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Chapter 1

Second quantization

In this first part, we shall consider nonrelativistic systems consisting of a large number of identi-
cal particles. In order to treat these, we will introduce a particularly efficient formalism, namely,
the method of second quantization.

Nature has given us two types of particle, bosons and fermions. These have states that are, re-
spectively, completely symmetric and completely antisymmetric. Fermions possess half-integer
spin values, whereas boson spins have integer values. This connection between spin and symme-
try (statistics) is proved within relativistic quantum field theory (the spin-statistics theorem).
An important consequence in many-particle physics is the existence of Fermi-Dirac statistics
and Bose-Einstein statistics.

We start with some preliminary remarks.

1.1 Identical particles and many particle states

Consider N “identical” particles (e.g. electrons, m-mesons, ...).
Hamilton-Operator: H = H(ri01,r2092, -+ ,ryoy) abbreviated as: H(1,2,---,N)
Wave function: Y =(rio1,r909, -+ ,ryoy)  abbreviated as: ¢(1,2,---, N).

Definition: permutation operator P;;:
szw( 7ia"' >.j>"' 7N) :¢( 7j7"' 7i7"' >N)

Since Pf] = 1 the eigenvalues of P;; are 1. Due to the symmetry of the Hamiltonian H under
particle exchange, one has for every element P of the permutation group:

Vij:  PjH = HP;

e.g. an ordinary many-particle Hamiltonian has the form:

~9 N
H(ry,ra,...,rN) ZZ%+ZU(Pi)+ > W(ri —rj))
—~ 2m = —
=1 =1 {17‘7}
= ﬁ(...,ri,...,l‘j,...):H(...,I‘j,...,l‘i,...)

Sy := Group of all permutations of N objects. #Sy = N!.
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Each P € Sy can be represented as a product of transpositions P;;. P is said to be even (odd)
when the number of transpositions P;; composing it is even (odd).

Properties:

(i) (1, ,N) is an eigenfunction of A with eigenvalue E
= PyY(1,---,N) also eigenfunction with eigenvalue F

(ii) VP € Sn, (o|v) =(Po|Py)
(iii) P is unitary (PTP = PP")

(iv) For every symmetric operator S(1,--- , N) we have [P, S] =0, VP € Sy and ( Py; | S| Py;) =
(i ]S |¥;). The converse is also true.

Since identical particles are all influenced identically by any physical process (e.g. repul-
sion/attraction of a particle by a potential), all physical operators must be symmetric. Hence,
the states ¢ and P are experimentally indistinguishable. The question arises as to whether all
these N! states are realized in nature.

In fact, the totally symmetric and totally antisymmetric states (1g) and (¢ 4) do play a special
role. These states are defined by

Vij, Pijs = +s;  Pijtha = —a
Experimentally: It is an experimental fact that there are two types of particle, bosons and

fermions, whose states are totally symmetric and totally antisymmetric, respectively. As men-
tioned at the outset, bosons have integer, and fermions half-integer spin.

Bosons Fermions
totally symmetric totally antisymmetric
integer spin half-integer spin

Remarks:

(i) The symmetry character of a state does not change in the course of time:
1) = e Mp0) = Pi(t) = e TPy (0)

(ii) VP € Sy :

Pis = s
Py = (=12 with(-1)0) = {

+1 for even permutations P
—1 for odd permutations P

Thus, the states ©g and 14 form the basis of two one-dimensional representations of the
permutation group Sy.

Example:
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N=3: 5(1,2,3) =(1,2,3) +9(2,1,3) + ¥(1,3,2) + (3,2,1) +1(3,1,2) +9(2,3,1)
¥a(1,2,3) = 9(1,2,3) — ¥(2,1,3) —(1,3,2) —(3,2,1) +4(3,1,2) + (2,3,1)

Remark: The minus sign in the fermionic case implicates that no two fermions can occupy the
same state, because the wave function then vanishes (can easily be seen in the examples above).
This fact is known as Pauli principle.

The permutations become necessary, because a state like 1(1,2,3) contains too much infor-
mation. It is possible to assign a position to a specific particle, which isn’t possible in nature
for indistinguishable particles. On the other hand, the expressions become really confusing with
increasing N, so we are looking for a formalism to condense the information. This will lead to
the introduction of Fock states.

1.2 Totally symmetric and anti-symmetric states

Now let {|i)} = {|1),]2),...} be a complete orthonormal system basis of one-particle states.
We denote a one-particle state of particle o as |7 )q -
~> basis states of the N-particle system:

‘ila"'aiaa"'7iN>:’i1>1""ia>a"'|iN>N

where [iq), means that particle a is in state iq.

{li1, -+, in)} is a complete orthogonal basis of the N-particle Hilbert space HYY (= HY o HY @
Rest)

The symmetrized and antisymmetrized basis states (i.e. the basis of HY and HY) are defined
by

If |i1, -+ -, ix) contains single-particle states occurring more than once, then Sy |iy, --- , iy) is
no longer normalized to unity. Let us assume that the first state occurs ny times, the second ns
times, etc. Then S, |i1, ---, ix) contains only N!/njlng!--- different terms and each of them
appears with multiplicity ni!-ng!---.

1 N!

= (i1, -, in] STy lin, -+, i) = ﬁ(nllm!“')QW =mnlng!---
~» The normalized Boson basis functions are
St 1
7“1 iN>:— P|i1 iN> %
\/n1!n2!'-- ’ ’ \/N!nllng!"'Pezs:,N ' ' ( )
[n.b. Itis S_ i1, ---,in) =0ifin |iy, - -+, in) one-particle states occur more than once.]
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1.3 Bosons

The state (x) is fully characterized by specifying the occupation numbers {n;} :

Sy . )
|n1, na, "'>:ﬁ|117 cee L AN
N

Here, ny is the number of times that the state 1 occurs, ny the number of times that state 2
occurs, etc. Alternatively: nq is the number of particles in state 1, no is the number of particles
in state 2, .... The sum of all occupation numbers n; must be equal to the total number of
particles:

oo
N = an
i=1

Apart from this constraint the n; can take any of the values 0, 1,2, .... These states form a com-
plete orthonormal system of completely symmetric N-particle states. By linear superposition,
one can construct from these any desired symmetric N-particle state.

We now combine the states for N = 0,1,2,... and obtain a complete orthonormal system of
states for arbitrary particle number, which form the basis of the Fock-space:

Fock—space::HO@HSEB-'-@Hg@”-

H° = {|0)} or vacuum (zero particles)

Complete orthonormal system: {|ni, n2, -+ ) }n,=0.1,--
eOrthogonality relation (n1, na, -+ [nj, ny, =) = 0pypt Opyny + -
eCompleteness relation: »°, . . Ini, ng, +-+)(ny, na, -+ =1

The operators we have considered so far act only within a subspace of fixed particle number.
On applying p, x etc. to an N-particle state, we obtain again an N-particle state. We now
define creation and annihilation operators, which lead from the space of N-particle states to the
spaces of IV & 1-particle states:

Gile o mg) = miloni—1,00)

The operators &g and d; respectively increases and decreases the occupation number of the state
|i) by 1. One shows straightforwardly that &ZT is indeed the adjoined operator of a;:

(**) — <nz\ dz‘ =Vn; + 1 <nz + 1’
= (nil @ [nj) = Vi + 1{ni + 1|ng) = Vni + 165, 41,0

The above relations and the completeness of the states yield the Bose commutation relations

laa;) =05 [alaf| =05 |asal] =4
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(‘@fasns) = af v ns = 1) =nilniys  asal ng) = Vi + Lag|ni+1) = (ns + 1) i) )

Starting from the ground state = vacuum state |0) = |0,0,---) which contains no particles at
all, we can construct all states: single-particle states

6110) = 10 mi=1)
&j&} 0) = [0, ,mi=1,---,n;=1,---) i#j
Generally:
n17n27...> :H ( 1,) ' |0>
=1 V1
Definition:
ni 1= &Zdi is the particle number operator (occupation number operator for the state | 7))

Al miy ) =il mg, )

N :=3",n;|is the operator for the total number of particles
N‘n17n27”'> - (an> ’n17n27”'> - N’n17n27”'>
i
Let us consider an operator for the N-particle system which is a sum of single-particle operators
N
T=> tq
a=1

where t, is a one-particle operator (e.g. to = p%/2mor V(z,)). Let t;; := (i|t|j) be the matrix
elements of the one-particle operator t. Then ¢t =37, i t;5[i)(j| and T =3, ;tij >0 |71)alJ la-

Our aim is to represent this operator in terms of creation and annihilation operators | 7' = 3, ; tijfzj&j

Proof:
Consider first the effect of A;; = >, |7)a(J|a on |[n1,n9,---)
nj =0, then Voo e {1,--- N} ko #5 |1),(Jjl, n1,n2,...) =0

= o[k ke k) IE

nj =1, wlog ki =7~ i), (J |1kt ko, - kN) = |isko, -+ kn)
nj =2, wlog ki=ko=7j~ |i) (jliki,ka - kn)=1i,ka k3, kn)
|i>2<j‘2k17k27"' 7kN>: ‘klaiak?n"' 7kN>

ete.
This means A;; decreases n; by 1 and increases n; by 1, in n; summands.

10
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) .S,
o Aijngyng, ) = AJW [y, Kz, o)

Sy
= 714-»}@7]4;7...7]{;
\/W z]| 1, h2 N>
Sy _ ‘
= W(‘Z kQ’- '7kN>+‘k1?7'7k37"'>+"'+"",kj—lglakj+1,"'>)
n; times
S .
= n;- + |z,k:2,~-,k‘N>
\/...(ni+1)!/(ni+1)...(nj_1)!nj_..
1
= n] n7,+ | ,nl+17,n]_17>
— ATA] | n’i7 ’nj’...>
For the special case that ¢ is diagonal: #;; = €;0;; ~ Hp=)_, 51&2&1 -

Analogously, one shows for the two-particle operators

Z f( rom rﬁ (+)
047'5,3

that they can be written as

Z fzykm

,ka
with
Fistm = (ing | £ | k,m) /dr/dr GE(0) (1) 1P (1,1 (1) ()

Proof:
(4+) means in the N —particle space

Z S (g L fD T km) i) 505 (Kl (mls

a;éﬂzjkm

Now it is

Do lidalida(kla(mls = D lidg (klalidg(mlg

oB o B
= g;!2>a<klalj>ﬁ<ﬂlg-—<k\9>2;|%>a<nﬂa
) 6k]
_ acata —af
= ;0% Q;m — Q; Ak, 05| am
= alal amay

11
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1.4 Fermions
The symmetrized basis states for an N particle system of fermions are

Ol dae e iy
S_|iyig - -in) = — : : : : (Slater determinant)

VNI

|iN>1 |iN>2 T |iN>N
(n.b.: exchange of two particles = exchange of two columns = change of sign)

Here, too, we shall characterize the states by specifying their occupation numbers, which now

can take the values 0 and 1. The state with n; particles in state 1, no particles in state 2, etc

is {|ning---)}, which forms the basis of the Fock space. H° @aH!' @ --- @ HN @ ---. Scalar
{109}

product and completeness relation as for Bosons.

Here, we wish to introduce creation operators &}L once again. These must be defined such that

the result of applying them twice is zero. Furthermore, the order in which they are applied must
play a role. We thus define the creation operators &I. by

Definition:
S linyig, - yin) = al,af,---af |0)
S_liyin, -+ yin) = alal ---af 10)
Since S_ |iig--+) = —=S_ |igiy -+ ), it follows

{al, al} ==afal +alai+ =0

and therefore also

. . A.'. ni "T na .
In occupation number representation [ning---) = (al) (ag) -++|0) with n; € {0,1}.

Then the effect of CAL;L is:

L

Coniy ) = (L—mg) (—1)2a<i™ | 1)
———
=0 for n;=1

>

T

>_j<iny: number of anti-commutations to bring bring G, to position i.

The adjoined relation is

Comiyee g = (1= mg) (1)< (e my 41, |

= < cry Mgy ’dl | o 7n{£7 o > = (1 - ni) (_1)Zj<inj 5711‘4'1,”»2
With this we compute
ai |- ymiy-e) =Y ) (nil a; ng)
n; SN———
0 for n! =

12
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therefore il i) = ni(_1)2j<inj |- mg—1,--+)
It follows
aiaﬂ...’ni’...) — (1—ni)(—1)22j<i”j(ni—i—l)]-",m"">
= (L=n) | ng,)
] mey) = g (~1) 2™ (1 1) | )
= il mgee)

&I&i is obviously the occupation number operator for the state |i). Moreover, by adding both
equations one gets {a;, d;-r} = 1. For {a;, d}} with ¢ # j the phase factor in both summands is
different: {a,, &;} x (1 =nj)n;(1—-1)=0.

So, {a;, a;} has for ¢ # j a different phase factor, and since @;a; = a? = 0 one obtains the

anti-commutation rules for for fermions

{a;, a3 =0; {al,aly =0; {a;, al} = oy

One shows the relation >, 7)o (j|a = dj&j as follows: (wlog i1 <ia < --- <in)

5. <z|z'>a<jra) i, iz, in)

= n; (1—n))S_ |in,ig, - in) |

Z’UaU\aS— i1, 2, - ,iN)

|i—; means that the state |j) is replaced by |i). To get i to the right position one has to
perform for ¢ < j: 3y nk + Dk, 1k line exchanges and for @ > 7 : >0, g+ > ;e — 1 line
exchanges. This yields the same phase factor as by applying &I&j.

ala;| - miye mgy) = g (=)™ Al g ny — 1)

= ng (1= ng) (—1) 2okt L ™0 | ] g — 1)
Thus one has for one-particle and two-particle operators — for fermions and for bosons
T = Y tjala
tj
F o= =3 (g f@ [ km)alalamar

e.g.

S —

. 1
H= (b +Uyj)alaj+= > fijpmalafamar
0 T )8t 45 2 L 0

ijkm "

Ekin Epot Eint

13
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1.5 Field operators

Let {|i)} and {|¢)} be two complete orthogonal bases of one-particle states. Then one has
€)= 22 19) (2l€)-
= al =Y a] (i) b.c. al (al) creates a particle in |i) (|¢))

)

(e = Z a; (& |2) follows from the adjugated relation

Important special case: Eigenstates of the position operator |r):

(r|i) = ¢i(r) one-particle wave function in position representation

Definition: Field operators

=" oir)a]

{1(r) generates a particle in the eigenstate |r), i.e. at position r. It is:

+
(2% ——
where
[0,0], = [o, 0] commutator
[0,0] = {eo o} anti-commutator

Operator can be expressed via field operators:

Kinetic energy:
Z&ITija] Z/dr al ¢ (r <—A> ¢;(r)a;
1,

/ dr Vi (r) - Vib(r)

w(r—>oo)—>0 2m

One-particle potential:

S alvsa; =3 [ dr alo U @6, w00
=/wUmw®wﬂ

14
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Two-particle interaction:

5 [ deds’ ;00650 V(r.) 61(0) 6 () i

i,5,k,m
- / drdr’ V(r,r') O (r)d ()b (') (r)
Hamiltonian:
2
- / dr <£}1V¢T(r)V1ﬁ(r) + U&*(r)&(r))
+1 [aray P00 V) $6)00)

Particle density:

= Z(S(r—ra)
—ZZ! (i[6(r —ra)ls)e  (la

a4 :f dr’ ¢f (r")o(r—r")g;(r’)
=¢7(r )d)j(l‘)

—ZZI (Jlq @i (r)e;(r)

_,_/

—ala.
=a, a;

= (r) = 1 ()¢ (r)

Particle number operator:

~+ e.g. current density operator |j(r) =

L) (Vi) - (Vi) b))

27m

Field equation: Heisenberg picture for operators — (r,t) = erfit/h U(r,0) et/

2
miﬁ(r,t) = (—hA+U( )) +/dr DY 6) Ve, e D, 0)id(r, t)

Proof (see exercise): using Heisenberg equation of motion zh%qﬂ(r, t)=— {f[, U(r, t)]

analogous for ¢(r,t) (yields a minus sign on the right hand side)
From this follows the equation of motion of the density operator:

O ) = 1+ 015 = & (jm) (1 (a9) - (ad1) 4}
ie %ﬁ(r,t) = —Vj(r,t)

15
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1.6 Momentum representation

We consider a cuboidal volume V' = L, L, L. and periodic boundary conditions
¢(r + Lyéz) = ¢(r) (analogous for the remaining spatial directions). Normalized momentum

eigenfunctions: ¥y = e’ /v/V, where k = 27 (E—I, %, %) ) Mgy Ny, Ny €L
T Yy z

/ dr ¢ (r)ow (r) = S (orthogonality)

Representation of the Hamiltonian in second quantization:

The matrix elements read

Fian - /mmwemmmzw%w

Boat [ dr 66U (mntr) = 3 Ui

Fourier transfo
o r

Eint: Consider two-particle potentials V (r,r’) which only depend on the distance r — r’

Define: Vo := [dr e 9T V(r)  (~ V(r) = {3q Vae'd™)

The two-particle matrix element then reads
1 / ’ / ! /
P K|V -r1)pk) = 2 / drdr’ e P Te KT Y (p — )k TP T
_ % Z Vq /dr dr’ efzp’-rfk’-r’Jrzq-(rfr/)+2k-r’+zp-r

=73 ZV Vo_p/iqtp,0 V 0k —qtko
p'=p+q k'=k—q

Combining the above results leads to:

AT N N
= E ayay + — g Uy — kak,ak —I— E Vqa ap+qak qakap
2m %4
k. k’ q p.k

interaction term

&L (ax) creates (annihilates) a particle with wave number k, where the following commutation

relations apply:
[dk, &k’]i = O, [ak, ak,}i = 0, [flk, &L} = 5kk/

Visualization of the interaction term:

k=q=q pPra;ta,

k—q p+q qu

v, 2nd order perturbation theory: T

------- (double dispersion of two parti- k—-q ptq,
cles)

k p -5

Vql
k p

16
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Fourier transformation of the density:

fig = / dr A(r)e—aT — / dr 91 (0)d(r)e ™

Using the expressions 9)(r) = # YopePrap and i) = # >p e_’p'rfli, gives

= Z dTpdp+q
p

Consideration of spin:
br) = @EC,(r)} o) = S, )de(n)
e Ng = YpoUpolptqe

In the case of spin—% fermions o = j:%.
Spin density operator:

l\D\Dﬁ‘

Zdr—rg Z VL (2)05orthyr (1)

where o,, are the matrix elements of the Pauli matrices. Otherwise everything remains the
same with spin index o.

1.7 Summary of second quantization

The most important facts about second quantization are summarized in the Table 1.1. Some of
the relations are identical for bosons and fermions: in those cases we use the generic notation a
for the annihilation operator. Otherwise we denote it b for bosons and & for fermions.

Let us end this chapter with a few practical tips concerning the creation-annihilation permuta-
tions (CAPs). In all applications of the second quantization, you run into expressions consisting
of a long product of CAPs, stacked between two basis vectors of the Fock-space. In order to
derive any useful result, you must be able to manipulate those products of CAPs, i.e. you must
master the definition and commutation relations of the CAPs at an operational level. You can
handle the following simple rules:

a) Do not panic. You can do this, it is a routine calculation.

b) Try to reduce the number of operators by converting them to occupation number operators
alai|{n}) = i [{ni})-
c¢) In order to achieve this, permute the operators using the commutation rules.

d) Do not calculate parts which reduce obviously to zero. Use common sense and the definition
of CAPs to guess whether an expression is zero before evaluating it.

