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1Theoretische Physik, Universität des Saarlandes, 66123 Saarbrücken, Germany
(Dated: July 6, 2016)

A random search is a stochastic process representing the random motion of a particle (denoted
as the searcher) that is terminated when it reaches (detects) a target particle or area the first time.
In intermittent search the random motion alternates between two or more motility modes, one of
which is non-detecting. An example is the slow diffusive motion as the detecting mode and fast,
directed ballistic motion as the non-detecting mode, which can lead to much faster detection than a
purely diffusive search. The transition rate between the diffusive and the ballistic mode (and back)
together with the probability distribution of directions for the ballistic motion defines a search
strategy. If these transition rates and/or probability distributions depend on the spatial coordinates
within the search domain it is a spatially inhomogeneous search strategy, if both are constant, it
is a homogeneous one. Here we study the efficiency, measured in terms of the mean first-passage
time, of spatially homogeneous and inhomogeneous search strategies for three paradigmatic search
problems: 1) the narrow escape problem, where the searcher has to find a small area on the boundary
of the search domain, 2) reaction kinetics, which involves the detection of an immobile target in the
interior of a search domain, and 3) the reaction-escape problem, where the searcher first needs to
find a diffusive target before it can escape through a narrow region on the boundary. Using families
of spatially inhomogeneous search strategies, partially motivated by the spatial organization of the
cytoskeleton in living cells with a centrosome, we show that they can be made almost always more
efficient than homogeneous strategies.

I. INTRODUCTION

The successful usage of efficient search strategies is one
of the most important needs in biology and human be-
havior. It can be observed on all length scales of life
and in all kinds of complexity. Just to mention a few
examples, humans use them for pattern recognition [1].
Predators apply certain strategies for hunting their mov-
ing prey [2]. Ants use special techniques to find each
other after being separated while being on a tandem run
[3]. Some eukaryotic cells improve their chance to find
a target by performing random walks with characteristic
persistent time and persistent lengths, even in the ab-
sence of external signals [4]. And there are many more
observed examples in biological literature.
Although all these examples are quite different and seem
to have nothing in common, they can commonly be de-
scribed by first-passage processes [5], which are stochastic
processes that end if a certain event happens for the first
time tf . The probability density ρf for the time tf con-
tains all temporal information about the efficiency of the
search strategy. In [6] it is shown, that one sometimes
has to be careful with the reduction of this information
to only one value, the so called mean first-passage time
(MFPT)

T = 〈 tf 〉 =

∫ ∞
0

t ρf (t) dt .
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Nevertheless, this is in most cases the only property
which is used to classify the efficiency of the search strat-
egy. Apart from the obvious reason of simplification for
comparison, there is a second reason for this reduction:
Often it is very hard or even impossible to calculate
the whole first-passage time density function ρf (t) as a
function of the initial conditions, but it is much easier to
solve the time-independent differential equation system
for its first moment, which is derived with the help of
corresponding backward equations [5, 7].
The MFPT T is a function of the tunable and the
non-tunable parameters of the stochastic first-passage
process. Typical tunable parameters are for example
the persistence length in random walks [8], the des-
orption rate in surface mediated diffusion [9, 10] or
the resetting rate in random motion with stochastic
resetting [11, 12]. Typical non-tunable parameters of
the search problem are for example the target size,
the detection rate, the size and shape of the searching
domain and constants of motion (velocity, diffusivity).
A complete set of tunable parameters defines a search
strategy for the problem which is defined via the
non-tunable parameters. Hence, the best strategy is the
set of tunable parameters which minimizes the MFPT T .

A frequently used way of modeling real search is a so
called intermittent search [13–21]. The searcher switches
between phases of fast directed ballistic motion, during
which it cannot recognize a target and phases of slow
diffusion for detecting a target.

For a given size and shape of the search domain
and the target, the efficiency, i.e. the MFPT T , of
an intermittent search still depends on a number of
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parameters. Since increasing the diffusion constant for
the diffusive mode or increasing the velocity modulus
v for the ballistic mode always decreases the MFPT,
even if done only locally, both are assumed to be fixed
in the following. Then the MFPT T is a function of
the switching rates between both motility modes and a
functional of distribution of the directions into which the
searcher moves after a switch to the ballistic mode. If the
searcher does not have a knowledge about his position
in the search domain and the search domain is homo-
geneous such that at no position in the search domain
certain directions for ballistic motion are preferred the
directional distribution can be assumed to be uniform
over all solid angles - as was done in [13–15, 17–19]. This
we denote as a spatially homogeneous (and isotropic)
intermittent search strategy.
If on the other hand ballistic motion is only possible
along predefined tracks, like in molecular motor as-
sisted intracellular transport along the filaments of the
cytoskeleton [22], or in cases the searcher utilizes any
other transport network, the directional distribution for
the ballistic motion should be described by a spatially
inhomogeneous direction distribution, which then must
represent the spatial organization of the tracks. Also
in cases when the searcher does have knowledge about
its position in the search domain and about its shape it
might be more efficient to move in certain regions of the
search domain preferentially into other directions than
in other regions. An intermittent search strategy with
a spatially varying direction distribution we denote as
a spatially inhomogeneous (and non-isotropic) search
strategy. In a recent letter [23] we introduced the
concept of spatially inhomogeneous intermittent search
strategies and we presented results that showed that
their optimum is in general more efficient than the
optimum of homogeneous search strategies. In this
paper we elaborate these and more results in detail,
explain the computational techniques and show all
computations explicitly.

Thus the goal of this paper is to compare the effi-
ciency of spatially homogeneous and inhomogeneous
search strategies in spherical domains by determining,
numerically, the optimal parameter for different setups:
1) the narrow escape problem , where a searcher has to
find a small region on the boundary of the search area,
2) the reaction kinetics enhancement by ballistic motion,
where the searcher has to find a immobile target particle
within the search domain, and 3) the reaction-escape
problem, which combines 1 and 2 such that a searcher
has to find a mobile target particle first before it can
escape through a narrow region on the boundary of the
search domain. The latter example is motivated by a
transport process within T-cells attached to a target
cell that it is supposed to kill: vesicles loaded with
cytotoxic proteins first have to attach to another vesicle
containing receptor proteins before they can dock at
the immunological synapse, a small region on the cell

membrane in contact with the target cell, and release
their content there.

Since determining the optimum of the MFPT as a func-
tional of a space and angle dependent direction distribu-
tion is not feasible we confine ourselves to two differ-
ent families of direction distributions. The first (one-
parameter) family is specially designed for solving the
narrow escape problem efficiently and only investigated
in that scenario. The second (two-parameter) family is
inspired by the spatial organization of the cytoskeleton
of spherical cells with a centrosome. It will be studied
for all the three scenarios.

In order to compare the gain of efficiency for different
situations, we introduce the dimensionless time

T =
T

Tdiff
, (1)

which is the MFPT T of the intermittent search strategy
normalized by the MFPT Tdiff for the purely diffusive
searcher. Hence, for T < 1 an intermittent searcher is
more efficient and for T > 1 a purely diffusive search is
faster on average.

The paper is organized as follows: Section II introduces
our model of intermittent search in the general case with
space and time dependent transition rates. It explains
the meaning of the occurring parameters exemplarily in
the context of intracellular transport. In almost all cases,
it is not possible to solve the differential equation system
of the model in a straight forward way via finite element
method (FEM).
In consequence, section III introduces the Green’s func-
tion method, which is used to solve the model stochasti-
cally.
Section IV faces the classical narrow escape problem,
meaning, a particle looks for a certain region at the
boundary. For the purely diffusive scenario the scaling
of the MFPT as a function of the size and the position
of the target area is understood for quite a large range of
problems [5, 24–33]. Even in the absence of analytic or
asymptotic expressions, the purely diffusive MFPT prob-
lem can be solved fast and easily via FEM calculations.
For spatial dimensions d > 1 this is in most cases not
possible for the master equation system of intermittent
search (Eqs. (2)-(3)) due to the integro type of the par-
tial differential equation. As far as we know, there are no
studies on the intermittent search narrow escape problem
in a sphere available. Hence, we start the numeric study
of this problem in the case of a homogeneous velocity di-
rection distribution. Afterwards we modify the velocity
direction distribution to show, that there are more effi-
cient strategies than a homogeneous one.
Section V asks for the best search strategy for a target lo-
cated within the sphere. In the case of a homogeneously
distributed velocity direction and a target which is cen-
tered in the middle of the sphere, there are studies on
this problem [17–19]. We numerically confirm their re-
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sults, including the very weak dependence of the MFPT
on the transition rate γ from diffusive to ballistic motion,
but disprove their optimality assumption for γ. Further-
more, we study less homogeneous cases, for which there
are no MFPT expressions available up to now.
Section VI finally faces a reaction-escape problem for two
particles, i.e an intermittent searching predator-particle
is looking for a mobile prey-particle. After having found
the prey, the particle-complex has to find a small escape
area at the boundary. Again, there are already some re-
sults for purely diffusive predators in different domains
[5, 34, 35], but not for intermittent searching ones in a
spherical domain.
Finally, appendix A introduces exact and very fast meth-
ods to sample the later defined probability densities of
the algorithm of section III .

II. THE MODEL

Intermittent search is generally based on (at least) two
different phases for a searcher [17]. On the one hand,
there is a searching phase of slow (or none) motion, in
which the searcher is able to detect a target. On the other
hand, there is a relocation phase of directed fast motion
without the ability of target detection. Commonly, and
also in our case, the searching phase is modeled by pure
diffusion with diffusivity D. The probability density for
being in the diffusive state at position r ∈ V at time t will
be called P0(r, t) in the following, where V ⊂ Rd denotes
the search volume of the particle. The relocation phase
is modeled by straight ballistic motion. The probability
density for being in the ballistic state at position r ∈ V
at time t and moving with velocity vΩ = v ·eΩ is denoted
PΩ(r, t) in the following, where eΩ is the unity vector in
direction of the solid angle Ω.

In intracellular transport vesicles (proteins, organelles)
switch between diffusion within the cytosol and almost
ballistic motion by molecular motor assisted movement
along cytoskeleton filaments. The density of these
filaments in direction of the solid angle Ω is generally
very inhomogeneous in space: for instance in cells
with a centrosome microtubules emanate radially from
the centrosome towards the cell periphery, where the
actin cortex, a thin sheet of actin filaments underneath
the cell membrane, provides transport in random
directions. Sometimes the filament density even varies
over time (for instance during cell polarization). In
consequence, the likelihood of a switch between the
two phases and the choice of the ballistic direction
eΩ generally depends on the position of the searcher.
Formally we describe a spatially varying distribution
of directions by the density ρΩ(r, t). It is proportional
to the rate of a switch from diffusive to ballistic mo-
tion in direction Ω at position r at time t. In the
context of intracellular transport it can be interpreted
as the filament density of the cytoskeleton in direction Ω.

The master equation system of our model for one
searching particle is given by the Fokker-Planck equation
system:

∂

∂t
P0(r, t) = D∆P0(r, t)−

[
γ

∫
dΩ ρΩ(r, t)

]
P0(r, t)

+γ′
∫
dΩPΩ(r, t) (2)

∂

∂t
PΩ(r, t) = −∇ · (vΩPΩ(r, t)) + γ ρΩ(r, t)P0(r, t)

−γ′PΩ(r, t) , (3)

where γ and γ′ are transition rates from diffusive to bal-
listic motion and vice versa. In the context of modeling
intracellular transport they are the attachment and de-
tachment rates (from cytoskeleton filaments).
In consequence, the diffusing searcher experiences a total
annihilation rate

k(r, t) = γ

∫
dΩ ρΩ(r, t) , (4)

with which it is transformed into a ballistically moving
particle with a randomly chosen direction Ω (and velocity
vΩ) with probability

ρv(Ω|r, t) =
ρΩ(r, t)∫
ρΩ′(r, t)dΩ′

. (5)

A ballistically moving particle switches back to diffusive
motion with rate γ′.

Within this article, a target shall always be detected
immediately, when the diffusive searcher reaches the tar-
get area for the first time (in reaction kinetics this means
reaction upon contact). One could also consider detec-
tion or reaction with a finite rate kdet within the target
area [17]. But we restrict ourselves to the case kdet →∞,
i.e. target detection is always modeled via the boundary
condition

P0(r, t) = 0 ∀ r ∈ A , (6)

where either A ⊂ V is the detection area within V or
A ⊂ ∂V is the detection area at the surface of V (narrow
escape problem).

In section VI, we consider the problem of two moving
particle, which will react immediately if their distance
becomes smaller than a certain value. Hence their
probability distributions are not independent and the
solution does not factorize. Consequently, the master
equation system depends on 6 spatial coordinates and 4
coordinates for Ω. As the exact notation of this master
equation system and the corresponding boundary condi-
tions is very lengthy but straightforward, we will skip it
here.

Apart from the initial conditions P0(r, t = 0) = δ(r −
r0), PΩ(r, t) = 0 the equation system is augmented by
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boundary conditions at the boundary ∂V \A for P0(r, t)
and boundary conditions at ∂V for PΩ(r, t). Two dif-
ferent boundary conditions, in the following called BB
(Ballistic-Ballistic) and BD (Ballistic-Diffusive), will be
used within the studies of this article.

BB boundary condition

For BB boundary conditions we assume that a ballis-
tically moving particle hitting the boundary is simply re-
flected and stays in the ballistic mode, no matter whether
this happens at the target area or not (i.e. the target is
not detected then). A particle in the diffusive mode is
reflected at every point of the boundary ∂V , which does
not belong to the target area and stays in the diffusive
mode. Fig. 1a visualizes the BB condition in a sketch.
Formally this boundary conditions are described by

∂

∂nr
P0(r, t) = 0 ∀ r ∈ ∂V \A

PΩ(r, t) = PΩrefl
(r, t) ∀ r ∈ ∂V , (7)

where nr denotes the outward pointing unity vector per-
pendicular to the boundary at position r and Ωrefl de-
notes the solid angle which belongs to the reflection of
eΩ at the surface position r.

