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Persistent-random-walk approach to anomalous transport of self-propelled particles
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The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is
developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the
persistent walk’s displacement. It is shown that the interplay of step length and turning angle distributions and
self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal
diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time
behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time
are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the
time evolution of the skewness and the kurtosis of the distribution are presented.
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I. INTRODUCTION

Self-propelled particles undergo active Brownian motion
by consuming energy, obtained either from internal or external
sources. Examples range from the transport of motor proteins
on cytoskeletal filaments [1], which is a biologically relevant
system, to the motion of self-motile colloidal particles [2]
as a nonliving realization. The particles are powered by the
hydrolysis of ATP in the former case, whereas they use a
chemical reaction catalyzed on their surface to swim in the
latter example. The directed propulsion subject to fluctuations
has been described by persistent random walks [2—4], where
a tendency to move along the previous direction is taken into
account. A strong self-propulsion overcomes the stochastic
fluctuations and directs the motion, which renders it ballistic
for short time scales [2,4]. Nevertheless, the interplay between
self-propulsion and random motion in general may lead to
various scenarios of anomalous diffusive dynamics on varying
time scales [4]. The influence of self-propulsion diminishes
over time and, eventually, a crossover to an asymptotic
diffusive regime occurs.

Even in the absence of self-propulsion, the stochastic
motion of particle may remain complicated because, in
general, a random walker can perform steps with arbitrary
turning angles and variable step lengths. Moreover, there can
be arelation between the step size and the turning angle of each
step. Generalized random walks had been studied, e.g., in the
context of animal and cell movements as a Markovian process
[5,6], i.e., by considering the motion as a series of independent
draws from the step-length and turning-angle distributions for
each step. While the focus of prior studies has been more on
the asymptotic diffusion coefficient of such random walks,
the short-time behavior is neither thoroughly investigated nor
completely understood.

In the persistent-random-walk model that we study here
a particle moves straight in continuous space in a randomly
chosen direction over a randomly chosen distance and then
changes direction by a randomly chosen turning angle. The
typical trajectories of the random walker depend strongly on
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the chosen turning angle and distance distributions. For small
values of the angular change the new direction will be strongly
correlated with the old direction, introducing a directional
memory into the model without changing the Markov property
of the process. The emerging intermittent directional bias is
controlled by the characteristics (mean, width, asymmetry,
etc.) of the turning angle distribution and the probability with
which the direction is unchanged, i.e. the processivity. The
bias decays with time after a few turns and the directions of
the particle motion become asymptotically randomized.

Memory effects have also been included in other random-
walk models. In fractional Brownian motion [7], sub- or su-
perdiffusive motion is observed asymptotically. In continuous-
time random-walk (CTRW) models [8], for example, true
non-Markovian effects can be implemented via broad waiting
time distributions which lead to a subdiffusive dynamics
of the walker. Although these approaches are conceptually
very exciting, a direct comparison to experimental results
is sometimes difficult. In case of intracellular transport, for
example, spatial confinement as well as a finite observation
time imply that the asymptotic behavior of the walker is not
accessible.

Here we develop a general analytical framework to study
persistent random walks over the whole range of time scales.
The goal is to clarify and disentangle the combined effects
of self-propulsion p and the stepping strategy of the walker,
consisting of its step-length F(£) and turning-angle R(¢)
distributions. The method enables us to analytically determine
the time evolution of arbitrary moments of displacement.
Using this approach, the second moment, i.e., the mean-square
displacement, has been recently analyzed [4], revealing a va-
riety of signatures of anomalous diffusion on short time scales
even in the absence of viscoelasticity, traps, or overcrowding.
These elements were frequently identified in the nature of the
biological environments and received considerable attention
as the possible sources of subdiffusion [9].

An alternative way to interpret the model and its outcome
is to consider the motion on complex networks, such as motor
proteins on the cytoskeleton. These motors have an effective
processivity p (i.e., atendency to move along the same filament
[10-12]) and may switch to a new filament at the intersections
of the network. From a coarse-grained perspective, one can
describe such motion by a persistent random walk on the
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nodes of the network, thus, F(£) and R(¢) represent the
distributions of the segment length ¢ between neighboring
intersections and the angle ¢ between intersecting filaments,
respectively. Note that the cytoskeleton is a dynamic network
due to the underlying growth and shrinkage of filaments,
thus, the structure on which the transport takes place often
changes. This justifies the relevance of the proposed stochastic
approach, where the network structure is always implicitly
given.

Our analytical approach provides a recipe to obtain any
arbitrary moment of displacement, yet we extend the calcula-
tions to the third and fourth moments, which are of particular
interest, e.g., in the evaluation of the skewness and kurtosis, or
to obtain the variance 6,2 = (r*) — (r2)? (and thus the standard
error) of the mean-square displacement (MSD) of a persistent
random walker. 0,2 is also a useful quantity for estimating the
first moment (r) of the net displacement: In the absence of an
exact analytical solution for (r), an approximate expression
(ry ~ /{F2)(1 — %:T;z) was proposed [13] by means of a
Taylor expansion of the square-root function. The asymptotic
behavior is, however, shown to follow (r) = %\/n (r?) [14].

