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Transient Anomalous Diffusion in
Run-and-Tumble Dynamics
M. Reza Shaebani* and Heiko Rieger*

Department of Theoretical Physics, Center for Biophysics, Saarland University, Saarbrücken, Germany

We study the stochastic dynamics of a particle with two distinct motility states. Each one

is characterized by two parameters: one represents the average speed and the other

represents the persistence quantifying the tendency to maintain the current direction of

motion. We consider a run-and-tumble process, which is a combination of an active

fast motility mode (persistent motion) and a passive slow mode (diffusion). Assuming

stochastic transitions between the two motility states, we derive an analytical expression

for the time evolution of the mean square displacement. The interplay of the key

parameters and the initial conditions as for instance the probability of initially starting in

the run or tumble state leads to a variety of transient regimes of anomalous transport on

different time scales before approaching the asymptotic diffusive dynamics. We estimate

the crossover time to the long-term diffusive regime and prove that the asymptotic

diffusion constant is independent of initially starting in the run or tumble state.

Keywords: anomalous diffusion, run-and-tumble, persistent random walk, active motion, transient dynamics

1. INTRODUCTION

Many transport processes in nature involve distinct motility states. Of particular interest is the
run-and-tumble process, which consists of alternating phases of fast active and slow passive
motion. Prominent examples are bacterial species that swim when their flagella form a bundle and
synchronize their rotation. The bundle is disrupted and swimming stops when some of the flagella
stochastically change their rotational direction. In the absence of rotating bundle, the bacterium
moves diffusively until it manages to re-form the bundle and activelymove forward again [1, 2]. The
run-and-tumble dynamics is beneficial for bacteria as it allows them to react to the environmental
changes by adjusting their average run time or speed [3], change their direction of motion, perform
an efficient search [4–7], or optimize their navigation [8, 9].

Another example is the motion of molecular motors along cytoskeletal filaments. When motor
proteins bind to filaments, they perform a number of steps until they randomly unbind and
experience diffusion in the crowded cytoplasm.While the efficiency of long-distance cargo delivery
requires high motor processivity (i.e., the tendency to continue the motion along the filament), the
slow diffusive mode during unbinding periods is also vital for cellular functions which depend on
the localization of the reactants [10–13]. The processivity of the motors (and thus the unbinding
probability) depends on the type of motor and filament [14, 15] and the presence of particular
proteins or binding domains in the surrounding medium [16–18]. On the other hand other factors,
such as cell crowding, may affect the binding probability. Therefore, the switching probabilities
between active run and tumble states are generally asymmetric. By ignoring the microscopic details
of stepping on filaments, coarse-grained random walk models have been employed to study the
two-state dynamics of molecular motors [19–22]. Dentritic immune cells also move persistently
(migration phase) interrupted by slow phases for antigen uptake [23]. There have been many other
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locomotive patterns in biological and non-living systems
investigated via models with distinct states of motility [24–33].
For instance, the problem of searcher proteins finding a specific
target site over a DNA strand has been studied by multi-state
stochastic processes [34–36].

The particle trajectories obtained from experiments often
comprise a set of recorded positions of the particle, from
which the successive directions of motion can be deduced.
These directions are correlated on short time scales for active
motions. However, the trajectory eventually gets randomized and
the asymptotic dynamics is diffusive, with a diffusion constant
Dasymp that depends on the particle velocity and persistency
[37, 38]. One expects a similar long-term behavior for a mixture
of run and tumble dynamics as well. The question arises how the
transient short time dynamics, the crossover time to asymptotic
diffusion, and Dasymp depend on the run and tumble velocities
and the switching probabilities between the two states. It is also
unclear how the overall dynamics is influenced by the choice of
the initial conditions, like the probabilities to start either in the
run or tumble state, which are parameters that can be extracted
from experimental data.

Here, we present a two-state model for the run-and-tumble
dynamics with spontaneous switchings between the states of
motility. By deriving an analytical expression for the time
evolution of the mean square displacement, we show how
the interplay between the run and tumble velocities, the
transition probabilities, and the initial conditions leads to various
anomalous transport regimes on short and intermediate time
scales.We particularly clarify how the probability of starting from
run or tumble state diversifies the transient anomalous regimes of
motion, and verify that the long-term diffusion constant Dasymp

does not depend on the choice of the initial conditions.

