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We present an efficient Monte Carlo method to simulate reaction–diffusion processes with
spatially varying particle annihilation or transformation rates as it occurs for instance in
the context of motor-driven intracellular transport. Like Green’s function reaction dynamics
and first-passage time methods, our algorithm avoids small diffusive hops by propagating
sufficiently distant particles in large hops to the boundaries of protective domains. Since
for spatially varying annihilation or transformation rates the single particle diffusion propa-
gator is not known analytically, we present an algorithm that generates efficiently either par-
ticle displacements or annihilations with the correct statistics, as we prove rigorously. The
numerical efficiency of the algorithm is demonstrated with an illustrative example.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Kinetic Monte Carlo simulations are frequently used in various fields to analyze the spatio-temporal evolution of systems
consisting of many freely diffusing particles that can collide, react, transform or annihilate. Spatial as well as stochastic as-
pects are important when diffusion is not sufficiently fast to make the system well-stirred and the number of reactants with-
in diffusion range is small. In this case a mean-field description, for instance with a set of coupled reaction–diffusion
equations, is inappropriate. Moreover, in the limit of extreme dilution methods using a discretization of the underlying sto-
chastic reaction–diffusion system, either in time [1] or in space [2,3], become computationally inefficient.

The currently most efficient methods to simulate extremely diluted reaction–diffusion systems are Green’s function reac-
tion dynamics [4,5] and first-passage kinetic Monte Carlo methods [6–8]. In essence they avoid the small diffusion hops of a
conventional random walk or Brownian dynamics simulation by propagating particles over long distances through a se-
quence of large displacements. The latter are generated stochastically according to the exactly known Green’s function
for a freely diffusing particle within so-called protective domains that are free from other particles. The typical size of these
protective domains is inversely proportional to the particle density and the larger these domains are (i.e. the smaller the par-
ticle density is) the more efficient the algorithm is.

In general, during the free diffusion the particle can also be annihilated or transformed with a rate k into a different spe-
cies, in which case the Green’s function is still exactly know. In this paper we address the question how to propagate the
particles when the annihilation rate varies in space and time, denoted as kðr; tÞ. This problem arises for instance in the con-
text of motor-driven intracellular transport, where particles (or cargos) can in addition to diffusion and reaction also attach
to a cytoskeleton filament and move ballistically with a constant speed in the direction of the filament. A continuum descrip-
tion of the diffusive and ballistic modes of motion [11,12] involves the filament density qðr; tÞ which determines the local
rate with which freely diffusing particles make a transition into the ballistic state. In a typical cell the filament density is
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spatially inhomogeneous and thus has to be taken into account during the propagation of particles on large scales. Analogous
examples arise in systems in which the annihilation of particles depends on a spatially inhomogeneous concentration field of
an abundant reaction partner (i.e. whose density is much larger such that a continuum description is appropriate for it).

Green’s function reaction dynamics and first-passage time Monte Carlo methods reduce the simulation of a many-particle
reaction–diffusion system to individual particles that diffuse freely as long as other particles are sufficiently distant (i.e. out-
side the interaction range), and perform a reaction event once a particle pair reaches a minimum distance. Algorithmically
one can ensure free diffusion for instance by estimating the maximum diffusion distance [4,5] until a reaction is scheduled or
by the definition of protective domains for each particle [6–8] depending on the actual arrangement of neighboring particles.
In both cases one then utilizes the free diffusion propagator within predefined domains to generate stochastically a time
when either the maximum distance is underrun or a protective domain boundary is reached. For free diffusion this is
achieved using the analytically known Green’s function, but for free diffusion with spatially varying annihilation rates this
propagator is unfortunately not analytically available.

Thus in this paper we consider a freely diffusing single particle in an arbitrary domain G 2 Rn that can be annihilated with
a time and space dependent rate kðr; tÞ. In general, annihilation means a transition into a different species that is not con-
sidered in the present reduced setup. For a particle initially at time t0 located at r0 2 G this diffusion–annihilation process
is described by the following diffusion–annihilation equation
@Pðr; tjr0; t0Þ
@t

¼ DDPðr; tjr0; t0Þ � kðr; tÞPðr; tjr0; t0Þ; ð1Þ
where Pðr; tjr0; t0Þ is the probability density to find the particle at time t at r 2 G. For arbitrary kðr; tÞ and arbitrary G there is
no analytic solution of Eq. (1) available. In principle this equation can be solved numerically, but in the context of a general
reaction–diffusion system (involving many particles and several particle species) using for instance the first-passage Monte
Carlo method this is unfeasible: Here one needs for each particle hop the whole first-passage time distribution for a particle
to reach the protective domain boundary @G, which is computationally too demanding to be carried out in the innermost
loop of the algorithm.

Therefore we present in this paper an algorithm that samples times t > t0 and positions r for arbitrary annihilation rates
kðr; tÞ and arbitrary domains for which a particle diffusing according to Eq. (1) either (a) reaches the boundary for the first
time (r 2 @G) or (b) is annihilated (r 2 G). In addition, a slightly modified version of the algorithm generates the whole prob-
ability density Pðr; tjr0; t0Þ within G, meaning it solves Eq. (1) stochastically.

The paper is organized as follows: Section 2 defines all probability densities and flows used throughout this paper. Based
on the ideas of [4–8], Section 3 presents an algorithm for the sampling of ðr; tÞ on arbitrary domains G in the case of a spa-
tially homogeneous but temporally varying annihilation rate kðr; tÞ ¼ kðtÞ. Section 4 generalizes this method to spatially
inhomogeneous rates kðr; tÞ, proves its correctness and discusses its efficiency. Finally Section 5 shows an application exam-
ple of this method.

2. Definitions

In this section the probability densities and flows used later on are defined. Let Pðr; tjr0; t0Þ be the probability density solv-
ing the diffusion–annihilation equation (1) within the domain G with boundary @G, possibly partly absorbing, partly reflect-
ing. The particle annihilation generates a probability flow faðr; tjr0; t0Þ out of the system given by
faðr; tjr0; t0Þ ¼ kðr; tÞ � Pðr; tjr0; t0Þ: ð2Þ
The probability flow fbðr; tjr0; t0Þ at the absorbing parts of the boundary at time t at position r 2 @G is given by
fbðr; tjr0; t0Þ ¼ �DrPðr; tjr0; t0Þ � nr; ð3Þ
where nr denotes the outward pointing unity vector perpendicular to the boundary @G at r. Consequently Pðr; tjr0; t0Þ is not
normalized for t > t0. The corresponding probability density qeðtjr0; t0Þ for an annihilation or absorption event is given byZ� �
qeðtjr0; t0Þ ¼ �
d
dt G

drPðr; tjr0; t0Þ ¼ aðtjr0; t0Þ þ bðtjr0; t0Þ ð4Þ

with aðtjr0; t0Þ ¼
Z

G
dr f aðr; tjr0; t0Þ

and bðtjr0; t0Þ ¼
Z
@G

dF f bðr; tjr0; t0Þ;
where dF denotes the surface element at position r 2 @G. Hence, the task is to sample the pairs ðr; tÞ in statistical agreement
to faðr; tjr0; t0Þ and fbðr; tjr0; t0Þ, i.e. the statistic of t will be according to qe.

