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Abstract – We consider the off-lattice two-dimensional q-state active clock model (ACM) as a
natural discretization of the Vicsek model (VM) describing flocking. The ACM consists of particles
able to move in the plane in a discrete set of q equidistant angular directions, as in the active
Potts model (APM), with an alignment interaction inspired by the ferromagnetic equilibrium clock
model. We find that for a small number of directions, the flocking transition of the ACM has the
same phenomenology as the APM, including macrophase separation and reorientation transition.
For a larger number of directions, the flocking transition in the ACM becomes equivalent to the one
of the VM and displays microphase separation and only transverse bands, i.e., no re-orientation
transition. Concomitantly also the transition of the q → ∞ limit of the ACM, the active XY
model (AXYM), is in the same universality class as the VM. We also construct a coarse-grained
hydrodynamic description for the ACM and AXYM akin to the VM.

Copyright c© 2022 EPLA

Active matter consists of particles that consume energy
and convert it, for instance, into directed motion. Be-
ing manifestly out of equilibrium active matter systems
display novel many-particle effects or collective phenom-
ena, like flocking, motility-induced phase separation, giant
number fluctuations, active turbulence, etc. New models
have been developed in the last two decades to under-
stand and unravel the physical principles governing active
matter systems [1]. The paradigmatic model for collective
motion of animal groups, like bird flocks, buffalo herds,
fish schools, is the Vicsek model (VM) [2], in which par-
ticles moving with constant velocity align their direction
of motion with the average direction of their neighbors.
At low noise and large density the VM displays a flock-
ing transition to collective motion in a common direc-
tion. Subsequent studies showed that the way in which
noise and disorder are introduced into the system [3,4],
the range and type of the interactions [5–8] and align-
ment rules [9,10] influence the characteristics of pattern
formation and the type of phase transition occurring in
Vicsek-like models.
Even the nature of the flocking transition of the original

VM was debated for a long time: originally thought to be
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continuous [2] recent studies showed that it is discontinu-
ous, reminiscent of a liquid-gas transition rather than an
order-disorder transition [11]. In contrast to conventional
first-order phase transition scenarios, in which the system
phase-separates macroscopically into a liquid and a gas
phase in the coexistence region, the VM microphase sep-
arates into liquid bands of finite width moving coherently
through the gas phase due to giant density fluctuations
that break large liquid domains and arrest band coars-
ening [11]. Remarkably, such a microphase separation
is absent in discretized versions of flocking models: the
active Ising model (AIM) [12], the q-state active Potts
model (APM) [13], and an earlier version of the APM
with volume exclusion effects [5] which shows a surpris-
ingly rich variety of self-organized patterns, all manifest
macrophase separation in the coexistence region with only
one liquid band moving in a gas background in a large as-
pect ratio rectangular geometry. In contrast to the VM,
the APM displays additionally a reorientation transition
from transversally moving bands for low particle veloc-
ities to longitudinally moving bands for high particles
velocities [13].

A natural discretization of the VM (in 2d) is the 2d
q-state active clock model (ACM), consisting of particles
able to move in the plane in a discrete set of q equidistant
angular directions, as in the AIM or APM, with an align-
ment interaction inspired by the ferromagnetic equilibrium
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clock model [14], approaching the ferromagnetic XY model
in the limit q → ∞ [15]. Three questions arise in this con-
text: 1) What is the nature of a putative flocking transi-
tion in the ACM for different values of the number of states
q, regarding the fact that the equilibrium clock model has
continuous BKT transition at a temperature TBKT into
a quasi-long–range ordered phase and for q > 4 another
transition at a temperature TLRO < TBKT into a long-
range ordered phase [16]? 2) If the transition is first or-
der, what are the characteristics of the coexistence region:
microphase separation as in the VM or macrophase sepa-
ration as in the AIM and APM? Do longitudinally moving
bands exist? 3) Is the q → ∞ limit of the ACM, the ac-
tive XY model (AXYM), equivalent to the VM or does it
remain macrophase separating as for finite q?