2. MODEL

We develop a stochastic model for the run-and-tumble dynamics
with spontaneous transitions between the motility states. We
consider a two-state random walk in discrete time and
continuous space with the following characteristics: The run
phase is a persistent random walk with persistency p and
mean speed vR . The dynamics in the tumble phase is an
ordinary diffusion with the mean speed vT . The asymmetric
transition probabilities from run to tumble phase and vice
versa are denoted, respectively, by f

R→T
and f

T→R
. As a result

of constant transition probabilities, the run and tumble times
are exponentially distributed in our model. This restriction
can be relaxed by introducing time-dependent transition
probabilities (Shaebani and Sadjadi, submitted). To characterize
the persistency of the run phase, we use the probability
distribution FR (θ) of directional changes along the trajectory in
the run phase. The directional persistence can be characterized
by the persistency parameter p=

∫ π

−π
dθ eiθFR (θ), which

leads to p=〈cos θ〉 for symmetric distributions with respect
to the arrival direction. Thus, p ranges from 0 for pure
diffusion to 1 for ballistic motion and reflects the average
curvature of the run trajectories. Similarly, we define FT (θ) for

the probability distribution of directional changes along the
trajectory in the tumble phase, and F

R→T
(θ) and F

T→R
(θ) for

the directional changes when switching between the states occurs
(see Figure 1A). In the tumble phase (i.e., an ordinary diffusion),
the probability distribution of directional changes is isotropically
distributed (FT (θ)=

1
2π ), leading to a zero persistency.

The run-and-tumble stochastic process can be described in
discrete time by introducing the probability densities PRt (x, y|α)
and PTt (x, y|α) to find the particle at position (x, y) arriving
along the direction α at time t in the run and tumble states,
respectively. α is defined with respect to a given reference
direction, as shown in Figure 1B. Denoting the time interval
between consecutive recorded positions of the particle by 1t,
the following set of master equations describe the dynamical
evolution of the probability densities

PR
t+1t

(x, y|α) =

(1−f
R→T

)

∫ π

−π

dγ FR (α−γ )PRt (x−vR1t cosα, y−vR1t sinα|γ )

+f
T→R

∫ π

−π

dγ F
T→R

(α−γ )PTt (x−vR1t cosα, y−vR1t sinα|γ ),

PT
t+1t

(x, y|α) =

(1−f
T→R

)

∫ π

−π

dγ FT (α−γ )PTt (x−vT1t cosα, y−vT1t sinα|γ )

+f
R→T

∫ π

−π

dγ F
R→T

PRt (x−vT1t cosα, y−vT1t sinα|γ ).

(1)
Each of the two terms on the right-hand side of the equations
represents the possibility of being in one of the two states in
the previous time step (see Figure 1B for the particle trajectory
during two successive steps). The probability of starting the
motion in the run or tumble phase is denoted by PR0 and PT0 ,
respectively (with PT0=1−PR0 ). The change in the direction of
motion θ=α−γ with respect to the arrival direction is randomly
chosen according to the turning-angle distribution FR (θ) or FT (θ)
in the run or tumble state, respectively. Both distributions are
symmetric with respect to the arrival direction (i.e., left-right
symmetric in 2D). We assume for simplicity that the directional
change during the transition between the two states follows the
turning-angle distribution of the new state, corresponding to
F
R→T

(θ)=FT (θ) and F
T→R

(θ)=FR (θ). However, in general one
should consider independent turning-angle distributions with
non-zero mean for F

R→T
(θ) and F

T→R
(θ) as, for instance, a sharp

change in the direction of motion of E. coli or Bacillus Subtilis
when switching from tumbling to running is observed [1, 2, 6].