In the following we also need the probability distribution of a freely diffusing particle PDðr; tjr0; t0Þ without annihilation,
which obeys
@PDðr; tjr0; t0Þ
@t

¼ DDPDðr; tjr0; t0Þ: ð5Þ



398 K. Schwarz, H. Rieger / Journal of Computational Physics 237 (2013) 396–410
The probability density for being absorbed at the boundary for a purely diffusing particle at time t is given by
qD
b ðtjr0; t0Þ ¼ �

d
dt

Z
G

drPDðr; tjr0; t0Þ ð6Þ
and the probability density of the absorbing position r 2 @G under the condition that the absorption takes place at time t is
given by
qD
f ðrjt; r0; t0Þ ¼

rPDðr; tjr0; t0Þ � nrR
@G dFrPDðr; tjr0; t0Þ � nr

: ð7Þ
Using the Gauss’s theorem and Eq. (5) in the denominator, one obtains:
qD
f ðrjt; r0; t0Þ ¼ �D

rPDðr; tjr0; t0Þ � nr

qD
b ðtjr0; t0Þ

: ð8Þ
For spatially homogeneous annihilation rates kðr; tÞ ¼ kðtÞ the annihilation process decouples from all spatial variables,
i.e. the solution of Eq. (1) can be written as
Pðr; tjr0; t0Þ ¼ e
�
R t

t0
kðt0Þdt0

� PDðr; tjr0; t0Þ: ð9Þ
Hence, the probability density of being annihilated at time t under the condition of not being absorbed at the boundary be-
fore for a spatially homogeneous rate kðtÞ is given byR� �
qD
a ðtjt0Þ ¼ �

d
dt

e
�

t

t0
kðt0 Þdt0

ð10Þ
and the probability density of the annihilation position r 2 G under the condition that the particle is annihilated at time t is
given by
qD
n ðrjt; r0; t0Þ ¼

PDðr; tjr0; t0ÞR
G dr0 PDðr0; tjr0; t0Þ

; ð11Þ
which is equal to the probability density of a purely diffusing particle under the condition of not being absorbed.

3. Homogeneous annihilation rate

In this section we present an algorithm that samples times t > t0 and positions r for homogeneous annihilation rates
kðr; tÞ ¼ kðtÞ and arbitrary domains G for which a particle diffusing according to Eq. (1) either (a) reaches the boundary
for the first time (r 2 @G) or (b) is annihilated (r 2 G).

First one should note that for arbitrary domains G and boundary conditions there are no analytic solutions for Eq. (5)
available and it is not possible to sample the quantities qD

f , qD
n and qD

b , defined in the previous section, directly. This can only
be done for a few simple domains G like boxes, spheres or cones in 3d (squares, circles or wedges in 2d). We present first an
algorithm for these cases, which is then used to solve the problem of sampling random pairs ðr; tÞ in arbitrary domains G by
creating a sequence of problems, in which the particle’s movement will be temporally restricted to one of these simple do-
mains G0 with G0 � G.

An efficient way of sampling ðr; tÞ for simple domains is Algorithm 1:

Algorithm 1. KMC 1

Input: r0, t0

Output: r, t
ta  random number according to qD

a ð�jt0Þ
tb  random number according to qD

b ð�jr0; t0Þ
t  minðta; tbÞ
if (ta < tb) then

r random position according to qD
n ð�jta; r0; t0Þ

else
r random position at the boundary @G according to qD

f ð�jtb; r0; t0Þ
end if
return ðr; tÞ

The probability density Aðr; tÞ that the algorithm produces an annihilation at time t at position r is then given by
Aðr; tÞ ¼ qD
a ðtjt0Þ

Z 1

t
dtb qD

b ðtbjr0; t0Þ
� �

qD
n ðrjt; r0; t0Þ ¼ qD

a ðtjt0ÞPDðr; tjr0; t0Þ ¼ faðr; tjr0; t0Þ:
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The probability density Bðr; tÞ that the algorithm delivers an absorption at time t at position r 2 @G is given byZ� �

Bðr; tÞ ¼

1

t
dta qD

a ðtajt0Þ qD
b ðtjr0; t0ÞqD

f ðrjt; r0; t0Þ ¼ fbðr; tjr0; t0Þ:
Consequently, the statistic of random pairs ðr; tÞ generated in this way coincides with faðr; tjr0; t0Þ and fbðr; tjr0; t0Þ and is
therefore correct.

Next we show how Algorithm 1 is used to handle arbitrary domains. Two slightly different methods will be presented.

3.1. Subset method

In [6–8], a kinetic Monte Carlo method for the simulation of reaction–diffusion processes of many-body systems is pre-
sented. It is based on the fact that there are analytic solutions of Eq. (5) for some simple domains G0 and boundary conditions.
Appendix A shows a list with some of these domains in one, two and three dimensions and derives expressions for distri-
bution functions, which are necessary for the usage of the inversion method [13].

If G0 denotes a subset of G with r0 2 G0, the shape of G n G0 will not matter for the particle, as long as the particle has not left G0

for the first time. Hence, we can restrict the description of the particle’s motion to G0 until it leaves G0 for the first time. Math-
ematically we are dealing with a first-passage-problem in G0. Its solution is given by Eq. (5) on G0 according to absorbing bound-
ary conditions at the interior of G and the boundary conditions of G at common boundaries of G and G0 (as far as they exist).

Assuming that we are able to sample all occurring densities, a random pair ðr; tÞ for G0 can be generated, as shown in Algo-
rithm 1. If annihilation takes place (ta < tb), the particle is annihilated before it leaves G0 and therefore it is not influenced by
the restriction to G0. If the particle reaches the boundary of G0 (tb < ta), two possibilities have to be distinguished: For r 2 @G it
reaches an absorbing boundary of G and the algorithm will stop. Otherwise, the particle continues its diffusive motion under
the condition of having been at position r0 ¼ r at time t0 ¼ t. As it is always possible (see Appendix A) for an arbitrary r0 to
find a subset of G where there are all needed analytic expressions available, we can go on this way until the particle is anni-
hilated or absorbed at the boundary of G. The pseudo-code of this is shown in Algorithm 2.

Algorithm 2. KMC 2
Input: r0, t0

Output: r, t
t  t0

r r0

repeat
choose a suitable domain G0 with r 2 G0

ta  random number according to qD
a ð�jtÞ on G0

tb  random number according to qD
b ð�jr; tÞ on G0

if (ta < tb) then
r rand. position according to qD

n ð�jta; r; tÞ on G0

else
r random position at the boundary @G0 according to qD

f ð�jtb; r; tÞ
end if
t  minðta; tbÞ

until (r 2 @G or ta < tb)
return ðr; tÞ
A sketch of the method in a case where the particle is absorbed at the boundary is shown in Fig. 1.

For a given domain G, the efficiency of the method depends on the choices of G0. Ideally, one chooses G0 from the list of
possibilities in a way that maximizes the expectation value of tb. However, it also takes more time to look for this special
subset and eventually calculate the random numbers for this situation. In the cases of a particle in the middle of a circle
(sphere) or in the middle of a square (cube) the random numbers can be generated very fast. Hence, in some situations it
might be better to use smaller domains G0 than in principle possible.