Let us illustrate this by evaluating the following expression involving fermionic operators:

(bl el el eieiy {ni))

The last rule comes first. The bra and ket states are identical, and this allows us to establish
relations between the level indices i1, 79, i3, and i4. The two annihilation operators in the

17



CHAPTER 1. SECOND QUANTIZATION

expression kill particles in the ket state in the levels i3 and i4. In order to end up in [{ng})
again and thus have a non-zero result, the particles in these levels have to be re-created by the
creation operators. So we have to concentrate on two possibilities only:

iy =13, 2 =14, 11 F i,
or iy =14, Ig=13, 117 i2.

The case i1 = i = i3 = 14 gives zero since all levels can only be occupied once. The term ¢;,¢;,
then always produce zero.

We now focus on the first probability, and try to reduce the CAPs to occupation number
operators,

(el el, el i, [{ni}) = — (i} ], 21,2, [{m})
permuting the first and the third terms. We now use the reduction rule twice:
(el el eantin [{ni}) = —niy (i} ] & {ni}) = —niyni,.
Treating the second possibility in the same way, we find
(e}l el el ety [{na}) = = (el el el i, [{ni) = ({ni}] €], 21,2, 20, [{ma})

where we permute (i) the third and the fourth terms, and (ii) the second and the third terms.
We now use the reduction rule twice:

(i}l el & e [}y = niy ({nadl el &, [{ne}) = niyni,
We finally obtain:

(L} el el ey {ni}) = —niniy0iy ig G iy + Ny iy Oy g O i

18



CHAPTER 1. SECOND QUANTIZATION

Bosons Fermions

Many-particle wave function
Y(|ri) . t)

fully symmetric fully antisymmetric

Fock-space, where the basis states non-negative Oor1l
are labeled by the sets {ny} integers
of occupations numbers
Creation and annihilation operators commute anticommute
(b, bio] = 0 {é, e} =0
(b, Bl = 0 {el. ey =0

b, ber] = O (&l &} = b

Occupation number operator

number of particles in same level k: Ny = &L&k
total number of particles: N =Y 0= ay Qx
Hamiltonian H=>% 5k5;r(l;k+ the same,

with particle-particle interactions

with spins

& T Vbl gh—qhid

Field operators:
dynamics (without interactions):

Heisenberg equation:

k'.q
U(r) = >y axdk(r)
Schrodinger equation for the wave function

ih0yU(r,t) = [~ 2 V2 + V(x)] B(r, 1)

Table 1.1: Summary of second quantization

19



Chapter 2

Application of second quantization

2.1 Spin-% fermions

Non-interacting fermions, particle number N. For the ground state |¢g), all single-particle
states up to the wave number |p| < pp are occupied, where pp is called the Fermi wave number,
|p| < pr represents the Fermi sphere. The ground state is given by

oo = 11 T4 o=+

\P|<PF

Expectation value of particle number operator in momentum space:

. AF A L |p|<pr
Np,c = <¢O|CL,an,a’¢O> = { 0 |p‘ > pr

For |q| > pr one has

Eq.o |P0) = H [I¢ého¢q010) =0

ag
|P\<pF

The total particle number is connected to the Fermi momentum by

3
N= an_z 21_21// 32‘;71:5

Ip|<pr

(*) S F=3" (M)gf(k) (L) [ dkf(k))

With this it follows

2N / N
pEp = <3WV > = (37r2n)1/3 with n = v mean particle density.

hpp: the Fermi momentum, and e = (hpp)2/2m: the Fermi energy.

20



CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

The total energy is

E
v vZ W‘V g

The relation with the Fermi energy is then:

b =c p?ﬁ = §n€ and £ iﬂ:
v o Texz 50T N 57
and the relation with the density n is:
E 3h?
£ _ 3 5/3
7 = T0n2m 7 )
Expectation value of particle density:
(n) *Z<¢o!¢i( )to (r)¢0)
e~ WPTo p’r
=33 Golehotroléo)
o pp 5
= p7p/npyg
1 N
= —anp =—=n.
% oo v
Excitation of a Fermi gas:
k
o) = éLQ, o Cky o1 [B0) = particle hole pair %2
lA)k,J = éT_k7_o hole annihilator C
BL s =C k0o hole creator
Correlation function of the field operators (for the ground state):
Go(r—1') = (@oldh (v) o (x')|60)
n ~ A
= 5 x prob. amp. for o (1) |do) — Ye(r) o)
—_——— —_————
particle missing at pos. r/ particle missing at pos. r
(N ! - n
be ((6old (i) o) = 5 )

PF dp h2p2 h2 PF 4 h2p%
/ = / dpp” = -
o (2m)3 2m  27%m Jo 10m2m
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

Gg(r—r’):Z%

p,p’

e~ P rp/ ($o ’éLUép/J ’(bO)

:5p’p/ np,a:(sp?p’ O(pr—Ipl)

1 /! d !/
_* —p-(r—1') _ _aP  —p(r—1')
v 2 / <pe (2m)3°

Ipl<pr e
1 br 2 ! wplr—r'|n
=Gz )y W7 [ e - =l
elPT _ o —1pT ,
="mpr r=[r—r’|
1 pr .
=5 dp psin(pr)
- —% J&F dp cos(pr)
— _ O sin(ppr)
- or r
sin(ppr) _ prcos(ppr)
= 5 -
_ sin(ppr) — prr cos(prr)
2m2p3

_ 3n sin(ppr) — prr cos(prr)

ie. Go(r)= 5 TPE
G(r)
n/2
o 2n 3n an
N— ' Pyt

Pair distribution function:
Consider a (N — 1)-particle state |¢'(r,0)) = ¥, (r) |¢po). The density distribution of this state
reads

(¢ (r,0)[§, (2o ()| (x, 0)) = (@0l (®)DL (&) (2o () H0)

~(3) gt

pair distribution function
It is
2 A~ A~ A~
(5) 800 (= ') = (@Ol 616100, () (1) = 8 (5 = ) (0l 5o 17 )
= (ol (1)1 (r')[d0) — 03,70 (r — 1) {bo| 2 (r)|P0)
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

In the Fourier-space we have

2
n 1 —kr —or e k' A At A o
(2> Goor (T — I‘,) == Z ekt —wpr’ ip’r’ ikl or (o CI{,UCI),O'/CP/:U/CI(/,O' |do) -
kk/pp’

It is non zero only if p = p/, k =k’ or p = k/, k = p’. These conditions give

2
n 1 A A s
(2> go'a'/(r B I‘/) :WZ <¢0‘ CL,JCI),O"CPJ'CI(,U ’¢0>

kp

=(90lel, ,eu,0el 16p.01160)=0,0rSpr(d0lél, & oId0)
1 / !
—ik-(r—r’) ,—p-(r'—r N S ~
+ er ( )6 P ( ) <¢0’ ckyUCp,Ule)Ulcp’U ‘¢0>
kp
=—(90lél, ,euar€l) 1ep.ol0)+0,qrSprc (0l ,Ep.aldo)

1 R 1 ke (r—1") —ape(r— o
:WZ<¢0|nk,anp,U"¢0> _6‘”"er elr=r)e =P 00 (64| i o oo [ 0)
kp kp

For o # o/, we find

n\? 1 R R 1
(5) 00 (1) = 55 00 S St o) = 77

~N/2 ~N/2

| =
| =
3l\?

which gives g, (r —r') = 1.

For o = ¢/, we find

~Go(r—r’) ~GE(r—r')

Combining these results leads to

:>gO_U/(I‘—I‘/):1—

2
(ppr)6 (Sin(pF’r) —PET COS(pFT)) doo s r= |I‘ — I‘/|
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

26o(D)
1 4

0.5+

7:5 2I7t 3I1t P

Density correlation function:

G(r) = (a(r)a(0)) = % / dr’ (A(r
1 , , / _
_ V%/dr (3(r + 1 — ra)8(r' —rg)) =

= % (20; d(r) + N(A‘f/_l)g(r)> =nd(r) + ——

g(r)zwvv_n<azﬁa<r—ra+m>>

Because of the above relation, the pair dis-
tribution function represents the probability
density for pair of particles to be at a distance
r! The reduction of g(r) for distances < p,'
is called the correlation or exchange hole. It is
an effect of the antisymmetry of the N-particle
state.

+1')a(r’))

S o —ratrs) — / dr’ dr” 1 (x )Pt (") o (x — v + )b (x )i (r)

a#f

= [ a0 )

a#p
Static structure factor:

1

S(q) :== N

(308l o000 ) =V ()50~ 1t = r)0)

1

<Z e—zq-<ra—ra>> ~ Nbqo = = (gi-a) ~ Nia

a?ﬁ
N
= V/dr e "Mg(r)+1— Néq,o,

i.e.

Sta) ~1=n [ dre7 (gx) - 1),

and

g(r) —

1
1=
n

dq
(2m)3

e (S(q) - 1).
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

2.2 Magnetic (polarized) ground state of interacting Fermi gas

The ground-state of interacting Fermi gas is polarized. The Hamiltonian writes H= flkin +f[int
with
21,2
Rk 4 .

: 1 P
Hkin = Z B ck,ock70' and Hint = W Z Z Uqck_,’_q’a.ck/_q7U/Ck/7o—/Ck7o-.
k,o m k.k’,q 0,0’

The polarization is defined by

_NT+N¢
N

P

where N4 and N are the number of particles in the spin states o =1 and o =], respectively.
Note that N = Ny + N|. Then we have the populations

N

The ground-state is supposed polarized, i.e. with a polarization P # 0. We will prove it with a
variational calculation with a polarized trial wave function:

’9P>:( 11 CLT)( II ClTw) 10
|k|<kp 4 k|<kp

where Ny are created in the state T and V| in the state |. Note that if Ny = N = N/2 for a
zero-polarization, the Fermi momemtum are equal to kpy = kg = (37r2n)1/ 3 and the ground-
state is |gp) = |¢o). We use the variational calculus based on the determination of the minimal
energy:

(¥ H|9)

Fog = min —*~
o8 = T

where |¥) = |gp) for an infinitely many polarizations. We will then compute the expression for
the energy and calculate the polarization of its minimum.
Kinetic energy:

h2k?
2m

Exin(P) = (gp| HyinlgP) =Y
k,o

Nk,

where ng , = O(kr, — [k|). It gives:

Ban(P) _ / k Pk / S S S L s A
1% k|<kp, (27)3 2m k|<kp, (2m)3 2m 2 | 1072m  107%m |

and we have

K| <k

Vv (2m)3 2372’ T 9
which give the Fermi momenta:

krgy = (2-3n°ngy) '/
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

Remember we have

Ex _ E(P=0) _ 22/33712<N)5/3 Ef<<V>5/3
T2 T LI A vl 7 - =3 1§) -
=C
Ewn(P) _ C 5/3 5/3
T = 5 @) 4 (2n)

NCoRCoN
[CORSCON

Baa(P) = ZE (14 PP 1 (1- PP).

which is minimum for P = 0 with the value E(P = 0) = Ek.

Hence the kinetic energy is

Potential energy:
The Coulomb potential is

Since electron-electron interaction is screened (Yukawa potential):
e? e?
Ur) = mexp( r/re) = U(q) = pa—
We use here a simpler model (very strongly screened |q|r. < 1:
Ur)=Ud(r)=U(q) =U.
The potential energy is then

(gp| Hint |gp) = Z Z (9P| ey ol qor OO 0"l |P)
k k’/.qo,0’

(A)X—gq=k', k+q=k = q=0

#0 only for B)kK —q=k, k+q=k, o =0

Diagrams of corresponding interactions:

H;,: A: B:
t k,o k+q,0

k,c
k,c k',¢' w

k+q,c

' '
k',c
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

(A) Hartree term:

Z Z <9P‘ CLUCIJ[(’,U’CI‘/»U'CKU ‘gP)

kk/o'o

= (gp| CLJCk,oCI{/ﬂ/Ck/,a' lgp) — Ok k00,0 (9P| CLJCk,a lgp)
- nk’,o"nk,a - 5k,k’5o,o’nk,o‘

(pzm) £z

for a large number of particles N > 1. Ep is independent of the polarization P.
(B) Fock term:

U uv ,

:W(N —N)~—n

EFock 2V Z Z <gp’ CL’,UCL,aCk/,Uckﬁ ‘gp>
kk' o

—{gpl ey yor ol ok l9P) + i (9P| o ek |9P)
= —Nys o/Nk,e + Ok k' Nk,0

2
U U
i [E(En) g e
N N} (1+P)?  (1-P)? 1+ P?
~_ RN T =_
o~ EH<N2+N2> EH< 1 + 1 Ey 5

Erock is minimal for |P| = 1. It comes from the Pauli principle.

Total energy:
E E
E(P) = 2K (14 Py + (1= P)3] + 7H(1 )

For Fr/Ek the optimal polarization can be determined as being the state with minimal total
energy:

Or Py =22 [0 4 PP — (1 = PPP] — ByP = 0
> 2= e pPr - a-pp).

Although it is impossible to solve this equation analytically with respect to P, it suffices to plot
the optimal polarization versus Fp/FEf, as in the figure below.

2.0
total 10

1.57 0.8
LS kinetic 0.6
= 1.0 o magnetic
& : = 04
N potential

0.5} 1 0.2

0.0 non-magnetic
N Y 0.0 0.5 L0 0.0 0.5 L0 L5 2.0
P Ey/Ex
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

From the plot we understand the following:
a) If the interaction is weak, Fy/Ex < 10/9, the ground state is non-magnetic.

b) A transition to a magnetic state occurs at Ef/Ex = 10/9. The polarization is still
vanishing at the transition point and gradually increases above it.

¢) At Ey/Eg > 5/6-2%/3 the ground state is completely polarized.

Of course our model is too simplistic to account for all details of ferromagnetism in metals.
However, we manage to capture several qualitative features of the phenomenon.
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

2.3 Free bosons

Pair distribution function for free bosons. We assume non-interacting bosons with spin zero. ~~
Only quantum number is the momentum.
Consider the N-particle state

‘¢>:‘np07np1a---> npi€{071727--~}

Particle density:

(DT (x))(r)|g) = Ze"k‘mk" (6]bLbicr| ) = an—f:

kk’

~» No position dependency of the density for the state |¢).

Pair distribution function:

W2l = 1) = (G0 )3 () D)D) = 3 3 e IR (5 bl g).
kk’
a9

bl blb /Ak/ : is term is only different form 0 when k =k’ and q =q" or =q an
d|b bliberbrer|): Th ly diff form 0 when k = k’ and ¢ k =q and
q = k/. Consider case k = q separately
(1B brbic |6) = (1 = Oicq) (G O (SIbLBEbrbicl6) + O e (SI6L Bl Prcbal) )
+ OkqOkiOaqr {B]DLbLbicbi|¢)
= (1 — 5kq) (6kk’ 5qq’ =+ 5kq’5qk’) T’Lk’)’Lq + (5kq5kk’ (5qq/nk (nk - 1)
With this it follows

(10 () ()N =5 |3 (1~ bica) (1+e—z<k—q><r—r'>)nknq+znk<nk1>]

kq k

1
V2 annq—ZniJrZ k(e Z”k+znk_znk]
| k.a k k
2
g g o
” K

In contrast to fermions the second term is positive, the last term is completely missing for
fermions.

Looking at two examples:
1) All bosons occupying the same state pg. Then

n?g(r —r') = n® 4+ n? _WN(N+ 1) =

N(N -1)

V2
i.e. the pair distribution function is independent of the position. The amplitude of detecting
the first particle is N/V, for the second particle it is (N —1)/V.
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

2) Particle distributed over many momentum states. Distribution given by a Gaussian.

(2%)371 —(k—k 2 A2 . dp . .
ny = W@ (k—ko)?/ with / Wnp =n (normalization)

as for instance for the ground state of free Bosons in a harmonic external potential (remember
harmonic oscillator, TP3). One then finds

/ (Qdk):s e~k = e_%(r_r/)ze_zko(r_rl)
T

and

;,-w
||

2
/ (27'(')3 / dk 6—2(k—k0)2/A2 - n2A3 -~ 7’L2
v V|(vaar| | @op VAS Y VA

For n = const. and A = const. disappears the third term in (%) when V — oo.

g(r)
2 4

ng(r —r') = n? (1 + e_L\;(r_rl)2>

Alrl

0

S B T
When r < A~!, the probability of finding two particles is increased. Because of the symmetry
of the wave function bosons tend to cluster.
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2.4 Weakly interacting Bosons

Non-interacting Bose gas

The Hamiltonian for non-interacting bosons (NIB) is

A =3N"Bk)blh;  EBk) =

Ground state: all particles are in k = 0-level:

~\N
N—(b0> 0) =|N,0,0,0
‘ >_\/ﬁ’>_‘ 7777"')'

Note: states with different particle number N have the same energy, namely zero. Hence any
superposition also has zero energy, e.g.

=D IN).
N

The model of the NIB is too idealized to decide upon the real ground state. Hence we take into
account the interactions.

Weakly interacting Bosons
Hamiltonian:
h2k?

2m

b*bk+— > Ughle, b obpbi (2.1)
kpq

H=3.
Kk

where by and ZA)L are bosonic annihilator/creator.

Low temperatures: Bose-Einstein-condensation in the (k = 0)-mode, i.e. even with a weak
interaction U(r) is present, we assume that in the ground state |N) the single-particle state
with k = 0 is macroscopically occupied.

No = (N[Bfbol N) < N.
i.e. the number of excited particles is small:
N — Ny < Ny g N.

Neglecting the interaction among excited particles, we restrict ourself to the interaction of excited
particles with particles of the condensate

; L PD ST e P -
- K Sy Db+ 537 Uobobobobo (k=p=q=0in(2.1))
1 22 5t s p=q=0,
+V1(Z(U0+Uk>bbbbk (resp. p:q,k:Oin(?.l))
#0
o SO i - i) (e £ 2
k40
+O(b)
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

Because
bol...,No,...)=+vNol|...,No—1,...)
Bil...,No,..)=vNo+1|...,No+1,...)
bobl — bibe =1

and Ny o< 1022 >> 1, we neglect the operator properties of 138 and 130 and treat them as complex
numbers:

~ ]. N [l S ]_ ~t oA A A
_ Z bLbk + 5y Vol + 37 Y [(Uo + Uy) bl by + 5 Uk (bLb" . + bkb_k)} +

k#0 k+#£0

Ny is currently unknown, but we know that must hold:

N = No + Z BLBk
K20

(total particle number = #/(condensated bosons) + #/(excited particles))

It is for example

Uo o Uo 2 NUO 7 7
—Nj=-—N > b bk+ﬁ S bbb b

0
2V 2V k0 kK0
and
A k2 . - U,
H =3 5 b+ 52 NG +—ZUObTbk+f S Uidb, bk+— 3 Ui (BT + b
kz0 <M kA0 V 5
~N2Ug
~2v
R )
~ Y S bibict VU0+—ZUkb b + ZUk< o bicbac) + H'
k0 <M K20 Vi

H' contains terms with 4 creation and annihilation operators (k # 0) and these are in the
order of (n/)? = (N — Ny)?/V2. The Bogolivbov approximation (neglecting H’) is a good
approximation when n’ < n. We will see that this condition is fulfilled for a dilute, weakly
interacting Bose gas. Note that

H is a quadric form (in lA)lT(lA)k), which still has to be diagonalized (~» Bogolivbov transformation).

Ansatz:

lA)k = dek + deT_k

BL = Uk@;r{ + vpb_k
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CHAPTER 2. APPLICATION OF SECOND QUANTIZATION

If ui — vﬁ = 1 fulfilled, then & and (3411 are again bosonic operators:

(Proof: see exercise)
The inverse transformation reads

Qg = ngk-—vkéik
al = Upbl — vh_y

A longer calculation (see exercise) leads to

h2k?