The total probability density Pt+1t(x, y|α) to find the particle
at position (x, y) arriving along the direction α at time t+1t is
given by Pt+1t(x, y|α) = PRt+1t(x, y|α) + PTt+1t(x, y|α). Using
the Fourier transform of the probability density in each state h
(h∈{R,T}), defined as

Ph
t+1t

(k|m) ≡

∫ π

−π

dα eimα

∫

dy

∫

dx eik·rPh
t+1t

(x, y|α), (2)
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FIGURE 1 | (A) A sample trajectory with run-and-tumble dynamics. Typical turning angles for different types of turning-angle distributions introduced in the model are

shown. (B) Trajectory of the walker during two successive steps.

the Fourier transform of the total probability density is given by
Pt+1t (k|m) = PR

t+1t
(k|m) + PT

t+1t
(k|m), from which the moments

of displacement can be calculated as

〈xj1yj2〉(t+1t) ≡

∫

dα

∫

dy

∫

dx xj1yj2Pt+1t (x, y|α)

=(−i)j1+j2
∂ j1+j2Pt+1t (kx, ky|m = 0)

∂k
j1
x ∂k

j2
y

∣

∣

∣

∣

∣

(kx ,ky)=(0,0)

. (3)

By means of a Fourier-z-transform technique, it is possible to
solve the master equations (1) to obtain the time evolution of
the moments of displacement [38–40]. Here we briefly explain
the procedure to calculate the mean square displacement (MSD)
as the main quantity of interest. From Equation (3), the MSD is
given as

〈r2〉(t+1t) = (−i)2
∂2Pt+1t (k,φ=0|m=0)

∂k2

∣

∣

∣

∣

∣

k=0

, (4)

where (k,φ) is the polar representation of k. Assuming
F
R→T

(θ)=FT (θ)=
1
2π and F

T→R
(θ)=FR (θ), their Fourier

transforms are F
R→T

(m)=FT (m)= 1
2π

∫ π

−π
dθ eimθ and

F
T→R

(θ)=FR (m)=
∫ π

−π
dθ eimθFR (θ). Next we apply the Fourier

transformation on the master equations (1). For example, the
first master equation after Fourier transform reads

PR
t+1t

(k,φ|m) =

(1−f
R→T

)

∫

dα eimα

∫

dγ FR (α−γ )

∫

dy

∫

dx eik·r

PRt (x−vR1t cosα, y−vR1t sinα|γ )

+f
T→R

∫

dα eimα

∫

dγ F
T→R

(α−γ )

∫

dy

∫

dx eik·rPTt

(x−vR1t cosα, y−vR1t sinα|γ ). (5)

Then by using the qth order Bessel’s function

Jq(z) =
1

2π iq

∫ π

−π

dα eiz cosαe−iqα ,

replacing eikvR1t cos(α−φ) with
∫ π

−π
dβeikvR1t cosβδ(β−(α−φ)),

and using

δ(β−(α−φ)) =
1

2π

∞
∑

q=−∞

e−iq(β−(α−φ)),

it follows that

PR
t+1t

(k,φ|m) =

∞
∑

q=−∞

iq e−iqφJq(k vR1t)×

[

(1−f
R→T

) FR (m+q) PRt (k,φ|m+q)

+f
T→R

FR (m+q) PTt (k,φ|m+q)
]

. (6)

PR
t+1t

(k,φ|m) can be expanded as a Taylor series

PRt+1t(k,φ|m) = QR
0,t+1t(φ|m)+ i k vR 1t QR

1,t+1t(φ|m)

−
1

2
k2 v2

R
(1t)2 QR

2,t+1t(φ|m)+ · · ·. (7)

We expand both sides of Equation (6) and collect all terms with
the same power in k. As a result, recursion relations for the
Taylor expansion coefficients can be obtained. For instance, for
the terms with power 0 in k one finds

QR
0,t+1t(φ|m) = (1−f

R→T
)FR (m)QR

0,t(φ|m)

+f
T→R

FR (m)QT
0,t(φ|m). (8)

Similarly, the expansion coefficients of terms with higher powers
in k can be calculated and the procedure is repeated for
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the second master equation in (1). As a result, a set of
coupled equations is obtained for each expansion coefficient,
connecting time steps t+1t and t. Applying a z-transform
Q(z)=