Up to this point, there is no approximation involved, but depending on the shape of @G a problem occurs: If the particle
approaches an absorbing part of the boundary of G, it will always automatically approach an absorbing part of the boundary
of the chosen G0, too, as G0 � G. In consequence, the expectation value of tb will decrease, the stopping condition ta < tb be-
comes more and more unlikely and the time increments in t will become smaller and smaller, if the condition r 2 @G is not
fulfilled. But r 2 @G can only be true, if the intersection of @G and @G0 contains more than just single points. The same prob-
lem occurs for reflecting boundaries of G. As the choice of G0 is limited, we sometimes have to approximate @G by a polygon
in order to avoid a critical slowing down of the algorithm. However, it is important to mention that we can always choose the
accuracy of the approximation by the choice of the polygon.



Fig. 1. Illustration of the method: absorbing boundaries are shown in green, reflecting ones in red. In all situations (a–d) the case ta > tb is sketched,
otherwise the algorithm would stop earlier. Depending on the position of the particle the shape of the chosen domain G0 varies (rectangles and circles). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Maximum distance method

Depending on the shape of @G close to the position of the particle, there is sometimes a better way of propagating the
particle than it is shown in the subsection above. [4,5] introduced this idea for the particle’s short time behavior in the con-
text of particle–particle interaction, but it can be modified for a usage in our context. It is based on the assumption that there
is a maximum distance Dr, which the particle does not reach within a time Dt. Hence, within this time interval Dt, only the
intersection of G with a neighborhood of radius Dr matters. Of course, this assumption is an approximation since there is a
non-vanishing probability that the particle leaves this neighborhood within Dt. However, it is possible to control the accu-
racy by the definition of Dr via a parameter c. We define:
Dr ¼ c
ffiffiffiffiffiffiffiffiffiffi
DDt
p

: ð12Þ
As c increases, it is more and more unlikely for the particle to violate the assumption. More precisely it is even possible to
give an upper boundary for failing the assumption by studying the first passage-process to the boundary of a particle that
starts in the middle of a circle (2d) or a sphere (3d) with radius Dr and calculating the probability wðcÞ for not having reached
the boundary within Dt.

In 2 dimensions we obtain:
w2dðcÞ ¼ 2
X1
n¼1

1
an

1
J1ðanÞ

e
�

a2
n

c2 ; ð13Þ
where an;n 2 N are the roots of the Bessel function J0 (see Appendix A and be aware of the slightly different notation). In the
following tabular the corresponding values are calculated for some c.
c
 2
 3
 4
 6
 7
 9
1�w2dðcÞ
 0.623
 0.193
 0.0347
 2.41e�4
 9.39e�06
 3.90e�9
In 3 dimensions we get (see Appendix A):
w3dðcÞ ¼ 2
X1
n¼1

ð�1Þnþ1e�ð
np
c Þ

2
: ð14Þ
In the following tabular the corresponding values are calculated for some c.
c
 2
 3
 4
 6
 7
 9
1�w3dðcÞ
 0.830
 0.357
 0.0827
 8.36e�4
 3.78e�05
 1.63e�8
Consequently, for a choice of c in the range of 7–9 one is on the safe side for all practical purposes, where also other
numerical error sources (quality of the random number generator, rounding errors) come into play.

This gives the possibility to use analytic solutions of Eq. (5) of domains which coincide with G only in the neighborhood of
Dr. The example of Fig. 2 shows the left part of the domain from Fig. 1. Choosing Dr in the shown way, the analytically known
solution of an infinite sector (see Appendix A) can be used, as long as t < Dr2=c2 D.

Hence, if the particle is neither annihilated nor absorbed within Dt, the particle will stay diffusive and a random pair
ðr;DtÞ must be created for the particle’s new position. In order to avoid repetitions, we skip the pseudo-code details here,
as they will be shown in the next section in a more general case.

In most situations it is much better to use the subset method as its time-increments are generally much larger. But in a
situation like the one sketched in Fig. 2, the particle is very close to the reflecting boundaries and no suitable large domain G0

is available. In consequence, G0 would be very small, leading to a very small tb on average.



Fig. 2. For t < Dr2=c2 D, the particle is assumed not to cross the black circle line. So the solution of an infinite sector with reflecting boundaries can be used.
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4. Inhomogeneous annihilation rate

The last section showed how to find a solution for an arbitrary domain G by solving the problem in several steps in smaller
domains G0. Hence, without loss of generality, we now assume the ability to sample random numbers according to qD

b , qD
f and

qD
n directly.

If the annihilation rate becomes inhomogeneous, Eq. (9) is not a solution of (1) anymore. The annihilation-time is now
correlated to the complete path of the particle, thus the method presented in the previous section will not work. In this sec-
tion we present a way to overcome this problem for arbitrary rates kðr; tÞ without any additional approximations. The fol-
lowing method starts with the pair ðr0; t0Þ and generates a series of random pairs ðri; tiÞ. The last pair of this series will
become the new ðr; tÞ.

For all t > t0 we define the spatially homogeneous but time dependent upper bound for the annihilation rates
kmðtÞ ¼ maxr2Gfkðr; tÞg: ð15Þ
The density qD
a with the rate kmðtÞ is denoted by qm in the following:
qmðtjt0Þ ¼ �
d
dt

e
�
R t

t0
kmðt0Þdt0

� �
: ð16Þ
We sample a candidate pair ðr1; t1Þ as shown in Algorithm 1. For r1 2 @G the particle is absorbed at the boundary, i.e. the
first candidate is accepted. Otherwise we compare the ratio kðr1; t1Þ=kmðt1Þ to a uniformly distributed random number x in
½0;1�. If kðr1; t1Þ=kmðt1ÞP x, the particle is annihilated, i.e. the first candidate is also accepted, else we generate a new can-
didate pair ðr2; t2Þ under the condition of having been at position r1 at time t1. This can be continued until the particle is
absorbed at the boundary of G or annihilated.

The algorithm can also be used to sample the complete probability density Pðr; tjr0; t0Þ: If no candidate is accepted until an
arbitrarily chosen time tmax ¼ t is reached, the algorithm returns a random position of the still diffusive particle, i.e. a pair
ðr; tmaxÞ whose statistics is given by Pðr; tmaxjr0; t0Þ. Also in case one wants to use the maximum distance method, the time
tmax has to be chosen appropriately. If a break at tmax is not wanted, one simply sets tmax ¼ 1. A pseudo-code description
is shown in Algorithm 3.

Algorithm 3. KMC 3

Input: r0, t0, tmax, kmðtÞ
Output: r, t
t  t0

r r0

repeat
ta  random number according to qmð�jtÞ
tb  random number according to qD

b ð�jr; tÞ
if ðtmax < minðta; tbÞÞ then

r random position according to qD
n ð�jtmax; r; tÞ

t  tmax

else
if (ta < tb) then

r random position according to qD
n ð�jta; r; tÞ

else
r random position at the boundary @G according to qD

f ð�jtb; r; tÞ
end if
t  minðta; tbÞ

end if

until ðkðr;tÞkmðtÞ P ran½0;1�Þ or ðta > tbÞ or ðt ¼ tmaxÞ
� �

return ðr; tÞ
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4.1. Proof of correctness of Algorithm 3
The basic mechanism by which the algorithm handles a spatially varying annihilation rate kðrÞ is to generate trial anni-
hilation positions using the propagator for a spatially constant (but maximal) annihilation rate km. The annihilation is then
accepted with the local probability kðrÞ=km. At first sight it appears counter-intuitive that this local procedure actually gives
the correct statistics, since the probability to propagate a particle from r0 to r depends on the complete annihilation rate
landscape in between and around. Why is it sufficient to probe kðrÞ locally at one or a few positions generated by the
algorithm?