We first introduce the general approach to obtain arbitrary
moments of displacement. Next, an analytical expression is
derived for the special case of the mean-square displacement in
two dimensions. This part is the full exposition and expansion
of the results presented in Ref. [4]. Then we clarify the
similarities and differences between the results in two and three
dimensions for persistent walks which are symmetric around
the previous direction of motion and briefly discuss the case
of asymmetric turning-angle distributions in two dimensions.
Finally, the calculations are extended to higher moments and
cumulants of displacement, and the probability density of
the position of the random walker and its time evolution are
investigated. The paper is organized in the following manner:
Section II contains the description of the master equation
formalism for the persistent motion of random walkers in
two dimensions. In Sec. III, we discuss symmetric persistent
motions in three dimensions. The analytical predictions for
MSD are compared with simulation results in Sec. IV. The
calculations are extended to higher moments and cumulants of
displacement in Sec. V, and the results are compared with
simulations. We investigate the parameter dependence and
time evolution of the probability distribution of the net distance
from the origin in Sec. VI. Moreover, the coupling between
longitudinal and perpendicular transport is briefly discussed,
and an analytical expression is obtained for the probability that
the direction of motion after n steps makes an angle o with the
current direction of motion. Section VII concludes the paper.

II. MODEL

We consider the motion of a self-propelled particle as a
persistent random walk consisting of steps of different lengths
and orientations. Here a two-dimensional motion is introduced
and the extension to three dimensions is discussed in the
next section. The stochastic motion is described in continuous
space and discrete time as follows: At each time step, the
particle takes a step of length [ along either its previous
direction with probability p or a newly chosen direction with
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FIG. 1. (Color online) Trajectory of the walker during two suc-
cessive steps.

probability s = 1 — p, as shown in Fig. 1. Thus, p represents
the self-propulsion of the particle. We assume probability
distributions R(¢) and JF(£) for the rotation angle ¢ =6 — y
and the step length [ of the walker, respectively. The following
master equation expresses the evolution of the probability
density P,(x,y | 0) for the particle to arrive at position (x,y)
along the direction 6 at time step n:

Po(x,y|0)=p / dlF () P,(x — £cos(8),y — £sin(0) | 9)

dy R(0 —y)

—7T

—f-s/dﬁ}'(é)
X P,(x — €cos(@),y — £sin(0) | y). (1)

The terms on the right-hand side of the above equation
correspond to persistent motion with probability p and turning
with probability s. One can obtain arbitrary moments of
displacement since they are accessible by the derivatives of
the Fourier transform of P,(x,y | €), which is defined as

P.(@|m) Ef de eimf’/dy/dx TP (x,y 1 6). (2
The arbitrary moment (x*' y*2) is given by

(xk‘ykz),, = /d@/dy/dx xk‘yklP,,(x,y | 0)

kth P (wy,wy | m=0)

Kia K
dwy' dwy

— (_i)kl +ka

(@x,©,)=(0,0)
3)

To study the diffusive behavior of particles one deals with
the first and second moments of P,(x,y | 8), namely (x), (y),
(x?), and (y?). Thus, we first focus on the derivation of these
quantities in the following. The same procedure is followed in
Sec. V to obtain higher moments of displacement. A similar
Fourier-Z-transform technique was applied to study diffusive
transport of light in foams [15]. The first two moments along
the x direction are given by
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Similar expressions can be written for (y) and (y?
transforming Eq. (1), we find

). Fourier

(o]

2

k=—00

x [p+ s R(m +k)]/d€.7:(€)fk(w£)i|,

Poii(w,a|m) = I:ike_ikaP,,(w,a | m + k)

(5)
where Jk(Z)—z,,,kf do e'2¢%=k0 s the kth order

Bessel’s function and R(m) = fin d¢ €™ R(¢)is the Fourier
transform of the rotation angle distribution R(¢). One can
expand P,(w,« | m) as a Taylor series,

Qo |m) + iw (£) Q1 ule | m)
Lw? (€%) Qo e |m) + - - -, (6)

with (€) and (£?) being the first and second moments of the
step-length distribution F(£). From Egs. (4) and (6) we obtain
the moments in terms of the Taylor expansion coefficients

Qi nla | m):
= /dZ]—"(E)E 01,0010)= () 01,010,

= [aeror Ql,n(%‘0> =<z>Q1,n<%

(x%), = / deF(0) > 0r,(00) = (£%) 02,(0 | 0),
= / At F(t) ¢ Qz,n(% '0) = () Qz,,.(% 0).
(7)

By Taylor expansion of both sides of Eq. (5), one can collect
all terms with the same power in w, leading to the following
recursion relations for the Taylor coefficients Qg ,(ct |m),

Q1.a(c|m), and Q3 ,(cr | m):
Qont1(a |m) = Qouler|m)[p + s R(m)], ®)
Qrasi(e|m) = Quale |m)p + s R(m)]
+ 3{€" Qon(a |m — DIp + 5 R(m — 1]
+e Qo (e |m+1)[p+sR(m+ 1)1},

Py(w,a|m) =

{x),

0),
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1
Qo nti(a|m) = [5 Qonla|m)+ Qo (x| m)i| [p +sR(m)]

(0)?
RG)
+e Qe | m+ Dlp +sRm + 1]}

{e"“Q1ale|m—1D)[p+sRm—1)]

+ =" Qg (| m —2)[p + s R(m —2)]

4>|~4>~

e 5 Qo |m+2)[p+s R(m+2)].
(10)

The coupled linear equations (8), (9), and (10) can be solved
by means of the z-transform technique. The z transform G(z) of

+

a function G,, of a discrete variable n = 0,1,2, ..., is defined
as
(o]
GR) =) Guz" (an
n=0

By applying the z transform to Egs. (8)—(10), one obtains a
set of algebraic equations for Qo(z,« |m), Q1(z, | m), and
0>(z,a | m) quantities (see Appendix A).