In this letter we will answer these question and will show
that for a small number of states, the flocking transition of
the ACM has the same phenomenology as the APM [13],
including macrophase separation and reorientation transi-
tion. For a larger number of states, the flocking transition
in the ACM becomes equivalent to the one of the VM and
displays microphase separation and only transverse bands,
i.e., no re-orientation transition. Concomitantly also the
transition of the AXYM is in the same universality class
as the one of the VM. The letter is organized as follows:
first we define the ACM in detail, then we present our nu-
merical results and our hydrodynamic theory, and finally
we discuss the implication of our findings.

Model. – The 2d q-state ACM consists of N particles
moving in an off-lattice rectangular domain of size Lx×Ly

with periodic boundary conditions and with average par-
ticle density ρ0 = N/LxLy. Since no mutual exclusion
among the particles is considered, ρ0 can assume values
larger than 1. Each particle carries a clock degree of free-
dom or angle θ ∈ {0, 2π/q, 4π/q, . . . , 2(q − 1)π/q}, which
also defines its preferred direction of motion in a biased
diffusion. It can either jump to a new position or flip its
angle. The hopping rate of a particle in state θ in the
(discrete) direction φ is Whop = D[1− ε/(q− 1)] for φ �= θ
and Whop = D(1 + ε) for φ = θ, where D > 0 is the diffu-
sion constant and ε ∈ [0, q − 1] is the bias, or “velocity”.
Note that the total hopping rate is W tot

hop = qD and that
ε = 0 corresponds to unbiased diffusion and ε = q − 1
to ballistic motion in the direction of the clock angle. If
the hopping angle is φ and we denote the position of the
i-th particle at time t by xi(t), then its position in the
next time step is xi(t) + eφ, where eφ is the unit vec-
tor in the φ-direction. The flipping rate from θi = θ to
θi = θ′ is derived via detailed balance from a local clock
Hamiltonian

Hi = −
J

2ρi

∑

k �=l,k,l∈Ni

cos(θk − θl), (1)

where J is the ferromagnetic coupling constant and
ρi is the number of particles within its neighborhood

Ni = {j with |xi − xj | � 1}:

Wflip = γ exp

{

βJ

ρi
[mi · (eθ′ − eθ) + 1− cos(θ − θ′)]

}

,

(2)
where mi =

∑

j∈Ni
(cos θj , sin θj) is the local magnetiza-

tion and γ is a constant. The origin of the term 1 −
cos(θ−θ′) in eq. (2) is the absence of self-interaction in the
clock Hamiltonian in eq. (1) (see the Supplementary Ma-
terial Supplementarymeterial.pdf (SM) for a detailed
explanation). Although phenomenologically ACM is very
similar to the APM [13], the Kronecker delta “Potts” in-
teraction in the APM has been replaced by the cosine
“clock” interaction in the ACM motivated by the q → ∞
limit and whether one recovers the VM in that limit and
here the ACM is clearly better suited than the APM.
For q = 4 and 6, one can define the ACM on square and

triangular lattices, respectively, and identify the q differ-
ent directions of motion to the q nearest neighbors. We
analyzed these lattice versions, too, and obtained quali-
tatively identical results as those reported below, see the
SM, but here we restrict ourselves to the off-lattice version
which allows a straightforward q → ∞ limit (AXYM) and
is also closer to the original VM. In the limit q → ∞ the
rescaled quantities D = qD and ε = ε/(q−1) have to stay
finite and the angles become continuous with θ ∈ [0, 2π].
The jump rate of a particle in state θ in the (continuous)
direction φ becomes Whop = D(1 − ε) for φ ∈ [0, 2π] and
Whop = Dε for φ = θ.

We performed Monte Carlo simulations of the q-state
ACM and the AXYM, which evolve in discrete time steps
of length ∆t. In each time-step N (=number of parti-
cles) single particle updates are performed, one of which
consists in choosing randomly a particle which then either
updates its spin state to θ′ �= θ chosen randomly with
probability pflip = Wflip∆t, or hops to one of the q direc-
tions with probability phop = D∆t: in a random direction
with probability (1−ε)phop or in the direction θ with prob-
ability εphop. The probability that nothing happens dur-
ing this single particle update is pwait = 1 − pflip − phop.
An expression for ∆t can be chosen to minimize pwait:
∆t = [D + exp(2βJ)]−1. This is a hybrid dynamics com-
bining Monte Carlo and a real-time dynamics previously
used in the simulations of the AIM [12] and the APM [13].
Without any loss of generality, we can take D = 1, J = 1
and γ = 1.