WNQUO + Z ( + nUk> [ukaLak =+ vkakaL + U vk ( L ol L+ dk&_k)}
k#o

+ 377 NS {(uk +07) (ahal y + dd i) + 2w (e + akak)]

kA0

For the non-diagonal term (underlined) to disappear, one needs

h2k?
<2m + nUk> UKV + Uk (uk + Uk) 0

With the condition ui — vlz( = 1 one calculates

wie + (”22};2 + nUk>

2
U =
k 2wk
212
) —wk + (% + TlUk)
D, =
k 2Wk )

where
1/2 1/2
2K2 ? ) k)’ nh2k2U,
Wk = +nUx | — (nUy) = 4+ —
2m 2m m
It follows

1/2
K2 2
|:< + nUk) wk:| nUk

Uy =
ux Uk o

Zwk
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We can now further calculate H

. N?U, h2k? . ot
H= 2V0 + Z < m + nUx uia};ak + v (1 + %T{Oék)
k#0 —_——
e
n nUx [+ . At A
+ 5 U2 —m(akak + 1+ ala )
aidy
% + Z (uk + vk> altozk + 5 + nUyx - ay Gy — S
k£0
2
N=Uy 1 h2k? 2| At 1 [ K%k
— U — (nU; Ay G — — U
oV kzwk <2m Tl ] = ()7 ali = 5 | 50+ Uk
0
_wi
1 h2k2 2v2
+ nUy SRS
2wy 2m Wk
—w?
5 h%k?
= H ( + nUy — wk> + Z wkd;r(&k

2 (70 K£0

ground state energy Fo excitation of
“quasiparticles”

The ground state |N) of the system is fixed by the condition &y |N) = 0, i.e. no quasiparticles
are excited. It is now possible to calculate the number of real particles outside of the condensate

N = (N 3" blbi|N) = (N S vdanal [Ny = 3 o2
k#0 k#0 k#0

3/2

Choosing as example a contact potential U(r) = Ud(r), one finds n' = N'/V = 7 (nlU)3/?
(see exercise). n’ is small, when the expansion parameter nU = (density X 1ntera,ct1ng strength)
is small, consistent with our assumption of a dilute, weakly interacting gas.

Remark: The dependence of n’ on nU is nonanalytic, i.e. it cannot be derived by pertur-
bation theory (starting from U = 0).

Exited states are generated by o?lt |N). Their energy is hwy. One finds the dispersion relation
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Rk’
Yk <2m> +

) ck
h22k2 + nUk

m

1/2
nh?k2Uy
m
for £k — 0 where ¢ = \/%U"
for k — oo

(O3 /

o
k

Notes: Ux—g = Uy must be positive for the ground state to be stable without quasiparti-
cles, i.e. there is a repulsive interaction of the bosons.

Uy — 0 for a short range interaction potential of the bosons, i.e. for k& — oo, wy is identical to

By, of free bosons.

Distinctive feature: min {“k} =: vy # 0 leads to superfluidity.
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Chapter 3

Superfluidity

3.1 Landau’s model Helium 4 superfluid

Quasiparticle excitation in superfluid He?

AE A
(K)
) Area I:
20k , )/ Excitations: phonons
’ / ep=cp, c=238m/s
/
/
ol 1 1 Area II:
Phonons Rotons Minimum at py = 1.91 A~1A
Excitations: rotonzs
ep = A+ WLy — 0.16mpe, Afk =
1 1 L )_ 8.6 K
0 1 2 . 3
p/hi (A1)

Consequences for the dynamical behaviour: Two-fluid model, superfluidity (Landau). Con-
sider T' = 0, fluid in ground state (condensate), no excitations present. The condensate moves
through a pipe as an unit with drift velocity v:

- Wall

Assertion:

There is no friction if v < wveqt. Consider Galilei-Transformation: condensate is at rest, walls
are moving. If the fluid would be viscous, the pipe would be decelerated, in which case energy
and momentum in the form of excitations (quasiparticles) would be transmitted in the fluid.

If there is no excitation present, then:



CHAPTER 3. SUPERFLUIDITY

Rest frame (of fluid):
Po=0, E=FE,
Lab frame (fluid moving, vel. v):

M2
P=Mv, E=FEu+-——

Assuming now there exist excitations with (total) momentum p and energy e(p).
Rest frame:

P():p, E:Egs+5(p)

Lab frame:

2

P=Mv+p, E= +v-p+ Ey +(p)

= AF=¢(p)+vVv-p

Is it energetically beneficial to excite quasiparticles, i.e. AE < 0?7
Because £(p) > 0, the energy difference assumes it smallest value when p and v are antiparallel.
For an excitation to have an energetic benefit the following inequality must be satisfied:

ep
)~ Mipl <0 & v>=R
p|
The critical velocity is therefore given by
e A
o {6(1)) } - f.-"
Verit = Min { ——= el foooo 22 > o
p p| _»”" 1 Slope:v;~ €/p
Phe 1
Phe . 1
P ,L >
p p

Implication: For |v| < wqj there is no excitation possible and the fluid flows frictionless
~» superfluidity.

T > 0: There already exist some excitations which can collide with the wall and can interchange
energy and momentum ~ friction caused by the noncondensated particles. But up to Ty there
is a macroscopic condensate present.
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3.2 Field theory for interacting Bose gas

Start with evolution equation for the field operators W(r,t) (Heisenberg equation):

QA

zhat\Il(r, t) = [\i'(r, t), Iﬂ

with H = H® + A

2m

A = /d% bt (r) {—th} b(r),

1 ~ ~ ~ ~
A% = / dr1dPra Ury — ra) ¥l (r1) 1 (r9) ¥ (ra) ¥ (r1).

The commutators give:

. N K2 . R N
[(r), AV] = —5 [ &Y KIOR UCHINTCS]
= Ui(r) [ﬁl(r),A\iJ(r’)] + [A (r ,\iﬁ(r:)} AY(r')
=0 + 6(r —r')AV(r")
_ h2 3./ / A h2 T
- —%/d (e —x)AD() = S Ab(),
and
~ A 1 ~ ~ ~ ~ ~
[(x), AP = 5 / dPridira U(ry — 12) [0(0), W1 (r0) & (02) & (r2) ¥ (r1)]

=6(r—r) Wt (r1)¥(ra) ¥ (ry)+6(r—r1) ¥t (r2)¥(r2)¥(ry)

_ /d3r1U(r )0 () F (1) B ().
Assume (for simplicity: model) contact potential: U(r) = Ud(r), we have:

(), AP = UI ()b (x) D (r),

and the evolution equation (or Heisenberg Equation) becomes

0 » A PO
h—V = —— AV + UVToW | (3.1)
2m

Consider a set of NIB ground state |N) with N > 1. Then
(N|blbo [Ny =N and  (N|boh} [N} = N +1.

Since N > 1 we have: L L o
(Bhbo) = (bobh) > ([bo. b))

We can neglect the commutators of the field operators by and 38, i.e. by and IA)E[) are simple,
complex numbers:

‘il(rvt) = \bO,/ T/’(I'a t) + kz \61/(_/ wk(rvt)' (32)
number #0 operator!
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Simplest solution of Eq. (3.1):
The condensate (ground state) is

A

U(r,t) = boyp(r,t) = (t). (classical field)

This corresponds to the state ¢(r,t) with momentum k = 0, and it does not depend on r.
Eq. (3.1) then becomes:

9
ho, (t) = Ul Pu(t). (3-3)

The solution of Eq. (3.3) with time-independent modulus is:

Y(t) = doe ()7 = [vol®
Remember that Ui is the density operator hence the solution describes the Bose condensate
with density p(r) = |¢o|?>. The parameter p is related to the density via Eq. (3.3):
w="Up.

It is the chemical potential of the condensate: adding one more particle to the condensate
absorbs the interaction energy U multiplied by the local density of bosons p.

3.3 Oscillatory excitations

Linearize equations of motion around the simplest (homogeneous) solution.

Ansatz : U(r,t) = (e, t) + 60 (r, t)e 7kt

Inserting this expression of ¥ in Eq. (3.1) (Heisenberg equation) and keeping only the terms to
first order in 0V, we obtain:

2

w250+ 16 = SV Up2oUT 4 20 |yo)200.
ot 2m

To simplify, we assume that g is real:

Ugg = Ulyol> = Up = .

Therefore,

o . 2 A
Osi—_ " f
the, 00 = — 2 AT + 4 (607 + o). (3.4)

Obviously plane waves satisfy this equation. Expressing the corrections to the condensate op-
erators as in Eq. (3.2), we can search for a solution of the form

5 (r, 1) = \}V S b (t)e.
k

Inserting in Eq. (3.4) we obtain:

1

1 k- ( aA) k- 7 —iker 71
—=> e T b by ) = —= > eFT[EK) 4+ plbk + —= > _ e * b
VR )V x

-
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Multiply both sides with %e_’q'r and then sum over r:

3 S0 () < 30 S B0 4+ 3 X0
k r k r

=0k,q =0k,q =0k,—q

which gives:

aA
8tq_

Without the last term o lA)T,q, one would recover the usual equation of motion for non-interacting

[B(a) + 1] by + bl . (3.5)

boson - like particles with energies E(q) + u. The presence of the lA)T_q term indicate that Bk’s
are not the right operators to work with (i.e. do not diagonalize the Hamiltonian).
Bogoliubov introduced the following new Bose-operators:

by = uby + vy

. (3.6)
ka = ude + UkOAéJr_k
such that Eq. (3.5) transforms into:
P .
zhaak = €0k | (3.7)

where ux and vy are real coefficients and ui — vi = 1 due to Bose operator &y.

The “wrong” creation/annihilation-operators Ek, EL describe particles and the “right” c¢/a oper-
ators &y, le{ describe quasi-particles.

To find the quasiparticle energies ey along with the coefficients ux and vy, one substitutes
Eq. (3.6) into Eq. (3.5) and requires that it can be written as Eq. (3.7) (see exercise). One then
obtains a linear algebra problem for an unknown vector with eigenvalues ey.

The quasi particles energies, the energies of the elementary excitations of the interacting Bose
condensate, are given by:

h2k? [ h2k2
=4/Ek 2 2
ek = \/ ) +2p] = \/ ( o T u)
h2Kk2
= k| & ,/1+ _hkﬂ/ + O(k?).
Hence
f’ ';
4 ek k2 2um
”/ /, = 1 + =3 kB —
3 /’.’ /,' 12 kB 2]{7B h
~ "—” II" . .
Z 9 ‘/,.— o Small-k behavior:
............... ex = hupk + O(K?),
o wi = vk + O(k?),
0 1 2 vp = /- = L1y 95K
k/kB m  hk—=0 Ok

For small k the excitations are density waves (sound waves) and v, is the sound velocity. The
feature min{wy/k} = v, > 0 leads to superfluidity: two-fluid model of superfluidity.
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3.4 Topological excitations

It turns out that many field theories possess excitations not captured by a Taylor expansion:
topological excitations. Configurations of quantum fields in such theories can be separated into
classes such that no infinitesimally small change of the field configuration would cause a change
from one class to the other.

In superfluidity the relevant configurations of the complex field (¥(r, ¢)) have constant modulus
(related to the particle density) while the phase can change rather freely. There exist topologi-
cally non-trivial configurations of the phase which are called vortices: emergent excitations.
Simplification: Resort to a closed equation for (¥(r,t)) = 1(r,t): “quasiclassical approxima-
tions™.

From Heisenberg equation (3.1), with mean field approximation:
0 - R . A

he () = ———A(W) + U (U100

e (B) = — S AG) + U (§70)

Including factor en** into ¥ (r,t), one obtains the time-dependent Gross-Pitaevskii (GP) equa-
tion:

2
zh%f(r,t) = l—;nA —pu+ U]¢(r,t)|2] P(r, t). (3.8)

Quasiclassical approximation requires a large number of bosons: average interatomic distance
~ p~1/3. Characteristic length scale (healing length) of GP:

21k
2mUp  2mUp’
If £ > p~ /2 is consistent, i.e. for mU < h2p~'/2 (weak interaction). For superfluid Helium:

€~ 0.1lnm ~ p~1/2.
GP is a classical Hamiltonian equation, can be obtained from Hamiltonian:

2
Ho = [ d's (;JW(r)F — ple) + g|w<r>|4>

by variation with respect to ¢*(r) and ¥(r). It is
Hep = (H — pN).
—> Total energy E = H) is conserved.

How to relate ¢(r,t) to more classical quantities characterizing a liquid?
It is clear that density p(r,t) = (UT(r, )¥(r,t)) ~ |1(r,t)|? < modulus of !
What about the phase? With Eq. (3.8) one finds:

P est) = [ 1, 1)V (e, 1) — e, 1)V (0, 1)

T 2m
since YAY* —YP*Ap =V - [ Vy* — p*V)], we define the current density

h
2m

j(rvt) = W*(r,t)vl/}(r’t) - w(rat)v¢*(r>t)] )
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then the particle density satisfy the continuity equation

9p

)+ V() =0

Since j is on one hand a particle current density, j = pvs, with vg the local velocity field and on
the other hand with ¢ = ﬁe“ﬁ:

ay

1) = o [ /e (V5 1y/BV6) € — Ve (V/o—1/pVo) e ] = "o,

Hence the velocity is

vs(r,t) = %ng(r,t) ,

i.e. the gradient of the phase ¢ of v is proportional to the local vector of the fluid. Note that if
¥ (r,t) is a plane wave, the phase is ¢ = k - r and the velocity is trivially

VS:Ek:—.
m m

Now we illustrate the existence of topological excitations:
Consider one-dimensional field theory first, and confine the superfluid to a thin ring of cross
section s and radius R with ¢(0) = ¢(27R):

%daza(ﬁ:%m, n € 7.
ox

The integer n is a topological number, it cannot be changed by a small variation of .

GP in 1d with p = const and stationary ¢(z) (no time dependence):

R?
0_ o o)
= [ 2 ¢ —u+Up \fpe

=0

—> vz = const.

The condensate moves with a constant velocity v, along the ring.
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Each field configuration with a non-zero constant density in all points of the ring is characterized
by a certain n, and those that differ in n belong to different sectors. For ¢ = \/ﬁem‘”/ R

h? U h
E:s]{dx ¢ — pp+ =p| = Eo+n2 P2
2m 2 mR

True ground state is n = 0.
The relation § dz 0,¢ = 27n implies a quantization of the velocity of the condensate:

h & h
Up = —¢ =n—-.
" m mR
To understand this: compute total angular momentum L,, of the superfluid with respect to the
symmetry axis of the ring:

Momentum of an infinitesimal element of the fluid: dl = v,mpsdx
2TR
L,= R]{dl = R/ dxv,mps = 2w Rnhps = nhN,
0
with IV, = 2w Rsp, the number of particles in the condensate.
In a topological sector n, each particle of the superfluid acquires a quantized value of the angular

momentum An. It is different from the angular momentum quantization of non-interacting
bosons: clear manifestation of the collective nature of topological excitations.

3.4.1 Vortices

Consider 2d, use polar coordinates (x,y) — (rcosf,rsin6).

= vs(r,0) = %eg.

>\ y Note that the phase accumulation along
any close loop around the origin yields the
same amount

¢(r,0) vs(r,0) A = j{dr V¢ = 2mn.

n is also called the winding number of the vortex. Note that vg diverges for r — 0 and the
phase becomes undefined at » = 0: something special goes on close to the center of the vortex
(i.e. tornado, whirl-pool sink, ...).

Go back to GP and seek for cylindrically symmetric solutions of the form

w(r) = /oo f(r)e™

when pqg is the equilibrium density of the superfluid that is reached far away from the vortex
center, and f(r) is a dimensionless function. The continuity of ¢ gives f(r) ~ r™ for r — 0, i.e.
the density of the condensate must reach zero precisely in the vortex center!

From the stationary form of the Eq. (3.8):

h? 9
0= |—5o A=+ URP| o
m
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with the Laplace operator in polar coordinates

# 19 1
or2  ror 12002

Hence

h? ” 1, n? 3 mnf
0= l—m (f (r) +—f'(r) = Tgf(?“)) — wf(r) +upof(r) ] Vpoe™.

We substitute v = /¢ with & = h/\/2mU pg, dr = £du.

2 2
0= - 5oz (f () + o ')~ (u)) — j1f (w) + Upof ()
R ;N\ N———— —

=Upo=n G (udl)
1d df n 3
= udu(du>+<2>‘f J7=0

This equation indeed has a solution satisfying f ~ u™ for u — 0:

1d du™ 2 n—9 2 n—2
_ n 1 _ n n
udu(udu>_nu , ( —)f —n“u"" "+ Ou")

and f ~ 1 for u — oo:

d 2
o "rh0 and f- oo
du u?

Estimate the (kinetic) energy stored in a single vortex in a 3d slab of height b:

_ 5 mv(r)2 / / 2m m h? 2 2 h2,0(] @
E, = /d r—, p(r)= [ dz [ drr do— 5 2,2l = br—— - "
——

1

I diverges at the upper and lower bounds: cut-off. Lower limit is naturally set by size of the
vortex core where the density is suppressed (see above): £. Upper limit is nothing but the typical
size of the superfluid: L.

Lgr L dE L dE  R2po
I= =In— E, =nb—In~, — =
/5 o "ate a T T

where & “r L Jenotes energy per unit thickness. Note that E, scales with n?: vortices with lowest
winding numbers n = +1 are preferred.
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Multi-vertex configurations:

(2) (b) (c)
®» O

BIC °

: ®

Total velocity:
vtot(r) = vl(r) + vz(r) + e

Total kinetic energy of the fluid is prop. to vie:2: pairwise vortex-vortex interactions.

(a) Assume we have Ny vortices of winding number n = +1 (or n = —1). They all carry sepa-
rately the same energy E'7, since all circulate in the same way. Full energy including interactions:

dE
E=b— Nln +z Zln

di #] —rJ]

with r; are the vortex coordinates. Interaction energy is lowest when the vortices are far apart.
Hence for fixed concentration of vortices, they form a regular lattice.

(b) Pair of vortices with opposite winding number. Energy:

dE . d
EFxb—In—
dl =~ ¢’
with d the distance between the two vortex centers. attraction, independent of the system size
L: zero topological charge. Then topologically connected to the ground state. Hence it can be
seen as a superposition of elementary excitations (sound quanta) of the ground state.

(c) Several vortex arrangement.

3.4.2 Vortex lines (in 3d)

In a realistic 3d liquid, the vortex cores are long lines
that must start and end at the boundaries of the su-
perfluid and penetrate the whole volume of the fluid:

dE . L
Ei=L—In—
a e
These vortex lines can be simply produced by setting
the superfluid into rotation.
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Rotating a normal rigid body: v =wgy x r.
Given v(z,y, z), consider surface {2

/(va)-dS: v-dr=T.

Q oN

Clearly this contour integral is a measure of the circulation I' of the field v along the contour
0€). For a normal rotating rigid body, the vorticity is:

w=Vxv=Vx(wyxr)=(V-rjwy— (wy-V)r

= 3(.«)0 — Wy = 2w0.
The vorticity is thus simply twice the angular frequency of the rotation.

Superflow:
The vorticity is
w = QWNVE,
m
with NV, is the number of vortices penetrating the surface.
Remember: for one vortex:

V=EV¢, fv-dr=27rz.
m

m

— Superflow without vortices: zero vorticity, zero angular momentum, non-rotating.
= Superfluid in a rotating vessel just slips along the vessel walls.

Enforce rotation: rotate in normal state, cool
below superfluid-transition temperature.

—> angular momentum cannot disappear

= lattice of vortices forms. The number of
vortex lines is equal to the initial angular mo-
mentum.

Vortices in rotating superfluid 3 He,
PNAS 96, 7760-7767 (1999).