A. The quantities of interest

The main goal is to evaluate (x),, (y),, (xz)”, and (yz)”,
which are given in terms of Q; ,(« | m) quantities in Eq. (7).
Here we derive (x), and (x?) , and a similar approach can be
followed to obtain (y) and (y?),. The z transform of Eq. (7)
leads to the following expressions in z space:

(z)—Zz €) Q1,01 0) = (£) Q1(2,0 | 0),

() = Zz—"wz) 02.,(010) = (£

n=0

) 02(z,010). (12)

From Egs. (12), (A2), and (A3), one obtains the first and
second moments of x in the z space [see Eqs. (B1) and (B2) in
Appendix B]. The last step to get the moments (x) and (x2) in
real time is the inverse z transforming of the z-space moments
[i.e., Egs. (B1) and (B2)]. By introducing A; = p + s R(i), the

)] resulting moments are
J
= (¢ 010+ Y Y P R C) 01 A =4 13
(x), = {€) Qrn=000 | )+7Q0,n=0( | =1) ,11_A71+7Q0,n=0( | 1) 1A (13)
»62 _ n _ n
(), = () Q=00 10412 00200 10) 4 (67 Q1 00 | ~D)A 15—1 +(02Q10ol0 | DA, 1 L
(0)? AMAS+ASA  —D+AL—A (02
L Qon—0(0] =2)A 1 A L Qon—0(0]2)A, A,
+ > Qon=00]-2)A 1A X A —A)A._DA—AD > Qo.n=0(012)
ATA,+ANA, — D+ A, — A, ()2 ool g AnzAmAn—1 A Angn-l
A, —A)A -—Da_ay T 2 Q= )[ T a—Aa T T Ta—ay ]
EZ 1— A" EZ _ AN
+ 00001 24 =2 + 000124, (14)
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B. Isotropic initial condition

For the isotropic initial condition Py(x,y | §) = 5-8(x)8(y), one finds from Eq. (2) that Py(@|m)=5- [ df ™0 =310n),
Then, using the expansion equation (6) for w = 0, it can be seen that the only nonzero Q quantity is Qg ,-o(x|0) =1

(for m = 0). Therefore, Eq. (14) leads to

and Eq. (14), after replacing s with 1 — p, reads

(x%),

0, (15)

_ n@{k [p+R(1) — pR(D)]
2 (1= Il =R(D)]
(0)? [p+R(=1) = pR(=D)]

U R P+ RO = PROI = 1)

[p+R(=D—pR(=D]I } (0 [p+R(1) = pR)]
(I-pIl=R(=D)]

+— {lp+R(=1D—pR(=D]" =1}, (16)

2 (1-pl1-REDP

with A = (£2)/(£)? being the relative variance of the step-length distribution. The y component of the mean-square displacement
(y*), has the same form as shown in Eq. (16) due to symmetry. Therefore, one obtains (r2), = (x2), + (¥?), =2(x?),.

C. Long-time behavior

From Eq. (16) in the limit of long time (i.e., n— 00) one obtains the asymptotic mean-square displacement as

[p+R1)— pRO)]
2 " Y/ 2 ~ A
)/ (0) n{ T =R

[p+R(—1)—pR(—1)]} P+ RO —-pRA)]  [p+R(=D—pR(=D)]
(I=p)1-R(-1)]

(1= p?[l =R(=DP
a7

(1—p?[1-=RDPF

Assuming that the particle moves with a constant speed v during the ballistic parts of motion, the elapsed time after n steps is

T = n(£)/v. The diffusion constant D is related to (r2), as

(r?), = 4D, (18)

thus, we find

D=——1A

4

D. Turning with left-right symmetry

The distribution R(¢) reflects to what extent the directions
of the successive steps are correlated. The analytical method
presented in this section allows us to handle an arbitrary
function R(¢); however, we are particularly interested in the
distributions with equal probabilities to turn clockwise or
anticlockwise. This implies that R(1) = R(—1)(=R). The
asymmetry of the turning angle with respect to the arrival
direction is quantitatively reflected in the value of R which
ranges between —1 and 1, with zero denoting a uniform case
and negative (positive) values corresponding to a higher chance
of motion to the near backward (forward) directions in the next
step. When left-right symmetry holds the imaginary part of
R(m) vanishes, thus, R becomes

R= d¢ cos(¢) R(¢), (20)

-7

and Eq. (16) reduces to

() —lnw)z[x —2(”+R_pR)]
"2 1= p)1—R)
» (P+R-PR)

m[(p—}—R—pR)" —1]. 2D

v(f) { n [p+R1) - pR()]
(I =p)1-RD)]

[P+R(—1)—PR(—1)]} (19)

(I-p)1-R(-1)]

III. EXTENSION TO THREE DIMENSIONS

The analytical approach of Sec. II can be straightforwardly
generalized to the persistent motion in three dimensions by
introducing the probability density P,(x,y,z | ¢,¢) for the
particle to arrive at position (x,y,z) at time step n along the
direction characterized by the azimuthal and polar angles ¢
and ¢, even though the calculations for the general motion in
three dimensions are quite lengthy. However, the processes
with symmetric turning-angle distribution are of particular
importance since usually the rotational symmetry holds in
biological applications. Thus, we restrict ourselves in this
section to the turning-angle distributions with cylindrical
symmetry with respect to the incoming direction. This is the
three-dimensional analog to those processes in two dimensions
which obey left-right symmetry.