Before we answer this question rigorously by proving that it is indeed sufficient, we give an intuitive argument why one
might expect the procedure to be correct: The stronger the spatial variation of kðrÞ is in G the larger the maximum rate km

will be. A large constant annihilation rate km gives rise to a particle propagator that forbids large hops, which implies that the
algorithm will produce many small intermediate hops and after each hop evaluates kðrÞ. In this way the algorithm explores
stochastically the annihilation landscape on finer or coarser length scales depending on the variation of kðrÞ. If for instance
kðrÞ ¼ 0 everywhere in G except in a small restricted region, where it is kðrÞ ¼ k1 > 0, thus km ¼ k1. Then the algorithm will
explore the complete region G with a hop size that is characteristic for the restricted region with the non-vanishing annihi-
lation rate. In the end this yields the correct statistics for the whole region, which we will prove now.

We will prove that the statistic of the output pairs ðr; tÞ satisfy the probability flows fa and fb for t < tmax. Then the case
t ¼ tmax (particle is still diffusive at time tmax) occurs with the correct probability, too. We also prove that the statistic of out-
put pairs ðr; tmaxÞ coincides with Pðr; tmaxjr0; t0Þ.

The algorithm will stop after a (unknown) number iþ 1 (i 2 N) of loop-runs (see Algorithm 3). The probability density for
being annihilated after iþ 1 loop-runs at time t at the position r is denoted by Aiðr; tjr0; t0Þ. Analogously the probability den-
sity for being absorbed at the boundary after iþ 1 loop-runs at time t at the position r is denoted by Biðr; tjr0; t0Þ. The prob-
ability density for stopping after i + 1 loop-runs, still being in the diffusive state at tmax and being located at r is denoted by
Wiðr; tmaxjr0; t0Þ. As the number of loop-runs is a disjoint decomposition, we can sum over i to obtain the total densities for
the corresponding events:
Aðr; tjr0; t0Þ ¼
X1
i¼0

Aiðr; tjr0; t0Þ; ð17Þ

Bðr; tjr0; t0Þ ¼
X1
i¼0

Biðr; tjr0; t0Þ; ð18Þ

Wðr; tmaxjr0; t0Þ ¼
X1
i¼0

Wiðr; tmaxjr0; t0Þ: ð19Þ
Starting with i ¼ 0, we compute Wi, Ai, Bi:
i ¼ 0:
A0: For this event ta has to be smaller than tb, which delivers the second factor in the following product. The third factor

belongs to the choice of the position and the last one arises from the exit-condition of the algorithm’s loop:
A0ðr; tjr0; t0Þ ¼ qmðtjt0Þ
Z 1

t
dtb qD

b ðtbjr0; t0Þ
� �

� PDðr; tjr0; t0ÞR
G dr0PDðr0; tjr0; t0Þ

� kðr; tÞ
kmðtÞ

¼ kðr; tÞe
�
R t

t0
kmðt0 Þdt0

PDðr; tjr0; t0Þ: ð20Þ
B0: An analogous procedure delivers
B0ðr; tjr0; t0Þ ¼ qD
b ðtjr0; t0Þe

�
R t

t0
kmðt0 Þdt0

� rðPDðr; tjr0; t0ÞÞ � nrR
@G dFrðPDðr; tjr0; t0ÞÞ � nr

¼ �De
�
R t

t0
kmðt0 Þdt0rPDðr; tjr0; t0Þ � nr: ð21Þ
W0: If the particle reaches the time tmax in the first loop-run, ta and tb have to be larger than tmax. Thus W0 is the product of
these two independent probabilities with the spatial density qD

n ðr; tmaxjr0; t0Þ:
W0ðr; tmaxjr0; t0Þ ¼
Z 1

tmax

dta qmðtajt0Þ
� �

�
Z 1

tmax

dtb qD
b ðtbjr0; t0Þ

� �
� PDðr; tmaxjr0; t0ÞR

G dr0PDðr0; tmaxjr0; t0Þ

¼ e
�
R tmax

t0
kmðt0 Þdt0

PDðr; tmaxjr0; t0Þ: ð22Þ
i ¼ 1:
As the algorithm will pass the loop twice here, we have to sum/integrate over all weighted pairs ðr1; t1Þ, which will be

achieved in the first loop-run. Since the algorithm will only continue with a new loop if ta is smaller than tb, for the first loop
the factors and integrals look the same for all cases. The factors of the final loop can be taken from the individual factors of
i ¼ 0 with the starting position r1 and the time t1 instead of r0 and t0. Defining the probability that the algorithm denies a
candidate pair ðr; tÞ
qðr; tÞ ¼ 1� kðr; tÞ
kmðtÞ

� �
; ð23Þ
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we get:
A1ðr; tjr0; t0Þ ¼
Z t

t0

dta1 qmðta1jt0Þ
Z 1

ta1

dtb1 qD
b ðtb1jr0; t0Þ

Z
G

dr1
PDðr1; ta1jr0; t0ÞR

G dr0PDðr0; ta1jr0; t0Þ
qðr1; ta1ÞA0ðr; tjr1; ta1Þ

¼ kðr; tÞe
�
R t

t0
kmðt0Þdt0

Z t

t0

dta1

Z
G

dr1 PDðr1; ta1jr0; t0Þkmðta1Þqðr1; ta1ÞPDðr; tjr1; ta1Þ; ð24Þ

B1ðr; tjr0; t0Þ ¼
Z t

t0

dta1 qmðta1jt0Þ
Z 1

ta1

dtb1 qD
b ðtb1jr0; t0Þ

Z
G

dr1
PDðr1; ta1jr0; t0ÞR

G dr0PDðr0; ta1jr0; t0Þ
qðr1; ta1ÞB0ðr; tjr1; ta1Þ

¼ �D e
�
R t

t0
kmðt0 Þdt0

Z t

t0

dta1

Z
G

dr1 PDðr1; ta1jr0; t0Þkmðta1Þqðr1; ta1ÞrPDðr; tjr1; ta1Þ � nr; ð25Þ

W1ðr; tmaxjr0; t0Þ ¼
Z tmax

t0

dta1 qmðta1jt0Þ
Z 1

ta1

dtb1 qD
b ðtb1jr0; t0Þ

Z
G

dr1
PDðr1; ta1jr0; t0ÞR

G dr0PDðr0; ta1jr0; t0Þ
qðr1; ta1ÞW0ðr; tmaxjr1; ta1Þ ð26Þ

¼ e
�
R tmax

t0
kmðt0Þdt0

Z tmax

t0

dta1

Z
G

dr1 PDðr1; ta1jr0; t0Þkmðta1Þqðr1; ta1ÞPDðr; tmaxjr1; ta1Þ: ð27Þ
For i P 1 we introduce the definitions
hiðr; tjr0; t0Þ ¼
Z Yi