BD boundary condition

For BD boundary conditions we assume that a ballis-
tically moving particle hitting the boundary switches to
the diffusive motion. If this part of the boundary belongs
to the target area, the particle is immediately detected.
A particle in the diffusive mode is reflected at every point
of the boundary ∂V , which does not belong to the target
area and stays in the diffusive mode. Fig. 1b visualizes
the BD condition in a sketch. Formally this boundary
conditions are described by

D
∂

∂nr
P0(r, t) =

∫
dΩ (vΩPΩ(r, t)) · nr ∀ r ∈ ∂V \A

PΩ(r, t) = 0 ∀ r ∈ ∂V, Ω | nr · eΩ < 0 . (8)

Nondimensionalisation

In order to reduce the number of parameters to a min-
imal independent set, characteristic length- and time-
scales where chosen by introducing the dimensionless spa-
tial and temporal coordinates

r̃ =
1

R
r and t̃ =

v

R
t. (9)

a)  BB b)  BD

FIG. 1: Sketch of boundary conditions in a search volume V
with escape area A (dotted line). Grey wiggly lines represent
diffusive motion, green lines ballistic motion. a) BB: a ballis-
tically moving particle is reflected at the boundary and stays
in the ballistic mode, i.e A is only detected if it is reached
diffusively. b) BD: a ballistically moving particle switches to
diffusion at the boundary, i.e A will be detected if it reaches
A ballistically (trajectory, starting at r̃0) or diffusively (tra-
jectory, starting at r̃1).

In consequence, Eqs. (2) and (3) are always solved in the
unit sphere and look the following way:

∂

∂t̃
P0 = D̃∆̃P0 − γ̃

[∫
ρΩ(r̃, t)dΩ

]
P0 + γ̃′

∫
dΩPΩ (10)

∂

∂t̃
PΩ = −eΩ ·

(
∇̃PΩ

)
+ γ̃ ρΩ(r̃, t)P0 − γ̃′PΩ , (11)

with

D̃ =
D

vR
, γ̃ =

R

v
γ and γ̃′ =

R

v
γ′ . (12)

Apart from the sphere radius R, the absolute value of the
velocity also vanished in the dimensionless coordinates,
as ṽ = 1 holds. Furthermore, T is not changed by the
dimensionless units, i.e. T = T/Tdiff = T̃ /T̃diff.

Models for the direction distribution ρv(Ω|r̃, t̃)

Eq. (4) introduced the total transition rate k(r, t) for
a switch from diffusive to ballistic motion at position r
at time t. Although it is numerically possible to handle
this most general scenario (Algorithm 1 in section III)
this rate will be constant in time and space in the inves-
tigated models, i.e. without further loss of generality we
set

∫
ρΩ(r̃, t̃)dΩ = 1 and in consequence Eq. (5) simpli-

fies to

ρv(Ω|r̃, t̃) = ρΩ(r̃, t̃) . (13)

Within the studies of this paper, two different families of
time-independent inhomogeneous distributions ρv(Ω|r̃)
will be compared to the homogeneous distribution

ρhom (Ω) =
1

4π
. (14)

Both will be rotational symmetric, i.e. ρv(Ω|r̃) de-
pends only on the radius r̃ = ||r̃|| and the angle

α(r̃, eΩ) = arcos

(
r̃ · eΩ

||r̃||

)
(15)
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between the vectors r̃ and eΩ.
This symmetry also holds for the homogeneous case of
ρhom (Ω), where the probability density for the angle α ∈
[0;π] is independent of r̃ and given by

ραhom(α) =

∫ 2π

0

dϕ
1

4π
sin(α) =

1

2
sin(α) . (16)

varying Gaussian distribution

The distribution for the angle α (Eq. (15)) , intro-
duced now, will only be applied to the narrow escape
problem. The principle idea is to find the probability
density ρα (α|r̃), which minimizes the MFPT of the nar-
row escape problem. Mathematically, this is a variational
problem. In consequence, a numeric solution requires an
apriori assumption for a class of density functions, which
is motivated now:
If the particle is close to the center of the simulation
sphere, a mainly radially outward pointing velocity di-
rection is for sure the best strategy, as it is the fastest
way to reach the sphere’s boundary. At the boundary
this distribution is not optimal any more, as there is no
velocity component in parallel to the boundary. With-
out this parallel component, the searcher gets stuck at a
relatively small part of the boundary.
In consequence, the spread of the distribution should
increase with r̃. Following this argumentation, the
gaussian-like probability density ραx (α|r̃), illustrated in
Fig. 2, was chosen for our simulations:

ραx (α|r̃)=2π sin(α)N
(
σ(x, r̃)

)
exp

(
−
(
cos(α)−1

)2
2 [σ(x, r̃)]

2

)
,

(17)
where

σ (x, r̃) =

√
x

1− x
r̃ (18)

denotes the spreading of the gaussian and

N(σ) =
1

πσ
√

2πerf
(√

2
σ

) (19)

is the normalization of the distribution. The class pa-
rameter x ∈ ]0; 1[ controls the speed of the increase of the
distribution spreading. For x → 0+, the velocity direc-
tion points radially outwards for all r̃ ∈ [0; 1] as σ (x, r̃)
tends to zero. The spread (Eq. (18)) increases monoton-
ically in x and in r̃. For x → 1−, we are dealing with
the totally homogeneous velocity direction distribution
ραhom(α).

radial-peripheral distribution

The second investigated distribution is inspired by the
spatial organization of the cytoskeleton of spherical cells

1

2

3

0

0.5

1

1.5

2

2.5

3

3.5

0

0.2
0.4

0.6
0.8

1
1.2

1.4

FIG. 2: The class of probability densities ραx (Eq. (17)) as
a function of the variable α and the spreading parameter
σ (x, r̃).

with a centrosome and was introduced in [23], see Fig.
3a for a sketch. It contains two parameters:

ρα
p,∆̃

(α|r̃)=
{
p δ(α)+(1−p) δ(α−π), 0<r̃<1−∆̃

ραhom(α) , 1−∆̃<r̃< 1
.(20)

The parameter p ∈ [0; 1] is the probability to move radi-
ally outwards, and 1− p the probability to move inwards
inside the inner spherical region with radius 1 − ∆̃. ∆̃
represents the width of the outer shell in which the homo-
geneous strategy is applied, hence ∆̃ = 1 represents the
totally homogeneous searching strategy. A ballistically
moving particle switches to the diffusive state when it
reaches the radius r̃ = 0 and r̃ = 1− ∆̃. The distribution
ρα
p,∆̃

will only be investigated for the boundary condition

BD. A sketch of the resulting stochastic processes is given
in Fig. 3b.

III. THE ALGORITHM

Due to the integro type of Eq. (3) and/or the large
number of spatial coordinates in two-particle problems,
it is not possible to solve the complete Fokker-Planck
equation system (Eqs. (2)-(3)) via FEM. Only the
purely diffusive case of one particle is always solvable.
Hence, the numerical results of this article were mostly
derived with Monte Carlo techniques, which will be
explained in this section.

Green’s function reaction dynamics [36, 37] and first-
passage kinetic Monte Carlo methods [38–40] are cur-
rently the most powerful tools for simulating diluted
reaction-diffusion processes. In contrast to the tradi-
tional way of simulating diffusion by an enormous num-
ber of very small (compared to the system size) random
hops, they propagate diffusing particles randomly within
so called protective domains over rather long distances.
The core of these methods are Green’s functions, the so-
lution of the initial value diffusion problem within the
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MTOC

b)a) mathematical

idealization

FIG. 3: a) The cytoskeleton transport network of a spherical
cell with a centrosome: Microtubules (green lines), emanating
from the MTOC of the cell close to the nucleus, are orientated
predominantly radially to the cell membrane. Kinesin and
Dynein motor proteins transport cargo along them. The actin
cortex (red lines) close to membrane is built by isotropically
orientated actin filaments. Myosin motors transport cargo
along. b) Sketch of the stochastic process with the direction

distribution ρα
p,∆̃

. ∆̃ is the thickness of the outer region. r̃0 is

the starting point of the particle, Grey wiggly lines represent
diffusive motion, green lines ballistic radial motion (for |̃r| <
1 − ∆̃, outward with probability p, inward with probability
1− p), red lines ballistic motion in random directions(for 1−
∆̃ < |̃r| < 1).

protective domains. In essence, these methods work the
following way:
For a given starting configuration of N interacting dif-
fusing particles within a domain V , a protective domain
Gi ⊂ V is assigned to each particle i with Gi∩Gj = Ø for
i 6= j. A necessary restriction for the choice of each do-
main is the knowledge of an analytic expression for the
Green’s function for the initial value diffusion problem
according to absorbing boundary conditions at the inte-
rior of V and the boundary conditions of V at common
boundaries of V and Gi (as far as they exist). Based on
these Green’s functions it is possible to sample for the
particle i which will leave its domain first and a corre-
sponding time τi for this first-passage event. Finally, the
exit position ri ∈ ∂Gi is sampled depending on τi. If
the distance of ri to the protective domains of all other
particles is larger than a given threshold, we look for a
new protective domain for the particle i. Otherwise, we
have to sample new positions for all particles, whose pro-
tection domains are too close to ri. In the end, a new
protective domain has to be assigned to all these parti-
cles.
In [41] we developed an improvement of these routines
for a wider range of applications including external space
and time depending transition rates.
For a more detailed general explanation of these methods
and for proofs of their correctness, the reader is referred
to the original articles [36–41]. The rest of this methodi-
cal chapter only focuses on describing the concrete algo-
rithm for particles in a sphere, switching between ballistic
and diffusive motion according to the model definition of
section II. The method will be explained in the most gen-

eral context of spatially and temporally varying rates, see
Eqs. (2 -3).

A. non-interacting particles in a sphere of radius R

Algorithmically, the case of several non-interacting
particles is identical to the case of only one particle. Con-
sequently, we restrict the following algorithm description
to only one particle.
For a diffusive particle being at position r0 at time t0
we use two different types of domains for propagating
the particle within the simulation sphere of radius R. If
the distance d∂V = R − ||r0|| to the boundary of the
sphere is larger than a very small threshold value εR, a
sphere G with radius Rpro = d∂V , centered around r0,
will be assigned to the particle. An example for such a
situation is the blue particle in Fig. 4. Based on the solu-

zoom

+

2d projection

surface 

of sphere

re�ecting boundary 

of the cone

absorbin boundary 

of the cone

FIG. 4: Illustration for the choices of protecting
spheres/cones: The blue particle on the left is closer to the
boundary of the simulation sphere than to any other particle,
in consequence the radius of its protecting sphere is limited
by the distance to the boundary. The green and the red par-
ticle in the middle are closer to each other than to the cell
boundary. If they can react, their radius is limited by their
distance. The gray particle has reached the boundary. Hence
it is propagated in a cone, which is illustrated in the 2d pro-
jection.

tion of the diffusive initial value problem in G (appendix
Eq. (A1)) it is possible to generate stochastically a first-
passage time tb = t0 + τb to the boundary of G, where τb
is sampled according to the corresponding first-passage
time probability ρb (appendix Eq. (A6)). If the particle
does not switch to ballistic movement before time tb, a
random position update to the boundary of the sphere G
is done and a new protective domain must be assigned
to the particle afterwards. Otherwise a new particle po-
sition within the sphere G is sampled by using the radial
probability density ρn (appendix Eq. (A7))

Due to the fact, that the boundaries of the sphere
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V and the protecting sphere G have always only one
point in common, it does not work to use only spheres
for the protecting domains. With probability one,
the particle will touch the boundary of the simulation
sphere, i.e. we would end up with an infinite sequence
of protecting spheres, whose radii converge to zero. The
best possibility to overcome this problem would be the
usage of protection domains, whose boundaries coincide
locally with the boundary of the simulation sphere in
an area and not just in one point. Due to the missing
knowledge of corresponding Green’s functions and/or
the ability to sample efficiently within these domains,
this is not possible. In consequence, for d∂V ≤ εR, we
locally approximate the boundary of the simulation
sphere by a suitable geometry, which is a spherical cone
with a reflecting conical and an absorbing spherical
boundary (appendix Eq. (A4)). An example for such a
situation is the gray particle in Fig. 4. If the distance to
the boundary is larger than εR after being propagated
within the cone, we again go on with a protecting
sphere, otherwise, we use again a cone. The accuracy of
this method is tunable via the two geometry boundary
approximation parameters εR and the maximum radius
Rpro = rc of the protecting cone. It is important to
mention, that rc is just an upper limit for the cone’s
radius. If the center position xc ∈ ∂V \A of the cone is
closer than rc to the target area A, Rpro is chosen to be
the minimal distance of xc to A.

In order to demonstrate the high accuracy, we com-
pared our Monte Carlo method with the solution of a
commercial FEM solver for a purely diffusive narrow
escape problem. Starting at r0 = 0, the searcher has
the find the escape area with polar angle ϑabso = π/12
(bright area at the top in Fig. 4). The FEM simulation
was done on a very fine triangulation (≈ 200000 ele-
ments) using the rotation symmetry of the problem and
yields the expectation value EWFEM = 4.1972R2/D for
the needed search time. The Monte Carlo simulation
with 107 samples was done for the geometry approximat-
ing parameters εR = 10−4R, rc = 0.04R and yields the
almost perfectly matching value EWMC = 4.1984R2/D.
A much stronger criterion than the comparison of expec-
tation values is the equality of the survival probability
S(t) (probability of not having reached the escape
area until t) for all t > 0. The again almost perfectly
matching result is shown in Fig. 5.

All numerical results of this article are expected to be
in the same numerical exactness (expect the sampling
deviation in the case of a smaller number of samples),
as the values of εR and rc where always chosen to be on
the save side according to the smallest occurring length
scale. However, the accuracy was successfully checked
wherever this was possible (either by analytic values or
FEM values).

For a diffusive particle at position r, the total rate for
a switch to a ballistic movement in an arbitrary direction
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FIG. 5: Comparison of the Monte Carlo method and the so-
lution of a FEM solver on the basis of the survival proba-
bility S(t) for a purely diffusive narrow escape process with
ϑabso = π/12 and r0 = 0. The inset shows the very small
relative deviation of these distributions.

Ω is given by k(r, t) (see Eq. (4)). If this rate is spatially
inhomogeneous, the methods of [36–40] will fail, as there
is in general no analytic solution (Green’s function) to
the diffusion-annihilation equation available. The algo-
rithm, presented in [41], overcomes this problem by using
a spatially maximal rate

km(t) = maxr∈V {k(r, t)} (21)

in order to sample a candidate time tcand for a switch
from diffusive to ballistic motion according to the prob-
ability density

ρm(t|t0) = − d

dt

[
e
−

∫ t
t0
km(t′)dt′

]
. (22)

A new position r is assigned to the particle with the
help of ρn(·|tcand − t0) (appendix Eq. (A7)). With
probability 1 − k(r, tcand)/km(tcand) the particle moves
on diffusively. With probability k(r, tcand)/km(tcand) it
switches to ballistic motion with velocity v, sampled
according to the probability density ρv(Ω|r, t) (see Eq.
(5)).
For a back switch to diffusive motion only a correspond-
ing time must be sampled, as there is a one-to-one
relation between time and space in the case of ballistic
motion.
For a better understanding, the pseudo-code details are
shown in Algorithm 1, exemplarily for the BD boundary
condition.