We consider mainly a rectangular domain with a large
aspect ratio with Lx = 400 and Ly = 50 for the computa-
tion of the phase diagram and other quantities. Lx = 800
with varying Ly are considered for the snapshots pre-
sented. Simulations are performed for three control pa-
rameters: the noise is regulated by β = 1/T , ρ0 =
N/LxLy defines the average particle density, and ε, the
self-propulsion parameter, dictates the effective velocity of
the particles. The initial homogeneous system is prepared
by assigning random initial position (xi, yi) and orienta-
tion θi to each particle and then we let the system evolve
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Fig. 1: (a), (b): stationary density profiles for q = 4, β = 2
and ρ0 = 1.5 in a 400 × 50 domain showing the bulk phase-
separation and reorientation transition from (a) transverse
band motion for ε = 0.2 to (b) longitudinal band motion
for ε = 0.8. The colorbar represents the particle density.
(c) Temperature-density (T -ρ0) phase diagram for ε = 0.5,
and (d) velocity-density (ε-ρ0) phase diagram for β = 2 of
the q = 4-state ACM. The reorientation transition happens at
β = 1.9 and ε = 0.32, respectively.

under various control parameters for teq = 105∆t to reach
the steady state. Following this, measurements are carried
out with a maximum simulation time tmax = 20teq.

Phase diagrams and coexistence region. – In
fig. 1(a) and fig. 1(b), we show stationary density pro-
files for the q = 4-state ACM on a 400 × 50 rectangular
domain for fixed β = 2 and ρ0 = 1.5 but for different bias:
(a) ε = 0.2 and (b) ε = 0.8. As observed before in the
VM [2,11], the AIM [12], and the q-state APM [13], the
transition from a homogeneous gas phase to a polar liq-
uid phase occurs through a liquid-gas coexistence phase,
where a single band of polar liquid propagates on a disor-
dered gaseous background. Akin to the 4-state APM [13],
the band moves (a) transversally at small bias (velocity)
ε = 0.2 and (b) longitudinal with respect to the band di-
rection at larger bias ε = 0.8. The coexistence phase in
both figures shows a fully phase-separated density profile
with a single macroscopic liquid domain as observed pre-
viously in the context of lattice flocking models [12,13]. In
fig. 1(c) and fig. 1(d), we display the temperature-density
(T -ρ0) phase diagram for ε = 0.5 and the velocity-density
(ε-ρ0) phase diagram for β = 2, respectively. The liquid
and gas binodals ρliq and ρgas, which segregate the gas-
liquid (G + L) coexistence phase from the two homoge-
neous phases, liquid (L) and gas (G), are extracted from
the time-averaged phase-separated density profiles. Re-
ported for the first time in the context of the APM [13],
we observe a similar reorientation transition of the coexis-
tence phase from transverse band motion at low velocities
and high temperatures to longitudinal lane formation at
high velocities and low temperatures for q = 4. The phys-
ical origin of this reorientation transition, as argued in

Fig. 2: (a), (b): stationary density profiles for the q = 8-state
ACM, β = 2 and ε = 0.9 in a 800× 20 domain showing trans-
versely moving microphase-separated bands for (a) ρ0 = 1.5
and (b) ρ0 = 2. The colorbar represents the particle density.
(c) Time-averaged density profiles for ρ0 ∈ {1.5, 1.75} defin-
ing the two binodals ρliq and ρgas. (d) Velocity-density (ε-ρ0)
phase diagrams for q = 8 and q = 16-state ACM obtained for
β = 2 showing only transverse band motion.

ref. [13] with equivalent hopping rules, is the decrease of
the transverse diffusion constant for large velocities, stabi-
lizing the longitudinal lane formation. The reorientation
transition occurs at β = 1.9 (c) and ε = 0.32 (d), where
the black dotted lines delimit the two co-existing phase
domains which are further marked by two distinct colors:
grey for longitudinal lane motion and yellow for transverse
band motion. We have obtained similar results from the
numerical simulations of the 4-state ACM on a square lat-
tice (see the SM).