∑∞
t=0 Qtz

−t enables one to solve these sets of equations.
Particularly the coefficients of terms with power 2 in k, i.e.,
QR
2 (z,φ|m) and QT

2 (z,φ|m), are useful to calculate the MSD

〈r2〉(z) = 2(1t)2
(

v2
R
QR
2 (z, 0|0)+v2

T
QT
2 (z, 0|0)

)

. (9)

Finally we obtain the following exact expression for the MSD in
z space

〈r2〉(z)=

[

z(1−f
R→T

−f
T→R

)PR0

z−1+f
R→T

+f
T→R

+
z2 f

T→R

G0(z)

][

2z2

(z−1)G1(z)
−

1

(z−1

]

v2
R
(1t)2

+

[

−z(1−f
R→T

−f
T→R

)PR0

z−1+f
R→T

+f
T→R

+
z2(1−f

T→R
)

G0(z)
−

z(1−f
T→R

−f
R→T

)

G0(z)

]

×

[

2z
[

z−(1−f
R→T

)p
]

(z−1)G1(z)
v2
T
+

2z

(z−1)G1(z)
f
T→R

p vRvT−
1

z−1
v2
T

]

(1t)2, (10)

where G0(z)=(z−1)(z−1+f
T→R

+f
R→T

) and G1(z)=z
(

z−(1−f
R→T

) p
)

. By inverse z-transforming Equation (10),

the MSD can be obtained as a function of time. The resulting
general expression for the MSD 〈r2〉(t) is lengthy and depends
on the run persistency p, the speeds vR and vT , the transition
probabilities f

R→T
and f

T→R
, and the probability of initially

starting in the run PR0 or tumble state PT0=1−PR0 . 〈r
2〉(t) typically

consists of linear and exponentially decaying terms with t as
well as time-independent terms, as shown in the following in
the special case of constant velocity and the initial condition
of starting in the run state. By choosing 1t=1, vR=vT=1,

and the initial condition PR0=1, the general expression of

〈r2〉(t) reduces to.

〈r2〉(t)=

(

p
(

(f
T→R

−1)f
R→T

+f
T→R

+f 2
R→T

)

+f
T→R

+f
R→T

)

p (f
R→T

−1)(f
T→R

+f
R→T

)+f
T→R

+f
R→T

t −

2 p (f
R→T

−1)
(

f
R→T

p(f
T→R

+f
R→T

−2)+f
T→R

+f
R→T

+p−1
)(

p(1−f
R→T

)
)t

(

p(f
R→T

−1)+1
)2
(f

T→R
−f

R→T
p+f

R→T
+p−1)

+
2 p f

R→T
(1−f

T→R
−f

R→T
)t+2

(f
T→R

+f
R→T

)2(f
T→R

−f
R→T

p+f
R→T

+p−1)
+

(

p
(

(f
T→R

−1)f
R→T

+f
T→R

+f 2
R→T

)

+f
T→R

+f
R→T

)

p (f
R→T

−1)(f
T→R

+f
R→T

)+f
T→R

+f
R→T

− (11)

2 p
(

(f
T→R

+f
R→T

)2−f
R→T

)

+(f
T→R

+f
R→T

)2

(

p (f
R→T

−1)(f
T→R

+f
R→T

)+f
T→R

+f
R→T

)2
+

p2(f
R→T

−1)
(

(f
T→R

+f
R→T

)
(

f
T→R

(f
R→T

−1)+(f
R→T

−3)f
R→T

)

+2f
R→T

)

(

p (f
R→T

−1)(f
T→R

+f
R→T

)+f
T→R

+f
R→T

)2
.