B. interacting particle in a sphere of Radius R

If there are at least two particles in the simulation
sphere, which are able to react, the choice of the protec-
tion boxes does not only depend on the position of the
particle, but also on the distance between these reacting
particles. In general, protecting spheres/cones of react-
ing particles are not allowed to be closer to each other
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Algorithm 1 one particle

1: Input: r0 ∈ R3

2: Output: r, t
3: t← 0;
4: tcand ← 0;
5: diffusive← true;
6: repeat
7: if ( diffusive ) then
8: if (tcand ≤ t) then
9: tcand ← random number according to ρm(·|t);

10: end if
11: Choose the protecting sphere/cone P with

maximal radius Rpro as a function of r;
12: tb ← t + random number according to ρb(·)

for Rpro;
13: if (tb < tcand) then
14: r← rand. position at absorbing part of ∂P ;
15: t← tb;
16: else
17: r← rand. position update within P according

to ρn(·|tcand − t);
18: t← tcand;
19: if (k(r, t)/km(t) ≥ ran[0; 1]) then
20: diffusive← false;
21: v← random velocity according to ρv(·|r, t);
22: end if
23: end if
24: else
25: tb ← time when ballistic particle hits boundary;

( ||r + (tb − t) · v|| = R , tb > t )
26: tcand ← random exponentially distributed number

with rate γ′;
27: if (tb < tcand) then
28: r← r + (tb − t) · v;
29: t← tb;
30: else
31: r← r + (tcand − t) · v;
32: t← tcand;
33: end if
34: diffusive← true;
35: end if
36: until (distance to absorbing part of sphere < threshold)
37: return (r, t)

than the interaction distance di. An example for such
a situation is the red and green particle in the middle
of Fig. 4. A similar problem as the boundary approxi-
mating problem in the subsection before has to be solved
here. If we choose the protecting spheres/cones of in-
teracting particles always in a way, that the boundaries
of these protection boxes have their minimal distance in
only one point, we will for sure end up in an infinite se-
quence of protection spheres/cones, whose radii tend to
zero. In general there are two ways to overcome this prob-
lem. The first one is discussed in [37] and the problem is
solved via a coordinate transformation for the two parti-
cle positions to the difference vector and the mass point
vector. As the problem factorizes in these coordinates,
one ends up with two independent problems. Although a
position update takes more time in these situations due

to the fact, that radial symmetry is lost within the pro-
tection boxes in these coordinates, this is a very powerful
tool for particles, which are far away (compared to their
distance) from the boundary of the simulation sphere.
But for particles, whose distance to the boundary is only
a little bit larger than their distance to each other, this
method does not work well. Hence, we decided to use
a second tunable approximation by defining a parame-
ter εdist: If the distance between two reactive particles
is less than di + εdist these particles react. If we choose
εdist = 10−4 · di, we are numerically for sure on the safe
side, as all results look totally the same as in the case
εdist = 5·10−4·di. A comparison to the solution of a FEM
solver is not possible anymore, even for purely diffusive
particles, due to the high spatial dimension (2 · 3 = 6) of
the problem. A pseudo-code description would be quite
large and the general idea is the same as in Algorithm 1.
The interested reader is again referred to [36–41].

IV. NARROW ESCAPE PROBLEM

The narrow escape problem for a purely diffusive
particle in a sphere (and other simple domains) has
already been studied in several publications. A nice
overview, containing analytic asymptotic expressions, is
given in [33] and [30]. Within this section, we consider
the problem of a particle, which moves according to
an intermittent search strategy, meaning, the master-
equation system of its movement is given by the Eqs.
(10) and (11) until it reaches the absorbing part of the
boundary of the simulation sphere for the first time.
This escape area is given by a spherical cab with polar
angle ϑabso, like it is shown at the north pole of Fig. 4.
The position of this cap is of course not known by the
particle.
The MFPT T̃ to the absorbing cap is a function of
ϑabso, D̃, γ̃, γ̃

′ and the velocity direction distribution
ρv(Ω|r̃). Furthermore, it depends on the initial position
of the diffusively starting particle. But in the case of
small target areas, the relative influence of the initial
position totally vanishes. Depending on the diffusivity
D̃ and ϑabso, we study the optimal solution to the escape
problem, i.e. we always look for the transition rates
(γ̃, γ̃′) which minimize T (and simultaneously T̃ ).

purely diffusive search

The reference time T̃diff for a purely diffusive searcher
(γ̃′ → ∞ and/or γ̃ = 0) is inversely proportional to the

diffusivity D̃. Among others, [33] has derived a very ex-

act analytic approximation T̃ appro
diff (ϑabso) of the problem

for small ϑabso for arbitrary starting positions r̃0. For
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r̃0 = 0,

T̃ appro
diff (ϑabso) =

1

D̃

(
π

3ϑabso
− 1

3
ln(2ϑabso)

)
(23)

holds. T̃diff has been calculated via 2 · 106 (ϑabso ≤ 0.15)
- 107 (ϑabso > 0.15) Monte Carlo samples for each ϑabso
and compared to the analytic approximation in Eq.
(23). The result is shown in Fig. 6. For small values of
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FIG. 6: T̃diff ·D̃ and T̃ appro
diff ·D̃ as a function of ϑabso for r̃0 = 0:

Each red dot is the average of 2 ·106 − 107 Monte Carlo sam-
ples. It coincides very well with the analytic approximation
of [33] (green line), given in Eq. (23). The inset shows the
relative difference between the curves.

ϑabso the relative deviation between the simulated value
of T̃diff(ϑabso) and T̃ appro

diff (ϑabso) is extremely small and
only based on stochastic fluctuations (inset of Fig. 6
). For larger values of ϑabso it slightly increases, which
is not based on a drop of exactness in our numerical
routines, but on the fact that the approximation T̃ appro

diff
becomes worse for larger opening angles. If the initial
position r̃0 of the particle is equally distributed within
the sphere, T̃diff and T̃ appro

diff exactly decrease by 1/(10D̃)
for all ϑabso, which has also been checked numerically.

random velocity model

Before studying intermittent strategies, it is insightful
to have a look at the opposite choice of transitions rates
γ̃ and γ̃′, which is a random velocity model, given by the
limit γ̃ →∞ and γ̃′ = 0.
For the BB boundary condition the corresponding MFPT
T̃v tends trivially to infinity for all ϑabso ∈ [0;π], as the
ballistically moving particle is reflected at the boundary
without target area detection and never switches to dif-
fusive mode (see Fig. 1b).

For the BD boundary condition, this is not the case.
The resulting random velocity model is given by a bal-
listically moving particle, which detects the escape area

at the boundary when reaching it and randomly chooses
a new direction for the ballistic motion when reaching
a part of the sphere’s boundary which does not belong
to the target area. In consequence, the corresponding
MFPT T̃v depends on the velocity direction distribu-
tion ρv(Ω|r̃), the opening angle ϑabso and slightly on
the initial position r̃0. For r̃0 = 0 and the case of
a homogeneous velocity direction density (Eq. 14) we

derived an approximating expression T̃ appro
v (ϑabso) for

ϑabso ∈ [0;π/2]:

T̃ appro
v (ϑabso) = 1 +

1 + cos(ϑabso)

2
·Ψ(ϑabso) (24)

with Ψ(x) =
1 + cos(x)

1− cos(x)
×

1
cos(x)−1

sin(x) +x sin(x)+4cos
(
x
2

)
−3−4cos(x)ln

(
cos( x4 )

cos( x2 )

) .
Fig. 7 shows T̃v (108 samples) and T̃ appro

v in a logscale

plot. The relative deviation of T̃v and T̃ appro
v vanishes

for ϑabso → 0, which is shown in the inset. If the initial
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FIG. 7: T̃v and T̃ appro
v as a function of ϑabso for r̃0 = 0:

Each red dot is the average of 108 Monte Carlo samples. It
coincides very well with the analytic approximation T̃ appro

v

(green line), given in Eq. (24). The inset shows the relative
difference between the curves.

position r̃0 of the particle is equally distributed within
the sphere, T̃v and T̃ appro

v exactly decrease by 1/4 for all
ϑabso.

A comparison of T̃
(appro)
diff and T̃

(appro)
v points out an

important difference in the behavior of divergence of T̃diff

and T̃v for small escape areas:

T̃diff(ϑabso) ∝
1

D̃ · ϑabso

T̃v(ϑabso) ∝
{
∞ , BB boundary cond.

1
(ϑabso)2 , BD boundary cond. .

After having studied the two possible extreme cases
in search behavior, which is necessary for understanding
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been done for each pair (γ̃ , γ̃′), which leads to relative stochastic fluctuations of T, which are smaller than 0.2%. The position
of the minimum (γ̃opt, γ̃

′
opt) is always shown with a red dot.

the later discussed ϑabso dependence, we now face
intermittent strategies and analyze their efficiency.

In subsection IV A the condition BB is studied, i.e. a
ballistically moving particle, which hits the boundary of
the simulation sphere, stays in its ballistic mode with
the reflected velocity direction. The arrival at the escape
area of the sphere will only be detected if the particle is in
the diffusive mode, otherwise it is reflected. We compare
the problem of the homogeneously distributed direction
density ραhom to the inhomogeneous scenario of ραx .
In subsection IV B the condition BD is studied, i.e. a
ballistically moving particle, which hits the boundary of
the simulation sphere, switches immediately to the dif-
fusive mode, i.e. if this switch happens at the escape
area, the particle immediately recognizes the exit. Here,
the homogeneous case is compared to the inhomogeneous
scenarios of ραx and ρα

p,∆̃
.

A. BB

For the BB condition, the searcher will start in the
center of the sphere and the escape area is given by a
spherical cab with angle ϑabso = arcsin(1/7) ≈ 0.1433
within this subsection, i.e. the radius of the absorbing

spherical cab is seven times smaller then the radius of the
sphere. In consequence, the area the particle searches, is
about 0.51% of the total spherical surface, i.e. we are
in the limit of a small escape area. In this setup, the
reference time (taken from the MC data of Fig. 6) is
given by

T̃diff =
7.71

D̃
. (25)

1. homogeneous distribution ραhom

For different values of D̃, we look for the best strat-
egy to search for the absorbing area as a function of the
switching parameters γ̃ and γ̃′. T as a function of γ̃ and
γ̃′ is shown in Fig. 8 for four different examples of D̃.
For D̃ = D

vR larger than about 0.025 there is no bene-
fit in a mixed strategy. Here, a purely diffusive particle
is on average the better searcher as diffusive motion is
faster on these scales. As D̃ decreases, phases of ballis-
tic displacement become more and more efficient, as the
diffusive displacement per time unit shrinks. Hence, a
global minimum Topt(D̃) = T̃opt(D̃)/T̃diff(D̃) < 1 occurs
in the (γ̃, γ̃′) space, i.e. there is a benefit in an inter-
mittent search strategy. As expected, this benefit fur-
ther increases with decreasing D̃, i.e. Topt(D̃) increases
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monotonically and

lim
D̃→0+

Topt(D̃) = 0 (26)

holds, although limD̃→0+ T̃opt(D̃) = ∞. Surprisingly,
the efficiency of the strategy changes only very little in a
quite large (relative to the absolute values) surrounding

of the optimal solution (γ̃opt, γ̃
′
opt) for all diffusivities D̃.

This can be seen by having a closer look to the values of
the isolines in Fig. 8. In consequence, due to stochastic
fluctuations, the relative error in the optimal values of
γ̃opt and γ̃′opt is much larger than the relative error in

the value of T̃opt and Topt. Fig. 9 shows γ̃opt, γ̃
′
opt and

(in the inset) Topt as a function of the diffusivity D̃.

The corresponding values of T̃diff and T̃opt are also listed

0

10

20

30

40

50

60

70

0 0.005 0.01 0.015 0.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.005 0.01 0.015 0.020
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′
opt and the resulting normalized MFPT Topt (in-

set) as a function of D̃. For the diffusion coefficients shown
in Fig. 8, the data coincides with the coordinates of the red
dots and its value of T.

in Table I and plotted in Fig. 11 for a comparison to
the later treated inhomogeneous search scenarios. γ̃opt

and γ̃′opt decrease monotonically in D̃. As this happens
faster for γ̃ than for γ̃′, the fraction of time spend in the
diffusive mode γ̃′/(γ̃ + γ̃′) increases with D̃.

Due to the enormous numerical effort, it is not possible
to vary ϑabso systematically here. Nevertheless, we ex-
emplarily investigated also some values of D̃ for smaller
and larger values of ϑabso. Similar to the results in the
following chapters, we found, that a decrease in target
size results in an increase in both transition rates.

2. inhomogeneous distribution ραx

Within this subsubsection, we study the influence of
ραx on the search strategy and the transition rates. Fig.
10 shows the dependence of T on x for representatively
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FIG. 10: narrow escape, BB, ραx ; T as a function of the
spreading parameter x for the transition rates (γ̃opt, γ̃

′
opt) of

the optimal solution of Fig. 9. The minimum position xopt ≈
0.35 (gray bar) of all curves is almost identical. The colored
numbers on the right show the ratio Tmin/Topt.

selected values of D̃ and the corresponding optimal pa-
rameters γ̃opt(D̃), γ̃′opt(D̃) of the homogeneous scenario,
shown in Fig. 9.

The global minimum for each D̃ will be denoted
T̃min(D̃) in the following. At x = 1 the values of T coin-
cide with the corresponding Topt of Fig. 9. In none of the
cases, the value at x = 1 is the minimum. It follows, that
an anisotropic velocity direction distribution increases
the efficiency of the search strategy significantly. For
small values of D̃, T̃min is much smaller than T̃opt, which
can also be seen by comparing the blue and the green
curves of Fig. 11 and the corresponding values in Table I.
As D̃ increases the benefit of an inhomogeneous strategy
becomes less pronounced. It is remarkable, that the
degree of inhomogeneity xopt ≈ 0.35 is constant for all D̃.