Note: The picture is the same for *He and 3He.
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Chapter 4

Quantization of the classical
radiation field

4.1 Classical Fields

Chain of coupled oscillators

LUV e AUV o AV ATVULA
DUV UUUUYY ™ YUYy VYUY T

Tn—1 Tp Tn+1

For a system of coupled oscillators, the Hamiltonian can be written as:

H= Z

where the Hamilton’s equations of motion read:

. 0H . oH
In = 3 > n = — 3 -
Opn P Oy,

xn+1 - xn)2‘| s

which further implies:

d*x K

dTQn = E (wn+1 — 233'” + wn_l) .
Solution: Assume the solution of Eq. (4.1) in the form of plane waves:

T (t) = up exp{e(kn — wit)} + u,, exp{—e(kn — wyt)}

Inserting Eq. (4.2) in Eq. (4.1), we obtain:

K
—wi = 2— (cosk —1)

== wk—QU sm |k:|\/ .

It is the dispersion relation.

Note: Eq. (4.2) and Eq. (4.3) are periodic in k with period 27 = k € [—m, 7.

Boundary condition: allowed k-values are discrete.
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Periodic boundary condition (for N oscillators):

k=" I=—T - 41,

2l N N N
27 2 2

Hence, the general solution of Eq. (4.1) can be written as:

:En(t) = Z [ukez(kn—wt) + uze—z(kn—wt)} '
k

Continuous elastic string

Let us consider u(x,t) as the deformation field.

Hamiltonian:

Let us first discretize:
u(z) \
Ax = xpy1 — xp = d,

AU = Upy1 — Up,

Un,
Am is the mass of the piece of string
between x, and x,+1: Am = pd where
p is the mass density. 0 T,
Momentum: p p
U U
= Au—— = pd—=.
Y LT

From the sketch, deformation of the string piece (length):
0= d?+ Au?.

Potential energy:

1 1
5;@62 = inAuQ + const.

The Hamiltonian then takes the form:
2 2 2
P 1 2 1 Dhn 1 <un+1 - Un>
H = —KkA = -0 4 - _ .
;[QAm—i—QH “] ;d[2pd2+2"‘d d

It gives the equation of motion:

Pun _ Kd Uungr = 2up + Up—1

dt? P d?

Continuum limit: d — 0
rkd = K = const. is the string tension.
Definition of momentum density:

p(zr) == for d—0.
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Hamiltonian for the continuous elastic string:

n=fe 5250 | 4

Hamiltonian (or energy) density

Equation of motion:

ou o0H p(x

ot op(x)

~—

P
dp  6H Kd2u(x,t)
ot Su(x) da?
These set of equations implies a wave equation (linear):
d*u(z,t) _ 5d2u(x,t) ‘ (4.6)
dt? p da?
Eq. (4.6) is similar to sound waves in solids, spin waves in ferromagnets, etc.
Solution:
Consider
ug(z,t) = upeFr—wrt) 4 u”,;e_l(km_“”“t). (4.7)

Inserting Eq. (4.7) in Eq. (4.6), we get the dispersion relation

K
wi = |k|y/— |
\ »

Impose periodic boundary conditions (string length L): wu(x,t) = u(x + L,t) = discrete
k-values:

k=", 1=0+1,42,---.

General solution:

u(x,t) = Z [ukez(kx—wkt) + uze—z(kax—wkt)] .
k

Express Hamiltonian in terms of the Fourier-components uy of u(z,t):

Definition:
ug(t) = uge ", up(t) = ujpe™rt.
Then,
u(x,t) = Z [uk(t)e”“ — ui(t)e_lkﬂ
k
du 1kx * —ikx
i sz {uk(t)e ug(t) } ,
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And,
ou 2 ! 1kx * —ikx k' * —ik'z
o = (kK [ur(®)e™® — (e [up (™™ — u (H)e7]
kK’
ou 2 ikx * —ikx ik'x * —ik'x
5 = Z(—wkwkz) {uk(t)e —up(t)e } {ukl(t)e —up(t)e } .
k., k'
Now use: L L | L
O N */ da e FHR) = 50,

and from Eq. (4.5), we obtain
_F p? (Ou\? K [0u\?
e [ap (@) 2 (&) 1
:ngwg [—uk(t)u—r(t) + ue(t)ui(t) + up (u(t) — ug(t)u” (1))
k
+ ng 2 Tug(£yu—i () + ur(8)ui(8) + wh()un(t) + uh()u® 4 (1)]
k

= Z 2L pwi (upuf + ujug)
k

where we use the dispersion relation Kk? = pw?.

Definition:
dy,
di, = up\/4L = = —
k= Uk PWE Uf; 1L pon

Then, H could be written as:
1 * *
H = B Zwk (dkdk + dkdk) .
k

As long as dj, and dj, are complex numbers:

H =" wdjdy.
k

dr = normal coordinates of the field u(z, ).
Time dependence of the field can be assigned to the dy

di(t) = dke_wkt, dk (t) = —widk(t)

One can introduce real variables:

1 . @ .
Qr = No (dy +dy,), and Py = -/ 7k (dr — dy,) .

Then, for a set of oscillators

(P2 +wiQ}) (4.8)

N

=y
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Py, Qr, = generalized coordinates/momenta of the displacement field u(z,t).

Note: All oscillators in nature (electromagnetic wave, sound, pendula, skee ball hanging on a
spring) are very similar and can be regarded in a unified way.

Eq. (4.8) is a classical Hamiltonian function, so the equation of motions are:

. OH . OH
Qp = o P = 2%
LT T T 00

fully equivalent to Eq. (4.6).

Quantization rules:
Qk, Py = Qk, Py

with the commutation rules:

A A

Qu Q=[P Bl =0, and [BQl= bu (h=1)

Equivalent to:
dk, d}; — Czk, CZ};

with bosonic commutation rules:

[y, di) = [d},,d]] =0, and [dk,d]] = .

4.2 Quantization of the free electromagnetic field

Free electromagnetic fields:
Expressed in the Coulomb gauge (V - A = 0), Maxwell’s equations for the vector potential
A(x,t) and the scalar potential ¢(x,t) in vacuum (without sources) are reduced to

0? 0? 0?
2 2 _
=0 =—+ =+ =—
v'e ’ v 8x2+6y2+8z2’ (4.9)
OA =0 m:lﬁi_w
- T 2ot? '
The corresponding fields are obtained through
10A
B=VxA and E:—f%—t—ng. (4.10)
c

The solution of the free Maxwell’s equations (4.9) can be choosen as ¢ = 0, because the potential
is vanishing at infinite distance.

Transversal electromagnetic fields:
The fields E and B are transversal fields like A, because for a plane wave

A — Aoez(kxfwt)

results V- A =0 in k- A = 0. Hence the Coulomb gauge is also called transversal gauge. It
proved favorable to use the Coulomb gauge in the quantization process.
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Field energy:
No quantization without Hamilton operator, and for this we need the expression for the total
energy

ih— Aoy =[Agp, H] = DAy =0 (4.11)
where H = E, applies.

Periodic boundary conditions:

The quantization is easier to do if there are only countable many degrees of freedom. But the
vector field is continuous and have uncountable many degrees of freedom. Therefore we use
periodic boundary conditions

A(z+ L,y,z,t) = Az, y, z,1t)
for a finite volume V = L3. At the end of the calculations, we will expand it to infinity.

Fourier Series:
Fields which exist on a finite hypercube can be expanded in a Fourier series. The general solution
of (4.9) then reads

A(r,t) = —— (Ax(k, t)e™T + A5 (k, t)e .7 )uy (k
<>§§: VA G A0k, e T )uy (k)

The k sum runs over all valid k vectors. In the case of periodic boundary conditions they are

given by

2
k= %(nl,ng,ng), with n; € Z.

The index A runs over 1 and 2 and accounts for the polarization. The prefactor under the
root will be usefull later but has no further physical meaning. The unit vectors u; and ug are
orthogonal to each other and together with the wave vector k they form an orthogonal trihedron
(transversal gauge):

k-uy(k) =0, and uy (k) -u, (k) = 0.
Additionally we chose without loss of generality uy(k) = uy(—k).

Harmonic Oscillator:
It is important to note that due to (4.9) every Fourier coefficient A (k,t) satisfies the equation
%A
OA=0 = aT;(k,t) = —?k2A, (k, t) (4.12)
which corresponds to the differential equation of a harmonic oscillator. This fact will later on
provide the basis for the quantization of the light field.
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General solution of the Wave Equation:
To satisfy (4.12), we set
Ax(k,t) = Ay(k)e Kt wk = c|K|

The general solution of the wave equation (4.9) is then given by

ZZ 2mhe } ( (k)ez(k.r—wkw+A;(k)e—1<k'r—wkt>)m(k) (4.13)

The time-independent field amplitudes Ay (k) will become operators in the Schrédinger picture
when the quantization is carried out.

Energy of the light field:
With the help of (4.13) we want to express the total energy of the radiation field through the
Ay (k) only. With (4.10) and ¢ = 0 follows

Fu = 8‘; /(E2+B2)d 81”/ l; (%‘?)Z(v xA)Q] dr (4.14)

We will calculate both parts of the integrals in separate steps.

The J0;A-term of the field energy:
It is

1 OAN? o 1 2mhc? Wi /
8mc? / (81&) d’r = stz | vV Z Z [ uy (k) - uy (k')

Ik AN wkwk’ (4.15)

X (Ax (I, D)e'T — A5 (k, e ) (Ay (K, )™ — A5, (K, £)e™)] dPr

One can make use of the relation

‘i/e’(kk/)rd?’r = 6k,k’ and / etk )rd3r = 5k,—k’- (416)
Furthermore
Z U.)\<k) . I,I)\/ Z
AN A

because uy (k) - uy (k) = ) x. After this (4.15) transforms to

87:(:2 /(atA) Z’Wk Ax(k, t)Ax(k,t) + Ay (k, ) Ax(k, t)
k)\

_A)\(k7 t)A)\(_k7 t) - A;(_kv t)Ai(k7 t)]

The V x A-term of the field energy:
The second integral provides the same result (except for the sign) as the first

1

87 /(V x A)d Zhwk [Ax(k, 1) A% (K, t) + A5 (k, t) Ax(k, t)

+ ANk, D) Ax(—k, ) + AL (=K, 1) A5 (K, t)].
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The last two terms will therefore cancel out and we find

Ea= >3 e A4 + 4300450 | =l (4.17)

Time dependence was already neglected because it will drop out. In the present case, Ay and A}
are still numbers, so one could summarize the bracket. But the goal is to perform a quantization.
Therefore the order of quantities that will become operators is of importance and needs to be
respected.

4.3 Quantization of the light field

The classical expression (4.17) for the electrmagnetic field energy is represented by a sum over
harmonic oscillators. We can adopt this quantization template.

Photons are Bosons:
Now follows the decisive step to quantization. We take in the classical total energy (4.17) the

substitutions
Ax(k) — ax(k),

t (4.18)
AN(k) — a, (k)
where the ladder operators satisfy the bosonic commutation relation
[ (k), al, (K)] = e drn (4.19)

The vector potential now becomes an operator. For simplification, we will merge the index of
the polarization A into the index k, so that (4.19) now shortens to:

e, ) = e

Hamiltonian:
The Hamiltonian operator of the electromagnetic field results from the classical field energy
(4.17) by using (4.18):

. a1 1
Hem =) hwy <aLak + 2) = hwyg (Nk + 2) . (4.20)
k k

This completes the analogy of the electromagnetic field with a harmonic oscillator: the field can
be described as an infinite number of harmonic oscillators, which are distinguished by the wave
vector k.

Operator of the vector potential:
With the canonical substitutions (4.18), the vector potential transform into an Hermitian oper-
ator, which is given by a linear combination of ladder operators

" 2mhc?
Agp(rt) =) ;rwf{ (arerter=) +alemler=auy - wy = clk (4.21)
k
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all properties of the quantized light field can be derived directly from this representation.

Equation of motion in the Heisenberg picture:
The Heisenberg equation

oA
pop
LA

for the above operator is equivalent to the wave equation (4.9), i.e. with

= [Aop, H], (4.22)

OAcp(r,t) =0,  DOeFler—ed) =

which is already satisfied for every single wave.
Considering every separate term and using [de, al = —a:

zh(—zwk)&k — hw[dk, Nk] = ﬁwk&k — ﬁwk&k =0.
Therefore the equation of motion is satisfied too.

Time dependence:
The ladder operators appearing in (4.21) are completely time independent, i.e. in the Schrédinger
picture. The time dependence can be transferred back onto them via

A~ (t) — ezﬁt/ﬁ&kefzf:lt/h'

ax
Then is p ) )
ﬁ&k(t) — %eth/h[&k,ﬁ]e_lHt/h — %eth/h(mkak)e—th/h = —wwdx,
which leads to
ar(t) = e “xlgy and &L(t) = e““ktair( )

This is obviously consistent with (4.21).

Field operators:
The operators for the electric and the magnetic fields are, according to Eq. (4.10), given by
B=VxAand E= —%&A in Coulomb gauge. This leads to

Z 27r7?wk ( Wk r—wit) h.c.)uk, (4.23)

= ZZ k x 4/ QWhi (Ak wker—wnt) _ h.c.)uk. (4.24)

The abbrev1at10n “h.c.”” describes the Hermitic conjugate of the first expression in brackets, in
this case ake —uker—wiet)

Momentum:
The expression of the momentum of the quantized light field will be mentioned. Classically, the
momentum density of the electromagnetic field reads

P= /ExBf

dre
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From (4.23) and (4.24)

Pop = > hkajax = Y hkNy.
k k

The momentum of a single photon is given by hk.

Summary: The following rules for the quantum mechanical description of the light field can
be stated:

a)

b)
c)

Vacuum: There exists a vacuum state |0) with
a|0)=0 vk and  (0]0) = 1. (4.25)
Photons: A photon with a fixed momentum £k is described by &L |0).

General state: A general state of photons with ny, photons per momentum %k; (one also
says “in the mode k;”) is described by

al Y (gf Yrke 0 i
(g, )™ (Oy,) 0) = H i ' |0) . (4.26)

Or in short |ny, , nk,, - - -) or [{nk}).
Occupation number operator: The occupation number operator Nki has the property

Nig | oMy ) = Mg, |-+ 3 Mgy =) - (4.27)
The Hamiltonian (4.20) separates in the contributions of the different modes. Therefore
the general state |{nyx}) can be written as direct product

|nk1>® ‘nk2>® = |nk1> |nk2>"' (428)

For every mode k the {|nk)} Vnk form a complete set of orthonormal states. If one is
interested in a single mode, one writes for the considered state only |ny).

Photons are Bosons: Because the occupation numbers ny can take on arbitrary values
of the set Ny, one deals with bosons: An energy level (here a mode) can be arbitrary
strong populated. Therefore coherent state and lasers exists, what will be seen in the next
section.

Zero Point Energy:
Forming the expectation value of the Hamiltonian (4.20) with the vacuum state, one finds a
surprising result:

A 1
Hen|0) = = huw . 4.2
(O1onl0) = 5 3 i = o0 (4.29)

The energy of the vacuum seems to be divergent!

In general we only consider energy differences where an infinite vacuum energy is of no
concern.

The vacuum energy is dependent of the boundary conditions and changes within restricted
geometries, e.g. the intermediate space between two conducting plates, which can be
experimentally seen in the Casimir effect.
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4.4 Properties of the radiation field : Coherent states

Vanishing fields:
Following (4.23) the operator of the electric field has the complete representation

R 10A,
Eop(rvt) = _E 8tp = ZZ
k

QW‘EWk (&kBZ(k'r—wkt) — h.c.) ug.

We are now only interested in a single mode k. For this mode the above equation simply reads

7 _ 2mhwy ¢ (k-r—wit)
Eop(k,t) =14/ v (ake k —h.c)uk.

The expectation value of this operator in a state |ny) with fixed population ny of photons is

(e[ Eop (k. ) |nx) = 0

since Eqp(k, t) is linear in creation and annihilation operators and the {|ny)} forms a complete
set of orthonormal states.

Non-classical fields:

The expectation value of the electromagnetic field in
states of fixed population vanishes.

States with fixed photon numbers are non-classical.

Finite energy density:
On the other hand, the energy density in the same states holds

1 - - 1 - 1 1
(- (B2, + B2, ) = (ol B ) = - (a3 )

as was expected. This hints, there is something special with the photon number.

We will show now, that the occupation operator does not commute with the phase operator. In
an eigenstate of Ny, the phase of the fields is completely uncertain and therefore the classical
expectation values vanish. To describe a correct transition to the classical field theory, one has
to consider coherent superpositions of states with different photon populations.

Phase Operator:

For the reminder of this section we will deal with a single mode of the radiation field and will
therefore omit the k-dependence of all operators.

In a first step we define the phase operator as

a=\VN+1e%,  af=e /K41, N=ala (4.30)

which corresponds to a separation of the creation and annihilation operators in amplitude and
phase. N = ala is verified even if not obvious. This procedure can be in general performed in
a bosonic system. We will further see, that the phase operator is almost self-adjoint, (B o~ gET,
special care has only to be taken when looking at the vacuum state |0).
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First we have to show that the representation (4.30) is unitary. We face the task to find such
commutation relations, so that

[N, ¢ =? & [a,a] = 1. (4.31)

Properties of Phase Operator:
Under consideration of the operation order, one can invert Eq. (4.30):

—1 R -1 R
<\/N + 1) a=e? <\/N + 1> =" (4.32)

Reminder:
aln) =vnln—-1)  al|n) =vn+1n+1)
This gives:
A V B - —1) ;n>0
e |n) = <\/N7+1) an) = (1—5n,0)< (n—1)+1> Vnln—1) = {L" ) in )
in =
and

R - -1
e ) =at (VA1) ) = (o )72l ) = [+ 1),

From these two relations follows the matrix representation of the phase operators

<n’€l¢|m> = dnm—1,

ot
(nle™?" [m) = Gn—1,m,

and therefore o o
(mlee™' n) = 6pmn (mle™ e®n) = (1 = 6.0)0mn. (4.33)

If qAﬁ would be self-adjoint, 9 would permute. Eq. (4.33) shows, that this is almost the case —
except for n = 0 — especially for large particle numbers.

Observable Phases: R R
The operators are non Hermitian, because from the above relations it follows that (e'?)" = e=190"
Therefore, they do not represent physical observables in this form. However it is possible to
combine the phase operators to Hermitian operators:

e — e8! e + e~

ing = 4.34
sing= "2 (4.34)
In the case of self- ad301nt qb, this definition would correspond to the real and _imaginary part.

For the general operator <Z>, one defines via (4.34) new operators sin ¢ and cos (b

Commutation Relations:
In the following we will make the approximation qb gZ)T which is exact except for the vacuum.
The commutation relations for qﬁ and N are obtained as follows:

1=aa’ —afa =N+ 16”367“23\/ N+1- 67“;3(]\7 + 1)6155 =N — e ¥ Ne
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Multiplying both sides with e yields:

Therefore: A A A R
[N, e?] = —e'?, [N,e %] = e
With this we obtain
N . e e e 4 19 L) .
[N, cos §] = [N,e *; ]: ‘ ‘2” =it = sing,
and R K X R R R
. . . P _ i _elP _ o1 W 4 =1 .
[N,sin¢]:lN,e 2; 1: ¢ 226 . +26 = 108 ¢.
Obviously N acts on QAS like a derivative with respect to (ﬁ, meaning N= 86(2) like the momentum
operator p and the position operator Z. Therefore
[N, ] =1 (4.35)

which express, that is in principle impossible to exactly measure phase and particle number at
the same time, both measurements are incompatible.

Uncertainty Relation:
The phase ¢ and the particle number operator N = af
are for bosons canonically conjugated variables.

)

One brings to mind the Heisenberg uncertainty principle

4B =5  [A4B]=.

A A

(AA)(AB) >

DN | =

where the last relation is valid for canonical conjugated operators A and B.

Digression: Superconductivity:

This result is essential for superfluidity (see chapter 3, where we discussed the meaning of the
phase of the condensate wave function) and for superconductivity. Superconductivity comes
into being through singlet pairing of electrons and one can — in a very crude approximation —
view this pairs as bosons, because following the spin statistics theorem, this particles possess
integer spin — like bosons.