In fig. 2(a) and fig. 2(b), we show stationary density
profiles for the q = 8-state ACM on a 800 × 20 rectan-
gular domain for β = 2, ε = 0.9 and (a) ρ0 = 1.5 and
(b) ρ0 = 2. A microphase separation of the coexistence
region, where periodically arranged ordered liquid bands
move in the same direction in a gaseous background, is
observed. The microphase-separated traveling bands are
transverse in nature as observed first in the VM [2]. In a
microphase separation, the traveling bands are not fully
phase-separated and as established in ref. [11], one cru-
cial characteristic of this microphase separation is that
the band number nb increases with the density ρ0 as ob-
served in figs. 2(a), (b). Time-averaged density profiles
of the liquid-gas coexistence phase are shown in fig. 2(c)
which suggest that the width of the polar liquid band does
not increase significantly with the average density ρ0 (see
the SM for the algorithm which has been used to obtain
the time-averaged profiles). It is well known that the band
width does not affect the liquid (ρliq) and the gas (ρgas)
binodals and we use this property to extract the relevant
phase diagrams. In fig. 2(d), we represent the velocity-
density (ε-ρ0) phase diagrams for β = 2 and for q = 8 and
q = 16-state ACM. The two diagrams are very similar
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Fig. 3: (a), (b): stationary density profiles for the AXYM, β =
2 and ε = 0.9 in a 800×20 domain showing transversely moving
microphase-separated bands for (a) ρ0 = 1.5 and (b) ρ0 = 2.
The colorbar represents the particle density. (c) Temperature-
density (T -ρ0) phase diagram for ε = 0.5, and (d) velocity-
density (ε-ρ0) phase diagram for β = 2 for the AXYM showing
only transverse band motion.

both qualitatively and quantitatively and implying a sim-
ilar physical picture of the q-state ACM for q � 8. The
corresponding coexistence domain of the q = 8 and 16-
state ACM is completely described by transversely travel-
ing microphase separated bands. Although a reorientation
transition occurs for q = 6-state ACM when simulated on
a triangular lattice (see the SM), we do not observe any
reorientation transition for off-lattice simulations for q � 6
at large bias ε as observed for q = 4.

In fig. 3(a) and fig. 3(b), we present the stationary den-
sity profiles in the coexistence phase of the AXYM (i.e.,
for q = ∞) on a 800×20 rectangular domain and for β = 2,
ε = 0.9 and (a) ρ0 = 1.5 and (b) ρ0 = 2. The AXYM and
VM possess the same O(2) rotational symmetry but dif-
fer in their flipping and hopping rules. Nevertheless, we
observe a microphase separation in the coexistence regime
like in the VM [11] where the traveling bands are mov-
ing in the same direction and nb is increasing with ρ0.
The temperature-density (T -ρ0) and the velocity-density
(ε-ρ0) phase diagrams are shown in fig. 3(c) for ε = 0.5
and fig. 3(d) for β = 2, respectively. We do not observe
the reorientation transition akin to the observation made
for q = 8- and q = 16-state ACM. The velocity-density
(ε-ρ0) phase diagram is also identical to fig. 2(d) both
qualitatively and quantitatively and thus minimizing the
statistical errors in the calculations of the binodals, these
three diagrams can be merged in a single diagram which
signifies that the system behaves similarly for large num-
ber of directions or large q-values. Moreover, for the q-
state ACM and the AXYM we recover the characteristic
velocity-density (ε-ρ0) phase diagram observed in other
discrete flocking models [12,13]. However, the nature of
the ε̄ → 0 transition of the AXYM is different from the
VM. The density at which the gas and liquid binodals

Fig. 4: Zero-activity limit of the order parameter distributions
of the q-state ACM and AXYM (q → ∞) in the liquid phase.
Parameters: L = 50, β = 2, ε̄ = 0, and ρ0 = 3.

intersect at ε = 0 is finite (ρ∗ = 1.95) for the AXYM
whereas it is infinite for the VM, as argued in [11].