j¼1
dtj

� �
t06t16���6ti6t

kmðtjÞ
Z

Gi

Yi

k¼1

drk

 !
Q iðfðrl; tlÞgl¼0;...;iÞPDðr; tjri; tiÞ; ð28Þ

with Q iðfðrl; tlÞgl¼0;...;iÞ ¼
Yi

l¼1

PDðrl; tljrl�1; tl�1Þ � qðrl; tlÞ: ð29Þ
Finally, defining
h0ðr; tjr0; t0Þ ¼ PDðr; tjr0; t0Þ; ð30Þ
one inductively gets for i P 0:
Aiðr; tjr0; t0Þ ¼ kðr; tÞe
�
R t

t0
kmðt0 Þdt0

hiðr; tjr0; t0Þ; ð31Þ

Biðr; tjr0; t0Þ ¼ �De
�
R t

t0
kmðt0 Þdt0 rhiðr; tjr0; t0Þ � nr; ð32Þ

Wiðr; tmaxjr0; t0Þ ¼ e
�
R tmax

t0
kmðt0Þdt0

hiðr; tmaxjr0; t0Þ: ð33Þ
Hence, the total probability densities can be written as
Aðr; tjr0; t0Þ ¼ kðr; tÞ ePðr; tjr0; t0Þ; ð34Þ
Bðr; tjr0; t0Þ ¼ �DrePðr; tjr0; t0Þ � nr; ð35Þ
Wðr; tmaxjr0; t0Þ ¼ ePðr; tmaxjr0; t0Þ; ð36Þ
with
ePðr; tjr0; t0Þ ¼ e
�
R t

t0
kmðt0 Þdt0X1

i¼0

hiðr; tjr0; t0Þ: ð37Þ
Comparing this with the definitions of fa and fb, it remains to show that ePðr; tjr0; t0Þ¼! Pðr; tjr0; t0Þ, i.e. ePðr; tjr0; t0Þ
has to satisfy Eq. (1) with the initial condition ePðr; t0jr0; t0Þ ¼ dðr� r0Þ. As all hi with i P 1 vanish for t ¼ t0,
the initial condition is simply fulfilled by the definition of h0. For the time-derivative of hi one inductively gets
for i P 1:
_hiðr; tjr0; t0Þ ¼ kmðtÞqðr; tÞ � hi�1ðr; tjr0; t0Þ þ
Z Yi

j¼1
dtj

� �
t06t16���6ti6t

kmðtjÞ
Z

Gi

Yi

k¼1

drk

 !
Q iðfðrl; tlÞgl¼0;...;iÞ _PDðr; tjri; tiÞ: ð38Þ
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Hence, the time-derivative of ePðr; tjr0; t0Þ satisfies
@ePðr; tjr0; t0Þ
@t

¼ �kmðtÞ ePðr; tjr0; t0Þ þ e
�
R t

t0
kmðt0 Þdt0 _PDðr; tjr0; t0Þ þ

X1
i¼1

_hiðr; tjr0; t0Þ
( )

ð39Þ

¼ �kmðtÞ ePðr; tjr0; t0Þ þ e
�
R t

t0
kmðt0 Þdt0 _PDðr; tjr0; t0Þ þ kmðtÞqðr; tÞ

X1
i¼1

hi�1ðr; tjr0; t0Þ
(

þ
X1
i¼1

Z Yi

j¼1
dtj

� �
t06t16���6ti6t

kmðtjÞ
Z

Gi

Yi

k¼1

drk

 !
Q iðfðrl; tlÞgl¼0;...;iÞ _PDðr; tjri; tiÞ

9=; ð40Þ

¼ �kðr; tÞePðr; tjr0; t0Þ þ e
�
R t

t0
kmðt0 Þdt0

(
_PDðr; tjr0; t0Þ

þ
X1
i¼1

Z Yi

j¼1
dtj

� �
t06t16���6ti6t

kmðtjÞ
Z

Gi

Yi

k¼1

drk

 !
Q iðfðrl; tlÞgl¼0;...;iÞ _PDðr; tjri; tiÞ

9=;: ð41Þ
Thus, using Eq. (5), it follows:
@ePðr; tjr0; t0Þ
@t

¼ �kðr; tÞePðr; tjr0; t0Þ þ e
�
R tmax

t0
kmðt0 Þdt0

DD
X1
i¼0

hiðr; tjr0; t0Þ
( )

¼ �kðr; tÞePðr; tjr0; t0Þ þ DDePðr; tjr0; t0Þ; ð42Þ
which is exactly Eq. (1). Hence, the correctness of the Algorithm 3 is proven.

4.2. Comments on the efficiency of the Algorithm

The efficiency of the introduced method depends mainly on two criteria.
The first one is the shape of G. In this section we have assumed to be able to sample random numbers according to all

needed densities directly. If this assumption fails, the tools of Section 3 (subset method and maximum distance method) will
be needed in order to create a sequence of problems which then can be solved individually via Algorithm 3. The average
length of this sequence depends on G.

The second criterion is given by the annihilation rate kðr; tÞ. In the case of strongly inhomogeneous annihilation rates the
ratio kðr; tÞ=kmðtÞ might be very small in large parts of the domain. Hence, for a particle in such an area Algorithm 3 will on
average spend many loops with small time increments, until an annihilation event occurs or the domain is left.

In most cases one can overcome this problem: Regarding Eq. (15), the function kmðtÞ is not only determined by kðr; tÞ but it
also depends on the domains G0, where Algorithm 3 should be applied to. Hence, with the help of the subset method large
areas with a small ratio kðr; tÞ=kmðtÞ can often be avoided. Therefore the choice of the domains G0 should not only depend on
the shape of G, but sometimes also on the function kðr; tÞ. The extra cost for this strategy is an increase of the number of times
Algorithm 3 has to be applied, as the size of the domains G0 will on average become smaller, resulting in a higher probability
to reach a boundary of G0 (not belonging to the boundary of G) before being annihilated. Hence, too small domains G0 will also
decrease the time increment per step, as the particle will reach the absorbing boundaries of the sequences of chosen G0 on
average very fast. Consequently the most efficient strategy is a balanced one which maximizes the mean time increment per
algorithm loop. Although it is in general not possible to determine this perfect strategy exactly it is often possible to improve
the efficiency of the method significantly. An example for such a situation is discussed in the next section.

The worst case for the efficiency of our method is the following: kðr; tÞ varies everywhere in G on a very small length scale
(compared to the diffusion constant D and the size of the domain G) and the ratio kðr; tÞ=kmðtÞ is nevertheless predominantly
very small (high, small peaks). In such cases the strategy above will not work, as a decrease of kmðtÞ is only possible by choos-
ing very small domains G0, which then result in very small arrival times (= time increments) to the boundary of the chosen G0.
In these cases, similar to rejection sampling [13] with a high rejection constant, a lot of candidate pairs ðr; tÞ will be rejected
on average before an annihilation position is found.

5. Example

This section presents a two-dimensional application example of the algorithm. It is designed to demonstrate how the
algorithm handles a situation in which its correctness is most counter-intuitive: We choose the annihilation rate to be
non-vanishing just inside a restricted region, a circle, where it oscillates in time and varies spatially. For a chosen test-setup,
we compare its results with the solution of a commercial FEM (finite element method) routine.