Nevertheless it is even possible to decrease T further:
In Fig. 10 the transition rates were chosen as the optimal
solution for the homogeneous case. There is no reason,
that this is also the optimal choice in the inhomogeneous
case. In consequence, we varied γ̃, γ̃′ and x simulta-
neously for finding the optimal parameters Γ̃OPT, Γ̃′OPT

and XOPT for the MFPT T̃OPT (be aware of the different
meaning of the index ”opt“ and ”OPT“). The results are

shown in Table I and T̃OPT is plotted in Fig. 11. Table I
delivers some remarkable results:

• The optimal value of x seems to be almost constant in
all cases. For the rates of the homogeneous optimiza-
tion (γ̃opt, γ̃

′
opt) and for the rates of the inhomogeneous
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D̃ T̃diff T̃opt T̃min T̃OPT γ̃opt γ̃
′
opt Γ̃OPT Γ̃′OPT xopt XOPT

0.02 386 371 307 238 0.8 3.4 11.5 8 0.35 0.325

0.015 514 465 337 264 1.5 4.1 18 8.5 0.35 0.325

0.01 771 610 349 297 4 6 25 9.5 0.35 0.325

0.0075 1028 720 377 321 5 6.3 30 10 0.35 0.325

0.005 1542 888 398 353 8.4 7.9 36 11 0.35 0.325

1/300 2314 1071 433 386 12 9.6 42 12 0.35 0.325

0.0025 3085 1211 448 410 15 10.75 48 13 0.35 0.325

0.002 3856 1326 466 429 17.5 11.5 50 13.5 0.35 0.325

0.001 7712 1727 530 492 26 15 60 15 0.35 0.3

0.0005 15420 2217 618 562 38 20 75 18 0.35 0.3

0.0002 38560 3026 740 670 55 25.75 95 21 0.35 0.3

TABLE I: T̃diff: purely diffusive MFPT; T̃opt: optimized in-
termittent MFPT for ραhom with optimal rates γ̃opt and γ̃′opt;

T̃min: optimized intermittent MFPT for ραx with optimal inho-
mogeneity coefficient xopt and fixed rates γ̃opt and γ̃′opt; T̃OPT:
optimized intermittent MFPT for ραx with optimal inhomo-
geneity coefficient XOPT and corresponding optimal rates Γ̃OPT

and Γ̃′OPT.

optimization (Γ̃OPT, Γ̃
′
OPT) the best solution is always

given by x ≈ 0.325 ± 0.025. Hence, the degree of in-
homoegeneity for an optimal solution does not seem to
depend much on the diffusion coefficient and the tran-
sition rates, which is quite surprising.

• Comparing the values of (γ̃opt, γ̃
′
opt) with (Γ̃OPT, Γ̃

′
OPT),

one recognizes remarkable changes in the transition
rates. For large values of D̃, the change is more than a
factor of 10.

• Like in the homogeneous case, the efficiency of the in-
homogeneous strategy changes only very little in a quite
large surrounding of the optimal solution (Γ̃OPT, Γ̃

′
OPT).

For concluding this subsection, Fig. 11 shows the optimal
MFPTs for the different discussed scenarios. Compared
to a purely diffusive searcher (red), an intermittent search
strategy with a homogeneous velocity direction distribu-
tion (green) optimizes the search process especially for

small D̃ significantly, which has already been shown in
the inset of Fig. 9. In the next step, we introduced
an inhomogeneity in the velocity direction distribution
(blue), but kept the optimal rates of the homogeneous
case. Again, the largest benefit can be seen for small
D̃ (see Fig. 10). In the last step, we varied the tran-
sition rates and the degree of inhomogeneity simultane-
ously (black). Although the optimal rates changed dra-
matically, the additional benefit is much smaller than in
the optimization steps before. But this time it increases
with D̃.
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FIG. 11: narrow escape, BB; MFPT for purely diffusive
search (Eq. 25, red line); optimal search with homogeneously
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inhomogeneously distributed velocity direction for the fixed
rates γ̃opt, γ̃

′
opt for the homogeneous scenario (blue) ; optimal

search with inhomogeneously distributed velocity direction for
rates Γ̃OPT , Γ̃′

OPT
(black).

B. BD

For all investigated direction distributions (ραhom and
both inhomogeneous scenarios ραx , ρα

p,∆̃
) in this subsec-

tion the optimal search strategy is either a purely diffu-
sive one (for D̃ large) or the simulations yield γ̃′opt = 0.
Exemplarily, this is shown in Fig. 12. For ϑabso =
arcsin(1/7) and different values of D̃ the figure shows
T as a function of the transition rates for the case of
ραhom and the initial position in the origin. A comparison
to Fig. 8 shows the different behaviour of the optimal
solution for the two boundary conditions. We verified
γ̃′opt = 0 also for smaller values of ϑabso and larger ones
(0.025 < ϑabso < π). Consequently, the numerical effort
of finding the best strategy is dramatically reduced, as
there is one parameter less to vary. Due to this reduced
effort, the variation of the absorbing angle ϑabso will also
be studied in the case of a ραhom.
Apart from this additional study, the beginning of the
subsection is organized identically to the one before: We
start with the case of ραhom , followed by the inhomoge-
neous scenario ραx for ϑabso = arcsin(1/7). In both cases
the initial position is the origin. Afterwards we study the
case ρα

p,∆̃
for a homogeneously distributed initial position

r̃0 and ϑabso = arcsin(1/7).

1. homogeneous distribution ραhom

At first, we study whether an intermittent search strat-
egy or a purely diffusive strategy is better for a given pair
of parameters (D̃, ϑabso). For the reason of completeness
we faced this question for all values of ϑabso ∈]0;π] and
not only for a ”narrow” escape area. The result for r̃0 = 0
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FIG. 12: narrow escape, BD, ραhom; The normalized MFPT
T (Eq. 1) is color-coded as a function of the parameters γ̃ and

γ̃′ for different values of D̃ and ϑabso = arcsin(1/7) (interpo-
lation from a grid of 41×41 data points each). Between 2 ·106

and 5·106 samples have been done for each pair (γ̃ , γ̃′), which
leads to relative stochastic fluctuations of T which are smaller
than 0.2% for. The position of the minimum (γ̃opt, γ̃

′
opt) is al-

ways shown with a red dot.

is shown in Fig. 13.

In the red (a) domain an intermittent search strategy
is preferable. T(γ̃) starts monotonically decreasing at
γ̃ = 0. It follows the global optimum at γ̃opt > 0. An

example for this behavior for D̃ = 0.02, ϑabso = 0.05 is
given in Fig. 14.
In the green domain (b), intermittent search is also
preferable. Although T(γ̃) starts monotonically increas-
ing, it decreases to T < 1 for some values of γ̃. Again,
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FIG. 13: narrow escape, BD, ραhom; Diagram for the choice
of the best search strategy as a function of D̃ and ϑabso : In
the red (a) and the green (b) domain, an intermittent search
strategy is preferable, whereas in the white domain (c) pure
diffusion is the best strategy. For the construction of the
diagram, the behaviour at the position of the dots was inves-
tigated.
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FIG. 14: narrow escape, BD, ραhom; Examples of the func-
tion T(γ̃, γ̃′opt = 0) for the three different colored areas in Fig.
13.

an example for this behavior for D̃ = 0.14, ϑabso = 2.5
is given in Fig. 14.
Finally, in the white domain (c) γ̃opt = 0 holds, hence
a diffusive search is the best strategy. An example for
this behavior for D̃ = 0.135, ϑabso = 0.15 is also given in
Fig. 14.

Fig. 13 only answers the question about the best strat-
egy in principle, it is neither quantifying the transition
rate γ̃opt(D̃, ϑ̃abso) nor the MFPTs T̃opt(D̃, ϑ̃abso) and

Topt(D̃, ϑ̃abso). A quantification has only been done in
the case of small escape areas (ϑabso < 0.75) due to the
following reasons:
If the escape area is large, the searcher will find it soon,
hence there is no need for a special strategy. The largest
impact of γ̃ on the efficiency of the strategy is given for
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small values of ϑ̃abso, i.e. for large ϑ̃abso either a purely
diffusive searcher or a random velocity model (γ̃ = ∞)
is always close to the optimal strategy. Additionally, for
small values of ϑabso the optimal strategy is almost inde-
pendent of the starting position of the searcher, i.e. the
shown results for a searcher starting at the origin will
remain true in the more general context of an arbitrary
initial position. For the angle ϑ̃abso = arcsin(1/7) this
independence is shown explicitly later.

Fig. 15 quantifies the values of γ̃, T̃opt and Topt

for 0.025 < ϑabso < 0.75. The corresponding curves,
from which the optimal values of γ̃opt and T̃opt were
taken for each data point, qualitatively all look like
the red curve in Fig. 14. Depending on D̃ and ϑabso,
500.000 up to 1010 samples have been performed for
each parameter triple (γ̃, D̃, ϑabso). As the depth of the
minimum position is differently strong pronounced this
is necessary to control the stochastic fluctuations in the
value of γ̃opt.

For D̃ = 0 the optimal strategy is trivially given by
γ̃opt = ∞ for all ϑabso, i.e. the optimal strategy is the

random velocity model with MFPT T̃v, which is very

well approximated by T̃
(appro)
v in Eq. (24), shown in

Fig. 7. For small diffusivities D̃ > 0 the transition rate
γ̃opt is finite. Its value strongly depends on the size of
the escape area, i.e. on the value of ϑabso. The thick
black line in Fig. 15 shows the ”break-even“ diffusivity
D̃be(ϑabso), where the optimal strategy changes from

intermittent search to purely diffusive search. D̃be

increases monotonically in ϑabso. It rises the interesting
question about the limit of D̃be for ϑabso → 0 (be aware

of 0.025 < ϑabso in Fig. 15). If limϑabso→0 D̃be = 0

held, for every D̃ there would be a threshold value
ϑthres below which pure diffusion would be the best
strategy. In the opposite case of a positive limit D̃be0,
i.e. limϑabso→0 D̃be = D̃be0 > 0, intermittent search

would be more efficient for all D̃ < D̃be0, no matter
how small ϑabso becomes. Due to the divergence of the
MFPT for ϑabso → 0 it is not possible to face this limit
numerically for the reason of running time. Nevertheless,
there are clear arguments for a limit D̃be0 > 0: The
second derivatives of the isolines of Topt in the second
subfigure of Fig. 15 seems to vanish for small ϑabso.
Hence, they were expected to reach the x-axis in a
straight line at positions larger than zero. Due to the
enormous running time for very small angles we verified
this hypothesis of affine extrapolation only partially at
ϑabso = 0.0125 for some D̃.

For comparison to the boundary condition BB and the
later investigated inhomogeneous search scenarios, the
angle ϑabso = arcsin(1/7) is shown separately in Fig. 16

and the corresponding values of T̃opt are shown in Fig. 18
and Table II. Qualitatively, Fig. 16 does not differ from
the result of Fig. 9 (except for γ̃′ = 0), but quantitatively
it differs a lot. The interval where an intermittent search
strategy is preferable (D̃ < 0.11) is almost five times
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FIG. 15: narrow escape, BD, ραhom; T̃opt, Topt and the cor-
responding γ̃opt as a function of D̃ and ϑabso < 0.75 (interpo-
lation from the non equidistant grid shown at the bottom of
Fig. 13). The thick black line in each subfigure separates the
area of intermittent search and purely diffusive search. It co-
incides with the boundary line between the area a and c in Fig.
13. top: T̃opt in a logscale color plot, the dashed lines with
transparent label show isolines of the purely diffusive search
scenario (Eq. (23)) for the reason of comparison. middle:
Topt is color-coded plotted bottom: γ̃opt in a logscale color
plot.

larger compared to the boundary condition BB. For the
BD condition the benefit of an intermittent search strat-
egy is always larger, for the following reason: A ballisti-
cally moving particle detects the target area immediately
after switching to diffusive mode at the boundary. In
the subsection before, the particle was simply reflected
without recognizing the target area. In consequence, the
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FIG. 16: narrow escape, BD, ραhom; γ̃opt and Topt (inset)

as a function of D̃ for ϑabso = arcsin(1/7): The corresponding
curves T(γ̃) from which the minima are taken qualitatively all
belong to case (a) in the diagram. For 2 ·106 samples for each

investigated D̃ the position of the minimum γ̃opt and its value
Topt are shown.

status of the ballistic mode is enhanced here, which can
also be seen by comparing the values of γ̃opt in the com-
mon interval of Fig. 9 and Fig. 16. In case of the BD
condition of this subsection the searcher stays on aver-
age shorter in the diffusive mode before switching back
to ballistic motion again compared to the BB scenario.

2. inhomogeneous distribution ραx

Fig. 17 shows T as a function of x for the optimal
parameters γ̃opt of Fig. 16 for different values of D̃. For

each D̃ the minimal MFPT T̃min is plotted in Fig. 18 and
listed in Table II. For large values of D̃, xopt = 0 holds,
meaning the optimal velocity direction is always radi-
ally to the outward. As D̃ decreases, the minimum xopt

switches to the interior of the interval [0, 1]. A compar-
ison to Fig. 10 shows the following differences between
the two boundary conditions: The position of xopt is not

constant any more, here it depends strongly on D̃. The
value of Tmin at xopt differs less from the value of the ho-
mogeneous velocity direction distribution (x=1). Hence,
the additional benefit of an inhomogeneous velocity di-
rection is less than in the case of the previous subsection.
This can also be seen by comparing the gap between the
green and blue lines of Fig. 11 and Fig. 18.
Similar to the BB boundary condition before, we varied
γ̃, γ̃′ and x simultaneously to find the optimal parame-
ters Γ̃OPT and XOPT for the MFPT T̃OPT. The optimal
γ′ again vanishes, i.e. Γ̃′OPT = 0. The other results are
shown in Table II.

A comparison of the table with Fig. 17 and the rates
of Fig. 16 delivers some remarkable results:

• In contrast to the case of the BB condition, xopt varies
a lot in the different optimization scenarios.
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0.6

0.8

1

FIG. 17: narrow escape, BD, ραx ; T as a function of the
spreading parameter x for the transition rate γ̃opt of the op-
timal solution of Fig. 16. The colored numbers on the right
show the ratio Tmin/Topt.