The superconductive condensate is characterized by a fixed phase, one also speaks of a sponta-
neous breaking of the global gauge invariance.

But when the phase is fixed, then the particle number cannot be according to (4.35). Therefore
the BCS wave function is

[WBcs) = H(uk + vk éLTéT_k,\L ) 10)
k N——

Electron Pair

given by a coherent superposition of states with a different number of singlet pairs.
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Variance:
In a pure state |n) with fixed photon number, the natural fluctuation of the occupation number
operator vanishes:

AN = /(nI|n) - (n]N|n)? =
In contrast, cos ¢ has a finite fluctuation. It is (cos ¢) = 0 and

2 — 00

N B o
(cos® @) = 1 (e“ﬁeﬂd’f + eﬂwew’) =

in a pure state |n), and therefore A cos ¢ = Asin ¢:

= = 1/vV/2 ;n>0
Acos ¢ = 1/ (cos? @) — (cos )% = ’ "
b=/ (cos? §) — (cos d) {1/2 .
Coherent States:
One can do a linear combination of states with different particle numbers to achieve a transition

to macroscopic electrodynamics. One defines a coherent state |c) (also called a Glauber state,
Nobel price 2005) through

e—le?/2

Z |n) with ceC, c=|cle®
\/»

By using the representation (4.26) for the state |n), one can write in a more compact fashion:

Jef?
2

+ cal) [0)

eleray AT G (-
> @ <
A Glauber state |c¢) only contains the {|n)} of a single mode, so k is still sharply defined.

Properties of a Glauber state:
The coherent states are eigenstates of a. Proof:

c"
aley = e 2N g i) = e 12
nzo il >

e—lel?/2 Z = ).
The Glauber state is thus an eigenstate of the annihilation operator. We summarize the relations:
alcy =cle) |, (clalc) = ¢, (c|a’|e) = ¢, {cle)y =1 (4.36)
We notice that the coherent states do not build an orthogonal basis, because in general (c|¢’) # 0.

Electric field of a coherent state:
The expectation value

N 2mhw 2mhw
<C|E0p|c> —3 7rV k (Cez(k~r—wkt) _ C.C.)Uk =1 Q k’ |( Wk r—wit+0) _ C.C.)Uk
2
= -2 mhe le|sin(k - r — wit + 0)uy. (4.37)
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of the electrical field in a coherent state is equivalent to the classical value.

Hence there exists a one-to-one relation between the plane waves of classical electrodynamics
and the coherent states |c), because through ¢ = |¢|e” the amplitude as well as the phase of the
plane wave can be determined by use of Eq. (4.37).

Fluctuation of the photon number:
From relation (4.36) and N? = a'aa‘a = afa + ata'aa results

(c| Nle) = {c|atalc) = (c|c*c|c) = |ef* {cle) = |cf?
and

(c| N?|e) = (c|ataa’alc) = (c|at(1 + ata)ale) = (c|ata|c) + (¢|afataalc) = |¢[* + |4,

so that
AN = \/(N2) — (N)2 = |¢|. (4.38)
The relative fluctuation of the photon number is therefore
AN 1 1
R —. (4.39)
(Ny Sy

The bigger the particle number, the smaller the fluctuations. The probability of finding exactly
m photons in a measurement is

2 |C|2m

m
T e

m)

m! "’

which matches a Poisson distribution.

One can show that for large N the expectation value of the phase operator in the coherent states
is identical to the phase of ¢, meaning {(c|cos ¢ |c) = cos#, where ¢ = |c|e®.

Proof:

5 1 . 1
= —i and e =al ——,
N+1 N+1
hence
~ 1 1 1
cos¢:2< = a+al =
N+1 N+1
Since
c|l————adlc)=c(c c an clo| ————=|c ) =c"{ c|———]| ¢
VN +1 N+1 N+1 VN +1

one has

(c|cos ¢ |c) = %(c—k c) <c

In the limit N — oo one has

< 1 > 1 1 1
— - — = —.
VRl e ), e
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Therefore
c+c*

— = cosf.
2|c|

(c|cos p|c) =

Fluctuations of the phase:
We assume the uncertainty relation of to general Hermitian operators A and B:

AAAB > S|4, B))|.

N

Through (4.35) for the commutation relation [N ,sin QAﬁ] = zcosgﬁ we find for the fluctuations
A sin ¢ of sin ¢:

ANAsin ¢ > %‘(cos@’

and through (4.38) for AN = |¢| and Asin¢ = A cos ¢ one calculates

A cos ¢ 1
Acosp 1 (4.40)

[(cos @] — 2le|’
This estimate provides strictly speaking only a lower bound of the relative fluctuations of the
phase, but saves the need of costly calculations. In general, the actual fluctuations are deter-
mined by two operators of the same magnitude as the corresponding uncertainty relation.
The relative fluctuations of the phase thus vanish in the limit of large photon numbers (N) = |¢|?,
just as the relative fluctuations of the photon numbers itself, see Eq. (4.39).

Classical Limit:

The definition of phase and particle number of a light field
becomes sharper and sharper, the more photons it con-
tains. In the limiting case of a large number of photons,
we arrive at the classical description.

By intuition, this seems comprehensible. For a small amount of photons, their quantum me-
chanical properties will manifest themselves. But in the limit of large numbers, they will average
out.
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4.5 Interaction of radiation and matter

Here only emission and absorption of photons by matter (bound electrons) is studied.

Minimal coupling;:
The total Hamiltonian of matter and radiation reads

H = Hey + Hoae + Hi, (4.41)

where lﬁIem describes the radiation field alone, ]:Imat the matter and fII the interaction between
both:

N N 1 . D2 N
Hem—zhwk(Nk+2)a Hmat:Z;)iTrlLi"i_V(rlyrZF")'
k 7

We will neglect spin effects. The index ¢ runs over all particles. After the introduction of
electromagnetic field, the interaction Hy results from minimal coupling in Coulomb gauge via:

A A 6 N
Pi — Pi — EAop(rht) )

where e describes the elementary charge. Take note, that the vector potential is given by the
operator (4.21), which describes the vector potential at location r; of the i*" particle.

Light-Matter Interaction:
By using Ay, = Agp(ry, t), one arrives at

2
A e R ~ ~ N e ~: \2
Hr = Z [_ 2m;e <pi ' Aép + Aép ' pi) + 2m;c? (Aép) ]
7
2
€ A € A 2 A A
=— Al D — Al = H{ + H{. 4.42
zi: mjc op Pi + z@: 2mi02 ( op) I + I ( )
—_————
paramagnetic diamagnetic

for the interaction between light and matter. Due to V - A= 0, it is possible to set

Both terms in (4.42) are called paramagnetic and diamagnetic part, respectively. The diamag-
netic term ~ A? couples with the matter only via the position operator #; in the argument of
the vector potential Ay (%;,1).

State Space:
The whole Hamiltonian (4.41) acts on a state, which contains light field as well as matter:

|state of matter) ® |state of light field)

Perturbation operator for a single electron:
In the following we will consider a special case: we ask for the transition rates of a single bound

63



CHAPTER 4. QUANTIZATION OF THE CLASSICAL RADIATION FIELD

electron in an atom (e.g. the hydrogen atom) which are introduced through the presence of a
radiation field. The Hamiltonian of the interaction reads now:

N e 2mhc? "
H =-—— are™®T L hoc. -P.
I mc ; Vwk (ake T ac ) e

Two simplifications were made: first, the A%-term was neglected. Second, H; is time indepen-
dent, because every exponential factors would disappear anyway. One can also transform the
operator Aop(f', t) in the Schrédinger picture and would arrive at the same result. In this case,
the appearing states in the following calculation would be time dependent, what would not be
of any consequence.

Fermi’s Golden Rule:
We will treat Hy as a perturbation. The Golden Rule for a transition rate from an initial state
|i) to a final state |f) then reads:

o,

i = = 0(E: = Bl (f1 B i)

Total energies:

The energies E; and Ey are the total energy of the radiation field and matter before and after a
transition, just like |i) and |f) describe the states in both Hilbert spaces. We will assume, that
initial and final state respectively are eigenstates of ﬁo = ﬁem + Jflmat:

Huat lei) = gilei) s Humat leg) = 1 lep)
o A AP 1
o }) = 3 fin (i + 5 ) Kokby Bl ) = i ( + 3 ) o).
k k
The states then read

i) = lea) @ [{nk ), 1) = les) ® {n{}) .

We will successively consider now the emission and the absorption of a photon.

Emission of a photon 7k:
The energies of initial and final state are given by

1
E; :5i+zhwk’ (nk/ + 2) ,
k/

1
Ef =e€y + Zhwk/ (nk/ -+ 2) + hwy,
k/

because exactly one photon of energy fwy should be emitted. The state vectors read:

’l>:‘61>®‘7nka>a
1) =lep @] me+1,--4).

The Golden Rule states, that a corresponding transition must satisfy

Ei—Ef:é“i—(Ef-f-ﬁwk):O.

64



CHAPTER 4. QUANTIZATION OF THE CLASSICAL RADIATION FIELD

This is exactly the conservation of energy. Further applies

(I H i) = —— P - plei) (oot Loelad i)

The annihilators do not appear anymore, because the corresponding matrix elements will dis-
appear (more photons appear on the left hand side than on the right hand side). Only the
summand with k = k’ survives. Only then is a photon in the right state created and the inner
product will not vanish. The second term in the brakets reads therefore

(- ,nk+1,~~|df{/|--- M) = Vg + 1

and the transition rate of the emission is given by:

4rr2e? ik ~
r = o d(e = o = ) e+ D) eyl P pley) 2 (4.43)

Absorption of a photon #hk:
The energies of initial and final states are

1

E; :5i+zhwk/ (nk/ + 2) ,

k/
1
Es= hewyr = = hw
e o (et g) e
because now a photon will be “extracted” from the light field. The state vectors are given by

|1> = ‘5l>®‘ 7nk7"'>7

1fy=lep) @+ k= 1,-).

In this case, the creation operators do not contribute to the calculation of the matrix elements
(f| H{|t). Furthermore, only the annihilation operator with k = k’ remains. Analogous to the
emission one finds:

472e? R
o= —ap—0(ei — ey + hwi)me (] €T

A 2
mQVwk uk ' p |5z> | . (444)

Discussion: Absorption vs Emission
Both expressions for emission and absorption processes are identical, except for the factors of
the occupation numbers.

e Spontaneous emission: One speaks of a spontaneous emission if a photon is emitted in
absence of other photons. Spontaneous emission is possible, because the factor ny + 1 in
Eq. (4.43) will not disappear if a external photon field is missing (n, = 0).

o Stimulated emission: The factor ny + 1 in Eq. (4.43) implies, that in presence of a external
field with the same quantum numbers, the emission probability is increased, proportional
to the intensity of the external light field. One speaks of stimulated emission — which is
essential for the laser — because a mode ik can only stimulate an emission of a photon of
the same wave length A = 27/|k|. One obtains coherent radiation.

65



CHAPTER 4. QUANTIZATION OF THE CLASSICAL RADIATION FIELD

o Absorption: The interpretation of the occupation factor ny in Eq. (4.44) of the absorption
process is relatively trivial. Photons can only be absorbed, if any are present.

Electric dipole transition:
We consider the electric dipole transition, which occurs if the exponential function e in the
matrix elements can be presumed equal to 1. This is possible if

27ra0
A

k-t~

< 1,

which is the case if the wavelength A of the participating radiation is big compare to the charac-
teristic scales of the system (here the Bohr radius ag). It is called electric dipole approximation,
if the matrix element is further rearranged. We use

oy Y A

om |922" om \ 02"~ a2 mor  mb®
and find
(rlBle) = (gl a1 e2) = 5 (ol Bl — £l 20
_ % (e #]e) (5 — e1). (4.45)

This is exactly the dipole matrix element, which also results if one directly uses the electric
dipole moment in a field

Edip = —€r - Eop
as interaction term.

Selection rules:

The matrix elements appearing in Eqgs. (4.43) and (4.44) determine if a transition ever takes
place and if it does, the probability of it. They govern the section rules.

In the case of the electric dipole transition, the matrix element (4.45) states, that initial and
final state in any case need different parity, if the considered transition should be permitted,
because T is odd under parity transformations.

In an atom, this means that electric dipole transition are permitted from the s-level to the p-level
or f-level, but not to the d-level.

Transition of higher orders:
Transition which are forbidden in zeroth order can nonetheless occur if higher orders are con-
sidered, i.e. the exponential function is further expanded:

Rl ) '

The next order (linear in k - ) describes magnetic dipole and electric quadrupole transitions.
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4.6 Lifetime of an excited state

It seems surprising, that the periodic volume V' still occurs in Eqs. (4.43) and (4.44). Rather the
transition rates should not depend on this auxiliary variable. In the following calculations, we
will build the limit V' — +o00. To guarantee meaningful results, one has to consider transition
to a group of final states and sum up all final states as well as all k vectors of the photon.
The J-distribution ensures the energy conservation. As an first example we will look at the
spontaneous emission from an arbitrary initial state to a set of final states.

Lifetime of an excited state:
We define the lifetime 7 of an excited state about the spontaneous emission in a target level

lef):
47262

_ 2 a 2
= %Pi—w‘ = 3 o e et (e - e el mlo £l [ (446)

1
T FA

where the expression (4.45) for the dipole moment is used.

o The expression (4.46) consists of the portion of spontaneous emission in Eq. (4.43), summed
up over all target levels f of the atoms and all wave vectors k of the photons.

e The d-distribution ensures, that only summands remain, for which the released energy
merges into the radiation field.

o The polarization A explicitly shows up again, where u) (k) describes the unity polarization
vector of the light field.

Thermodynamic limit:
V will now approach infinity. This is done by the substitution

1 1
V% — @n ) /d3k

because the volume of a mode in the reciprocal k-space is given by (27)3/V under periodic
boundary conditions. For continuous k it is given by d°k instead.

Summation over different polarizations:
First we will perform the A-summation. We have to calculate:

2

2
D (ua(k) - (ep| B ]eq)
S -
Other than building an orthogonal trihedron with k, uy can be chosen freely. E.g. one can
choose us to be perpendicular to the dipole matrix element d, which will result in a dependence
of the sum on u; alone. Let the angle between d and u; be £, the angle between d and k reads
0 = 7/2 —¢. The above sum then yields

| (e4| £ ei) |* sin? 6.
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U2 A
The orthogonal trihedron consisting of the two
polarization vectors uy, us and the wave vector
of the photon k can be arranged in such a way,
so that the dipole matriz element d lies within N >
the plane spanned by uy and k. \\ 9 k
Ui E N
\\‘
d

Photon momentum integration:

Favorably one places the coordinate system in such a way, that d point in the k,-direction.
Under this condition, the appearing sin? § of an integration in spherical coordinates comes in
handy:

dm?e? 1
= S iRl P [ Fsmosni

d(ef — & + hwy)
Wk

dkdfdy

S e

2
€ 2 A 2 -3
= E s ler — &) {epl B lei) | /sm 9d9d<p/55(€f—€i+5)d€
7 2wh*c

=8m/3 =€;—€f

In the last step the k-integration was shifted to the variable ¢ = hwy. The angle integration
results in 87 /3, which leads to the final result

As one can see, spontaneous emission and absorption rules are “antagonists”:

o If a system is in a state from which only forbidden transition lead to a lower level, then
this excited state will be durable.

o If one manages to populate such a level in a “top-down fashion”, one can achieve a popu-
lation inversion.

This principle is applied in every laser.
The matrix element r;; = | (7| #|e;) |* contains selection rules for electric dipole transitions —
cf. Stark effect.

Hydrogen atom: 7(2p — 1s) = 1.6 - 1079 s, lifetime of magnetic dipole or electric quadrupole
transitions is four times longer. Interestingly 2s — 1s: forbidden in every multipole expansion

= long lifetime of 1/7 s, multi-photon process.
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Light scattering on atoms:
In such a process the photon number is conserved

‘Z> = ](k,g,w), \Ai_, >7

1 photon atomic state

’f> = ’(k/75/)w/)7B> :

Term A? in Hy causes such processes in first order perturbation theory.
Term A - p in H; causes such processes in second order perturbation theory.
Both processes are in general important.

Kramer-Heisenberg (KH) formula (£ > ag):

2 *
aq =T | -")oaB — — +

2
do W' 1 {(5’* -pe1)(e-pra) . (e-par)(e™- pIA)}
m EI—EA—hw EI_EA“FhCU

1

where rg = 2.8 - 10713 c¢m is the classical electron radius, pp; = (B|p|I), and Y, is the sum
over intermediate states of the atom 1.

Elastic scattering: w’' = w, B =A.
Limiting case w < wips = (E1 — Fa)/h: Rayleigh scattering. Expansion in powers of w/wr4:

<da> (r0m>2 4
ao _ (romy©
dQ) Ray1 h

Limiting case w > wra: Thomson scattering

do _ .2 I
(dQ)Thom - |€ ' ‘

also applies when wiy = 0, i.e. for free electrons, the Compton scattering.

2
E ! [(5,* -rar)(e-ra) + (e I‘AI)(E/* . I'IA)]
T wiA

Inelastic scattering:
Raman scattering: E4 + hw = Ep + hw', only the process of second order contributes. In

general:
d
(”) ~r,
dQ Raman

Special situation: Ej = E4 + hw — resonant Raman squattering, KH-formula fails. Energy
uncertainty has to be considered.
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4.7 Interaction between light and matter in Second Quantiza-
tion

Our goal is now, in association with the first part of the lesson, to examine the interaction of
light and matter. The representation of matter states in the second quantization formalism will
allow us to introduce the concept of Feynman diagrams, which play an important role in the
theory of many particles as well as the theory of fundamental particles.

Because everything will be expressed as an operator now, we will neglect emphasis of operators
via bold letters.

Light-matter Hamiltonian in second quantization:
We describe the interaction of photons and electrons completely in second quantization. The
Hamiltonian reads

A

H:ﬁmat+ﬁ1+ﬁema

where ﬁmat describes the electrons alone, fII the interaction with the radiation field (4.41) and
Hn the electromanetic field alone.

where

« The operators ¢! (r) and ¢ (r) are the creation and annihilation operators of electrons at
position r.

e The summation over the polarisation index is incorporated in the sum over q.

e the ladder operators &Il and aq of the radiations field are given in the Heisenberg picture,
i.e. time independent.

e The total Hamiltonian acts on a product states consisting of both Fock spaces of electrons
and photons: Hmatter ® Hphotons-

Field operators:
First we want to investigate the case of free electrons, thus it is V(r) = 0. Plane waves pose a
good candidate for a complete orthonormal system to express the field operators:

A

,(/}k I' \/»ZezkrA ,(/JIT{ I' \/72 —’LkI‘AT
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where the following (anti-)commutation rules apply:

(Pt 0t} =0, {dm),d@)} =0, {

<
—~
SN—
<
—
—~
#\
N—
——
(«%)
—
=
|
ﬂ\
N—

{CL, ék’} = 0 {ék,ék/} = 0, {ék, éL,} = 51(71(/ .

Dispersion relation:
Thus we are able to express Hpy,t completely in terms of ladder operators:

N 1)
Hynat = /dI‘ Trher <_2A) S I'CLCk’
k/

k,
7(51( o K2 h2Kk2
2m
where ey = h?k?/2m is called dispersion relation.
. h%k?
Hiat = 5 o= ewine (4.47)
K K

when using the occupation number operator 7. The interpretation of (4.47) is intuitive: The
energy of a many particle state (without interaction) is simply given by the sum over the different
single particle levels. But one has to note that this simple form breaks down as soon as the
Coulomb interaction between electrons is considered.