Similarly to the 2D case, we introduce R(¢) as the
probability of turning with angle ¢ with respect to the incoming
direction (see Fig. 2). The polar angle ¢ is supposed to
be uniformly distributed over the range [0,27]. Note that,
in contrast to the 2D case, the normalization condition of
R(¢) in 3D requires an integration over all possibilities of ¢,
ie., fon R(¢) sin(¢)d¢ = 1. Here, again, the corresponding
Fourier transform of R(¢) is real. Since every two successive
steps lie in a plane, as shown in Fig. 2, one can intuitively
write the same two-dimensional master equation [Eq. (1)] to
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2D 3D

FIG. 2. (Color online) Illustration of symmetric rotations with
respect to the incoming direction, in two (left) and three (right)
dimensions.

describe the motion in three dimensions. By solving this master
equation, one gets a similar expression for (x?) as for the 2D
solution presented in Eq. (16) in the case of R(1) = R(—1),
even though with different prefactors:

2 —
G
3 1-=pA=8)
2(0)> (p+E—p&)
3 (I—pP-¢&y?

Here £ is the real part of the Fourier transform of the rotation-
angle distribution

[(p+E—-p&E'—1]. (22)

g =/O d¢ cos(¢) R() sin(e). (23)

Finally, one can obtain the total mean-square displacement
(r?), = (x3), + (%) + (z%),, which has the same form as in
2D, only R is replaced with &:

2 2 2(p+E&—pé)
(r )n —n<€> |:)L+—(l—p)(l—5)i|

2(p+E—p&)

2—
O T T ra—er

[(p+E&—pE)' —1]. (24)

IV. SIMULATION RESULTS FOR MSD

In this section we compare the analytical predictions with
the results of extensive Monte Carlo simulations obtained from
the same step length F(£) and turning-angle R(¢) distributions
and self-propulsion p. The formalism introduced in Secs. II
and III enables us to handle any arbitrary function for R(¢) and
F(£); nevertheless, we restrict R(¢) in this section to symmet-
ric distributions along the incoming direction for simplicity
and because of its practical applications in biological systems.

We first investigate the overall behavior of the mean-square
displacement for different values of A, p, and R. A is a
measure of the heterogeneity of the network structure or the
diversity of the step sizes, and R quantifies the anisotropy
of the structure or the asymmetry of the turning angles
of the walker. The characteristics of the F(£) and R(¢)
distributions can be considered as the stepping strategy of
the random walker which may be tunable externally (e.g.,
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FIG. 3. (Color online) Time evolution of the mean-square dis-
placement (r?) scaled by n for different values of A, p, and R. The
solid lines correspond to analytical predictions via Eq. (21), and the
symbols denote simulation results.

by controlling the external agitation imposed on a driven
granular system [16]) or internally (by controlling the strength,
density, and spatial arrangement of obstacles in the system
or by adjusting the underlying structure of the environment
such as a porous medium [17]). p is the self-propulsion of
the particle (equivalently, the processivity or persistency of
the walker). The case p =R =0 and A =1 corresponds
to a simple diffusion (see Fig. 3). When p and R are both
positive, they cooperate to send the walker to the near forward
directions more frequently, resulting in superdiffusion at short
time scales. If R is negative, it competes against p, which
may lead to sub-, normal, or superdiffusion. At the extreme
negative value of R (i.e., R— — 1), an oscillatory phase
can be observed where the particle experiences a nearly
back-and-forth motion [4].

It can be seen from Fig. 3 that the asymptotic behavior of
all curves is diffusive. This is due to the fact that there is no
preferred direction in the system and the effective correlations
which exist between successive step angles are short range.
The crossover time 7, to asymptotic diffusion can be estimated
by balancing the linear and exponential terms in Eq. (21). In
Fig. 4(a), n. is shown as a function of self-propulsion for
several values of R and A. Increasing p and/or R delays the
crossover, while the walker gets randomized more quickly for
strong heterogeneities. The asymptotic diffusion coefficient
varies by several orders of magnitude with control parameters
p, R, and X [see Fig. 4(b)].

A remarkable outcome of the analytical formalism is
that the anomalous diffusive motion of the particle is fully
described by the self-propulsion and the characteristics of
the step-length and turning-angle distributions, namely the
first two moments (£) and (¢2) of F(£) and the Fourier
transform of R(¢). Therefore, one expects that stepping with
different distributions but with the same key characteristics

062715-5
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FIG. 4. (Color online) (a) The crossover time n, to the asymptotic
diffusive regime versus self-propulsion p. (b) The asymptotic
diffusion coefficient D in terms of self-propulsion p (light gray
curves) or anisotropy R (dark gray curves). The solid, dashed, and
dotted lines correspond to A = 1,2,5, respectively.

mentioned above should lead to the same results, independent
of the functional form of the distributions. To verify this
finding by simulations, we first choose an isotropic distribution
R(p)= % and compare two different step-length distributions

with the same (£) and (£?) moments. As shown in Fig. 5,
the simulation results match remarkably for an exponential
function F(£)=e'~* and a uniform distribution F(¢) =
H(E = i) £ Hlbwax = O =1 [ f () s the Heaviside step function],

Limax — €min
both with (¢) = 2 and (£2) = 5.

Next, we choose a given step-length distribution [either
F(£) = 8(£—1)or F(£) = e' ~*] and compare three different
turning-angle distributions: a uniform function R;(¢) = %,
a motion restricted to left or right directions R,(¢p) =
%[8(4& +m/2)+46(¢p —m/2)], and a motion restricted to for-

ward or backward directions R3(¢) = %[8((]5) +8(¢p — m)].