3. RESULTS AND DISCUSSION

We first investigate the time evolution of the MSD for different
values of the key parameters p, vR , vT , fR→T

, f
T→R

, and PR0 . As a

simple check, the expression (10) for f
R→T

=0, f
T→R

=1, vT=0, and

PR0=1 reduces to

〈r2〉(z)=
v2
R
z (z+p)

(z−1)2 (z−p)
(1t)2, (12)

and by inverse z-transforming, the MSD for a single-state
persistent random walk [37, 41]

〈r2〉(t) = (1t)2v2
R

[1+p

1−p
t + 2p

pt−1

(1−p)2

]

(13)

is recovered. In Figure 2, we show how the MSD evolves in time
for different values of the key parameters. We plot the general
expression of 〈r2〉(t), obtained from the inverse z-transforming
of Equation (10), and validate the analytical predictions byMonte
Carlo simulations. A wide range of different types of anomalous
dynamics can be observed on varying the parameters. While
the short-time dynamics is typically superdiffusion (due to the
combination of active and passive motion) and the long-term
dynamics is diffusion in all cases, transitions between sub-,
ordinary, and super-diffusion occur on short and intermediate
time scales. For some parameter values, the exponential terms
of the MSD rapidly decay while the linear term is not yet big
enough compared to the time-independent terms. In such a
case, the constant terms dominate at intermediate time scales
leading to the observed slow dynamics in this regime. The
asymptotic dynamics is however diffusive since the linear term
eventually dominates. It can also be seen that the crossover time
to asymptotic diffusion varies by several orders of magnitude
upon changing the parameter values. The crossover time can be
characterized as the time at which the exponentially decreasing
terms in 〈r2〉(t) become smaller than the terms which survive
at long times. We find that the convergence of the MSD to its
asymptotic diffusive form can be described by the sum of two
exponential functions

〈r2〉(t)−〈r2〉(t→∞) ∼ B1 e
−t/tc1 + B2 e

−t/tc2 , (14)

with the characteristic times tc1=
1

| ln(1−f
R→T

−f
T→R

)|
and

tc2=
1

| ln
(

p(1−f
R→T

)
)

|
. The prefactors B1 and B2 are functions

of p, vR , vT , f
R→T

, f
T→R

, and PR0 . Figure 3 shows how the
characteristic times tc1 and tc2 vary upon changing the key
parameters. Although the slopes of the exponential decays
in Equation (14) are solely determined by the transition
probabilities f

R→T
and f

T→R
and the run persistency p, the

crossover time to the asymptotic diffusive dynamics is also
influenced by the other dynamic parameters of the model
through the prefactors B1 and B2. For example, for the set
of parameter values p=0.9, vR=10, vT=0.1, f

R→T
=0.1, and

f
T→R

=0.01, the convergence time (with 5% accuracy) to the

asymptotic dynamics for PR0 = 1 is nearly twice as long as
for PR0 = 0.

Figure 2 also shows that the asymptotic diffusion constant
Dasymp varies by changing the key parameters. The differences
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A B

C

FIGURE 2 | Time evolution of the MSD for various (A) transition probabilities, (B) speeds, and (C) persistencies. The parameter values (unless varied) are taken to be

p=0.9, vR=10, vT=1, 1t=1, f
R→T

=0.5, f
T→R

=0.5, and PR0=0.5. The lines are obtained from the inverse z-transform of Equation (10) and symbols denote simulation

results. The dashed lines represent the asymptotic diffusion regime.

FIGURE 3 | Characteristic times tc1 and tc2 in terms of the transition probabilities f
R→T

and f
T→R

and run persistency p.

in the y-intercept of the dashed (asymptotic) lines in log-log
plots reflect the sensitivity of Dasymp to the model parameters.
By inverse z-transforming of Equation (10) and taking the limit
t→∞, we obtain Dasymp (i.e., the coefficient of the term linear in
time) in the general form as

Dasymp =

1

4
1t

2f
T→R

f
R→T

p vT vR+f
T→R

v2
R

(

1+p(1−f
R→T

)
)

+f
R→T

v2
T

(

1−p(1−f
R→T

)
)

(f
T→R

+f
R→T

)
(

1−p(1−f
R→T

)
) .(15)

While the diffusion coefficient trivially increases with the speed,
its dependency on f

R→T
, f

T→R
, and p is more complicated and

shown in Figure 4. Dasymp varies by several orders of magnitude
as a function of these parameters. Under the specific condition
F
R→T

(θ)=F
T
(θ)=δ(θ) and F

T→R
(θ)=F

R
(θ) and vT=0, the walker

stops when entering the tumble phase without changing its
arrival direction and it returns smoothly to the run phase without
experiencing a kick (i.e., a sharp change in the direction of
motion). Motor-driven transport along cytoskeletal filaments

in crowded cytoplasm exhibits such a run-and-pause dynamics
[21, 42]. In this case, one obtains

D
run-pause
asymp =

1

4
1t v2

R

1+p

1−p

f
T→R

f
T→R

+f
R→T

. (16)

In the limit p→1 the trajectory becomes nearly straight implying
that the randomization time and the covered area until reaching
the asymptotic diffusive regime (and thus Dasymp) diverge.