Zero activity limit (ε̄ = 0). – This limit is denoted
as the Brownian clock model, reminiscent of the Brownian
Potts model studied in [17]. We observe an order-disorder
phase transition without a coexistence region, as observed
for the AIM [12] and the APM [13]. In fig. 4, we show the
distribution of the order parameter m = (mx,my) with

mx =
∑N

i=1 cos θi and my =
∑N

i=1 sin θi in the ordered
phase for β = 2, ε̄ = 0, and ρ0 = 3 simulated on a
square domain of system size L = 50 and averaged over
time and several initial configurations. In fig. 4(a) and
(b), we observe a well-defined long-range ordered phase
(LRO) for q = 4 and q = 5, respectively, where the dis-
tributions manifest q isolated spots (pinned orientations)
corresponding to the q-fold degeneracy of the ordered liq-
uid phase with equal probability. In fig. 4(c)–(f), one
observes for q � 6, ring-like distributions (unpinned ori-
entations) signifying the Kosterlitz-Thouless (KT) type
phase or the quasi-long–range ordered (QLRO) phase,
where spin waves and vortices arrange the spin vectors.
For discrete q-values, a LRO phase can be observed at
large densities (see the SM) or small temperatures, which
is not the case for the AXYM.

In the AXYM, particles can diffuse along any random
direction with hopping rate D̄, whereas the VM reduces to
the two-dimensional XY model at the zero velocity limit
(with immobile particles). Although it has been shown for
the Brownian Potts model [17] that diffusion can change
the nature of transition, the diffusive motion of the par-
ticles in the AXYM do not change the structure of the
corresponding field theory compared to non-motile parti-
cles in the VM. Therefore, the Mermin-Wagner theorem
is still applicable even though this system is driven out of
equilibrium and the ordered phase we observe is QLRO
in nature, akin to the XY model in two dimensions. The
problem of diffusively moving spins, along with similar ar-
guments, has also been studied explicitly in ref. [18] in the
context of active phase oscillators with O(2) symmetry,
where QLRO is reported for normal diffusion of oscillators,
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Fig. 5: (a), (b): number fluctuations ∆n2 = 〈n2〉 − 〈n〉2 and
magnetization fluctuations ∆m2 = 〈m2〉 − 〈m〉2 vs. average
particle number 〈n〉 for several q-values in a 400×400 domain.
(c) Number fluctuations ∆n2 vs. 〈n〉 as a function of various
system sizes for q = 7. (d) Effective exponent ξeff for the data
plotted in (c). Parameters: β = 2, ε̄ = 0.9, and ρ0 = 6.

whereas super-diffusive motion is needed in order to obtain
long-range order in two dimensions.

Number fluctuations. – In fig. 5(a), (b), we show re-
spectively the number fluctuations ∆n2 = 〈n2〉−〈n〉2 and
the magnetization fluctuations ∆m2 = 〈m2〉 − 〈m〉2 for
various q-values against the average particle number 〈n〉.
n and m are respectively the number of particles and the
magnetization in boxes of different sizes ℓ included in a
400 × 400 domain (with ℓ � 200), with 〈n〉 = ρ0ℓ

2. The
data are for the liquid phase where β = 2, ε = 0.9, and
ρ0 = 6. As shown in table 1, both the fluctuations behave
like 〈n〉ξ with the fluctuation exponent ξ ≃ ξn ≃ ξm in-
creasing with q, from ξ ≃ 1 for q = 4 to ξ ≃ 1.65 for large q
(and it saturates for q � 8). Consequently the number and
magnetization fluctuations show a transition from uniform
fluctuations for small q to giant fluctuations at larger q as
they have been observed in the VM [11]. Although the
existence of giant number fluctuations (GNF) were shown
in Vicsek-like self-propelled particle models [6,7], the con-
nection between GNF and micro-/macrophase separation
was first hypothesized in ref. [11] in the context of VM
where it has been argued that GNF (ξn ≃ 1.6) break large
bulk liquid domains and consequently produce smectic-like
microphase state in the coexistence regime whereas the
system undergoes bulk phase separation when the density
fluctuations are normal (ξn ≃ 1) [12]. In the ACM, there-
fore, these GNF for large q might be responsible for the
microphase separation in the coexistence regime as shown
in fig. 2(a), (b) and fig. 3(a), (b) for q = 8 and q = ∞, re-
spectively. Nevertheless one should stress that a causal re-