10 T Vo)
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FIG. 5. (Color online) Time evolution of (r?) for two different
distributions F(¢) with the same moments (£) =2 and (£?) =
5 (A=1.25). Inset: Comparison between the exponential dis-
tribution F(£) =e'~¢ (£ € [1,00]) and the uniform distribution
F(o) = H-tomt Hlns —O=1 (p 1) = 0.268, £y = 3.732).

Lmax — £min
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FIG. 6. (Color online) (a) Mean-square displacement (r2) vs n
for three different distributions R(¢) with R = 0 given in the text.
The step-length distribution is chosen to be either F(£) = §(£ — 1)
(with p = 0) or F(£) =e'~* (with p = 0.9). Insets: The possible
directions of motion at the next step for each R(¢). (b) A few sample
distributions R(¢) with R >~ 0.4 (top) and R ~ — 0.4 (bottom).
The dotted lines show the arrival direction and the arrows indicate the
possible directions in the next step, with length being proportional to
the probability.

All these examples correspond to R = 0, i.e., on average,
they have no preference for forward or backward motion.
Figure 6(a) reveals that there is a perfect agreement between
the simulation results obtained for these different turning-angle
distributions. One can also generate positive or negative values
of R from different R(¢) distributions. Several examples are
shown in Fig. 6(b) for R >~ 0.4 (or R >~ — 0.4), which all lead
to the same diffusive motion.

So far, only symmetric distributions have been studied.
Now we briefly investigate turning-angle distributions which
are asymmetric with respect to the incoming direction. Let us
consider two-dimensional walks for simplicity. An asymmetric
R(¢) in this case means that the left-right symmetry of turning
is broken, leading to (anti-)clockwise spiral trajectories.
A comparison is made in Fig. 7 between the trajectories
obtained from three different uniform distributions over the
range (Pmin,Pmax): Ri(¢) is an isotropic function corre-
sponding to anormal diffusion [R = R(+ 1) = R(—1) =0],
Ry(¢) is a symmetric function (¢pin= — 7/6, Pmax =7/6)
which results in R = R(+1) = R(—1) >~ 0.95, and R3(¢)
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FIG. 7. (Color online) Typical trajectories at p = 0 and A = 1 for
isotropic (left), forward symmetric (middle), and forward asymmetric
(right) turning-angle distributions, after the same number of steps.
The arrows show possible directions of motion in the next step.

is an asymmetric distribution over the range [ — 7 /6,7/3]
which creates clockwise spirals. Here R(+ 1) >~ 0.87 4+ 0.23
and R(—1) =~ 0.87—i0.23, thus, R(+ 1) # R(—1). The
asymptotic diffusion coefficient [Eq. (19)] is, however, a
real number D/v(€) = %[)\ + 2%] in the absence of
self-propulsion, with A and B being the real and imaginary
parts of R(%1). We obtain D/(v{£)/4) ~ 1.0, 43.4, and 2.7
for Ri(¢), R»(¢), and R3(¢), respectively, in agreement with
the simulation results.

V. HIGHER MOMENTS AND CUMULANTS

The procedure described in Sec. II enables one to obtain
any arbitrary moment of displacement. To better clarify the
proposed recipe, we extend the calculations to the third and
fourth moments in this section, which are sufficient to derive
up to the fourth cumulants of displacement and obtain the

J

(e

3
O3 n41(a|m) = [5 )

(o) (%)
(£%)

| W

X

fmm+wum+m+[

Ql,n(a | m) + Q3,n(a |m):| [P +s R(m)] + |:
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skewness and kurtosis of a persistent random walk which are
measures for the asymmetry and peakedness of the probability
distribution, respectively. We also compare the analytical
predictions with Monte Carlo simulation results.

From Eq. (3), the third and fourth moments of the
displacement are given by

83Pn(wx’wy |m =0)

(%), = (—=iy e (25)
Wy (@.,)=(0,0)
and
. a4Pn(vaw |m =0)
(xh, = (= o (26)
Wy (@:,0,)=(0,0)

Moreover, by expanding P,(w,c |m) up to the fourth-order
terms in w one finds

Py(w,a|m) = Qo (e |m)+iw(l) Q,(a|m)

: .
— sz (€%) Q2 n(a | m)—’gaﬁ () Q3.(c | m)

1
o (€ Qa (e |m) + - - -, (27)

T

which results in the following relations between (x3) or (x*)
and the Taylor expansion coefficients:

(x?), = [ deF)6 Q3,(0 | 0) = (£3)03,(0 | 0),

(xh, = / dCF)L* Q4,01 0) = (£*)Q4,(0]0). (28)

Then, by following the procedure introduced in Sec. II, one
obtains recursion relations for Q3 ,(« | m) and Q4 ,(c | m) as

(e
(€%)

1
Qo pla|m+1)+ ZQo,n(Ol | m+ 1)}

1 3.
Qz,n(alm—l)-i-ZQo,n(Ollm—l)] X Ee’“[p—irsR(m—l)]

2
)02 3 0)(¢? 3 5
+ [( (>£(3) ) Q1 a(e | m+ 2):| Ze_z’a[l? +sR(m +2)] + [% Qe |m— 2):| Zez”"[p + s R(m —2)]
+ %e’“”Qo,n(a |m+3)[p+s Rm +3)] + éem Qo |m =3)[p+sR(m —3)] (29)
and
3 (%)
Qant1(a|m) = [g Qo.nlo [m)+ 3WQ2,n(a [m)+ Qan(c Im)] [p+sR(m)]
3 3
+e_i°‘|:2<z<>£<f) L0su@imt 0+ 5D 0, @ imt 1)}[p+sR(m+ D)
A 263 3 ()3
+e’°‘[2< P Ontalm =1+ 3 01 im - 1)][p+s7z<m =

