to induce crystallization is approximately inde-
pendent of temperature down to 0 kelvin.) According
to conventional wisdom, the reason liquid helium doesn’t
crystallize at low temperature is that helium atoms are
so light that their quantum-mechanical zero-point mo-
tion overwhelms the weak interaction between them. In
a theoretical paper in Physical Review Letters, Massimo
Boninsegni of the University of Alberta in Canada and
colleagues [1] show this zero-point motion argument isn’t
enough to explain why helium-4 doesn’t crystallize at
low pressure. Instead, the fact that helium-4 atoms are
bosons and thus, in contrast to classical particles, indis-
tinguishable, also impedes the formation of crystalline
helium. Boninsegni et al.’s work illuminates the general
role of Bose statistics in crystallization and emphasizes its
importance in determining the phase diagram of helium-4
and other systems consisting of interacting bosonic par-
ticles.

In contrast to classical particles, which can be labeled
and thus distinguished, quantum mechanical particles are
indistinguishable. The quantum mechanical wave func-
tion that describes two identical bosons must be symmet-
ric with respect to the variables describing each particle;
that is, if the variables for particle 1 and particle 2 are
swapped, the wave function describing the two particles
stays the same. A convenient way to visualize this sym-
metry is to use Feynman’s path integrals, which makes
an analogy between the quantum mechanics of a particle
and the fluctuations of a peculiar type of classical poly-
mer [2]. In this picture, several quantum particles are
like a bunch of floppy spaghetti.

The polymer analogy is helpful for calculating a sys-
tem of quantum particles’ partition function—a sum over

the allowed states, weighted by their energy, which is
used in the calculation of thermodynamic quantities and
phase diagrams. Formally, the partition function of a d-
dimensional, quantum mechanical, many-particle system
of bosons is identical to the partition function of a system
of soft polymers confined to a (d+ 1)-dimensional box of
height 1/T , where T is the temperature of the original
quantum system (Fig. 1). This classical partition func-
tion is computed by integrating over all possible config-
urations or arrangements of polymers, each of which is
weighted according to its cost in energy (the more a poly-
mer has to bend, the less the path will be weighted). A
peculiar feature of this configuration space is that it must
have periodic boundary conditions in the height direction
in order for the polymer problem to map to the quantum
one, which means that polymer positions within the bot-
tom and top plane of the box have to be identical, as
sketched in Fig. 1. This is why the distinguishability
of the particles is important: If the original quantum
mechanical particles are distinguishable (Boninsegni et
al. call such particles boltzmannons [1]), then, in the
polymer picture, each polymer has to enter and exit at
the same point in the bottom and top side, respectively
(see Fig. 1(a)). But, if the original quantum mechanical
particles are bosons, the entry and exit points of a poly-
mer can be different, yielding polymer configurations that
wrap around the box several times, called exchange cy-
cles. All these configurations with arbitrary exchange cy-
cles have to be considered in the path integral for bosons,
which means they have a larger configuration space than
boltzmannons do.

Boninsegni et al.[1] emphasize that it is exactly this
greater freedom for bosonic paths that not only gives
rise to superfluidity at low temperatures (hallmarked by
the emergence of macroscopic exchange cycles [2]) but
also prevents the crystallization of helium-4. Highly en-
tangled configurations of the world lines are representa-
tive of the liquid state. Now, the condition that each
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FIG. 1: The “world lines” through time of quantum parti-
cles confined to two dimensions can be pictured as soft poly-
mers fluctuating in space. This picture shows the world lines
of 8 quantum mechanical particles, which are a) distinguish-
able boltzmannons and b) indistinguishable bosons. Indistin-
guishable bosons can “swap” paths with each other, as shown
for the 3 blue paths and the 5 green paths. This allows the
world lines to become highly entangled without much bend-
ing. Boninsegni et al. have shown that the highly entangled
nature of bosonic world lines is important for explaining why
a liquid of helium-4 atoms, which are bosons, doesn’t solidify.
(APS/Carin Cain)

world line of a boltzmannon, after arbitrary excursions
on its way from the bottom to the top, has to return to
its entry coordinates causes extra bending energy, so the
highly entangled (liquid) world line configuration is less
favorable for a system of boltzmannons than it is for a
system of bosons. The prediction from this argument is
that boltzmannons, with the mass and interatomic po-
tential of helium-4 atoms, would crystallize at low tem-
perature and low pressure, whereas bosons with the same
parameters would not. Because bosonic world line config-
urations can be highly entangled without much bending
energy they stay highly entangled, and thus liquid, down
to zero temperature.

To support this conclusion, the authors search numer-
ically for the liquid-solid phase transition of helium-4
atoms for the (fictitious) case where the atoms are dis-
tinguishable particles and for the case that the atoms
are bosons. Their numerical simulations of both systems
are based on the path-integral Monte Carlo method [3],
which maps the quantum systems onto classical polymers

as mentioned above. By analyzing the world line config-
urations of the same many-particle system at the same
temperature and density—assuming one system consists
of boltzmannons, the other of bosons—Boninsegni et al.
could clearly demonstrate that the boltzmannons crys-
tallize, whereas the bosons do not.
The calculations have implications for understand-

ing the properties of interacting Bose systems. Ne-
glecting the Bose statistics by not accounting for the
way world lines can swap paths—or perform “exchange
cycles”—results in an incorrect characterization of the
physics of the system and may lead to inaccurate predic-
tions of phase boundaries. Moreover, Boninsegni et al.
point out that long exchange cycles are also crucial for
determining the lifetime and metastability of the super-
glass phase of helium-4, which is a metastable amorphous
solid, featuring superfluidity [4]. This phase is predicted
to occur when helium-4 is quenched from high to low
temperatures; depending on the initial state of the he-
lium, highly entangled particle world lines may jam. On
the one hand, such a state has frozen structural disorder
on a microscopic scale; on the other hand, it can support
dissipationless flow of its own particles if macroscopic ex-
change cycles extend throughout the system. In order to
find the true equilibrium state, world lines would have to
disentangle from these macroscopic exchange cycles, but
this is impeded by a free-energy barrier that is higher for
bosons than for boltzmannons. Thus Bose statistics ap-
pear to stabilize the theoretically predicted super glass
phase [4].

Correction (10 July 2012): The original article incor-
rectly stated that Boninsegni et al. predict boltzmannon
helium-4 atoms would crystallize at zero temperature.
The statement has been corrected to say their predic-
tions apply to “low temperatures.”
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