D̃ T̃diff T̃opt T̃min T̃OPT γ̃opt Γ̃OPT xopt XOPT

0.1 77.1 76 71 67.6 0.45 1.7 0 0

0.09 85.7 81.8 75.2 73.4 0.8 1.6 0 0

0.08 96.4 87.8 80.8 77.3 1.15 4 0.35 0.375

0.07 110 94.2 85.9 81.8 1.6 5.5 0.45 0.4

0.06 129 101 91.6 86.5 2 7.5 0.45 0.4

0.05 154 109 98 91.7 2.5 14 0.45 0.375

0.04 193 118 104 95.8 3.4 - 0.45 0.12

0.03 257 129 114 95.8 4 - 0.45 0.12

0.02 386 143 124 95.8 5.75 - 0.45 0.12

0.01 771 163 138 95.8 9.25 - 0.45 0.12

0.005 1542 178 142 95.8 19 - 0.4 0.12

TABLE II: T̃diff: purely diffusive MFPT; T̃opt: optimized in-
termittent MFPT for ραhom with optimal rate γ̃opt; T̃min: opti-
mized intermittent MFPT for ραx with optimal inhomogeneity
coefficient xopt and fixed rate γ̃opt; T̃OPT: optimized inter-
mittent MFPT for ραx with optimal inhomogeneity coefficient
XOPT and corresponding optimal rate Γ̃OPT

• Comparing the values of γ̃opt with Γ̃OPT, one recognizes
remarkable changes in the transition rates. Especially
for D̃ < 0.05, it is not possible to find Γ̃OPT as it tends to
infinity, i.e. the best strategy here is a random velocity
search. A particle reaching the boundary, immediately
switches to ballistic motion again. The velocity direc-
tion distribution is a renormalization of ρα0.12 to the
interval [π/2, π], as α < π/2 is not possible for particles
at the boundary.
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FIG. 18: narrow escape, BD; MFPT for purely diffusive
search (Eq. 25, red line); search with homogeneously dis-
tributed velocity direction (green); search with inhomoge-
neously distributed velocity direction for the fixed rates γopt,
γ′opt = 0 (blue) ; search with inhomogeneously distributed ve-
locity direction for rates ΓOPT , Γ′

OPT
= 0 (black). The points

at D̃ = 0 are based on random velocity direction simulations,
as this is the limit for D̃ → 0.

For concluding this subsection, Fig. 18 shows the optimal
MFPTs for the different discussed scenarios.

Compared to a purely diffusive searcher (red), an in-
termittent search strategy with a homogeneous velocity
direction distribution (green) optimizes the search pro-

cess especially for small D̃ significantly, which has al-
ready been shown in the inset of Fig. 16. This benefit
is even more pronounced than in the case of BB bound-
ary conditions. Again, in the next step, we introduced
an inhomoegeneity in the velocity direction distribution
(blue), but kept the optimal rate γ̃ of the homogeneous
case. The additional benefit is much smaller than it was
in the BB case, although the total benefit is still larger. In
the last step, we varied the transition rate and the degree
of inhomoegeneity simultaneously (black). Although the
optimal rate again changes dramatically, the additional
benefit is as small as in the case of the BB condition.

3. inhomogeneous distribution ρα
p,∆̃

Fig. 19a) shows a sketch of the class of stochastic first
passage processes with direction distribution ρα

p,∆̃
. The

initial position r̃0 of the searcher is now homogeneously
distributed within the unit sphere. As already men-
tioned, the reference time T̃diff is expected to decreases
slightly by 0.1/D̃ and the optimal rates γ̃opt, γ̃

′
opt are

expected to be almost identical to the case of r̃0 = 0.
Hence, in order to avoid long repetition of almost
identical data, the result for the homogeneous scenario
is summarized in Fig. 19b): T̃diff(D̃) and T̃opt(D̃) are
almost identical to the corresponding curves of Fig. 18.
γ̃′opt = 0 is also true for a homogeneously chosen initial
position, which shows the inset of the plot exemplarily

for D̃ = 0.05 (compare Fig. 12, middle subfigure )
and the values of γ̃opt are identical (within stochastic
fluctuations) to those of Fig. 16.

Similar to the procedure in the sections before,
the MFPT for the optimal values of γ̃opt(D) is now

minimized according to the class parameters p and ∆̃.

Unsurprisingly, popt = 1 holds for all values of D̃.

For popt = 1, the dependence of the MFPT on ∆̃

is shown in Fig. 19c) for different values of D̃. For

small values of D̃ < 0.02, there is always a minimum
for ∆̃opt ∈ [0.1; 0.2], i.e. an inhomogeneous strategy

is favorable. For D̃ > 0.06, ∆̃opt = 0 holds, i.e. the
velocity direction of the ballistic motion should always
be chosen radially to the outside for all switching
positions. For 0.02 < D̃ < 0.06 the minimum is at
∆̃ = 1, i.e. a homogeneous strategy seems to be optimal
in this interval. In order to verify this statement, we
varied γ̃ and ∆̃ simultaneously. Exemplarily, the result
for ∆̃ = 0.04 is shown in Fig. 19d). The dotted line

corresponds to the orange (D̃ = 0.04) curve of subfigure

c), i.e. the green dot indicates the minimum at ∆̃ = 1.

However, there is a global minimum for ∆̃OPT ≈ 0.15
and γ̃OPT ≈ 45, indicated by the red dot. Consequently,
the most efficient strategy is again inhomogeneous.

Up to now, we always minimized according to the rates
γ̃ and γ̃′ first in order to demonstrate the efficiency of
an inhomogeneous strategy afterwards for these optimal
rates. In real search, however, these rates might be re-
stricted, for example by an upper value for the allowed
energy consumption or the number of available motor
proteins in the case of intracellular search. Consequently,
systematic studies on the direction distribution for fixed
non-optimal rates, motivated by biological data, will also
be of interest in further research, but it will go beyond
the scope of this publication. However, it should be at
least mentioned, that there are robust (here: according

to changes in D̃) inhomogeneous strategies, which min-

imize the MFPT, thus 19e) shows T̃ as a function of ∆̃

for γ̃ = γ̃′ = 10 and different values of D̃.

V. REACTION KINETICS

Within this section, the efficiency of intermittent
search strategies for an immobile target at the interior
of the simulation sphere will be studied. The search pro-
cess will succeed, if the distance between the diffusive
searcher and the target becomes smaller than a reaction
distance d for the first time. This introduces a second
length scale to the system (in addition to the radius R
of the sphere). As the following will stick to the dimen-
sionless units, introduced in the equations (9) and (12),
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FIG. 19: narrow escape, BD, ραhom and ρα
p=1,D̃

; a) Sketch of the process with the direction distribution ρα
p,∆̃

with a narrow

escape region represented by the dotted segment on the surface of the spherical search volume (full black circle). Trajectories

of the searcher are represented as in Fig. 3b. b) MFPT for the purely diffusive, T̃diff (red line), and intermittent search, T̃opt

(green line), with ραhom and optimal transition rates, as functions of the diffusion constant D̃ for ϑabso = arcsin(1/7). The

optimal rate γ̃opt(D̃) is represented by the blue line (and right y-axis), γ̃′opt vanishes for all D̃. The inset shows as an example

for D̃ = 0.05 a color plot of the MFPT in dependence of the attachment and detachment rates, γ̃ and γ̃′ respectively, the
red dot indicates the optimal values (yielding the minimal MFPT) γ̃opt(D̃ = 0.05) and γ̃′opt(D̃ = 0.05). Optimal attachment /
detachment rates like this are used in the main plot for varying diffusion constants. c) MFPT for the inhomogeneous scenario

ρα
1,∆̃

as a function of ∆̃ for different diffusion constants D̃ using the optimal rates for the homogeneous scenario. The values

at ∆̃ = 1 coincide with the data from the blue curve in Fig. b) , as ρα
p,∆̃=1

= ραhom. d) MFPT as a function of γ̃ and ∆̃ for

D̃ = 0.04, γ̃′ = 0. The red dot indicates the global minimum (T̃ = 113.7) at γ̃ = 42 and ∆̃ = 0.12. the green dot (top left)

indicates the minimum for the homogeneous case (∆̃ = 1, T̃ = 117.6). e) MFPT as a function of ∆̃ for fixed rates γ̃ = γ̃′ = 10

for different D̃ and p = 1.

we additionally define

d̃ =
d

R
, (27)

which is the reaction distance in the dimensionless units.
Within this section we will again study BB and BD
boundary conditions for a ballistically moving particle.
For the reason of comparison to other publications, we
take BB boundary conditions. On the other hand the
studies in case of the inhomogeneity ρα

p,∆̃
appear more

meaningful with BD conditions. But for small d̃ the re-
sults differ only very less. Thus the results are almost
independent on the applied boundary condition, which
is in contrast to the narrow escape problem.
We will study and compare different scenarios for the
target position. In subsection V A the target is centered
in the middle of the simulation sphere and the boundary
conditions BB are applied for the reason of comparison.
Afterwards, subsection V B faces the problem of a homo-
geneously randomly chosen target position, again with
the boundary conditions BB. Finally, in subsection V C

the scenario of an inhomogeneously distribution of the
target position is discussed for the direction distribution
ρα
p,∆̃

and BD boundary conditions.

A. target in the center of the sphere

Due to the radial symmetry of the problem an analytic
expression for the reference time T̃diff can easily be de-
rived for a searcher, starting at radius r̃0 > d̃ by solving
the boundary value problem:

1

r̃2
0

∂

∂r̃0

(
r̃2
0

∂

∂r̃0
T̃diff(d̃, r̃0)

)
=
−1

D̃
with (28)

Tdiff(d̃, d̃) = 0 and
∂

∂r̃0
T̃diff(d̃, r̃0)|r̃0=1 = 0 (29)

⇒ T̃diff(d̃, r̃0) =
−d̃r̃3

0 +
(

2 + d̃3
)
r̃0 − 2d̃

6D̃d̃r̃0

. (30)
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In this section, the initial position of the searcher will al-
ways be homogeneously distributed in the spherical shell
given by d̃ < r̃0 < 1. The reference MFPT T̃diff of the
purely diffusive searcher T̃diff will then be given by

T̃diff(d̃)=

∫ 1

d̃

dr̃0
3r̃2

0 · T̃diff(d̃, r̃0)

1− d̃3
=

5− 9d̃+ 5d̃3− d̃6

15D̃
(

1− d̃3
)
d̃
.(31)

It is plotted in Fig. 21 (red line). In order to check
and prove the accuracy of our numerical method for this
scenario we simulated T̃diff for d̃ = 0.2 and d̃ = 0.025, as
these values of d̃ will be used in the following:

T̃diff(0.2) =
12656

11625D̃
≈ 1.08869

D̃

T̃ num
diff (0.2) =

1.08857

D̃
(107samples)

T̃diff(0.025) =
55722849

4376000D̃
≈ 12.7337

D̃

T̃ num
diff (0.025) =

12.7331

D̃
(5 · 106samples)

In both cases the relative deviation is smaller than 0.02
%, which is in the range of the statistical error. We
expect the results reported below to have the same nu-
merical accuracy.

1. homogeneous distribution ραhom

The studies of [17–19] already considered the intermit-
tent search problem for the homogeneously distributed
velocity direction distribution ραhom and a target cen-
tered in the middle of the sphere. Approximating ex-
pressions for the transition rates γopt and γ′opt of the
search problem were derived there: The dependence of
the MFPT T on the rate γ is claimed to be very weak
and γappro

opt = v2/(6D) to be a good guess for the optimal
switching rate from diffusive to ballistic motion. For the
optimal rate from ballistic to diffusive motion, their ap-
proximative calculations deliver γ′

appro
opt = v/(1.078d). In

the nondimensional coordinates of this article, this rela-
tions are transformed to

γ̃′
appro
opt = 1/(1.078d̃) and γ̃appro

opt = 1/(6D̃) . (32)

The numeric simulations of [17–19] do not show a
simultaneous variation of the two rates, as γ is always
set to the assumed optimal value γappro

opt .

We now study this scenario more extensively. For the
reason of comparison to their results, we investigate the
cases d̃ = 0.2 (D̃ =1/7.5, 1/22.5, 1/37.5, 1/52.5, 1/75)

and d̃ = 0.025 (D̃ =1/60, 1/180, 1/300, 1/420, 1/600) as
these nondimensional values correspond to the geometry
parameters of their studies.
Fig. 20a shows T as a function of γ̃′ for d̃ = 0.2 and
d̃ = 0.025 and γ̃ = γ̃appro

opt . These results agree with the

numerical results of [17–19], when rescaling our plots and
plotting them in the same manner than the data of their
publications. For d̃ = 0.2 the position of the minimum is
in agreement to γ̃′

appro
opt . For d̃ = 0.025 there are already

deviations visible. Next, we varied the rates simultane-
ously. Our simulations confirm the very weak dependence
on γ̃. Nevertheless, γ̃opt and γ̃′opt do not seem to scale
exactly like predicted in Eq. 32. Fig. 20b show this
for the three smallest diffusion coefficients that we have
studied for the same values of d̃ as in Fig. 20a. Although
Topt (red dots) is less than 2% smaller than the suggested
minima (green dots), it is nevertheless stochastically sig-
nificant enough to claim a deviation in the optimal rates.
For small values of D̃, γ̃opt is larger than γ̃appro

opt , for large

values of D̃ it becomes smaller. Furthermore, the opti-
mal value of γ̃opt seems not to be independent of D̃, as
it slightly decreases with increasing diffusivity.
Nevertheless, although the approximations γ̃′

appro
opt and

γ̃appro
opt sometimes differ essentially from simulated min-

ima, they always define a very good search strategy,
which is close to the optimal one, as the corresponding
MFPT is always very close to T̃opt.

2. optimal inhomogeneous distribution of ρα

Similar to the narrow escape problem in section IV,
there are more efficient velocity direction distributions
than the homogeneous distribution. For a target located
in the center of the sphere the optimal intermittent search
strategy is obvious: The starting direction of a ballisti-
cally moving particle is always chosen to point to the
origin, i.e.

ρα(α) = ρα
p=0,∆̃=0

= δ(α− π). (33)

For this setup, there are no finite values for γ̃opt and
γ̃′opt. As the ballistic motion happens only radially and
always directed to the center, it is possible to construct
a ballistic motion with target detection. For γ̃ → ∞,
γ̃′ → ∞ with γ̃/γ̃′ → 0 the particle switches infinitely
often between diffusion and ballistic motion within every
time period. Nevertheless, it moves like a ballistic par-
ticle. In consequence, for a fixed starting radius r̃0, we
simply get T̃ (r̃0) = r̃0− d̃. With the help of the Eqs. (30-
31) analytic expressions for T and the break-even value

D̃be for a switch from a purely diffusive search to an in-
termittent search (here: ballistic search) can be derived,
but will be skipped here.