[ 30627 !
e S Qan(@ I m+2) + 2 Qonler | m +2) |[p +5 Rm +2)]

2 (%
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ria 3 (€%)? 1
+e 2 )an( |m_2)+ZQ0,n(a|m_2) [p+sR(m —2)]
() (€

—aJlx ) > la(ﬁ)(£3>
2e " Q‘”(“'m+3>[P+sR(m+3)]+—3 )

e Qo (| m —4)p+sRm —4)]. (30)

Quaa|m—=3)[p+sRim—3)]

1 1
16 e Qo (@ |m+Hp+sRm+4)]+ — T

The corresponding algebraic equations for Q3(z,« | m) and Q4(z,« | m) after the z transform are given in Appendix A. From
Eq. (28), the third and fourth moments of x in the z space can be obtained as

) = Zz*" (€%) 03,4(0 1 0) = (€%) Q3(z,0 | 0),

Y@ = Zz—" (€%) Qan(0 1 0) = (£%) 04(z.0 | 0). (31)
n=0
By inserting Q3(z,0 | 0) and Q4(z,0 | 0) from Egs. (A4) and (AS), and inverse z transforming of the z-space moments, we finally
obtain (x*), and (x*), , which are very lengthy equations. However, they fortunately reduce to simpler forms when we consider
the most interesting cases. For example, the isotropic initial condition leads to

(x?), =0, 32)
and if we further limit the motion to a constant step size, 7 (£) = §(¢ — L), and turning with left-right symmetry, the resulting
(x*) reads

ol = -3, 2(A, 4+ A)PATTH! 4A™ (n+DIA,GBA, + 1) — A,(A, +3)]
ThTg (1—A)%A, —A)? (1—A)%A, —A)

N 4AH 82+ A)A%A, +[A (TA, +4)+1]A% +[A (3A, +8) + 1]A?}

(1—A)A, —A,)?
(n+ DA+ AD[-3A%+ (A, =3)(5A, +DA, + 124, +7] 2+ DH(n +2)(1+ A,
_l’_ —
1-A)1-A4) (1-A)?

L 2AA(ATH18A, +24) — AXA, + DA (A, — 54, +231+5) + A, (A, +2)[(4, —6)4, —10]+104, =3

(1—A)*1—A,)? ’

(33)
with

A = p4sRU) = pobs [ do cos) R,

-7

A =p+sRQ2) = p—l—s/ d¢ cos(2¢) R(¢).

The analytical prediction for (x4)n via Eq. (33) is in agreement
with the simulation results as shown in Fig. 8. It can be seen
that (x*) contains similar information as the MSD concerning
the anomalous diffusive motion of the persistent walker.

The cumulants are often used in the statistical analysis as
an alternative to the moments of the distribution. In general,
the following relations hold between the n-th cumulant «,, and
the moments (shown up to the 4th cumulant):

(x),

{(x%) FIG. 8. (Color online) Time evolution of the fourth moment
K3 = (x3) —3(x2)(x) +2(x)3, of displacement for different values of A, p, and R. The solid

(x)

lines correspond to analytical predictions and the symbols denote
simulation results.

ks = (xh — 403 (x) =322+ 12D (x)2 —6(x)*. (34)
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FIG. 9. (Color online) The fourth cumulant of x (in units of (£*))
in terms of n for a random walk with p = A, = A, = 0. Inset: The
corresponding fourth cumulant of the net displacement r vs n.

If the walker starts from the origin with the isotropic initial
condition, the odd moments equal zero and the cumulant-
moment relations reduce to

k1 =0,

K = (x%),

k3 =0,

Ky = (x*) = 3(x%)>. (35)

In the case of an ordinary random walk with F(£) = 6(¢ — L),
we have p=A, = A, =0, (x?)/L? = n, and (x*)/L* =
2n? —3n, which lead to «4/L* = —3n (see Fig. 9 for
comparison with simulation). Thus, from Egs. (21), (33), and
(35) one can calculate the cumulants, from which other useful
quantities such as the skewness 8; and kurtosis 8, measures

can be obtained as

— K3 — 0
,Bl - 3/2 - k]
Ky
K4 (x*)
= — = —3. 36
B2 2wy (36)

In Fig. 10, the time evolution of kurtosis is shown for different
turning-angle distributions. For a simple random walk, B,
decreases as —3/2n. Moreover, in anomalous diffusive cases,
B> asymptotically converges to zero since the long-term
behavior is diffusion.

It is notable that the higher moments are influenced by the
details of the shape of the turning-angle distribution R(¢).
While the MSD depends only on R = R(1) (i.e., {(cos¢)),

J
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FIG. 10. (Color online) The kurtosis measure $, in terms of the
step number n for different turning-angle distributions. The lines
correspond to analytical predictions via Eq. (36) and the symbols
denote simulation results.

(x*) is a function of both R(1) and R(2) (i.e., (cos¢) and
(cos 2¢)). Thus, looking at the behavior of the higher moments
would reveal the underlying differences between turning-angle
distributions, which are not visible from the MSD results. For
example, R equals to zero for the three different distributions
R(¢) introduced in Fig. 6(a), thus, their MSD is the same.
However, their R(2) is 0, —1, and 1 for R;(¢), Ry(¢), and
R3(¢), respectively. Therefore, one obtains different analytical
expressions for their higher moments such as (x*).