At t0 ¼ 0 the diffusing particle (D ¼ 1) is located at the position r0 ¼ ð0; 5Þ within a rectangle of size 10� 5. The right
boundary is chosen to be absorbing, all other boundaries are reflecting. A strongly anisotropic time dependent annihilation
rate kðr; tÞ is chosen to be



Fig. 3.
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kðr; tÞ ¼ 3j cos3 t
2

	 

j � ðc2 � jjr� zjj2Þ; jjr� zjj < c

0; jjr� zjjP c

(
; ð43Þ
with z ¼ ð5; 1:25Þ and c ¼ 1:25. Fig. 3 presents a sketch of the described setup.
On the one hand the problem has been solved numerically by applying a commercial FEM solver with a very fine trian-

gulation (>600,000 elements) to Eq. (1), which takes around 90 min on a quad-core with 3.4 GHz and 16 GB RAM. In the fol-
lowing this solution is denoted by PFðr; tÞ. On the other hand the Monte-Carlo algorithm has been applied to the problem in
4:2� 108 samples. In principle it is not necessary to use the subset method here, as the analytic solution of Eq. (5) is known
for the rectangle (see Appendix A), from which all occurring densities can be sampled. Nevertheless it has been used, as it
increases the speed of the algorithm dramatically:

Applying Algorithm 3 to the whole rectangle domain delivers a mean time increment per loop run of dt1 � 0:5. Restricting
the movement of the particle temporally to a subset G0 of G (subset method) ensures the possibility of choosing temporally a
smaller kmðtÞ. In this case there is even the possibility of kmðtÞ ¼ 0 if G0 does not intersect the circle. In our example, for a
position ðx0; y0Þ the domain G0 is always chosen to be a rectangle:
ð44Þ
In consequence, at the beginning of each sample, Algorithm 3 is applied to G1 (ðx0; y0Þ ¼ r0). As there is no annihilation
within G1, only a first passage time to the absorbing right boundary of G1 and a corresponding y-coordinate must be
sampled. Hence x0 changes to 3.75 and the second run of Algorithm 3 is always applied to the domain G2 with
kmðtÞ ¼ 3j cos3 t

2

	 

j � c2. If there is an annihilation event the sample is finished. Otherwise an absorption event at the left

or right boundary happens, resulting in x0 ¼ 2:25 or x0 ¼ 7:75. Depending on x0, the algorithm is then applied to G1 or G3

with kmðtÞ ¼ 0. We continue this way until the particle is absorbed in G2 or leaves G3 at x0 ¼ 10. Although this simple
strategy is probably not the best one, the mean time increment per loop run already increases to dt2 � 1:2. As the essen-
tial computational effort is the same per loop (with and without the subset method), this strategy increases the speed by
a factor of dt2=dt1 � 2:4.

A C++-implementation on a single core with 3.4 GHz takes around 40 min for 106 samples. The most time consuming part
in every step is the numerical inversion of the distribution functions, which was done by Brent’s method in this example. It is
on average faster than bisection and convergence is guaranteed.

Firstly, the relative frequencies for the times of an event and the kind of the event were counted. SMCðtÞ denotes the rel-
ative frequency of having had no event until time t. It has to be compared with the value of SFðtÞ ¼ 1�

R t
0 qeðt0jr0; t0Þdt0, which

was derived numerically from the FEM solution. AMCðtÞ denotes the relative frequency of having had an annihilation event
before time t. It is compared to AFðtÞ ¼

R t
0 aðt0jr0; t0Þdt0. BMCðtÞ denotes the relative frequency of being absorbed at the right

boundary before time t. It is compared to BFðtÞ ¼
R t

0 bðt0jr0; t0Þdt0. A plot of these quantities is shown in Fig. 4.
It shows an almost perfect coincidence of all corresponding quantities. The maximum relative deviation is about 1% in

all curves. Keeping in mind that SFðtÞ, AFðtÞ and BFðtÞ are calculated by a numerical time-integration of a numerical spa-
tial integration of a numerical solution of Eq. (1), these small deviations are explainable. More precisely,
SFðtÞ þ AFðtÞ þ BFðtÞ ¼ 1 has to hold for all times, but the numerical discrepancy in this sum is also about 1% at
maximum.

Secondly, we want to compare the spatial distribution of the particle’s position from the KMC algorithm to PFðr; tÞ for
three characteristic times: t1 ¼ 5, t2 ¼ 10, t3 ¼ 20. Hence, the rectangle is divided in 2N � N squares sxy (x ¼ i � 5

N, y ¼ j � 5
N,

i ¼ 0;1; . . . ;2N � 1, j ¼ 0;1; . . . ;N � 1) and the relative frequency hxyðtÞ for being at the square sxy is counted for t1, t2 and
t3. Technically this has been done by setting tmax ¼ ti ði 2 f1;2;3gÞ in Algorithm 3. The quotient of hxyðtÞ and the area of a
square element is denoted by PxyðtÞ. This density converges to the solution of Eq. (1) in the limits of increasing sample num-
bers and N !1. The upper panel in Fig. 5 shows the density PxyðtÞ for the chosen times in a 3d plot for N ¼ 50. In order to
illustrate the influence of the annihilation within the circle, the projection on the bottom shows isolines by discretising the
density into intervals.
Sketch of the simulation setup: the particle starts its diffusive motion at the upper left corner. It can either be absorbed at the right wall or
ated within the drawn circle.



Fig. 4. Comparison of the relative frequencies derived from Algorithm 3 and the numerically integrated probabilities for the events of still being diffusive
(S), having already been annihilated (A) and having already been absorbed at the right wall (B).

Fig. 5. Top: The probability density PxyðtÞ ¼ Pðr; tjr0; t0Þ for the two-dimensional geometry depicted in Fig. 3 and the annihilation rate given by Eq. (14)
generated by the intermediate positions of Algorithm 3 for the times t1 ¼ 5, t2 ¼ 10 and t3 ¼ 20. The position of the annihilation zone with oscillating
strength is indicated by the full circle. Bottom: relative difference DxyðtÞ between the Monte Carlo result PxyðtÞ and the numerical solution of the
corresponding annihilation–diffusion Eq. (1) for the times t1 ¼ 5 , t2 ¼ 10 and t3 ¼ 20.
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� t1 ¼ 5: The probability density of the particle is still centered around the starting position in the upper left corner. Nev-
ertheless its shape is already influenced by the annihilation within the circle.
� t2 ¼ 10: At time t2 there has been almost no annihilation for a short period (slope of the red line in Fig. 4). Hence, diffusion

almost equilibrated the density gradient in y-direction, generated by the annihilation within the time-interval ½5; 8�.
� t3 ¼ 20: At time t3 relatively strong annihilation takes place, which even leads to a local minimum of Pxy within the circle.

In order to quantify the local differences between the KMC result and the FEM result, we choose squares of size 0:2� 0:2
(N ¼ 25). A measure for the spatially resolved relative deviation is
DxyðtÞ ¼
hxyðtÞ �

R xþ0:2
x dx0

R yþ0:2
y dy0PFðr0; tÞR xþ0:2

x dx0
R yþ0:2

y dy0PFðr0; tÞ
:

The lower panel of Fig. 5 shows DxyðtÞ. For all times the deviations are small and in the range of the numerical expectation:
For 4:2� 108 samples and 2N2 ¼ 1250 plaquettes one expects a range of 103–105 samples per plaquette (depending on the
position and the time) and thus statistical fluctuation of the order of 101–103, i.e. relative fluctuation mostly in the 1 percent
range, which is what the lower panel of Fig. 5 confirms.