1 _k.,\—'- 27ThC2 N . At g Ko 1 ~
:V/drze o < ZmCZ VWq (CL qu+aqe qu>uq‘v %ez 2r6k2

> (Ml(kl,kg, Q)e) éiydq + My (ki ko, — )cLlédeL) (4.48)
ki, k2,q

where again the polarization index is contained in q. One calculates

1 ho |27he?
Mi(ki,ko,q) = v /dr e kT (—Ze The eIy, - (sz)ele'r>

Vwq
h |2mwhc?
:_Vemc ;wc (ug - ko) /dre e
q
_eh 2mhc?
= qu (uq . k2) 5k1,q+k2 . (449)

The last expression in (4.49) represents the conservation of momentum. The partial Hamiltonian
H{ describes two kinds of processes via its two terms in (4.48):

o The first term destroys a photon q and an electron ky and creates on the other hand an
electron ki. The total momentum is thereby conserved: k; = q + ko.

e The second term creates a photon q and an electron k; but destroys on the other hand
an electron ko. Again the total momentum is conserved via ks = q + k;.
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Simplification:
It is easy to show that the second term in (4.48) is the Hermitian conjugate of the first term.
This is because the first term reads

uq-kgzuq-(kl—q):uq-kl,

so one can instead of q — —q do the substitution k; <> ko when doing the transition to the
second term. The Hermitian conjugate of the second term satisfies then

T
( > Ml(k27k17Q)éL1@k2&L> = > Ml(k2,k1,Q)éL25k1&q
ki,k2,q ki ke,q

- Z Ml(klkaaq)éLlékQ&q
ki,k2,q

and this corresponds to the first term. The paramagnetic part of f[f of the light-matter inter-
action can therefore be written as

=Y (Ml ke, )l tuyig +huc.). (4.50)
ki,k2,q

Feynman diagrams:

Both processes described by I:II/ can be visualized by simple diagrams. Fig. 4.1 shows on the left
the first process: the annihilation of a photon q while scattering an electron from the state ko
to k;. The diagram on the right hand side represents the hermetic conjugated process, namely
the creation of a photon under scattering of an electron.

6L16k2aq éLlék2ag
ki=ks+q ko =k; +q

Figure 4.1: Processes resulting from first order perturbation theory in JEII’ The right process
corresponds to the Hermitian conjugate of the left one.

Feynman diagrams:

Feynman diagrams are a graphical representation of per-
turbation theoretical processes. Lines represent partic-
ipating incoming or outgoing particles and the vertices
correspond to the matrix elements of the interaction.
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Feynman diagrams do not only serve the purpose of visualisation. In many body theory and
the theory of fundamental particles every Feynman diagram represents a precise mathematical
expression of perturbation theory.

Conservation of momentum at the vertices:

A point were different particle lines meet is called a vertex. The Kronecker delta in M; demands
at a vertex that the total momentum of annihilated particles is equal to the total momentum of
created particles.

Diamagnetic perturbation term:
H{ as part of the whole Hamiltonian contains four terms which arise from the product A2

=%y <M2(k1,kz,ql,qQ)éLékQaql%+M2(k1,k2,—ql,qz)éltlékza;aq?
ki,k2 91,92

+Maz(ki, ka2, qz1, _Q2)6Llék2&q1 al, + Ma(ki, ko, —q, —Q2)6L16k2&21&22>

=> > <M2(k1, ko, qu, q2)éL16k2dq1aq2 + Ma(ki, ko, —Q1>Q2)51T(15k2&1n&q2 + h~C->

ki,k2 91,92
(4.51)
Where
27Th02 1 1 62 kyr i(qi+qz)r tkar
MQ(klak27qlaq2) = V \/mv 2mc2 dre € € (ucu : UCIQ)
2rhe? 1 2
_ Zrhe ¢ (4.52)

Ug, - Uqg,) Ok, k
2 ( q1 q2 1,k2+qi1+q2
V  JOqWq, 2me

The four terms in (4.51) describe vertices, at which two electrons and two photons are involved
each. Fig. 4.2 shows the corresponding Feynman graphs. The quantities M7 and M> determine
the probability of the occurrence of these processes.

& b G o e al a AN o e at at
C, Ok, gy Qg C, Ok, Oy, Ay Ch, Ok, gy Ay, Cr, Ok, Gy, A,

ki=qi+q2+ko

Va
@

ky

ki +q1 =qz +ko

Va
@\

ky

ko +q1 =q2 +k;

Va
AN

ky

ka=qi+q:+k;

Va
AN

ky

Figure 4.2: Processes associated with first order perturbation theory in ﬁl” . Both graphs in the
middle describe contributions to Compton scattering. The two diagrams to the right are the
Hermitian conjugate of the left ones.

Compton Scattering:
Both graphs in the middle of the Fig. 4.2 show the scattering of a photon on a (free) electron,
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what is called Compton scattering (note that basically we are not looking at one “single photon”,
a photon gets annihilated while another is created - at least this is a good visualisation). The
other diagrams describe emission and absorption processes involving two photons: Always two
photon lines are involved at a vertex created via H{'.

4.8 Non-relativistic Bremsstrahlung

In the following we will examine the scattering of an electron at a potential, e.g. at a static
(because much heavier compared to the electron) nucleus. The charged particle will be hereby ac-
celerated and will radiate energy in the form of photons. This effect is known as Bremsstrahlung
and is for example used in a dentist’s office to produce the appropriate radiation for a X-ray
scan. We will assume that v/c < 1, namely we are looking at the non-relativistic limiting case.

Perturbation terms:

We are interested in the emission of a single photon, therefore the interaction term is given
by Hj. Furthermore we will consider the potential Viyuc(r) of a nucleus from the target as a
perturbation. The complete operator of the perturbation then reads

‘70 = I’AII, + VNuC(r)-

We note that I:II” is not appearing, because the diamagnetic term of lowest order describes the
Rutherford scattering process. We find in second quantization:

H = Y (Mi(ki ko, q)el éuyitg +hic.) (4.53)
ki1,ka,q

and

Vawe = / dr () Vaue(0)d(r),  with (r) =

<

Z elk'rék.
k

No conservation of momentum:
The explicit for of the perturbation potential reads

1

WNue = V /dre (ki—k)- I‘VNuC( cklckz - Z VNuc k) — k2)éL1ék2
k1,k2 k17k2

with  Viue(k) = / dr Viye(r)e KT,

The potential Viye is real, therefore the Fourier transform Viye is Hermitian symmetric, i.e.
VNHC(—k) = VNuc(k). We notice, that the total momentum is not conserved, because the
Hamiltonian has no translation invariance. Momentum can be transferred to the lattice when
scattering at Vyyc.-

Golden rule:
Using the perturbation operator Vj, we want to induce transitions. Fermi’s golden rule for
transitions reads:

2
—0(E; — Ey)| Mg (4.54)

Fi%f = A
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with

o (2)

The energies E; and Ey stand for the total energies of electrons and radiation field before and
after the transition. Initial and final states are:

h2k?

li) = ¢, 10)  : no photon, one electron hk, E; = o= (4.55)
21,72

lf) = éL&L |0) : one photon Aq, one electron hk’, Ep = - + helq| (4.56)

Differential cross-section

—>
—

—

—>

— (‘(—QWbAb
= {

—> N

—_ \ AN
—

— b
—>

Current j

Figure 4.3: Geometry of the elastic scattering. The area Ac of the incoming ray reads Ao =
2wbAb. Also shown the solid angle AQ.

W

Suppose a particle stream of density j; (describes particle number per area and time, “i” means
“initial”) is hitting a scattering potential. In this event, a detector counting the scattered
particles at the solid angle d€2 and in the momentum range between &’ and k' + dk’ will measure
a certain counting rate (events per second). This rate is given by

K2dK dQT;_ s = jido , (4.57
f

(27)

where do is a differential area element perpendicular to the incoming particle stream j;. I';_
describes the transition rate to the final state k’, see Fig. 4.3.

General scattering cross-section:
In the following we have to specify more precisely what a detector will be measuring. In the
case of a wavelength-dispersive detector, the interesting quantity is

d*o W )_l v
dk'd g (2m)3

k/2 FZ—)f .
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The scattering cross-section is a measure for the magnitude of scattering coming from a centre
of diffraction inside a solid angle d€ and into the momentum range between &’ and k' + dk’.

Differential cross-section:

Assuming the detector is not sensitive in a certain momentum range dk’ around k' alone but
is just counting all scattered particles in df), without regard for their energy. Then we have to
integrate over the left hand side of (4.57) with respect to dk’ and we are calling

do 1V
—(Q) = — 'K T,
dQ( ) Ji (2m)3 /dk Ko Ling

differential cross-section with regard to a scattering into the solid angle 2.

Final states regarding Bremsstrahlung:

In the case of Bremsstrahlung one is confronted with one obstacle: After the scattering one has to
deal with two particles, the electron hk’ and the photon hq. The energy of the photon is not fixed
but follows a certain distribution. A detector for photons should work wavelength-dispersive, a
detector for the scattered electrons however should not. In the case of Bremsstrahlung we are
mainly concerned with the wavelength of the generated photons (important for application like
X-ray scans), but we are not interested in the energy of the scattered electrons.

Therefore we are asking for the differential cross-section of the scattering of an electron into the
solid angle d€s under emission of a photon carrying a momentum between hq and h(q + Aq)
into the solid angle d{2q. This quantity is written as

d3o
—— (e, ¢, Qq)-
ko/qudq( ks> )
hk hk'
Velocities: v :=— and v =-— = particle stream: j; = v
m m v
: d’o ViV N, 1.2
= cross-section: I d0qdq (e, q,Qq) = - ((277)3) q /dk E=Tisg. (4.58)

Perturbation theory of first order:

The part Ve is not containing any creators of photons which is why it cannot cause transitions
between (4.55) and (4.56) in first order. The only contribution will come from the Hermitian
conjugate inside of Hj. The terms concerned are proportional to éTklékz dL and the corresponding
Feynman diagram is shown on the right of Fig 4.1. However conservation of momentum and
energy apply and both requirements can’t be satisfied simultaneously. This can be seen via the
following:

Let be p* and (p')* the four-momentum of the arriving respectively emitting electron. Fur-
thermore let ¢* be the four-momentum of the photon (we will set # = 1). Then we find

m*c® = p'py = ((P)* + ¢") (@) + qu) -

The right hand side gives, considering ¢*q, = 0 (photons own no mass):

m?e + 0+ (p)'qu + ¢" () = m*S + 2(0) g
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This leads to (p’)*q, = 0. In the resting frame of the escaping electron is
(P)* = (me,0) and ¢ = (hwq/c,q),
which gives
(P )qu = mchwg = 0.

The energy of the photon vanishes, the considered process does not exist. Bremsstrahlung is an
effect of second order perturbation theory in Vj.

Second order perturbation theory:

The matrix element Mi(? ) reads

2 (fIVolm) (m|Vo|i) :
Mi( ) Z B B toh where Vo = Hj + Ve, (4.59)

which we already know from Quantum Mechanics I (with n < 1). It needs a little bit of
bookkeeping to not lose track of the calculations. For an intermediate state |m) exist two
possibilities, so that the numerator of the sum is not vanishing.

a) Intermediate state without photon:
The intermediate state has no photon in it, but only an “intermediate” electron carrying mo-
mentum hk,,

hk?
_af Be — 2
[ma) Cy, 10) m om
The numerator of (4.59) then reads
<f|HI/ + VNuc’ma> <ma’HI/ + VNuC|i> = (f’HI/‘ma> <ma‘VNuC‘i> (460)

because H| generates exactly the required photon of the final state
(via its h.c. part), Vyuc on the other hand generates none. The a)
corresponding Feynman graph is shown on the right.

b) Intermediate state with photon:
The intermediate state contains a photon carrying momentum hq and an electron carrying
momentum fk,:

A At N
[mp) = ¢&_ag |0) , E) = o + heq .
The numerator of (4.59) reads
(fIVuclma) (my| Hili) (4.61)
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and the Feynman graph is shown in figure 4.4 on the right hand side. Only the Hermitian

conjugate part of H{ plays a role again in the calculations of the matrix elements, the other part
)

is not contributing. The sum appearing in Mi(? is running over all k, of intermediate electrons

and over the cases a) and b).

Figure 4.4: Feynman diagrams for the breaking radiation process.

The emission of Bremsstrahlung is carried out in two phases: the scattering at a nucleus and
the emission of a photon (or vice versa). The calculation of the matrix elements is following:

a) Matrix elements - Intermediate state without photon:
One has to calculate (4.60). It is

(ma] Vivueli) = (Olex, > ek Ve (k1 — ka)éx, 2L |0)

ki, ko
= 3 (0., ) Viuelka — ko) (1,2 ) 10)
ki1,ko
= Z Ok, 10y Vaue (K1 — k2) 01, x
k1,ko
- VNuC(kz - k)

and

(fIH{Ima) = (Olewag Y. Mi(ki, ko, —a1)é, éx,al, & 10)

k17k27CI1
= > <0|(5k'5L1) (dqﬁgl) (ékzéLz>|0> M (ki, ke, —q1)
ki,ka,q1
= Y 0wk Oqq ke k. Mi(ki ko, —q1)
ki,k2,q1
eh [2mhc?
= e Vg Do (k).
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The first contribution to MZ-(]%) is therefore, taking into account that uq - q = 0, given by:

MO 3 {fIH{|ma) (ma|Viucli) noo0  eh [2hc? Vaue(q + k' — k) (uq - K')

if - E; — E2 +nh me Vwg %(kQ —(q+ k/)Q)

Because of energy conservation,

h2k'? hk?2
§ =~ Thelal =Ei =,
the denominator also writes
ha?  R2 hq -k hq?
No=heg| - L - T q K =heq [1- 2= "), (4.62)
2m  m melq|  2mclq]

But the second term in brackets gives

W _pilal v

m o cal ~melgl T e’

where 1/ is the velocity of the electron after the collision. The third term of (4.62) is again
one magnitude smaller in v/¢, because |q| is assumed far smaller then the electron momentum.
Therefore the non-relativistic case is approximated by N, ~ hc|q| = lwq. Hence

A2 _ _eh [2mhe? Viue(q + k' — k) (uq - k)
if me\ Vwg Tuwg i

b) Matrix elements - Intermediate state containing a photon:
The calculation is carried out analogous to case a) and the result for the second contribution of
Ml.(f2) reads

M(Q,b) B Z <f|VNuc|ma> <ma|HI/|Z> n=0 eh |2mhe? VNuc(q + k' — k)(uq : k)
if C_ b T e ‘
- E; — EY +nh me\ Vg %(kQ —(q-— k)2) — helq

The denominator one finds then:

hk? hq?  Rk®> hq-k hq? hq -k
N, = —(q—|——jn>—hc|q\——hc|q\ <1+ q a )z—hwq.

T 2m 2m  2m 2melq]  melq]

an_ e [2nhe? Vil + K — K)(ug k)
if me\ Vwg —hwq '

Sum of the matrix elements - Nucleus potential:

Hence

Both intermediate states (with and without photon) together result in:

(2) (2,a) (2,b) eh [2rhe? (K'—K) - -uq - ,
M5 = M. M. = VNue k'—k)|. 4.
' if T M Vwq hwq Nue(a + ) (4.63)

mc
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Until now we didn’t specify the nucleus potential. From now on we choose

7 e2
-

VNuc (I’) = -

The Fourier transform Viue(k) gives

1kr Z€2 1 Aezk-r
V uc = d = —— d —— .
N / ’ V o Jv r ( k2> T

Two times partial integration and the substitution

1
A= =—4md
= —4no(r)
results in
- 7 e2 1 An7 e?
auelk) = ——= [ dr (A - kr . _ 22~ 4.64
Nue (K) Vk?/vr( r)e V2 (4.64)

Finally we arrive at

M@ — ArZ e3h | 2whe? (k' — k) - uq
I me N Vg Vieg(q+ kK k)2

Low energy scattering;:
We will now assume that the energy of the photon w := wq is much smaller compared to the
electron’s and we set

2

(@+k -k~ (K -k)? = (Ak)?= 7

(Av)?.
Simultaneously we find that |v| = |[v/| because when the photon is neglected we are confronted

with elastic scattering of the electrons. For the transition rate we find

6472 Z% R (u - Av)?
 V3WwImA(Av)t

Ty = —5 (Bf — E;) | M 2)? 5(E; — Ey).

If 6 is the angle between the velocities v and v/ before respectively after the collision, we also
find

0
|Av| = 2|v|sin 3

Differential cross-section of Bremsstrahlung;:
The differential cross-section (4.58) can now be calculated:

3o ViV \?
(M, 4, Q) = — z/dk’k:’zl“l-
ko,qudq( ko d)Qa) = ((27r)3) 1 el

6471 Z%R2 €8 ¢ / , (u-Av)?E?
 (2m)Sw3md 16v° sin(6/2)

3(E; — Ey).
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We see a Rutherford cross-section is already looming in this result. The integrand is only
dependent on k2, and the d-distribution only of k. Further it is

— ﬁ (5(k/2 - k2) .

2m 2m

21,72 21,2
5(Ei_Ef):5<hk _hk) om

Now it is easy to calculate the integral:
k. mv
dk' k% 5(k"? — k? :/d & se—w)=k_mv
Along with ¢ = w/c we arrive at

d3o B 72 et (u-Av)?e?
A dQqdw — m2v4sint(0/2) 16722 hw

(4.65)

In the first factor, one recognizes the Rutherford cross-section. The second factor represents
the probability density of observing an additional photon carrying energy hwgq at the solid angle
dQgq.
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Chapter 5

Relativistic quantum mechanics

5.1 Invariances of the Schrodinger equation

Consider a free particle:
A2 2 2
~ P e o I
H = — = —— _ — 7A
2m 2m v 2m

Coordinate transformations:
y . ! __ !/ ! !
a) Translation: 2’ =z —a,y =y, 2/ =2, t' =t

b) Rotation: x; =37, ajix;.

Rotations do not change the length:
!
DT WIIETES oot
J J kil J
Thus
Zajkajl =J; and Zaikajk = 0;j
J k

or more compact
A-AT=AT A=1 with A= (ay).

c) Galilean transformation: The primed coordinate system moves with a constant speed v
relative to the unprimed system: 2’ =x —vt, y =y, 2/ = 2, t/ = t.

Schrédinger equation
N L )
th—(r,t) = —— r,
ot 2m
is covariant under the transformations mentioned above, i.e. it is form-invariant during a change

of coordinates:

Zhg¢/(r/ t/) _ —h—2A/1/J/(I'/ t/)
ot ’ 2m o

Proof:
a) Translation: Use the chain rule:
o0 _ox0d _ 0
dz! 02! dx Oz
and analogous for y, z and ¢t. With ¢/(2') = ¢/(x — a) = 9(x) the covariance under

translation becomes obvious.
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b) Rotation: Use the chain rule:
0

Oz, Z@xkax Zﬂka"

Thus the Laplacian transforms as

o2 02
Azzk:awk Zz%k lka 8 Z Jlax axl : @:A/-

k4l
With ¢/ (', ') = ¢(r, t) the covariance under rotation is clear.
¢) Galilean transformation: The momenta in both systems satisfy
Py =Pz — MU, D, =Py, Dy =Pz
The momentum operators in both systems reads as
s o _hO
Pe= "oz Po= Tz
Below, we will show that the Schréodinger equation is covariant under Galilean transfor-
mation if the following transformation of the wave function is used

Y(r,t) = e Y (e 1) (5.1)
It is
N _ / _ Ei —+mox’ 1 4l
Pe(r,t) = (pl, +muv)(r,t) = A +mu|e h P (¢, t)
_ ffm'um’h 0 N —pmuz’ o !l
= € Z&.’Elq/}(r?t)_e pm (I',t)
and thus

B(r 1) = e H R (1)
Inserting this into the the Schrédinger equation leads to

0 1
T 0 1 /. N
= € & |:Zhat, - T (p;r:2 +p;2 +pz )] 1/’/(1°,,t/) .