Interestingly, Dasymp in Equation (15) is independent of PR0
and PT0 , i.e., the initial condition of starting the motion in the
run or tumble state. Thus, the analytical results predict that
the asymptotic diffusive dynamics, characterized by the linear
time-dependence

〈r2〉(t→∞) = 4Dasymp t, (17)

does not depend on the initial conditions. In Figure 5 we present
the simulation results for several values of PR0 . At long times, all
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FIGURE 4 | (A) Asymptotic diffusion coefficient Dasymp as a function of the run persistency p for vR=10, vT=1, 1t=1, f
R→T

=0.001, and f
T→R

=0.9. (B) Dasymp in the

space of transition probabilities f
R→T

and f
T→R

for vR=10, vT=1, 1t=1, and p=0.9.

FIGURE 5 | The mean square displacement as a function of time for different

values of the probability PR0 of initially starting in the run state in simulations

(from top to bottom: PR0=1.0, 0.5, 0.1, 0.0). Other parameter values: p=0.9,

vR=10, vT=0.1, f
R→T

=0.1, and f
T→R

=0.01. The dashed line represents the

analytical prediction via Equation (17) for the same parameter values.

curves merge and follow the analytical prediction Equation (17).
Note that only the linear term in time is independent of PR0 and
the exponentially decaying and time-independent terms in the
MSD depend on the initial conditions (see e.g., Equation 12).
The walker keeps initially for some time its memory of the initial
direction and state of motion. However, the influence of the
PR0 -dependent terms vanishes in the limit t→∞ and the time
dependence of the MSD approaches the asymptotic linear form
Equation (17).

The short time dynamics is, however, strongly influenced by
the choice of the initial conditions. Figure 5 shows that the initial
slope of the MSD curve varies with PR0 . One can assign an initial
anomalous exponent κ to the MSD curve by fitting the power-
law 〈r2〉∼tκ . By choosing the first two data points of the MSD
curve, the fitting leads to 〈r2〉(t=2)/〈r2〉(t=1)=2κ . Thus, the
initial anomalous exponent κ can be deduced from the MSD at
t=1, 2 as

κ = ln

[

〈r2〉(t=2)

〈r2〉(t=1)

]

/ ln 2, (18)

After replacing the MSD at t=1, 2 obtained from Equation (10)
we get

κ = ln

[

[(

2−2PR0+(3−f
T→R

−f
R→T

)
(

f
T→R

(PR0−1)+f
R→T

PR0
)

)

v2
T

+2f
T→R

(

1−f
T→R

+(f
T→R

+f
R→T

−1)PR0
)

p vT vR (19)

+

(

2PR0+(−3+f
T→R

+f
R→T

)
(

f
T→R

(PR0−1)+f
R→T

PR0
)

+2(f
R→T

−1)
(

− f
T→R

+(f
T→R

+f
R→T

−1)PR0
)

p
)

v2
R

]

/

[

(

1−f
T→R

−(1−f
T→R

−f
R→T

)PR0
)

v2
T
+

(

f
T→R

+(1−f
T→R

−f
R→T

)PR0
)

v2
R

]

]

/ ln 2.

Figure 6A shows the influence of the initial conditions on the
initial anomalous exponent for a given set of parameters. Note
that the monotonic growth of κ with PR0 does not hold in
general, as we observed decreasing as well as non-monotonic
dependencies by varying other parameter values. However, κ

increases monotonically with p in all parameter regimes as shown
in Figure 6B. Moreover, Figures 6C,D show that κ also varies
widely with the speed and transition probabilities. Because of
combining an active run state (0<p<1) and normal diffusion
(tumble state), κ remains above 1 (superdiffusion). However, by
generalizing the run state to include subdiffusive motion (i.e.,
when−1<p<1), κ can decrease below 1.