On the right side of the simulation rectangle, where the absorbing boundary is located, the statistical error is larger for
small times, since the density is still centered around the starting point in the upper left corner, giving a region (x > 8) with
very small values of hxyðtÞ.
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At this point we should emphasize that although we check the correctness of our KMC algorithm by comparison with an
FEM solver the two methods serve different purposes and therefore do not compete with one another: The aim of the Algo-
rithm 3 is not the stochastic solution of Eq. (1), for which FEM is good. The aim of the algorithm is to sample correctly next
events (annihilations or first-passages of boundaries) according to Eq. (1), which can not be handled by a FEM routine. The
example demonstrates, that this is possible, even in cases of highly anisotropic and time dependent annihilation rates.
6. Discussion

We have presented an algorithm that samples correctly the probability distribution of a diffusing particle with a space
dependent annihilation or transformation rate kðrÞ for arbitrary domains. Together with first-passage time methods it can
serve as the basic building block for a kinetic Monte Carlo algorithm simulating a general many-particle reaction–diffusion
system.

The basic idea is to generate trial moves with the exactly known single particle Green’s function for a spatially con-
stant annihilation rate km, which is the maximum of kðrÞ in the current protecting domain. With probability kðrÞ=km the
particle is annihilated at the trial position r, otherwise a new trial move with initial position r is generated. The iteration
proceeds until either the particle is annihilated or the boundary of the protecting domain is reached. In this paper we
proved rigorously the correctness of this algorithm and demonstrated its numerical accuracy and efficiency with an illus-
trative example.

Alternatives to the Green’s function reaction dynamics would be, for instance, time driven algorithms (or Brownian
dynamics) [1] as well as operator splitting techniques [9,10]. These methods need much CPU time for propagating particles
in small time steps without annihilation, in particular in regions where the annihilation rate is low. In addition in operator
splitting methods the accuracy is impeded by a discretization error which is absent in the method we presented here. The
price for the higher efficiency of our algorithm is a slightly larger programming work for the sampling of the exact diffusion
propagators (5).

But we would like to emphasize at this point that even in cases where a maximum time step s is preferred (e.g. to apply
operator splitting methods), the basic idea of our algorithm to handle spatially varying annihilation rates can be used: If the
time step s is smaller than a sampled ta, the particle is propagated for the time s (with the favored method for simulating the
diffusion process) to a new position and it goes on diffusively in the next time step. Otherwise, it is propagated for the time ta

(with the favored method for simulating the diffusion process) to a new position r where it either is annihilated with prob-
ability kðrÞ=km or goes on diffusively with probability 1� kðrÞ=km.

Important applications with a spatially varying transformation rate include continuum models for intracellular transport
(or more generally intermittent search strategies [15]). In intracellular transport particles (proteins, organelles) can switch
between free diffusion and ballistic motion by molecular motor assisted movement along cytoskeleton filaments. The den-
sity of filaments in the space direction X;qXðr; tÞ, is generally very inhomogeneous in space and sometimes even varies over
time (for instance during cell polarization). This situation can be described by the Fokker–Planck equation for the probability
densities P0ðr; tÞ and PXðr; tÞ for diffusing particles and particles that move with a constant velocity vX in direction X, respec-
tively [11]:
@

@t
P0ðr; tÞj ¼ DDP0ðr; tÞ � cP0ðr; tÞ

Z
dXqXðr; tÞ þ c0

Z
dXPXðr; tÞ ð45Þ

@

@t
PXðr; tÞ ¼ �r � ðvXPXðr; tÞÞ þ cqXðr; tÞP0ðr; tÞ � c0PXðr; tÞ; ð46Þ
where c and c0 are the attachment and detachment rates (to and from filaments), respectively. The freely diffusing particle
sees a total annihilation rate kðr; tÞ ¼ c

R
dXqXðr; tÞ, with which it is transformed into a ballistically moving particle with a

randomly chosen direction X (and velocity vX) with probability qXðr; tÞ=
R

dXqXðr; tÞ. The algorithm presented in this paper
handles a Monte Carlo simulation of the diffusion process described by (45), whereas the implementation of the ballistic mo-
tion (46) is straightforward:

For a ballistically moving particle starting at position r0 at time t0 the probability density to unbind from the filament
network and go on diffusively again at time t > t0 is given by a exponential distribution with parameter c0 (if it does not
reach the boundary before). The position of this event is given by r ¼ r0 þ ðt � t0Þ � vX. Even in the case of a spatially and tem-
porally varying unbinding rate c0ðr; tÞ, a direct sampling of the unbinding times is straightforward due to the one-to-one rela-
tion between time and space for a ballistic motion.

The statistic of particles, switching stochastically between diffusion and ballistic motion according to these rules,
coincides with the solution of (45) and (46). For a three-dimensional cell geometry G this is a system of integro-differ-
ential equation in 5 dimensions: 3 dimensions for the spatial coordinates r of the particle and 2 dimensions for the
direction X ¼ ð/; hÞ of the particle in the state of ballistic motion, where / and h are polar and azimuthal angle of
the direction, respectively. Although in principle finite element methods are still applicable to 5-dimensional problems
we are not aware of an efficient implementation with feasible memory requirements with which one could solve the
system (45,46) numerically. Therefore the algorithm presented in this paper is a powerful tool for the numerical study
of such systems.
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Appendix A

This appendix presents some analytic solutions of Eq. (5), which have mostly been taken from [14]. Furthermore, it de-
rives expressions for sampling according to the densities qD

b , qD
f , qD

n in cases where this might not be obvious anymore. We
list only frequently used domains in one, two and three dimensions.

A.1. Particle on the interval ½0; L�

� Absorbing on both sides:
PDðx; tjx0; t0Þ ¼
2
L

X1
n¼1

e�k2
nDðt�t0Þ sinðknxÞ sinðknx0Þ;
with kn ¼ np
L .

Expressions for the probability densities qD
b , qD

f , qD
n and the corresponding distribution functions FD

b , FD
f , FD

n can be derived
analytically.
� Reflecting on the left and absorbing on the right side:
PDðx; tjx0; t0Þ ¼
2
L

X1
n¼0

e�k2
nDðt�t0Þ cosðknxÞ cosðknx0Þ;
with kn ¼ ð2nþ1Þp
2L .

Expressions for the probability densities qD
b , qD

n and the corresponding distribution functions FD
b , FD

n are analytically derivable.
As there is only x ¼ L for the particle to leave the domain, it follows qD

f ð0jt; x0; t0Þ ¼ 0 and qD
f ðLjt; x0; t0Þ ¼ 1.

� Reflecting on both sides:
PDðx; tjx0; t0Þ ¼
1
L

1þ 2
X1
n¼0

e�k2
nDðt�t0Þ cosðknxÞ cosðknx0Þ

 !
;

with kn ¼ np
L .

Expressions for the probability density qD
n and the corresponding distribution function FD

n can be derived analytically.