Table 1: Number fluctuation exponents ξn and magnetization
fluctuation exponent ξm for several values of q, reported from
fig. 5. The typical error on the fluctuation exponents is 0.01.

q 4 5 6 7 8 16 ∞
ξn 1.04 1.08 1.36 1.56 1.62 1.62 1.65
ξm 1.06 1.09 1.37 1.57 1.63 1.62 1.65

lation between the existence of GNF in the ordered phase
and the existence of micro-phase separation in the coex-
istence phase, as conjectured in [11], is still hypothetical
and remains an interesting open question. A compari-
son between fig. 5(a) and fig. 5(b) clearly reveals that
GNF correspond to giant magnetization fluctuations or
phase fluctuations which physically signifies weaker phase-
ordering, and uniform number fluctuations correspond to
smaller magnetization fluctuations which physically signi-
fies stronger phase-ordering.
The finite size effect on the number fluctuations for

q = 7 is shown in fig. 5(c) where the data can be fitted
to two different power-law regimes (consider the largest
system size L = 800) and one can extract: i) an exponent
of 1.56 in the interval [102, 103] and ii) an exponent of
1.17 in the interval [104, 105]. These exponents along with
the exponents tabulated in table 1 have been obtained by
fitting the data to a power-law and since what one ob-
tains depends on the x-range to which one restricts the
fits, we have a look at the log-log slope or the correspond-
ing effective exponent ξeff = d[ln(∆n2)]/d[ln〈n〉] plotted
in fig. 5(d) (see the SM for the effective exponents corre-
sponding to fig. 5(a), (b)). The plot shows a “plateau”
around the first exponent ξ ≃ 1.56 but we observe no such
“plateau” around the second exponent ξ ≃ 1.17. There-
fore, on the basis of our data, even for the largest system
size, one cannot predict an asymptotic value of the effec-
tive exponent which might suggests a crossover from giant
to conventional number fluctuations. Note that ξeff must
decrease with increasing 〈n〉 when 〈n〉 approaches the to-
tal number of particles in the system and becomes smaller
than 1 due to the finite-size cut-off at 〈n〉 = N = ρ0L

2,
where ∆n2 vanishes.

Hydrodynamic description. – Next, we derive the
main equations for the hydrodynamic continuum theory.
From the microscopic hopping and flipping rates of the
q-state ACM, we derive the master equation for the prob-
ability density function n(x, θ; t) for a particle to be at the
position x and in the spin-state θ at the time (see the SM).
We only keep the first-order terms in the |mi| ≪ ρi expan-
sion in the flipping rate (2). In the large system size limit
L ≫ 1, the hydrodynamic equation can be derived for
the density ρ(x; t) =

∫

dθn(x, θ; t) and the magnetization
m(x; t) =

∫

dθeθn(x, θ; t). Assuming the magnetization is
a Gaussian variable with variance proportional to ρξ, as
shown in fig. 5, we obtain the equations (see the SM):

∂tρ = D0∇
2ρ+

v

4
∇ · (∇ ·Q)− v∇ ·m, (3)
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∂tm = D0∇
2m+

v

8

(

∂xx − ∂yy 2∂xy
2∂xy −∂xx + ∂yy

)

m

−
v

2
(∇ρ+∇ ·Q) + γ0

[

βJ − 1− rρα − κ
m2

ρ2

]

m,

(4)

with the diffusion constant D0 = D/4, the self-propulsion
velocity v = Dε, the ferromagnetic interaction strength
γ0 = qγ/(q − 1), κ = (βJ)2(7 − 3βJ)/8, α = ξ − 2, and
the nematic tensor

Q =
βJ

2ρ

(

m2
x −m2

y 2mxmy

2mxmy −m2
x +m2

y

)

. (5)