Besides the components of the displacement, the net
distance r of the walker from the origin is also a quan-
tity of interest. For a persistent walk with an arbitrary
turning-angle distribution, so far there has been no exact
closed-form expression for (r). For approximate expressions
(r)%,/(rz)(l—%%) (short-time [13]) and (r)~3/m(r?)
(asymptotic [14]), one deals with the calculation of (r?)
and (r*). The second moment (r?) can be obtained from
Eq. (21) since (r?) = (x®>+y?) = (x?) + (y?). The fourth
moment reads (r*) = ((x2 + y?)?) = (x*) +2(x2y%) + (vH).
In general, (x?y?) # (x2)(y?) [see Fig. 11(a)]. In order to
calculate (x2y?), one can start from Eq. (3) and follow the
analytical procedure as explained for arbitrary moments {x').
For example, a simple random walk with p = A, = A, =0
and A = 1 leads to (x*y?) = n® — gn versus (x?)(y?) = {n’.
Finally, the analytical form of (r*) for a walker with constant
step size L and isotropic initial conditions is obtained as

1
ry, = - L*

((3A1 +Dn’+ (A + D —Dn
4

1— A4,

—4

4A1A2 [Az(A1 +A2)(Al — A’l”l) + (A, - Al)(A2 - A:‘)]

(1-A)A—A)A, —A)?

A (1= A")n+ A2Gn—n?) = 2A% (A" +1) + A, (n — 1) + 0.5A,(A, + D(n* —n —2)

(1—A))?
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FIG. 11. (Color online) (a) Comparison between {x2y?) (solid lines) and (x?){y?) (dashed lines) (both presented in units of (£*)), obtained
from the simulations where the short-time motion is sub- (R = —0.9), normal (R = 0), or superdiffusion (R = 0.9). (b) (r*) vs n from

simulations (symbols) or via Eq. (37) (solid lines).

—2A"F 2 4 AT 4 2A% — A+ 30— 9) — AX(n —2)+ A, (n — 2

2(A, + DA, (n — 1)

4
+ (1-A4)°

(1 - Al)(l - Az)

+4A12{A1[2A1(A1 +2)+2n—1]-2n+5} —[A,(2A° +4A, +3) + 1]A" 24+ 1)(A2—A"HY)

(1—A)*

(I—-A)1—A)?

. [24, — A, (A, + D](A> = A" )n — A’(n — D24, — A, (A, + 1)]

(1—A)A,—A)

4A A A +D[A-AD)m -2 — (A —A"Y)] )

224, — A (A, + DIA"H 4 A4,A, (A, — A7)

(1—A)3A, —1)
8A[2A, — A (A, + 1)](A13 - A7+2)

44, A% A +A)(A, — A"

(I—A)XA,—A)

(I1-A)YA,—A)

which is confirmed by the simulation data, as shown in
Fig. 11(b). When p is set to zero, Eq. (37) reduces to the
expression recently proposed in Ref. [18], even though our
formalism allows for obtaining (r*) in the more general case
of p#0 and even X # 1 (i.e., variable step lengths) and
anisotropic initial conditions. One can similarly calculate the
cumulants and relative cumulants such as the kurtosis for the
net displacement r. For example, one finds that —k4 grows as
n%+n in the simple case of p = A, = A, = 0, as shown in
Fig. 9 (inset).

VI. PROBABILITY DISTRIBUTIONS OF THE NET
DISTANCE AND TURNING ANGLE AFTER n STEPS

In this section, we show how the probability densities of
the position of the random walker and its orientation evolve
with time. First, we study the probability distribution P(r) of
the distance r of the persistent random walker from the origin
in simulations. For a simple random walk in 2D, the shape of
the distribution at step n approaches

2
,

e oD

P(r) ~ (38)

aDn

(37

)

in the large n limit (D is the diffusion constant and
o = 4(¢)/v). However, the anomalous motion of the persistent
walker at short times alters the shape of P(r) as well as its
propagation speed. In Fig. 12(a), P(r) is plotted at different
values of n for p = 0 and three turning-angle distributions
with R = —0.9,0, and 0.9. From Eq. (38) one expects that
all normal-diffusion data collapse onto a universal curve when
P(r)+/n is plotted versus r/+/n (see the inset). However, the
distributions of sub- and superdiffusion do not follow such a
master curve at short times. Indeed, P(r) is narrower and the
peak shifts to the left (right) for subdiffusion (superdiffusion)
[see Fig. 12(b) (left)]. In the extreme limit of localization or
ballistic motion, P(r) willbe a § functionatr = Qorr = n{f),
respectively. A similar comparison at long times reveals that
P(r) broadens slower (faster) than a simple random walk
in the case of subdiffusion (superdiffusion). The shapes are,
however, expected to follow Eq. (38), as the asymptotic motion
is diffusive with different diffusion coefficients obtained from
Eq. (19). When scaled by V/Dn, one finds

(1—A)%A,—A)?
(

2r 2

~ aD
e Dtu’

P(r)vDn ~

(39)

o n
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FIG. 12. (Color online) (a) Probability distribution of the distance r (in units of (£)) from the origin at n = 60,190, 1400, and 4400 (solid,
dashed, dash-dotted, and dotted lines, respectively), separately shown for persistent walks with short-time sub- (left), normal (middle), and
superdiffusive motion (right). Insets: Collapse of P(r)s/n vs r/+/n. (b) Comparison between persistent walks with short-time sub- (dashed
lines), normal (dash-dotted lines), and superdiffusive motion (dotted lines) at the early stages of the walk (left) and after a long time (right).
Insets: P(r)+/D n in terms of r / VD n, where D is the asymptotic diffusion coefficient. The solid lines are obtained from Eq. (39).

thus, we achieve a data collapse for P(r)\/m versus r/ ~Dn
in the asymptotic regime of the persistent walks when the
motility is purely diffusive, as shown in Fig. 12(b) (right).
For random Walks in 3D Eq. (38) should be replaced with

P (}" ) =~ W@ OtD" .