B. homogeneously distributed random target
position

The position r̃tar of the target is homogeneously
distributed in a sphere of radius 1 − d̃. The initial
position r̃0 of the searcher is homogeneously distributed
in the unit sphere with the restriction ||rtar − r̃0|| > d̃.
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FIG. 20: reaction kinetics, r̃tar = 0, ραhom; The upper line shows data for d̃ = 0.2 (2 · 106 samples per data point) , the

lower line for d̃ = 0.025 (5 · 105 - 2 · 106 samples per data point). a) T as a function of γ̃′ for different values of D̃ with

γ̃ = γ̃appro
opt = 1/(6D̃). The dotted gray lines show the position of the suggested minimum γ̃′

appro
opt . b) T is color-coded as a

function of γ̃ and γ̃′ for the three smallest values of D̃ in subfigure a). The position of the global minimum (γ̃opt, γ̃
′
opt) is always

shown with a red dot. Each colored vertical dotted line corresponds to the curve of subfigure a) in the same color. The green
dot shows the position of the proposed optimal rates γ̃appro

opt , γ̃′
appro
opt by [17–19].

Compared to the situation of a target in the center of
the sphere, the reference time T̃diff slightly increases and
the relative difference increases monotonically with d̃,
which can both be seen in Fig. 21. For the reason of
comparison to the subsection before, we analyzed the
same parameters d̃ and D̃ as in Fig. 20b. Exemplarily
the results for d̃ = 0.2, D̃ = 1/52.5 and d̃ = 0.025,

D̃ = 1/420 are shown in Fig. 22. For all investigated
cases, the distribution of the target position changes the
value of γ̃opt(D̃) only very less and within the stochastic

fluctuations, i.e. γ̃opt(D̃) seems to depend only on D̃

and d̃. For small values of d̃, this is also true for γ̃′opt(D̃).

For larger values of d̃, γ̃′opt(D̃) decreases in the case of a
homogeneously distributed target position. Compared
to Fig. 20, T̃opt is larger for all d̃ and D̃. As this increase

is smaller than the increase in T̃diff, Topt decreases. For

d̃ = 0.025 this decrease is only about 7%, for d̃ = 0.2 it
is already about 20 %.

We find that for a homogeneously distributed target
position, there is no gain in an inhomogeneously dis-
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Green: Target homogeneously distributed, each green dot is
the average value over 2 · 106 Monte Carlo samples. Blue
(inset): relative difference of the green and the red curve.

tributed ρv(Ω|r̃).
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C. inhomogeneously distributed random target
position

In the interesting case of a small area where the im-
mobile target is predominantly placed, the best search
strategy in not obvious anymore. On the on hand, the
searcher should be prevalent in the surrounding of this
area. On the other hand, it can’t stay there exclusively,
as the target might be somewhere else with a non vanish-
ing probability. This situation shall be studied now for
the following distribution of r̃tar = ||r̃tar||:

ρinit
w (r̃tar) =

 24w · r̃2
tar , 0 ≤ r̃tar ≤ 1

2

24(1−w)

8(1−d̃)3−1
r̃2
tar , 1

2
< r̃tar ≤ 1− d̃ , (34)

i.e. with probability w, the particle is homogeneously
distributed in a sphere of radius 1/2 around the origin,
with probability 1 − w, the particle is homogeneously
distributed in the outer region.
The initial position r̃0 of the searcher is again ho-
mogeneously distributed in the unit sphere with the
restriction ||r̃tar − r̃0|| > d̃. Fig. 23a) shows a sketch
of the resulting stochastic first passage process for the

direction distribution ρα
p,∆̃

. Within this section, we

exemplarily study the parameter sets d̃ = 0.1, D̃ = 0.01
and d̃ = 0.025, D̃ = 1/300. Like before, we first face the
scenario of a homogeneous search strategy in order to
quantify the values of γ̃opt and γ̃′opt. For small values of

d̃ these rates are almost independent on w, which can be
seen by comparing the left and the middle subfigure of
Fig. 23b) for d̃ = 0.1. For d̃ = 0.025 the differences in the
rates totally vanishes within the stochastic fluctuations,
hence, only the scenario of a homogeneous initial target
position is shown for this case in the right subfigure.

Like before, the influence of the inhomogeneous di-
rection distribution ρα

p,∆̃
is studied for the optimal val-

ues γ̃opt(D̃, d̃) and γ̃′opt(D̃, d̃). But due to the compu-
tational effort we did not minimize according to p and
∆̃ in parallel. First, T̃ is minimized according to ∆̃ for
three different values of p for two different w. The cor-
responding plots are shown in Fig. 23c). For d̃ = 0.1 an
inhomogeneous strategy is more efficient for all investi-
gated values of 0.4 ≤ p ≤ 0.5. For the smaller detection
distance d̃ = 0.025 an inhomogeneous strategy is also
preferable, but only in the range of p ≈ 0.5. Like in the
section before, the optimal values of γ̃OPT and γ̃′OPT in
case of an inhomogeneous strategy might strongly dif-
fer from γ̃opt and γ̃′opt. We did not calculate the opti-

mal strategy γ̃OPT, γ̃′OPT, pOPT, ∆̃OPT explicitly due to
the enormous numerical effort of minimizing according
to four parameters. Instead Fig. 23d) exemplarily shows

the dependence on p for a fixed value of ∆̃ = 0.1 for
the rates γ̃opt(D̃, d̃) and γ̃′opt(D̃, d̃) and chosen transition

rates. For both d̃ and both values of w the MFPT of
the chosen parameters is always beneath the MFPT for
γ̃opt, γ̃

′
opt. As already seen in subfigure c), the depen-

dence on p increases for smaller d̃, i.e. the minima are
stronger pronounced and the optimal value of p tends to
0.5 (independent on w).

VI. REACTION-ESCAPE PROBLEM

Finally, we study the influence of an inhomogeneous
search strategy to a combination of a reaction- and
an escape problem for the BD boundary condition.
An intermittently searching particle is looking for a
mobile particle, which will be found if the searcher and
the mobile particle are in the diffusive phase and the
particles distance is smaller or equal d̃. Afterwards the
particle complex has to solve the narrow escape problem
(ϑabso = arcsin(1/7)) (see section IV) with the same
search strategy.
AIn the following, two possibilities for the target particle
will be studied. In the first case, the target particle
moves only diffusively with D̃. Fig. 24a) sketches this
situation of the resulting stochastic first passage process
for the direction distribution ρα

p,∆̃
. This scenario is
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FIG. 23: reaction kinetics, r̃tar according to ρinit
w (r̃tar) , ραhom and ρα

p,∆̃
; a) Sketch of the reaction process for ρα
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with

an immobile target of diameter d̃ indicated by the gray circle. Trajectories of the mobile particle (searcher), starting at r̃0, are
represented as in Fig.3b. b) Homogeneous direction distribution: MFPTs as a function of γ̃ and γ̃′ for a spatially homogeneous

scenario ραhom = ραp,1, for (left) D̃ = 0.01, d̃ = 0.1, homogeneously distributed target position r̃tar; (middle) D̃ = 0.01, d̃ = 0.1,

target position r̃tar ≤ 0.5 with probability w = 0.9; (right) D̃ = 1/300, d̃ = 0.025, homogeneously distributed target position.

c) MFPT for the inhomogeneous distribution ρα
p,∆̃

with the optimal rates γ̃opt(D̃, d̃), γ̃′opt(D̃, d̃) from the homogeneous case

∆̃ = 1 as function of ∆̃ for different values of the forward radial transport p and different w. d) MFPT as in c) but now with

fixed width ∆̃ = 0.1 as function of the forward probability p for different fixed rates γ̃ and γ̃′ and different values of w.

always denoted by situation ”A” in the following. In the
second case, there is no difference between the searcher
and the target. Both are intermittent searchers. This
situation is denoted by ”B”.

The total MFPT T̃ to the escape area at the boundary
is the sum of the mean reaction time T̃reac and the mean
escape time T̃esc for the final narrow escape problem:

T̃ = T̃reac + T̃esc . (35)

It is no surprise, that we are dealing with a frustrated
problem, i.e. the optimal rates for the reaction problem
differ from the optimal rates of the narrow escape sce-
nario. Exemplarily Fig. 24b) shows this in case of the

homogeneous direction distribution for d̃ = 0.1, D̃ = 0.01
in situation A. Furthermore, the optimal rates depend on
the considered situation (A or B) , Fig. 24c) shows the
same data as subfigure b), but this time for the situ-

ation B. However the plots for T̃esc (middle in subfig-
ure b) and c), see also Fig. 12 at bottom) are almost
identical. The only difference in the investigated narrow
escape processes in situation A and B is the distribu-
tion of the starting position, as the spatial likelihood of

the reaction position differs from A to B. But it has al-
ready been shown, that this influence is neglectable for
ϑabso = arcsin(1/7). In both situations, for the chosen

parameters d̃ = 0.1 and D̃ = 0.01 the addends T̃reac and
T̃esc contribute roughly equal to the sum T̃opt.

Like in the sections before, we now varied ∆̃ for the opti-
mal rates of the homogeneous scenario for p = 1/2 , 1 in
the situations A and B. The four results are shown in Fig.
24d). T̃reac is always minimized by an inhomogeneous
strategy (especially in situation B). Surprisingly, there is
no or almost no a gain in an inhomogeneous strategy for
the MFPT T , as the MFPT T̃esc is always minimized by
a homogeneous strategy for the chosen rates.
It raises the question whether an inhomogeneous strategy
might be more favorable in scenarios, where T̃reac is much
larger than T̃esc. For answering it, we decreased d̃ and in-
vestigated the parameters D̃ = 1/300, d̃ = 0.025. First,
the optimal rates of the homogeneous scenario were de-
termined in the situations A and B. As the corresponding
figures qualitatively look like Fig. 24b) and c), these plots
are skipped here. Similar to the parameter set before, we
now varied ∆̃ for these optimal rates of the homogeneous
scenario for p = 1/2 , 1 in the situations A and B, the
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FIG. 24: reaction-escape, BD, ραhom and ρα
p,∆̃

; a) Sketch of the reaction-escape process, involving two particles, an inter-

mittently searching particle (black) and a diffusive target (blue particle), both starting diffusively at random positions r̃0 and
r̃1. Absorption at the narrow escape region is only possible for searcher-target pair, and the two particles react when coming
closer than a distance d̃ and form a pair (brown particle), which will be absorbed at the escape region represented by the

dotted segment on the boundary. b) The MFPTs T̃reac, T̃esc and the resulting T̃ are color coded for the homogeneous direction

distribution ραhom for situation A and the parameters d̃ = 0.1 D̃ = 0.01. c) The MFPTs T̃reac, T̃esc and the resulting T̃ are

color coded for the homogeneous direction distribution ραhom for situation B and the parameters d̃ = 0.1 D̃ = 0.01. d) The

MFPTs T̃reac, T̃esc and the resulting T̃ as a function of ∆̃ in case of the inhomogeneous direction distributions ρα
1/2,∆̃

and ρα
1,∆̃

for the situations A and B with parameters d̃ = 0.1 D̃ = 0.01 and the optimal transition rates belonging to the corresponding
homogeneous direction distribution scenario (position of red dots in the right figures of b) and c) ). e) The MFPTs T̃reac, T̃esc

and the resulting T̃ as a function of ∆̃ in case of the inhomogeneous direction distributions ρα
1/2,∆̃

and ρα
1,∆̃

for the situations

A and B with parameters d̃ = 0.025 D̃ = 1/300 and the optimal transition rates belonging to the corresponding homogeneous

direction distribution scenario (data not shown). f) The MFPTs T̃reac, T̃esc and the resulting T̃ as a function of ∆̃ in case

of the inhomogeneous direction distributions ρα
1/2,∆̃

and ρα
1,∆̃

with parameters d̃ = 0.025 D̃ = 1/300 and the transition rates

γ̃ = 10,γ̃′ = 2 (A) , respectively γ̃ = 5,γ̃′ = 10 (B).
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result is shown in 24e). In situation A, there is again no
or only little gain in an inhomogeneous strategy. For B,
there is an enormous gain for p=1/2, and a small one for
p=1.
Due to the number of simulations, we did not minimize
the rates γ̃, γ̃′ and the inhomoegeneity parameters p and
D̃ simultaneously. Instead, in Fig 24f) we show examples

for the variation of ∆̃ for rates, which do not optimize the
homogeneous scenario. In all cases, the MFPT for small
∆̃ is significantly less than in the homogeneous scenario
(∆̃ = 1). For p=1 in situation B, the value of the in-
homogeneous minimum is even a little bit smaller than
the optimal value of the scenario with the rates γ̃opt and
γ̃opt, compare right figures of subfigure e) and f) . In
consequence, the optimal strategy is for sure also an in-
homogeneous one, at least in this scenario.

VII. SUMMARY

In this work we have studied the efficiency of spatially
homogeneous and inhomogeneous intermittent search
strategies for three paradigmatic search problems in
spheres: narrow escape problem, reaction kinetics and
the reaction-escape problem. Our results are obtained
by an event driven Monte Carlo algorithm, which has
recently been published [41]. The working horses of this
algorithm are sampling routines which depend on the
geometry of the search domain under consideration. We
developed highly efficient sampling routines for spherical
domains, which are much faster than routines published
so far. Since the potential applications of these routines
are universal in the field of First Passage Kinetic Monte
Carlo algorithms, they are explained in the appendix in
detail.

Before summarizing each of the three search problems
individually, some general remarks, relevant for all
studied scenarios, are in appropriate::
The break-even diffusivity D̃be (the value of D̃ where the
best strategy changes from intermittent to purely diffu-
sive search) increases with the target size s ∈ {ϑabso, d̃}.
Consequently, if intermittent search is the best strategy,
the fraction of time spend in the diffusive mode will be
monotonically increasing in D̃ and decreasing in s.
For small targets, the MFPT does almost not depend on
the distribution of the initial position r0 or the initial
mode (diffusive or ballistic), as the time for the searcher
to lose its memory about the initial position is much
shorter than the MFPT.
Furthermore, we observed, that the MFPT T̃ as a
function of the transition rates γ̃ and γ̃′ seems always
to be convex. However, the positions of the minima
(γ̃opt, γ̃

′
opt) and (Γ̃OPT, Γ̃

′
OPT) are never sharp, neither in

γ̃, nor in γ̃, which can be seen by comparing the values
of neighbored isolines in the color coded plots. Hence,
in a quite large surrounding (relative to the absolute

values), the MFPT T̃ is only slightly larger than the

optimal value. This is remarkable for real search, as
this fact offers the opportunity to optimize the search
process also according to other criteria (e.g. energy
consumption or usage of limited resources, for instance
fuel necessary for ballistic motion, like ATP for motor
proteins in the biological context) without increasing
the MFPT significantly.
For the inhomogeneous search strategies that we studied,
the behavior of the MFPT as a function of the inho-
mogeneity parameters x and (p, ∆̃) sometimes differs.