This equation is fulfilled if
P I A,
B 1) = o [if2 ] W)
Importantly, it follows from Eq. (5. ) that
(e, )2 = [0/ (e, )]

i.e. the probability densities of the orlgmal and transformed wave functions are the same
and thus also the physics they describe.

We have shown that the Schrédinger equation is form-invariant under the transformations men-
tioned above. In particular, it fulfills the classical principle of relativity: two persons, that move
with a speed v relative to each other, observe physical processes in the same way.

However, we know from classical mechanics that Galilean transformations are only valid for
v < ¢. A correct formulation of the principle of relativity must account for the equality of the
speed of light c¢ in all reference frames.
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5.2 Recap of special relativity

Before combining special relativity and quantum mechanics we recap the required formalism of
relativity. This enables us to generalize Galilean invariance to Lorentz invariance.

Please note, that we have to use Lorentz transformations
' T — vt , , ct—-w

= ==z —Bct), Y=y, =2z od=—"===x(ct-pr) (5.2)

instead of Galilean transformations.
1

1
’y: =
Ji-g VI-F

is the so-called Lorentz factor.

It turns out that the Schrodinger equation is not invariant under Lorentz transformations and
thus a relativistic generalization of this equation is needed.

Lets repeat the formalism of relativity. We define a (contravariant) four-vector as

ot = (mo,azl,xQ,x?’) = (xo,:ck) = (xo,r) ,

where

a:O:ct, xlzx, xQ:y, =z,

Later we will introduce a (covariant) four-vector x,, which is distinct from x#.

We define a metric in this four-dimensional Minkowski space via a squared distance

=~ -yt == —r = g ata” (5.3)
with the Minkowski metric tensor
1 0 0 0
0 -1 0 0
= g’ =
Juw =9 0 0 -1 0
0 0 0 -1

More precisely, it is a pseudo-Euclidean metric, because it is not positive-definite. Distances
with s < 0 are called spacelike. Events with a spacelike distance are causally independent. On
the other hand, events with a timelike distance, s> > 0, can influence each other. For events
with a lightlike distance, s> = 0, a communication is only possible via signals that propagate at
the speed of light.

Note that, in Eq. (5.3) we have used the so-called Einstein summation convention: we sum (from
0 to 3) over indices occurring twice, one of which is a upper and the other a lower index.

In analogy to rotations, we want to describe Lorentz transformations via a real matrix A¥, as

't = A 2V | (5.4)
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The Lorentz transformation should leave the distance s? unchanged. Just like for rotations, the
condition for the matrix A¥, reads as

2 ot Al A 2
s° = gt = g N, Nx” = gppafa” =57,

Thus

g,uz/AupAV)\ = 9o (5.5)

or in matrix representation

ATgA = g|.

All Lorentz transformations form a group, the so-called Lorentz group.

In particular, the matrix representation of the basic Lorentz transformation (5.2) reads as

vy =By 0 0 coshé —sinhé 0 0O

AR — By ~v 0 0| | —sinh§ cosh{ 0 O
v 0 0 10 0 0 10

0 0 01 0 0 0 1

with rapidity £ defined via tanh & = (.

In addition to a contravariant vector x# we introduce a covariant vector x, as

x, = g’ = (ct,—r) (5.6)

with the inverse operation
=g, . (5.7)

Thus a multiplication with g"” or g,,, allows raising or lowering of indices. One of the advantages
of this is an integration of the metric into a vector and thus a more compact notation. For the
Euclidean metric it is g, = d,.,, where 9, is the Kronecker delta, and thus there is no difference
between contravariant and covariant vectors.

The consistency of Eq. (5.6) and (5.7) is guaranteed via

Gupg™ =0,

For the Lorentz transformation A we define in the same way:
AY = g g™ = Aupg™ = g™ (5.8)
which is generally true for order-2 tensors.

The term “contravariant” and “covariant” reflects the different transformation behavior of the
corresponding vectors under Lorentz transformation. Contravariant vectors transform according

to Eq. (5.4). On the contrary, covariant vectors transform as

v A v A /A !
Ay = guaN 9™y = g2’ = gaa” =1,

where we have used Egs. (5.8), (5.6) and (5.4).
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We became familiar with the behaviour of position vectors under Lorentz transformations. All
other four-vectors behave in the same way. Thus we define:
A contravariant four-vector a* transforms as

a* = A a” (5.9)

and a covariant four-vector a, transforms as

a, =NSay|. (5.10)

How do four-gradients transform? We define four-gradients as
(1000 DY (0 G)
ozt cOt’ 0z’ dy 0z Oct

o (1 0 0 0 8) B ( 0
or, \cot’ 0z’ 9y’ 0z) \oct’
As indicated by the notation, the vectors 0, and 0" transform covariantly and contravariantly,
respectively, just oppositely to the position vectors used in the derivative.

and

-v) o,

Proof: We multiply Eq. (5.4) with gMAAAp:
gu)\A)‘p:c'“ = g#)\A/\pA“Vx”
and obtain
zp = A7) (5.11)
using Eq. (5.5). Using the chain rule we get
J 0Oz, 0 0

= = A“V
(%siL 8:% oz, Oz,

and thus the contravariance of 9* is evident. The covariance of 0, can be shown in an analogous
way.

Multiplying Eq. (5.11) with A/ we get
A _ AL
z, =ALr,=NLA 2

and thus
PAA _ SA
Au A o= 5# .
This means that the transformation matrices of covariant and contravariant vectors are essen-

tially inverse to one another. In matrix representation:

. /
Contravariant : =0 = Ax

T
Covariant : 2/ = (Afl) .
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It useful to know that the scalar product
a, b = gua’t =a'b,
of two four-vectors a, and b* is invariant under Lorentz transformations and thus the d’Alembertian
1 02
Aty — — 72
O=29 8“_028t2 Vv
is also an invariant scalar.

We consider an electromagnetic field with a scalar potential ¢(r,t) and a vector potential A(r,t)
and combine them into a single four-vector

Al =(p,A) .
The electric and magnetic fields associated with these four-potentials are
10A
E:—Vgp——a— and B=V xA.
c Ot

Next, we consider a particle with a rest mass mg and an electric charge e.
The contravariant four-momentum of a particle with a relativistic energy E and a three-momentum
P = ymgv, where v is the particle’s three-velocity and v the Lorentz factor, is

FE
Pt = (C7P> = (7m06> ’YmOV) .

The squared length of P* is a Lorentz invariant quantity:

E?
— 2_ 2,22 222 __ 22
PPt = 2 — P° =vy"mpyc® — v"myv® = myge

If the particle is exposed to an electromagnetic field with a four-potential A* the canonical
four-momentum p* reads as

F
puzpu+fAu: (,p)
c c

with .
E=~vymgc® +ep and p=P+-A.
c

In lowest order (v < ¢) the energy yields the non-relativistic expression:

2
E:moc2+@v2+e<p+(’) U—Q .
2 c

The dynamics of the classical relativistic mechanics follows from the Hamiltonian

2
H(r,p) =ep+ \/m3c4 +c? (p - iA) : (5.12)

From Hamilton’s equations
dr _oH  dp_ oH
dt  op’ dt  Or
one can derive the Lorentz force

dr dpP v
oy, E—e(E+YxB).
a0 e( T )
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5.3 Klein-Gordon equation

We try to derive a relativistic analogue to the Schrédinger equation.
Correspondence principle reads as

E — zhﬁ p — —thV

ot’
or as a four-vector
s E 0
pr=(=,p) ==,V )|=1n0".
c Oct
This leads in case of a non-relativistic free particle with an energy £ = H = % to the

Schrédinger equation.

As a first try we apply the correspondence principle to the Hamiltonian (5.12) of a relativistic
charged particle in an electromagnetic field and obtain

i 2
ep + \/mgc‘1 + ¢? (ZV - iA)

0
zhaw(r,t) = P(r,t). (5.13)

An expansion in C% leads to

h 2 1 (h 2 1
\/m%c4 + 02 (Zv — iA) ~ m002 + % (lv — iA) + O (c4>
0

2

and the contribution due to the rest energy mgc® vanish using the transformation

k3

Y(r,t) =e n

Thus we end up with a classical Schrodinger equation for ¢

Moty 1) . (5.14)

zh%qb(r, t) =

ep + L (hV - €A> 2] o(r,t).

2mg \ 2 c

Problems with the relativistic equation (5.13):
a) The asymmetry of space and time derivatives masks the relativistic invariance.

b) The square root of a differential operator can be defined via a series expansion. This may
lead to problems with the convergence. Moreover, in an expansion, arbitrary powers of the
differential operator occur. This corresponds to a nonlocal theory since the whole shape
of the wave function gets important.

A possible way out is to start with the square of the energy:
2 e )’
(E — ep)® = mict + &2 (p - A) . (5.15)
c
As a consequence, two solutions
e \2
E=ep+ m%c4+62<p— CA>

are possible. In particular, a solution with a negative energy exists.
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Quantization of Eq. (5.15) gives the Klein-Gordon equation:

[(zhgt — ecp)2 — 2 <7ZV - iA) 21 Y(r,t) = micty(r,t)

or using four-vectors

. . 2 92 2.2
<au + ;;AH) (at‘ + ;;A“> + =% ] b(r,t) = (DHD“ + = ) Y(r,t)=0|  (5.16)

The Klein-Gordon equation is relativistically invariant, because the scalar product D, D" is in-
variant under Lorentz transformations.

The Klein-Gordon equation for a free particle

mic?

(aﬂa“ + = ) W(r,t) =0 (5.17)

corresponds to a classical wave equation with an additional mass term.
Their solutions are plane waves

]

vlr.t) = doexp |~ pat| = vesp |~ (Bt - p-v)|.

with a dispersion relation

As expected, there are solutions with positive and negative energy

E = *cy\/mdc? + p?

separated by an energy gap, i.e. states with energies between moc? and —mgc? do not exist.
Furthermore, the energy spectrum is not bounded from below, which leads to stability problems.
A way out is to interpret states of negative energy as antiparticles.

5.3.1 Continuity equation and interpretation of the wave function

How to interpret the wave functions that evolve according to the Klein-Gordon equation?
The Schrodinger equation obeys a continuity equation

where
plr,t) = [ih(r,t)]> > 0 (5.18)

can be interpreted as a probability density. The corresponding probability current is given by

. h * *
J= 9mi W Vi —pVip ) . (5-19>
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For a relativistic theory we expect a similar continuity equation to hold. Written in a covariant
form

ougt = (5.20)
with a four-current
J* = (ep,J) -
We multiply Eq. (5.17) with ¢* and subtract the complex conjugate:
2.2 2.2
0 = ¢ (a o+ =0 )zp w(a o+ >¢*
= Oy (V0" —0HyYT) .

Thus the continuity equation (5.20) with the four-current

. 1h
g =

S (V"0 — o)
mo

is fulfilled.
The current-component j of j# = (cp,j),

s h * *
J—%(w Vi —pVp*) |

equals the expression (5.19) of the non-relativistic quantum mechanics.
In contrast to (5.18), the density-component

ik (1/} Y 81#*)
p= 2mgc? ot ot

is not positive definite and therefore cannot be interpreted as a probability density. That’s
because Klein-Gordon equation is second-order in time.

Let’s consider the non-relativistic limit. Using the transformation (5.14) one obtains

o moc?

ot T Ty

(G

and thus a probability density
2
p Y]

5.3.2 Problems of the Klein-Gordon equation
Problems of the Klein-Gordon (KG) equation:

a) Solutions with negative energy exists and the energy spectrum of free particles is not
bounded from below.

b) The wave function ¢ cannot be interpreted as a probability amplitude.

¢) 1 depends only on r and ¢, and it is not possible to incorporate internal degrees of freedom,
e.g. a spin.
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Problem c) makes a further search for a relativistic equation, that could describe electrons (spin-
%), necessary. At the date of the discovery (1926) the physical relevance of the KG equation
was unclear, because at that time only particles with spin—% (electrons, protons and neutrons)
were known. Later it turned our that KG equation can describe spinless scalar particles, like
pions (or pi mesons) discovered in 1947. The fact that KG equation is a field equation for spin-0
particles can be seen from its non-relativistic limit, which is the spinless Schrodinger equation,

and from the behavior of the wave function under Lorentz transformations.

With regard to problem b), the question arises: Can we interpret p and j in a different way?
Yes, for that we switch to the charge density

ieh
2myg

-/

j*=ejt=(cpJ) = (V70" — ) (5.21)

where e is an electric charge. p’ is now a charge density and can have either positive or negative
values. j’ is the corresponding current density. Below we will see that this interpretation of j#
is compatible with the interpretation of states with E < 0 as antiparticles.
We illustrate this with the free particle. Inserting an ansatz
?

1 = Aexp [h (p-r —Et)}

into KG equation leads to the condition
E? = ¢ (p2 + m%c2)

and thus to two solutions
7
vs=Avexp |1 (T T B,

E, = c\/p? + mc?.

The corresponding charge density (5.21) reads as

with energies

E
=
P+ m002 |¢:|:|

This suggests the following interpretation of ¥: 1 describes a particle with charge +e and ¥_
a particle with the same mass mg, however, with an opposite charge —e.

In order to obtain a normalized wave function we consider a particle in a box with an edge
length L. From periodic boundary conditions we get

n n ?
zﬁ:(i:) :A(i)exp ﬁ(pn'r:FEnt)

with the momentum 5
T
Pn = fn with n = (ng,ny,n;) € N3

and the corresponding energy E, = E,, .
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The normalization condition
_ 8 0 () — 4 CEn | qm|? 3
te = /L3 dre pl (r) = imOCQ ‘Ai ‘ L
yields the normalized wave function

n moc? ?
¢i):\/ﬁexp {h(Pn'I‘:FEnt)}-

Both solutions have the same normalization constant and they differ only in the time factor
exp (:F%Ent). Thus the general solution for positive and negative spin-0 particles, respectively,

reads as
_ (n) _ moc? v
Ve = A = Ay e [ o r = But)
_ (n) _ | moc? ?
T Xn: Byl = Xn: B, oNE exp [h (Pn T+ Ent)] .

Is it possible to describe a neutral particle? From

, ieh N 81#*) __eh ( *81/)>
p= 2mgc? (1/} ot ot ) moc? fm ot (5-22)

it follows that ¥ must be real in this case. Thus we obtain the general wave function of a neutral
particle as

n 1 n n
Q;Z)(() ) = 72 [w—(i-) (pn) + ¢£) (_pn)}

B moc? 9 cos (pn-r—Ent>
- \VE,L3 i '

(n) ; : : _ (m\* _ (n)
Note that ¢ contributes with an opposite momentum —p,,, therefore (1 =1, ~ and the

charge density (5.22) vanishes, i.e. p’ = 0. However, the current density also disappears, j’ = 0,
and the continuity equation becomes a trivial identity.

In summary, for the relativistic motion of a free spinless particle there are three solutions of
the Klein Gordon equation corresponding to the electric charges (4, —,0) at each momentum
p. Moreover, wave functions 1 and 1* describe opposite charges.
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Chapter 6

The Dirac equation

6.1 The Dirac equation

The Dirac equation, in contrast to the Klein-Gordon equation, is of first order and only valid in

the case of spin—% particles. Due to the fact that the Klein-Gordon equation (KGE) expresses
nothing more than the relativistic relation between energy, momentum and mass, it must be

valid for particles of arbitrary spin.

The Dirac equation has a completely different origin and can be derived from the transformation
properties of a spinor under the Lorentz group. We will address this later on — first we want to
understand Dirac’s original line of thinking.

The KGE suffers from two flaws: The probability density is not positive definite and states with
an negative energy appear. For these reasons, the KGE was (historically) initially discarded
and Dirac was looking for a replacement of it, namely a relativistic invariant equation of a field
function ¢ (x), which should describe free electrons.

In the case of non-relativistic electrons, PAULI (1927) found the correct description: Within
the framework of the Schrodinger picture, an non-relativistic electron is described by a wave

(31 (Xa t)
X,t) = .
Here |¢;(x,t)[?dx, (i = 1,2) are the probability densities of finding the electron with a spin
in positive (i = 1) or negative (i = 2) 2-direction within the volume element dx around the

function with two components:

position x.

Total angular momentum operator:

where

and

1_0]. 2_0-2 3 ]. 0
J_<1 0)’ "_<z 0)’ 7= lo -1

Pauli spin-matrices
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Y(x,t) (respectively every component of it) should satisfy the Schrodinger equation

0 h?
Zhad](x’ t) = 7%A¢(Xa t)

This equation is certainly not relativistic invariant, because only one temporal but two spatial
derivations appear.

For reasons which would not seem mandatory today, Dirac was looking for a field equation that
would be linear in temporal and spatial derivations. We will view this as a heuristic principle
and make the general linear ansatz

(b Oy — a)Y(x) =0, (6.1)

where the number of components of 1, the nature of the coefficients v* and the constant a are
still completely undefined.

Applying the operator (vhy*0,) again to (6.1) gives
| = B2(4"9,)(7"8,) = 1h(y"3,)a] ¥ = 0
resp. ( — hQW“’y”@#@V + a2>¢ =0

Because of 0,0, = 0,0,, one can replace y#v" with the symmetric combination

%(V“WV +9H) = %{7”7 7}

and arrives at

2
(;{W”, 'V”}(%@u + ;) Y=0 (6.2)

On the other hand the principle of relativity demands that the energy-momentum-mass relation
is satisfied, i.e. that every component of v satisfies the KGE

m?2c?
(D—i— 2 )@Z)(:E):O

From this we derive that a = mc and that the coefficient of 9,0, in (6.2) has to be g"”

a =mc and {’y“, ’y”} = 2gM" (6.3)

This relation must be satisfied for the coefficients.
With p =v =0, p =v =7 and p # v follows successively

(70)2 =1, (WZ)Q =—1, M= w#v).
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These conditions can neither be satisfies by complex numbers nor 2 x 2-matrices as a choice for
~*. However it is possible with 4 x 4-matrices, e.g.:

’7—<0 _]l>’ /7_<_O_‘7 0 ) ]_17273

Obviously this is not the only possible choice: v* = Sy#S~! with an arbitrary unitary 4 x 4-
matrix S will also satisfy (6.2). The Dirac equation is then satisfied with ¢’ = Sq.

The 1928 postulated equation of Dirac was

(sz“@u - mc)d)(x) =0, (6.4)
with
.
_ | (=
o) = v3(x) |’
()

where 1(z) is a 4-component field function, a so called Dirac spinor.

Our goal now is to construct a (probability-)current j* (like in the KGE case) and check if the
density is positive. Proceeding from the Dirac equation

(zh’yoﬁo + zh’yj('?j — mc)z/z =0, (6.4)

we will consider now the adjoint (or Hermitian transpose) of the Dirac equation (6.4), given by
a complex conjugation and subsequent transposition. This gives:

—1hd, Ty — meyt =0, (6.5)

where
,7/1,’[ _ 707 =0
_/ylj/’ H= 17273

Definition: 1) = 1119 | represents the adjoint spinor of ¢ and with this, the current density
and other quantities can be written in a more compact form.
Now, from (6.5), we have

—1hdpwTy° + Zhﬁjwfyj —meypt =0,
Multiplying from the right with vy (and using 7/~7% = —v%97) leads to
—ah(809) ™)y — 1hd;01n Y — eyt =0
= | +1h(0u )Y + mep =0 (6.6)
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With (6.6) and the Dirac equation (6.4) one can show now that the 4-current density

7= eyt

is conserved:

% ,u]u = (@ﬂz) Y + J}'V“ (@ﬂﬁ)

me - —mec
- = - 6.7
e (6.7)

=0
= 9y’ =V -2, continuity equation. (6.8)

Now, writing out the left hand term of the above equation explicitly, we have
10 0
-z TA0~0) = 2 (of
~o (!0) = = (vhe) |

and because

1
pi= =1’ =0T =l + ol + [sf + [l (6.9)

is positive, p can serve as probability density for the particles described by the Dirac equation.
This brings the continuity equation (6.8) to the form

0
5=V (6.10)

with the current density

3=cyy|= i Py Y = cyplay,
paved

where a := ~%.
Each component of i satisfies the Klein—Gordon Equation. Multiplying the Dirac Equation
(6.4) by 1hvy" 9, from the left:
—h%”@,ﬁ“@ﬂb— thmey? o, =0
~————

=mZ2c2¢y Dirac eq.