A.2. Particle in a rectangle ½0; a� � ½0; b� and in a cuboid ½0; a� � ½0; b� � ½0; c�

If the boundary conditions do not vary along each side, PD factorizes:
PD ¼ Pa
Dðx; tjx0; t0Þ � Pb

Dðy; tjy0; t0Þð�Pc
Dðz; tjz0; t0ÞÞ;
where Pa
D, Pb

D (Pc
D) are given by solutions for intervals from the subsection above. Depending on the boundary conditions, qD

b is
sampled by generating a random time for every coordinate, where there is at least one absorbing boundary. The smallest of
these times has to be returned as tb. The particle reaches the boundary in the corresponding coordinate. All other quantities
are sampled as above.

A.3. Particle in a circle of radius R

� Absorbing boundary:
PDðr;u; tjr0;u0; t0Þ ¼
1

pR2

X1
n¼�1

cosðnðu�u0ÞÞ
X
an

e�a2
n

Dðt�t0 Þ
R2

Jn an
r
R

	 

Jn an

r0
R

	 

J0nðanÞ2

" #
;

where
P

an
denotes the infinite sum over all positive roots an of the Bessel function JnðanÞ ¼ 0.

The density of finding the particle at an arbitrary angle at radius r is then given by
qrðr; tjr0; t0Þ ¼
Z 2p

0
PDðr;u; tjr0;u0; t0Þr du ¼ 2

R2

X
a0

e�a2
0

Dðt�t0 Þ
R2 r

J0 a0
r
R

	 

J0 a0

r0
R

	 

J1ða0Þ2
and the corresponding distribution function is given by
Frðr; tjr0; t0Þ ¼
Z r

0
dr0qrðr0; tjr0; t0Þ ¼

2
R

X
a0

e�a2
0

Dðt�t0 Þ
R2 r

J1 a0
r
R

	 

J0 a0

r0
R

	 

a0 J1ða0Þ2

:

Hence, the distribution function belonging to qD
b is given by
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FD
b ðtjr0; t0Þ ¼ 1� 2

X
a0

e�a2
0

Dðt�t0 Þ
R2

J0 a0
r0
R

	 

a0 J1ða0Þ

:

Analytic expressions for all quantities depending on u which are needed, are straightforwardly derivable by integrating the
cos-functions.
Having precomputed the values of an, random numbers are sampled by inverting the occurring distribution functions
numerically.
For a particle starting in the center of the circle the u-dependence becomes uniformly distributed in the interval ½0;2p½ and
FD

b simplifies to
FD
b ðtj0; t0Þ ¼ 1� 2

X
a0

e�a2
0

Dðt�t0 Þ
R2

1
a0 J1ða0Þ

;

which is used to derive Eq. (13).
� Reflecting boundary: 2 3
PDðr;u; tjr0;u0; t0Þ ¼
1

pR2 1þ
X1

n¼�1
cosðnðu�u0ÞÞ �

X
an

e�a2
n

Dðt�t0 Þ
R2

Jn an
r
R

	 

Jn an

r0
R

	 

1� n2

a2
n

� �
JnðanÞ2

4 5;

where

P
an

denotes the infinite sum over all positive roots an of J0nðanÞ ¼ 0.
The density of finding the particle at an arbitrary angle at radius r is then given by
qrðr; tjr0; t0Þ ¼
Z 2p

0
qðr;u; tjr0;u0Þr du ¼ 2

R2 r þ
X
a0

e�a2
0

Dðt�t0 Þ
R2 r

J0 a0
r
R

	 

J0 a0

r0
R

	 

J0ða0Þ2

" #
and the corresponding distribution function is given by
Frðr; tjr0; t0Þ ¼
r2

R2 þ
2
R

X
a0

e�a2
0

Dðt�t0 Þ
R2 r

J1 a0
r
R

	 

J0 a0

r0
R

	 

a0J0ða0Þ2

:

A distribution function for the angle u under the condition of being at radius r can be derived straightforwardly by integrat-
ing the cos-functions. Having precomputed the values of an, r and u are sampled by a numerical inversion of the distribution
functions. For a particle starting in the center of the circle the u-dependence again becomes uniformly distributed in the
interval ½0;2p½.

A.4. Particle in a sector of angle H with reflecting boundaries
PDðr;u; tjr0;u0; t0Þ ¼
e�

r2þr2
0

4Dðt�t0 Þ

2HDðt � t0Þ
I0

r r0

2Dðt � t0Þ

� �
þ 2

X1
n¼1

cos n
pu
H

� �
cos n

pu0

H

� �
Inp

/

r r0

2Dðt � t0Þ

� �" #
;

where Ix denotes the modified Bessel function of order x.
The density for finding the particle at an arbitrary angle u at radius r is then given by
qrðr; tjr0; t0Þ ¼
r e�

r2þr2
0

4Dðt�t0 Þ

2Dðt � t0Þ
I0

r r0

2Dðt � t0Þ

� �� �
:

As there is no analytic expression for a distribution function of qr available, the usage of the inversion method would be very
slow, as the integration of r would have to be done numerically. Fortunately, qr does not depend on the sector angle H, hence
the analytically known solution for H ¼ p (half-plane) can be used to generate r for all H. A distribution function for the an-
gle u under the condition of being at radius r can be derived straightforwardly by integrating the cos-function.

A.5. Particle in a sphere of radius R with absorbing boundary conditions 	 
 	 


PDðr;u; #; tjr0;u0; #0; t0Þ ¼

1
2pR2 ffiffiffiffiffiffiffi

rr0
p

X1
n¼0

ð2nþ 1ÞPnðlðu; #;u0; #0ÞÞ �
X
an

e�a2
n

Dðt�t0 Þ
R2

Jnþ1
2
an

r0
R Jnþ1

2
an

r
R

½J0nþ1
2
ðanÞ�2

;

where
P

an
denotes the infinite sum over all positive zeros an of the Bessel function Jnþ1

2
ðanÞ ¼ 0, Pn is the n-th Legendre poly-

nomial and l is the cosine of the angle between r and r0.
The density of finding the particle at arbitrary angles u, # at radius r is then given by
qrðr; tjr0; t0Þ ¼
Z 2p

0
du
Z p

0
d#PDðr;u; #; tjr0;u0; #0; t0Þ sinð#Þ r2 ¼ 2r

3
2

R2 ffiffiffiffiffi
r0
p

X
a0

e�a2
0

Dðt�t0 Þ
R2

J1
2
a0

r0
R

	 

J1

2
a0

r
R

	 

½J01

2
ða0Þ�2

¼ 2r
Rr0

X1
n¼1

e�n2p2Dðt�t0 Þ
R2 sin

npr0

R

� �
sin

npr
R

� �
:
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The corresponding distribution function can be derived by integrating the sin-functions:
Frðr; tjr0; t0Þ ¼
2

Rr0

X1
n¼1

e�n2p2Dðt�t0 Þ
R2 sin

npr0

R

� �
� R2

n2p2 sin
npr

R

� �
� R

np
r cos

npr
R

� �" #

Hence, the distribution function belonging to qD

b is given by
FD
b ðtjr0; t0Þ ¼ 1� 2R

pr0

X1
n¼1

e�n2p2Dðt�t0 Þ
R2 sin

npr0

R

� � ð�1Þnþ1

n
;

which was used to derive Eq. (14) with the help of l’Hospital’s rule (r0 ! 0).
A distribution function for l 2 ½�1; 1� under the condition of being at radius r can be derived straightforwardly by inte-

grating the Legendre polynomials Pn. Using the sampled l, the angels u and # are sampled.
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