Especially for small diffusion constants D̃ and a large
transition rate γ̃, the optimal searching strategy depends
strongly on the chosen inhomogeneity parameters. In
addition, more than one local minimum of T̃ might
occur in dependence of the tunable parameters (see Fig.
19d).
The dependence on the applied boundary conditions
at the border of the searching domain varies strongly
in the scenarios that we analyzed. If the target is
predominantly located very close (compared to 1/γ̃′ =̂
average covered distance in the ballistic state ) to the
boundary or even part of it (narrow escape problem),
the MFPT and the optimal strategy will strongly be
influenced by the boundary condition. If γ̃′ and/or
the average distance from the target to the boundary
increases, this influence shrinks rapidly.

The first search scenario that we considered is the so
called narrow escape problem. It is well understood for
a purely diffusive particle, but apart from [23] there are
no studies for intermittent search available in literature.
Thus, before studying inhomogeneous strategies, we
analyzed first the homogeneous scenarios for the reason
of comparison. The value of the break-even diffusivity
D̃be depends strongly on the considered boundary
conditions. For the exemplarily chosen small opening
angle ϑabso =arcsin(1/7) it is about 4 times smaller
for the BB (ballistic-ballistic) boundary condition

(D̃be ≈ 0.025) than for the BD (ballistic-diffusive)

scenario (D̃be ≈ 0.1). Furthermore, there is a qualitative
difference in the behaviour of the optimal transition
rates γ̃opt and γ̃

′

opt as a function of D̃ < D̃be. For the
BB boundary condition, the optimal transition rates
both decrease with D̃. For BD, only γ̃opt(D̃) decreases,

while γ̃
′

opt(D̃) = 0 holds for all D̃. Thus, it is always
part of the best strategy to end the ballistic phase only
when being forced by the BD condition at the boundary
of the simulation sphere. As γ̃

′

opt vanishes for all ϑabso,
the numerical effort for finding the best strategy is
essentially reduced. Hence, in addition to D̃, we also
varied ϑabso systematically. Fig. 15 (in combination with
the nondimensionalisation relations) offers a full numeric
solution for the best homogeneous search strategy in
the BD case as a function all parameters, which is the
diffusivity D, the radius R, the velocity v (ballistic
mode) and the target area with polar angle ϑabso.
For both boundary conditions, the MFPT can be
significantly reduced by the usage of inhomogeneous



24

searching strategies, which has been shown for the
direction distributions ραx and ρα

p,∆̃
. The family ραx

has exclusively been designed by us for optimizing the
narrow escape problem, it is not efficient for targets at
the interior of the searching domain. Surprisingly, for
the rates γ̃opt and γ̃

′

opt the optimal strategies of the
biologically inspired family ρα

p,∆̃
can almost compete

with the results of ραx for small D̃, which can be seen

by comparing the values of T̃min in Table II with the
minima of Fig. 19c). This is remarkable, as ρα

p,∆̃
was not

specially designed for the narrow escape problem and is
also a good strategy for the other search scenarios.
Furthermore, the optimal transition rates depend
strongly on the considered direction distribution (up to
a factor of 10) in all investigated scenarios, which can

be seen by comparing γ̃opt vs Γ̃OPT, γ̃
′

opt vs Γ̃
′

OPT in the
Tables I, II and the γ̃-coordinates of the homogeneous
and inhomogeneous minima in Fig. 19d).

Next, we focused on the problem an immobile target
in the interior of the sphere, called reaction kinetics.
For a target at the origin, it has been shown that the
analytic approximations of [17–19] for the optimal rates
γ̃opt and γ̃′opt slightly (but systematically) differ from the
minima position. Nevertheless, these approximations
define almost perfect searching strategies, as the MFPT
is almost nearly insensitive to a variation of the rates in
quite a large surrounding of the optimal values.
In case of a homogeneous searching strategy, the influ-
ence of the distribution of the target position is rather
small. If the target position is homogeneously randomly
chosen, T̃diff and T̃opt slightly increase compared to a
centered target. Nevertheless, for small target sizes the
optimal transition rates γ̃opt and γ̃′opt turned out to be
independent of the target distribution within the sphere.
For larger target sizes γ̃opt remains independent, only
γ̃′opt slightly increases in the cases that we investigated.
Furthermore, if there is no predominantly chosen target
position, a homogeneous searching strategy will be the
optimal solution.
Things change, when the immobile target is pre-
dominantly (but not exclusively) placed in a specific
area. Within the family ρα

p,∆̃
there are inhomogeneous

strategies which are essentially more efficient than a
homogeneous one (Fig. 23).

Finally, we considered the combination of two search
processes, called reaction-escape problem. An intermit-
tently searching particle has first to find an either purely
diffusive (A) or also intermittently moving particle (B)
before finding a narrow escape. Dealing with a frustrated
problem, the optimal rates for the MFPT T̃reac of the
particle-particle binding differ from the optimal rates
of the narrow escape problem T̃esc. In consequence,
the overall optimal strategy, i.e. transition rates which
minimize T̃ = T̃reac + T̃esc are a compromise in between.
Depending on the ratio of the absolute values of T̃reac

and T̃esc (mostly controlled via the size of the reaction

distance d̃ in comparison to the opening angle ϑabso),
the total influence on the best strategy varies.
The gain of an inhomogeneous searching scenario de-
pends strongly on the investigated parameters and states
of motion for the target particle (A or B). However, there
is a large parameter regime in which an inhomogeneous
searching strategy is most efficient.

To conclude we have demonstrated the efficiency of
spatially inhomogeneous search strategies, which were in-
troduced by us recently [23]. The space of possible spa-
tial inhomogeneities is large and we confined our study
only to two parameterized families of search strategies,
which already turned out to be more efficient than ho-
mogeneous strategies. Most probably even more efficient
strategies exist outside the families studied here, and it
would be highly desirable to explore the space of possible
strategies, in particular direction distributions, with al-
ternative, possibly more powerful tools than brute force
numerical studies. Currently the quest for the optimal
inhomogeneous search strategy remains a challenge for
future work. Potential applications comprise the spa-
tial organization of cytoskeleton in living cells [23], but
also the wide field of search in spatially inhomogeneous
domains and/or with spatially inhomogeneous target dis-
tributions.
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Appendix A: Fast generation of random numbers

Based on the Green’s functions PS (sphere) and PC
(cone) for a diffusive particle starting at the origin of a
sphere or spherical cone with polar angle Θ (0 ≤ ϑ ≤
Θ) respectively, this appendix presents efficient methods
for sampling the occurring densities, needed within the
simulations of this paper, in detail:

ρb(t): probability density for reaching the absorbing ra-
dius Rpro of a sphere/cone for the first time at time t
at an arbitrary solid angle when starting at the origin.

ρn(r|t): probability density for being at radius r within a
sphere/cone at time t at an arbitrary solid angle under
the condition of not having reached radius Rpro before
and having started at the origin.

Due to the radial symmetry of these problems, the den-
sity of the solid angle is homogeneously distributed on
the surface of either a sphere or a spherical cone for all
t and r ∈ [0;Rpro]. Thus its sampling in case of a posi-
tion update can be done very fast, which is among others
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shown in chapter V. 4 of [42].
In the following, the index ”pro” is skipped at the radius
Rpro. It shortens the notation and there is no danger
of mixing it up with the radius of the simulation sphere
within this appendix.
Although ways of sampling the densities ρb, ρn have al-
ready been published in [40], we want to present signifi-
cantly faster methods to sample them by picking up their
idea ([40]) of different representations for large and small
times, but avoiding their bottleneck: the numerical inver-
sion of cumulative distribution functions, which results in
the calculation of many exponential and trigonometrical
functions, slowing the algorithm down. Especially a fast
sampling of ρb is very important as a random number
according to this distribution is always needed after the
creation of a protection sphere/cone, which is part of the
innermost loop of the simulation.

1. The analytic solutions PS and PC of the diffusion
equation

a. The sphere

The diffusion problem within a totally absorbing
sphere of radius R is given by

∂P (r, ϕ, ϑ, t)

∂t
= D∆P (r, ϕ, ϑ, t) , with (A1)

P (R,ϕ, ϑ, t) = 0 ∀ ϕ ∈ [0; 2π[, ϑ ∈ [0;π] .

In [43] the solution for a particle at an arbitrary starting
radius r0 < R is derived. With the help of l’Hospital’s
rule (r0 → 0) the following expression for the radial sym-
metric probability density PS can be obtained:

PS(r, t) =
1

2R2r

∞∑
n=1

e−π
2n2 Dt

R2 n sin
(nπr
R

)
. (A2)

For the sake of computational efficiency it is useful to
derive a second expression for PS by applying Poisson’s
summation formula to Eq. (A2).

PS(r, t) =
1

8 (πDt)
3
2

× (A3){
e
−r2
4Dt +

∞∑
k=1

(
2kR+r

r
e
−(2kR+r)2

4Dt − 2kR−r
r

e
−(2kR−r)2

4Dt

)}

For large t the series of Eq. (A2) converges very fast,
whereas for small t the series of Eq. (A3) does.

b. The spherical cone

The diffusion problem within a spherical cone of radius
R and polar angle Θ, reflecting at the conical boundary

and absorbing at the spherical cap is given by

∂P (r, ϕ, ϑ, t)

∂t
= D∆P (r, ϕ, ϑ, t), with (A4)

P (R,ϕ, ϑ, t) = 0 ∀ ϕ ∈ [0; 2π[, ϑ ∈ [0; Θ] ,

∂P (r, ϕ, ϑ, t)

∂ϑ

∣∣∣∣
ϑ=Θ

= 0 ∀ r ∈ [0;R], ϕ ∈ [0; 2π[ .

In the general case of an arbitrary starting position, its
solution looks very complex, but for the case of interest
(r0 = 0), we simply obtain a radial symmetric probabil-
ity density, which is proportional to the solution of the
subsection above:

PC(r, t) =
2

1− cos(Θ)
PS(r, t) (A5)

2. The probability densities ρb(t), ρn(r|t)

Based on the formulas (A2) and (A3), two different
expressions for each of the probability densities ρb and
ρn can be derived. The upper index “>” will always
mark the series, which converges fast for large t, while
the upper index “<” will mark the series, which converges
fast for small t. If there is no upper index, it is a general
statement, i.e. independent of the series representation.
The probability density ρb(t) is identical for the sphere
and the cone of radius R and given by

ρb(t) = − d

dt

[∫ R

0

dr

∫ 2π

0

dϕ

∫ π

0

dϑ r2 sin(ϑ)PS(r, t)

]
(A6)

= − d

dt

[∫ R

0

dr

∫ 2π

0

dϕ

∫ Θ

0

dϑ r2 sin(ϑ)PC(r, t)

]
.

Applying this to the series (A2) and (A3), we get:

ρ>b (t) =
2π2D

R2

∞∑
n=1

e−π
2n2 Dt

R2 (−1)n+1n2 ,

ρ<b (t) =
R3

2
√
πD3t5

∞∑
k=1

e−
R2(2k−1)2

4Dt

(
(2k − 1)2− 2

Dt

R2

)
.

The probability density ρn(r|t) is also identical for the
sphere and the cone of radius R and given by

ρn(r|t) =

∫ 2π

0
dϕ
∫ π

0
dϑ r2 sin(ϑ)PS(r, t)∫ R

0
dr
∫ 2π

0
dϕ
∫ π

0
dϑ r2 sin(ϑ)PS(r, t)

(A7)

=

∫ 2π

0
dϕ
∫ Θ

0
dϑ r2 sin(ϑ)PC(r, t)∫ R

0
dr
∫ 2π

0
dϕ
∫ Θ

0
dϑ r2 sin(ϑ)PC(r, t)

.

In consequence, we get:
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ρ>n (r|t) =
πr

R2

∞∑
n=1

e−π
2n2 Dt

R2 n sin
(
nπr
R

)
∞∑
n=1

e−π
2n2 Dt

R2 (−1)n+1

,

ρ<n (r|t) =

r2e
−r2
4Dt +r

∞∑
k=1

(
(2kR+r)e

−(2kR+r)2

4Dt −(2kR−r)e
−(2kR−r)2

4Dt

)
2Dt

(√
πDt− 2R

∞∑
k=1

e−
R2(2k−1)2

4Dt

) .

3. Efficient sampling of ρb(t)

Instead of designing a sampling routine including the
parameters R and D, it is computationally more efficient
to sample the dimensionless random number

τ =
D

R2
t ,

as R2/D is the characteristic timescale. For its probabil-
ity density ρ̃b, we get

ρ̃b(τ) =
R2

D
ρb

(
R2

D
τ

)
,

which leads to the following series representations

ρ̃>b (τ) = 2π2
∞∑
n=1

e−π
2n2τ (−1)

n+1
n2 (A8)

ρ̃<b (τ) =
1

2
√
πττ2

∞∑
k=1

e−
(2k−1)2

4τ

(
(2k − 1)

2− 2τ
)
. (A9)

The corresponding distribution function can be expressed
via the Jacobi-Theta function ϑ4:

F̃b(τ) = ϑ4

(
0, e−π

2τ
)
.

Although this function is well studied in mathematics,
there seems to be no way to invert it analytically. In
consequence, sampling via the Inversion method would
require a numerical inversion tool, which slows the algo-
rithm dramatically down.

Hence, we decided to use a fast way of rejection sam-
pling, which is described below:

Depending on the needed numerical accuracy, the
questions of where to truncate the sums (A8) , (A9) and
when to switch between these two representations has to
be answered. With the following choice one is on the safe
side for all practical purposes:

ρ̃num
b (τ)=


2π2

nmax(τ)∑
n=1

e−π
2n2τ (−1)n+1 n2 , τ ≥τc

1
2
√
πττ2

kmax(τ)∑
k=1

e−
(2k−1)2

4τ
(
(2k−1)2− 2τ

)
, τ <τc

.

with τc = 0.25 and the piece-wise constant integer func-
tions

nmax(τ) =


4 , τ ∈ [0.25; 0.3[

3 , τ ∈ [0.3; 0.6[

2 , τ ∈ [0.6; 1.5[

1 , τ ∈ [1.5;∞[

,

kmax(τ) =


3 , τ ∈ [0.125; 0.25[

2 , τ ∈ [0.04; 0.125[

1 , τ ∈ ]0; 0.04[

.