To better understand the role of the initial conditions, we
note that the steady probabilities PR

steady
and PT

steady
of finding

the particle in each of the two states are determined by the
transition probabilities f

R→T
and f

T→R
. Therefore, the influence of

the initial condition of starting themotion in any of the two states
gradually vanishes as the probabilities PR(t) and PT(t) of finding
the particle in the run or tumble state gradually approach their
steady values. By considering a discrete timeMarkov process with
transition probabilities f

R→T
and f

T→R
, the probabilities at time t

can be obtained from those at time t−1 as

(

PR(t), PT(t)
)

=
(

PR(t−1), PT(t−1)
)[1−f

R→T
f
R→T

f
T→R

1−f
T→R

]

. (20)
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FIGURE 6 | The anomalous exponent κ vs. (A) the initial condition of motion PR0 , (B) run persistency p, (C) transition probabilities f
R→T

and f
T→R

, and (D) speeds vR

and vT via Equation (19). The parameter values (unless varied) are taken to be p=0.9, vR=10, vT=1, 1t=1, f
R→T

=0.3, f
T→R

=0.5, and PR0=0.5.

By applying this relation recursively, one can derive the
probabilities at time t based on the initial probabilities

(

PR(t), PT(t)
)

=

(

PR0 , P
T
0

)[ 1−f
R→T

f
R→T

f
T→R

1−f
T→R

]t
(21)

=

(

PR0 , P
T
0

) 1

f
R→T

+f
T→R

[

f
T→R

+f
R→T

(1−f
T→R

−f
R→T

)t f
R→T

(

1−(1−f
T→R

−f
R→T

)t
)

f
T→R

(

1−(1−f
T→R

−f
R→T

)t
)

f
R→T

+f
T→R

(1−f
T→R

−f
R→T

)t

]

.

Thus the evolution of PR(t) and PT(t) obeys

PR(t) =
f
T→R

f
T→R

+ f
R→T

+

(

1− f
T→R

− f
R→T

)t

f
T→R

+ f
R→T

(

f
R→T

PR0 − f
T→R

(1− PR0 )
)

,

PT(t) =
f
R→T

f
T→R

+ f
R→T

−

(

1− f
T→R

− f
R→T

)t

f
T→R

+ f
R→T

(

f
R→T

PR0 − f
T→R

(1− PR0 )
)

, (22)

leading to the steady probabilities PR
steady

=
f
T→R

f
T→R

+f
R→T

and

PT
steady

=
f
R→T

f
T→R

+f
R→T

. If one starts with the initial condition

PR0=PR
steady

, the system is immediately equilibrated. Otherwise,

the choice of the initial conditions affects the short-time
dynamics and diversifies the transient anomalous diffusive
regimes. According to Equation (22), the relaxation of the
probabilities toward their steady values follow an exponential

decay PR(t), PT(t) ∼ e−t/tm with tm=
1

| ln(1−f
R→T

−f
T→R

)|
.

While the characteristic relaxation time of the probabilities solely
depends on the transition probabilities, the characteristic time for
the crossover to asymptotic dynamics is influenced additionally
by the run persistency, as we showed previously in Equation (14).

Therefore, there are two independent relaxation times
tm(=tc1 ) and tc2 . In case these differ substantially, two distinct
crossovers in the time evolution of the MSD may be observed in
general as can be seen in Figure 2A.

4. CONCLUSION

We presented a persistent random walk model to study the
stochastic dynamics of particles with active fast and passive
slow motility modes. We derived an exact analytical expression
for the mean square displacement, which allows to analyze the
transient anomalous transport regimes on short time scales and
also to extract the characteristics of the asymptotic diffusive
motion such as the crossover time and the long-term diffusion
constant. In particular we showed that while the choice of the
initial conditions influences the anomalous diffusion at short
times, the asymptotic behavior remains independent of it and is
entirely controlled by the run persistency, the velocities of the
run and tumble states and the transition probabilities between
the two states.
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