Flnally, we investigate how the introduced angular corre-
lations between successive steps weaken over time. This is
reflected, e.g., in the evolution of the shape of the probability
f, () that the direction of motion after n steps makes an
angle o with the current direction of motion. An ordinary
random walk is memoryless meaning that the walker gets
randomized immediately, thus, f, () remains isotropic over
the whole range of time. However, f, (o) is expected to exhibit
anisotropic shapes at short times for persistent walks, with a
gradual transition towards isotropic distributions in the limit of
large n. Let us consider the case p = 0 for simplicity, i.e., the
walker turns to a new direction at each step. The probability
[, (o) reads

S (@) = /-~-/d¢1--~d¢n R(¢1)
- R(9n)é(¢1 +- -+ — ),

where ¢; denotes the turning angle at step i. Using the
discrete Fourier transform of the delta function §(x —a) =
=302 o =@ one obtains the following expression for

(40)

the walks which are symmetric with respect to the arrival
direction:

fle)=o— [ +2ZR"(1<) cos(ka)] 1)
=1

In the case of o« ==+m/2, f (£m/2) reflects the chance of
turning to a perpendicular direction after n steps, which can be
considered as a measure of the coupling between longitudinal
and perpendicular transport. Figure 13 shows that Eq. (41) is
in agreement with simulation results.

VII. SUMMARY AND OUTLOOK

A persistent-random-walk model was introduced to study
the stochastic motion of self-propelled particles. By devel-
oping a general master equation formalism and a Fourier-
Z-transform technique it was shown that analytical exact
expressions can be obtained for the time evolution of arbitrary
moments of displacement. The combination of self-propulsion
and characteristics of step-size and turning-angle distributions
lead to a rich transport phase diagram at short times. The
long-time behavior is, however, diffusive since the successive
step angles in the proposed master equation are only indirectly
correlated over a few number of steps. This defines a time
scale between two arbitrarily chosen steps beyond which
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FIG. 13. (Color online) (a) Evolution of the angular distribution f, () of the direction of motion « in the lab frame. The walker initially
arrives along the +x direction. A comparison is made between motions with short-time sub- (R = — 0.9), normal (R = 0), and superdiffusion
(R = 0.9). The lines are obtained from Eq. (41) and symbols denote simulation results. The gray (dotted) lines are guides to eye. (b) Probability
f,(£%) of turning to a perpendicular direction after n steps from simulations (symbols) or via Eq. (41) (dashed lines).

the steps are practically independent of each other. It will (anti-)cross correlations, one could even obtain a stationary
be interesting to enhance the correlation range, e.g., by increment for the mean-square displacement (either sub- or
introducing (anti-)cross correlations between processivity, step superdiffusion) over finite time scales as observed for the
sizes, and turning angles. For particular functional forms of =~ motion in viscoelastic environments.
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APPENDIX A: ALGEBRAIC COUPLED EQUATIONS FOR THE TAYLOR EXPANSION COEFFICIENTS Q;(z,x | m)

Z Qon=ola |m)

Qo(z,|m) = = pts R’ (A1)
2 Qiu=ol@|m) 1, Qoz,alm—D[p+sRm—-1)] 1 _, Qoz,a|m+1D[p+sRim~+1)]
Qielm = Ry T 2° 2= p+s Rm)] e c—lptsrRm) P
Oz | m) = 2 Qon=ola|m) 1 Qoz.a|m)[p+sRim)] @e"“ 01z, a|m—1[p+sRm—1)]
z=[p+sRm)] 2 z—[p+sRim)] () z—[p+sR@m)]
n @e_i“ 01z, a|m+1Dlp+sRim+1)] n leZi"‘ Qo(z,a|m—2)[p+sR(m—2)]
(€2 z—[p+sRim)] 4 z—[p+sRim)]
1 5 Qolz,a |m~+2)[p+sRm+2)]
t3e Z—[p+sRm) ’ (A3)
Oz |m) = 2 Q3 n=0(a | m) n 3 (0)(€*) O1(z,a [m)[p + s R(m)]
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I ée—m Qo(z,a|m+ Dp+sR(m+1)] n Eei“ Qo(z,a|m—1D[p+sR(m—1)]
8 7 —[p+sR(m)] 8 z—[p+sRim)]
L e QoG m A s R |1 g, Qo |m —Ip +5Rim —3)]
8 72— [p+sR(m)) 8 7 —[p+sR(m)]
n Ee,gia (0)(€%) Q1(z, [m+2)[p+sR(m+2)] n Eez“" (0)(€*) Q1(z,a [m —2)[p+sR(m —2)]
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3 l0) Qo m Dipts R+ D] |3 1, (0) Qoealm = DiptsRm =Dl
2 (£3) 2 —[p+sR(m) 27 (%) 7 —[p+sR(m) ’
04z |m) = 2 Qan=ola|m) 3 Qo(z,a|m)[p+sR(m)] (%) (€?) Qa(z,a |m)[p+s R(m)]
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