Note that, for r = 0, the simple mean-field theory can
be recovered by neglecting the number and magnetization
fluctuations. As shown in previous studies for the AIM
and the APM [12,13], these mean-field equations do not
predict stable phase-separated profiles and will only give
the trivial homogeneous solution. We note that eqs. (3),
(4) allow two homogeneous solutions with ρ = ρ0 corre-
sponding to the gas phase: m = 0, and the polar liquid
phase: m2 = ρ20(βJ−1−rρα0 )/κ. The order-disorder tran-
sition at ε = 0 occurs at a density ρ∗ = [(βJ − 1)/r]1/α.
Equations (3) and (4) are equivalent to the hydrody-

namic equations derived for the VM [11,19], although the
second term of the right-hand side of both equations is
absent due to the biased diffusion present in the model.
Applying the conclusions made in ref. [11] to our hydro-
dynamic equations, we are not able to conclude when a
macrophase or a microphase separation is observed in the
coexistence phase. Adding a zero-mean vectorial Gaussian
white noise of variance ρα(r − κm2/ρξ) to eq. (4) would
be a possibility to scrutinize the stability of a macrophase
or a microphase separation in the coexistence phase, as
demonstrated for the VM in [11]. Moreover, the study
of the existence of reorientation transition is feasible with
eqs. (3) and (4), as already done for the APM [13].

Conclusion. – The nature of the flocking transition
in the q-state ACM and the AXYM is a liquid-gas phase
transition for all values of the number of states q, similar
to the VM [2,11], the AIM [12] and the APM [5,13], with
a coexistence phase delimiting the gas and liquid homo-
geneous phases for ε̄ > 0. The coexistence phase shows
a macrophase separation for small directions or q-values
as in the AIM [12], the APM [5,13] and microphase sep-
aration for large q values as in the VM. Longitudinally
moving bands exist only when the coexistence phase is
macrophase-separated, which implies that a re-orientation
transition as in the APM [13] is absent for the ACM with
large number of states and thus also for the AXYM, as it
is for the VM. These results are supported by the num-
ber and magnetization fluctuations. Giant fluctuations
observed for large q-values do not allow bulk phase sepa-
ration and break large liquid domains into narrow periodic
traveling bands and also restrict those bands from further
coarsening, resulting in microphase separation.

Hence the discretization of the directions of motion in
the VM as in the ACM will not change the characteristics
of the VM flocking transition as long as the number of di-
rections is sufficiently large. The main difference between
the ACM and VM arises at zero-activity limit ε̄ = 0 where
the particles in the ACM can still diffuse whereas in the
VM they are immobile. For a smaller number of directions,
macrophase separation and a re-orientation transition oc-
curs. The hydrodynamic description that we derived for
the q-state ACM is compatible with the hydrodynamic
description for the VM presented in refs. [11,19], but is
inconclusive regarding the stability of macrophase or mi-
crophase separation.
Experimental realizations of various flocking models are

manifold [20] and the small-q variant of the ACM (and
APM) has been used to understand pattern formation ob-
served in experiments with motility assays [21]. For exper-
imental systems with a large number of motility directions,
the q-state ACM and the AXYM could also be a very good
candidate where larger direction changes are penalized by
smaller transition probabilities and a biased hopping can
always be performed along the direction of motion of the
particle.
When this work was finalized we became aware of a re-

lated study [22] considering a version of the ACM/AXYM
that differs in various important aspects from ours: in
the model used in [22] 1) particles live on a square lat-
tice and hence can only move in four different directions,
2) spin flips (clock changes) can only happen to the previ-
ous or next hour, 3) the hopping rules are defined differ-
ently and are 4) projected onto the four lattice directions,
which is not fully commensurate with the spin anisotropy,
and 5) the hydrodynamic theory is one for XY spins in
an anisotropy potential producing a term stabilizing LRO
for all finite q-values, which is absent in our theory. For
such a model an asymptotic macrophase separation and
the absence of a re-orientation transition for all q < ∞ is
predicted in [22]. The latter is a consequence of the dif-
ferent hopping rules [13], but to numerically prove the
existence or absence of an asymptotic cross-over from
micro- to macrophase separation for higher q-values one
would have to consider much larger system sizes than those
considered in [22] and by us and this should be clarified
in a future work.
Also, an interesting problem to investigate would be the

relation between the presence of GNF in the liquid phase,
the nature of the coexistence phase (micro- or macrophase
separation) and the pinned property of the spin, equivalent
to a LRO or QLRO phase as a function of various control
parameters.
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[7] Ginelli F. and Chaté H., Phys. Rev. Lett., 105 (2010)

168103.
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