Using this choice, the relative deviation fulfills

|ρ̃b(τ)− ρ̃num
b (τ)|

ρ̃b(τ)
< 10−18 ∀ τ > 0 , i.e.

we never have to add more than four addends to calculate
ρ̃b(τ) within double precision.

For using rejection sampling, a helping probability den-
sity ρh(τ) and a scaling constant k > 1 (as small as pos-

sible) with k ≥ ρ̃b(τ)
ρh(τ) ∀ τ have to be found [42]. Further-

more there must be the possibility to generate random
numbers according to ρh(τ) very fast. For these purposes
we divide R+

0 into N intervals [τi, τi+1[ with τ0 = 0 and
τN = ∞. For the first N − 1 intervals we want ρh(τ) to
be piece-wise constant:

ρh(τ) =
pi
k
∀ τ ∈ [τi, τi+1] , i ∈ {0, ..., N − 2} , (A10)

with pi = max
[τi,τi+1]

ρ̃b(τ). Having chosen the length of the

first interval [τ0, τ1], we define a constant Q = (τ1−τ0)·p0

and the length of all the other intervals is determined via

(τi+1 − τi) · pi = Q ∀ i ∈ {1, ..., N − 2} . (A11)

These calculations cannot be done in a straightforward
manner, as pi is also a function of τi+1. Nevertheless it
is possible to iterate it as exact, as wanted (more than
double precision) by using floating data-types with an
arbitrary exactness. Since the calculation of all τi and
pi have to be done once only, in order to include them
in our implementation, we don’t have to care about the
running time of it.

For the tail interval [τN−1;∞[ we choose ρh(τ) =
Q

k(τ+1−τN−1)2 . Thus, the cumulative probability of each

interval is the same: Q/k. Keeping in mind, that there
are N intervals, we get:

k = N ·Q , (A12)
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and in consequence:

ρh(τ) =



p0
k

, τ ∈ [τ0; τ1[

p1
k

, τ ∈ [τ1; τ2[

...
...

pN−2

k
, τ ∈ [τN−2; τN−1[

1
N(τ+1−τN−1)2

, τ ≥ τN−1

. (A13)

An illustration of this procedure for a rather rough ρh
by choosing τ1 = 0.038 (→ N = 25) and the case of
τ1 = 0.025 (→ N = 332), which was used in our simula-
tions is shown in Fig. 25. The corresponding distribution
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FIG. 25: Illustration for the construction of ρh(τ) for the
cases τ1 = 0.038 (→ N = 25) and τ1 = 0.025 (→ N = 332).
The case N=25 is created only to clarify the construction
mechanism. The case N=332 is used in our implementation.

function is given by

Fh(τ)=



p0
k
τ , τ ∈ [τ0; τ1[

1
N

+ p1
k

(τ − τ1) , τ ∈ [τ1; τ2[
2
N

+ p2
k

(τ − τ2) , τ ∈ [τ2; τ3[
...

...
N−2
N

+
pN−2

k
(τ − τN−2) , τ ∈ [τN−2; τN−1[

1− 1
N(τ+1−τN−1)

, τ ≥ τN−1

(A14)

As every interval has the same probability mass 1/N , a
random number τcand according to ρh can be generated
very fast, as Fh can be inverted very fast straightfor-
wardly without the usage of a bisection method:
The integer number m ∈ {0, ..., N − 1}, given by

m = brcand ·Nc , (A15)

immediately indicates the candidate’s interval [τm; τm+1]
of Fh(τ), where rcand is a random number from a uniform
distribution in the interval ]0, 1[. Solving for τ in the m-
th interval of Eq. (A14) yields

τcand=

{(
rcand − m

N

)
· k
pm

+ τm , m∈{0, ..., N−2}
τN−1 − 1 + 1

N(1−rcand)
, m=N − 1

. (A16)

The choice of τ1 = 0.025 for the construction of ρh(τ)
(see Fig. 25) results in Q = 0.003078..., N = 332 and
k = 1.02... . In consequence we are dealing with a very
efficient way of rejection sampling, as the rejection rate
is about 2 %.
Nevertheless it is possible to improve this sampling
significantly by having a closer look at the procedure
of rejection sampling: At first, a candidate random
number τcand according to ρh(·) is chosen. As explained
above, this is possible very fast. τcand is accepted, if
the quotient ρ̃b(τcand)/(kρh(τcand)) is bigger than a
uniformly distributed random number rrej in the interval
[0; 1]. Using the method above, this happens in around
1/k ≈ 98 % of the cases. The most time consuming part
is the calculation of ρb(τcand), as it includes 1-4 addends.
This calculation can often be avoided by formulating
one (or more) precondition for acceptance: About 90%
of the τcand will be in the interval [0.05; 0.354]. There
the quotient ρ̃b/(k ρh) is bigger than 0.95 everywhere,
which is illustrated in Fig. 26 Hence, for rrej < 0.95,
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FIG. 26: ρ̃b(τ)/(k ρh(τ)): Around 90 % of all random num-
bers τcand will be produced in the interval [0.05; 0.354]. The
ratio ρ̃b/(k ρh) is bigger than 0.95 within this interval.

we can accept without evaluating ρ̃b. In consequence,
only in 1 − 0.95 · 0.9 ≈ 15 % of the cases we really have
to evaluate ρ̃b. This fraction can be further reduced
by formulating more preconditions for τ < 0.05 and
τ > 0.354. But the gain won’t be large, as already 90%
of the τcand are covered.
Let’s summarize the average effort: Per candidate
τcand we need only one equally distributed random
number rcand and 6 trivial operations (+,−, ·, /) for
the calculations of the Eqs. (A15, A16). The rejection
rate k−1

k is only about 2 % and the computational
price for the acceptance decision is the generation of an
equally distributed random number rrej and on average
less than 0.5 addends in the formulas (A8), (A9). A
C++-implementation of the described method on a
single CPU-core with 3.4 GHz takes around 35 sec for
109 random τ . About 14 sec of this time have been
used to generate high quality uniformly distributed
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random numbers for rcand and rrej with the help of the
gsl routine “gsl rng mt19937” based on the Mersenne
Twister [44].

4. Efficient sampling of ρn(r|t)

In addition to the characteristic time scale, we want
to use the characteristic length scale R and define the
dimensionless length

x =
1

R
r . (A17)

For its probability density, we get:

ρ̃n(x|τ) = Rρn

(
xR

∣∣∣∣R2

D
τ

)
,

which leads to the following series representations

ρ̃>n (x|τ) = πx

sin (πx) +
∞∑
n=2

e−π
2(n2−1)τn sin (nπx)

1−
∞∑
n=2

e−π2(n2−1)τ (−1)
n

,

ρ̃<n (x|τ) =

x2e
−x2
4τ +x

∞∑
k=1

(
(2k + x)e

−(2k+x)2

4τ −(2k − x)e
−(2k−x)2

4τ

)
2τ

(
√
πτ − 2

∞∑
k=1

e−
(2k−1)2

4τ

) .

For later usage, we want to decompose ρ̃<n (x|τ)
in the not normalized probability density g(x|τ) =

4πR3x2PS

(
xR
∣∣∣R2

D τ
)

of being at radius x and the prob-

ability S(τ) = 1 − F̃b(τ) of not reaching the radius R
until time τ , i.e. ρ̃<n (x|τ) = g(x|τ)/S(τ) with

g(x|τ)=

x2e
−x2
4τ +x

∞∑
k=1

(
(2k+x)e

−(2k+x)2

4τ −(2k−x)e
−(2k−x)2

4τ

)
2τ
√
πτ

and S(τ) = 1− 2√
πτ

∞∑
k=1

e−
(2k−1)2

4τ = 1− F̃b(τ) .

Again, we have to answer the questions, when to switch
between the different series representations and where to
truncate them. Choosing the same values for τc , nmax,
kmax like in the previous section one is again on the safe
side for all practical purposes.
As the density ρ̃n contains the parameter τ , which in-
fluences the shape of ρn dramatically, we decomposed
our algorithm in a sampling procedure for short times
(τ < 0.054, a) and a procedure for long times (τ ≥ 0.054,
b). This decomposition is not connected to the switch
in the series representations for evaluating the density,
its origin is the result of a purely empiric optimization
process.

a. Sampling for τ < 0.054

For τ < 0.054, the not normalized probability density
g(x|τ) is almost identical to the also not normalized (ac-
cording to the interval [0;1]) probability density

gfree(x|τ) =
1

2τ
√
πτ
x2e−

x2

4τ (A18)

of a freely diffusing particle inR3, where x is the distance
to the origin, which is illustrated in Fig. 27. As g(x|τ) ≤
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FIG. 27: Illustration of the functions gfree(x|τ) and g(x|τ) for
different times t. Full lines represent gfree, dotted ones g. For
small τ the curves coincide almost perfectly.

gfree(x|τ) holds for all x and τ , the rejection sampling
procedure for ρ̃n is the following:
We generate a random xc ∈ ]0; 1[ according to gfree(x|τ)
in a way, which will be described later. Afterwards it is
accepted with probability pa = g(xc|τ)/gfree(xc|τ), which
can be simplified to

pa(xc|τ)=1+

kmax(τ)∑
k=1

(
(2k+xc)e

−k(k+xc)
τ −(2k − xc)e

−k(k−xc)
τ

)
xc

.

Similar to the method in the previous subsection, it is
possible to save a lot of computation time by having a
closer look at the function pa(xc|τ) in order to formulate
some preconditions for acceptance. For all τ ∈ [0; 0.054]
the following inequalities hold:

• pa(xc|τ) > 0.98 ∀x ∈ [0; 0.75]

• pa(xc|τ) > 0.91 ∀x ∈ [0.75; 0.85]

• pa(xc|τ) > 0.55 ∀x ∈ [0.85; 0.95] ,

which is illustrated in Fig 28. Due to these chosen rela-
tions, in the worst case (τ = 0.054), for less than 5 % of
the sampled xc it is necessary to calculate pa(xc|τ) for
the decision whether to accept or to deny xc.
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FIG. 28: Illustration of the empirically chosen preconditions:
For more than 95 % of the sampled xc, the sampled rejec-
tion random number rrej will be within one of the three black
dotted rectangles. There xc can be accepted without a calcu-
lation of pa(xc|τ).

Sampling the candidate xc is also done via rejection sam-
pling: At first, we sample three gaussian random num-
bers z1, z2, z3 with variance σ2 = 2τ and calculate

xc =
√
z2

1 + z2
2 + z2

3 .

For xc ≤ 1, which happens (again in the worst case) in
more than 97 %, we go on, otherwise we resample xc until
it is smaller than 1.
A C++-implementation of the described method on a
single CPU-core with 3.4 GHz takes for the worst case
scenario (τ = 0.054) 160 sec for 109 random x.

At first sight, this procedure consisting of two steps
of rejection sampling might not look so fast, but apart
from the very small rejection rates and its fast generation,
there is a second argument, which speeds the procedure
indirectly up: We don’t need to sample the solid angle
for a position update any more, taking z1, z2, z3 for the
replacement fulfills the right statistics in this case.

b. Sampling for τ > 0.054

For very small values of τ , the shape of ρ̃n changes very
fast with time, which can also be seen in Fig. 27. But
for τ →∞ it converges quickly to the time independent
density

ρ̃∞(x) = πx sinπx .

Our sampling routine makes use of this fact by dividing
the time interval [0.054;∞[ into a sequence of M dis-
joint intervals [τj ; τj+1[ with τ0 = 0.054 and τM = ∞.
Within every interval [τi; τi+1[, we want to construct an
efficient rejection sampling method with a time indepen-
dent helping density ρj(x) and a scaling constant kj . In

consequence, a lower boundary B(τj , τj+1) for each scal-
ing constant kj is given by

B(τj , τj+1) =

∫ 1

0

dx max
τ∈[τj ;τj+1]

(ρ̃n(x, τ)) < kj .

With the choice M = 9 and the decomposition

I1 = [0.054; 0.057[ , I2 = [0.057; 0.061[ , I3 = [0.061; 0.066[

I4 = [0.066; 0.072[ , I5 = [0.072; 0.08[ , I6 = [0.08; 0.091[

I7 = [0.091; 0.108[ , I8 = [0.108; 0.15[ , I9 = [0.15;∞[

we confirmed numerically

1.015 < B(τj , τj+1) < 1.028 ∀ j .

Similar to the case of ρ̃b, we divide the spatial interval
[0; 1] M times into Nj intervals [xji ;x

j
i+1] with xj0 = 0

and xjNj = 1. For all Nj intervals we want ρj(x) to be

piece-wise constant:

ρj(x) =
pji
kj

∀ x ∈ [xji , x
j
i+1] ,

with pji = max
τ∈[τj ;τj+1]

(
max

[xji ,x
j
i+1]

ρ̃n(x|τ)

)
. By choosing the

length of the first intervals [xj0, x
j
1] ∀ j, we again define a

set of constants Qj = (x1 − x0) · pj0 and the length of all
the other intervals is determined via

(xji+1 − x
j
i ) · p

j
i = Qj ∀ i ∈ {1..Nj − 1} .

In order to get xji and pji within double precision, its
iteration was done with much more than double precision
and took some minutes. But this also has to be done only
once, when implementing the routine. The length of the
last intervals is determined by 1 − xNj , in consequence,
we get:

kj = (Nj − 1) ·Qj + (1− xNj )pNj .

Fig. 29 shows this decomposition for the case of τ ∈ I9
and the choice x9

1 = 0.08. In consequence, we get
N = 194 and k9 = 1.02..., which results in a rejection
rate of about 2%. Following the same argumentation
as in the subsection before (same probability mass 1/N
per interval), it is possible to generate random numbers
according to all ρj(x) very fast. Finally we go on as in
all the other cases before: By having a closer look at
the quotient ρ̃n/(kjρj) once, we can avoid computing
the time demanding computation of ρ̃n in more than
90% of all cases by formulating some preconditions for
accepting. A C++-implementation of the described
method on a single CPU-core with 3.4 GHz takes around
65 sec for 109 random x.
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FIG. 29: Illustration of the construction of ρ9(x) for the choice
x9

1 = 0.08, which results in N=194 intervals [x9
i , x

9
i+1] and a

scaling constant k9 = 1.02.

memory requirement

The last two subsections introduced very fast and exact
recipes for sampling random numbers according to the
densities ρb(t) and ρn(r|t). In most cases these recipes
were based on the precalculation of fast invertable piece
wise constant density functions for rejection sampling.
The total memory requirement for these values is less
than 36 kB.
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