1
= =075 (" +9) Bu0utp = mPcty

ghrv

m2c?

h2

=| 9,0 b+
——

1 92 172
L2V

b =0 (6.11)
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We will solve this with the Ansatz:
Y= Aefz(wtfk-x) )

After applying Eq. (6.11), we get

2 2.2
w 5 m-c
—Z + k% + = 0
= (lw)? = A(hk)? + m2c!
or, E? = p? + m?*ct

Special case:
Particle at rest, p = 0 and ¢ = Ae”# "t Then,

1 E
mogaow = 70;1/) = mcy

or, ENYA =mc’A
or, E =4+mc

The eigenvalues of 4° are +1 (doubly degenerated) and —1 (doubly degenerated), therefore there
exist two solutions with positive energy +mc? and two solutions with negative energy —mc?.
Actually it is easy to see (by writing out the four components of the Dirac equation in full), that

the eigenvalues are given by
1/2
E = +(m202 +p2> (2 times)
1/2
E=- (m202 +p2> (2 times)
For every p exist two solutions with £ > 0, corresponding to the two states of a spin-% particle,
and two solutions with F < 0.
An electron in a state with £ > 0 can therefore (by interacting with other particles or fields)

jump in a state with ¥ < 0 and then cascade downwards to F = —oo while emitting an infinite
amount of radiation.

Dirac’s solution of this problem: The electrons possess spin—%, therefore they satisfy the Pauli
exclusion principle. Dirac assumed, that states with negative energy are already completely
occupied, the Pauli principle prohibits that further electrons fall in the sea with E' < 0.

Remark:
This “Dirac sea” is the vacuum. The vacuum is therefore by no means “empty”. Important
postulate of this theory: antiparticles.

Assuming there exists a vacancy (“blank position”) within the electron sea — a “hole” with
energy —|E|.

Then an electron with energy FE is able to fill this hole by emitting the energy 2FE and only
leaving a vacuum :

e~ + hole — energy

Thus the “hole” possesses an effective charge +e and a positive energy. Dirac’s theory postulated
the existence of antiparticles for all particles with spin—%, and over time e™, p, 7, 7 and others
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were all found. It became apparent that bosons also possess antiparticles (see quantized complex
Klein-Gordon field).

Remark:

Despite the successful resolution of the negative energy problem, the Dirac equation does no
longer represent a single particle equation! It describes particles and antiparticles. The only
consistent philosophy is to treat the spinor 1 as a field and |+/|? as a measure of the amount of
particles present at a certain point. This field is naturally a quantum field.

6.2 Solution of the Dirac equation
We choose plane waves as an ansatz for a solution:
Y(x) = e WP u(p) = e n PPN y(p).

Furthermore 1 (x) must satisfy the KGE, which demands py = E/c = /p? +m?c? and p =
(Ps» Py» p2)T. Therefore, from Dirac Equation (6.4), we get,

(1 (= 3 ) = me) up) =0

= (v"pu—mcju(p) =0, (6.12)

where u(p) is a spinor to be determined.

First we want to consider the case p = 0, i.e. a particle at rest where p = (E/c,0,0,0)T =: pg,
——

Po

2 respectively. Calculating the zeroth component from

with pg = E/c = mc or E = mc
Eq. (6.12), we obtain

(’yopo —mc)u =0
or written out in matrix form

Py — Mmc 0
Po — mc 0
—po — mc —2mc
—po — mc —2mc

Therefore (7’py — me)us(pr) = 0 has two linear independent solutions

us(pR) = (13) ,

where s = :I:% and

are two-spinors.

98



CHAPTER 6. THE DIRAC EQUATION

Now we want to consider p # 0. We combine the two upper as well as the two lower components
of the Dirac spinor to a two-spinor respectively. For an arbitrary four-vector we make the ansatz

u(p) = <§7> :

where £ and 7 represent the aforementioned two-spinors. Let us also take, 1(x) = u(p)e_%p““":H =

u(p)e” i),

From the Dirac equation (6.12) follows

p—mec| —p-o &) _y¢
+p-o ‘—po—mc 7 ’

where we used the definition of the Dirac matrices

and defined

as a vector with 2 x 2-matrices as entries. From the above equation, we get:

(po —me)€ = (p-o)n=0 (a)
(p- )& —(po+me)n=0 (b)
Rearranging of (b) gives us:
__Pa
= po + mc

Substituting the above expression of 7 in (a):

(po—mc—w>§:0. (6.13)

P + me
The appearing numerator results in

(p-o)’=(p' o)’ +(* o)’ + (p°0’)
+p1p2 (0102 + 0_201) +p1p3 (010_3 +0301)+p2p3 (0203 +U3J2)
—_———— —_——— —_——
where we used {0, 07} = 24; j and (0?)? = 1. Therefore, from (6.13), we get

(p0>2 _ m202 _ p2

(po + me)

£=0.
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Since (pg)? = (p°)? = %2 = p? + m?c?, ¢ is arbitrary and we choose £ = x; and find for u:

Xs
us(p) =N p-o )
po + mc Xs

where N handles the normalization. To determine it, we need the conjugated spinor us(p) given

by

%@FﬂﬂMW=N(ﬂ7IyUXQ-

Po + mc

Then,

Q@W@Zmlfigﬂi (6.14)

e (po +mc)? )’ '
where we write the numerator as

E2
(b-of =p ="y —m’
= 9 — m2e?

= (po + mc)(po — mce) .

Now, from (6.14), we calculate further

m@mszﬂyﬂmwmmww@>

(po +mec)?
:N2P0+mc—po+mc
po + mc
a2 2me
B Ppo +mc
21

)

what results in a normalization constant

[po + mc |E + mc?
N 2me 2mc? (6.15)

For different indices we find using (6.15)

Ur(p)us :N2 ? s T 7 o 7T~‘ s
(p)us(p) ﬂx @WHmPﬂX
(o e m)
(po + mc)?
— 5. (6.16)

Analogously, for the solutions with negative energies, we choose the ansatz 1(z) = e™#P% v(p),
where v(p) is again a spinor to be determined.
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Substitution in the Dirac equation (6.4) gives:

(sz“ (+;> Pu— mC) v(p) =0

= | (¥'pu+mc) v(p) =0. (6.17)

For a particle at rest, p = 0, we have

(v°po + me) v(pr) = 0
and with pg = mc
Po +mc 2mc
po + mec 2mece

0 _ _
YPot+me= —po + mec N 0

—po + mc 0

vs(pR) = <>(<)S> .

For arbitrary and finite p # 0, we take ¢(x) = et P! ou v(p), with v(p) = (£>

We therefore choose

n
From the Dirac equation (6.4), we get

po+tme| —p-o &\ o
+p-o \—po+mc n ’

and arrive at the two equations:

(po+me)§—(p-o)n=0 (c)
(P-o)&—(po—me)n=0 (d)
From (c) follows & = porj:nc 7, what substituted in (d) gives:

(W—(po—m0)>n=0-

p° + me

=0, as before

Therefore, 7 is arbitrary. We again choose two linear independent solutions V p and in summary
find the two spinors:

[po + X + P

pPo —mc s pPo —mc Xs
= e — p e = _ + ™m
us(p) 2me (Xs) ’ vs(p) 2me (po ¢ )

po +mc
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We have following orthogonality relations for the above determined solutions:

Ur(p)us(p) = 0rs
Uy (p)vs(p) = —6rs
ur(p)vs(p) = 0
Ur(p)us(p) = 0.

Remarks:

a)

b)

This normalization is invariant under orthochronous Lorentz transformations. Proof: see
next section in “Transformations of bilinear forms”.

The density p = j° = cp7% is not Lorentz invariant since it is the zeroth component of
a 4-vector:
E.g. for ¢, s = etkr U, s one has

Vs = e (k)Y us (k)

(Note that p? = p2 — m?c? = (po + mc)(po — mc).) This is plausible since the spinors are
normalized such that the density is one in the rest system of the particles. For a Lorentz
transformation the product of density times volume must stay constant. Since the volume
is reduced by a factor v = /1 — (v/c)? (note that only lengths parallel to the velocity
vector are contracted) the density must be increased by a factor 1/ = E/mc? (note that
E = ymc?, where m the rest mass of the particle).

Analogously for states with negative energy, ¥, s = etk Vs

Due to the linearity of the Dirac equation, the general solution is given by a superposition in
the form of a Fourier integral:

0@ = [ 585 3 {el @) + e o e)

Here a,(p) and S}(p) represent two arbitrary complex valued functions.

6.3

Non-relativistic limiting case and the magnetic moment of
the electron

Particles with a spin possess an “inner” magnetic moment. A charge e, which is moving on an
closed circular orbit, interacts with a magnetic field and possesses an effective magnetic moment,

= —L
K 2m
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Would nature be “simple”, the proportionality between electron spin S = %ho- and it’s magnetic
moment e/2m would be such, that the inner magnetic moment would assume the value (e/2m) -
|S| = eh/4m.

The resulting shift in frequencies of the spectral lines would correspond to the “normal” Zeeman
effect. However experiments show an “anomalous” Zeeman effect — the proportionality constant
is 2 times the one of the circular orbit motion, i.e. the magnetic moment of the electron is —pu
where

e e eh
u=2—S=—S=—o
2m m 2m
The factor 2 is often called Landé factor, gs = 2. This is an immediate result of the Dirac
equation. To derive this we have to consider the equation in the case of an electron in presence

of an electromagnetic field.

6.3.1 Dirac equation with electromagnetic field

We use the scheme of “minimal coupling” (The reason will later on become clear when looking
at gauge theories, but is in this case analogous to classical mechanics and electrodynamics):

e 0 0 e .
- -A —th— — — - - A
P—p - or m@aﬂ — m@aﬂ .
0 0
E—-FE+ep or h— —ih—+ed.

ot ot

Using the co- and contravariant definitions of the momentum operator,

Pu = 1hd, pt = 1ho* |
where 0,, = a% or OV = 8211, we have as temporal and spatial components:
0 : 0
0 %
= = Zhi = —pP; = Zh - _Zh -
p po Jct p pi o0x; ox’

In this formulation, the minimal coupling scheme becomes
e
Du = Pu — EAu )

where A, = (¢, —A) the (covariant) four-vectorpotential — with ¢ the electric potential and A
the usual vector potential. Expressed as derivations we find:

0 0 e e
Zh@u = (Zha(ct), ZhV) — Zh@ — E(b, ZﬁV — EA
—_—

¢ (1hg;—ee)

Therefore, the Dirac equation under minimal coupling becomes

Wy 0 — mep =0 — | F (zh@u — iA“> Y —mep =0 (6.18)
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We then get:
{0(2h 0 —egb)w—l- “( —A)—mc}w—()
’7 a(ct> c ’7 pl 1 -
871/1 O | () — 2 (— 0 2
= h ey | (=pi) == (Ai) | + v mc” +ed
ot —— —

= Zh@%} = {ca- (p — iA) + Bmc? + eqﬁ} =0, (6.19)

=:Hpjrac (Dirac Hamiltonian)

where the introduced matrices are defined as

1 0 0 o o

o i ‘ g o 2
,6’-(0 ]l)’ « _<al O> and a= a3
Q

6.3.2 Non-relativistic limit

In a first step, we partition the 4-spinor v into two 2-spinors ¢ and x:

Using this in (6.19) we get

0 (¢ 0 o e ; 1 0 D D
9 (¢\_ [o-7X @ @
= zha (5() =c (o- . 7‘_@) + mc? (‘5() +e¢ <>2> (6.20)

In the non-relativistic limit the rest energy mc? is the largest energy and we define:

(% _ ei zmg2t ()0
X X
Then from Eq. (6.20), we obtain

¢y _ [o-7X ARy
zh<x>—c(a.ﬂ_¢)+egb<x> 2 2<x> (6.21)

In the second equation, 1hx = co - wo + ey — 2mc?y, the last term is much larger than x and
epx. So, neglecting those two terms we get,

0=c(o-m)p—2mc*x
o-m

= X =

a 2mc('0
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Note that 7w/m ~ v, i.e. of the same order as the velocity, and therefore y oc ¢ < ¢ (in the
non-relativistic limit). Therefore one denotes ¢ as the “large” component and y as the “small”
component.

Inserting the expression of y in the first line of (6.21), 1hip = co - wx + epp, leads to

zh%f = {%(a’-n)(a’-#)—i—eqﬁ}@. (6.22)

To evaluate (o - 7)(o - 7), we use that for general a, b

(o-a)(o-b)=0cdc’V = oo/ 'V
—~—
=0;;+eiik ok

= a'b’ 41 (e7%a'V) o*

Therefore,
(c-a)(oc-b)=a-b+10-(axDb)
and
(0-m)(0 m) =77+ 10 (mx 7)
—(p—-A)+w- (p—-A)x (p—-A) .
:—S(Axp+pr)
It is

(A Xp+pX A)az = (Aypz - Azpy) + (pyAz - psz)
= (pyAz - Azpy) - (psz - Aypz)

= [py7Az] - [pmAy]
h /o 0 h
- (ayAZ - aZAy) =2V x A),

and the other components are obtained by cyclic permutation. Therefore, the whole expressions
results in

1

h h
Axp+Axp=—-(VxA)=-B
7

From (6.22), we finally obtain
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The newly defined
Hpauti = 5—(p— —A)’ — —0 -B+eo (6.23)
m m
is the Hamiltonian of the Pauli equation, the non-relativistic equation for an electron (spin

1/2) described by a 2-spinor .

Proof:
Let B = V x A be a homogeneous magnetic field, i.e. B(x) = B = const. Furthermore, we
choose A = (B x r).

We make the control calculation

1
rotA:VxA:§Vx(er)

Byz — By
= -V x | B,x — Bz
B,y — Byx
1 Oy(Byy — Byx) — 0.(B.x — By2)
=3 0.(Byz — B,y) — 0,(Byy — Byx)
0z(B.x — Byz) — 0y(Byz — B.y)
1 2B, B,
2
2B, B.

Considering the quadratic term of (6.23), we have

1 e 2 p? e e?
— (p—-A) =—— —(p-A+A. A?
2m (p c ) 2m  2mc (p-A+A-p)+ 2mc?

where for the middle term we find

(P-A+A-plo=p-(Ap)+A-(py)
=P-A)e+A-(pp)+A-(Py)
——

=bv.A=0,
Coulomb gauge

=2A -poyp.
Therefore we can calculate further
p-A+A -p=2A-p=(Bxr)-p
= €ijk Bixpi
= €jkiZ;PrBi
=(rxp)-B
=L-B,

where we introduced the orbital angular momentum

L=rxp.
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By also introducing the spin angular momentum

Eq. (6.23) takes the form

P e o2

P (L+28) B+

2m  2mec 2me
—_—

HPauli = 2 A2 + e¢) .

=:pu, magnetic moment
of the electron

So the magnetic moment consists of two parts

K = [orbit + Mspin

where

e
Mspin = g %S,

with the gyromagnetic ratio (or Landé factor)
g=2.
QED finds g slightly larger than 2, and can predict a precise value of g with high precision (10

digits).

6.3.3 Relativistic corrections to the Pauli equation

To derive the relativistic correction of the Pauli equation, we again consider the Dirac
Equation (6.19) in the formulation with the Dirac Hamiltonian:

0
Zh% = HDiracwa
with
HDiraczca'W+,BmC2—|—€¢7 and ﬂ:p_EA'
C

Taking the stationary equation, ‘HDiran = EyY ‘, we choose the ansatz: ¢ = <90>

X
Then,
AN 0 o-m\ (¢ me? + ed 0 ®
or,
(FE —eg)p — co -y = mc’p (6.24a)
(E —ed)x — co - mp = —mcy (6.24b)
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For simplicity consider the case A =0, i.e. @ = p. Then (6.24b) yields:

= (E+mc® —e¢)c(a - p)p
(G2 - L)

2mec  2mc 2mc?

b.c 1 _ 1 __1 1 ol (] B=mc®—co
o E+mc2fe¢ 2mt:2+(E7mc27e¢) 2mec2 1+ Efmc2fe¢ 2mec2 2mc2

2mc2

Inserting this in (6.24a) gives

_ 2 ' oc-p 1 B P
Ep=(ep+mc)p+c(o p)(2mC —2mC(E mc? e¢)2mc2>g0

) (e p)? 2 (0:p) E—mc®—ed
- 2m tep +me 2me 2me M
2/2
=p m
= Mo (6.25)

To leading order x = 72 = O(v/c), therefore neglecting smaller terms, we find that the

Dirac spinor ¢ =

A

) is correctly normalized to 1, if we instead of ¢ choose the rescaled spinor
¢ = (1+p*/8m*c?) .

1= [ardp= [ar (o1 xP)n (i)z/dr (oo —x'x)
- faret (1 (52) ) o

i.e. with

P = (i) is correctly normalized.

We will now rewrite (6.25), Ha p = F ¢, using ¢:

2 -1 2
o—1- p — p -~
v =10 (p_<1+8m202> S0N<1_8m202> v

Therefore (6.25) becomes
(E—=mc)Q ' = (Hy —mcH)Q o
Q2E o= Q Y (Hy —mc*)Q o where E' := E — mc?.
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Inserting the definition of €2 yields

) 2 2 / 2
P . D D o-p L —ep p _
-2 Vpe={(1--L2 )} [Z yes— pl(1--2_
( 4m202> v {( 8m262> <2m t+e¢ 2mec  2me 7 p) ( 8m202>} v
o

2 / 2 2 2 2
) ‘p E'—ep p p p p _
- {Qm t+e¢ 2me  2me 7P 8m2c? <2m + ed)) <2m + egf)) 8m202} L4

2 4 2 2 2 '
_ p p p / p P o-pE —eo
= Fp=<{= — —
14 2m +eg 8m3c? 4m?2c? 8m?2c? 9 ¢8m2c2 2me  2me
2 2
b p
~ 8m2c? (B —eg) +( ¢9) 8m2c?
Because (o - p)? = p? one is able to write
—.A =:B
—~ =
Hood P Lo P (U'p>2El_€¢+El_e¢ (U'p)2—2°'p B—epop
2m 8m3c? 2me 2 2 2me 2me 2 2me
(k)
42 2
(xx%) = A°B + BA" - 24B4 where on the left side, following
= A(AB - BA) — (AB - BA)A = [A, [A, B]] relations were used:
1 /
Up,[o’ p7E_e¢] h
= 8mi2 { } [pi, Vo;i] = —[0;,0;¢]
=eho - V¢ 5 " ¢
1eh =—0,0:0 = —0,0;
- ol P oYY 0= 009
—_—
= 0,0 [pi, V] + UZM% —o0j0;, fori#j
+0jloe~Ni]pi + [0i, 0] Vi 7i% = 1 fori=j
= —1thA¢p — 210 - (V¢ X p) ’
(04, 05] = 2ugij10%
2 4 2
_ P P eh eh _
Eo={L tep-
v 2m e 8m3c? + 8m2c? A+ am22? o (Voxp)o o
pi-term  Darwin-term LS coupling

These are the leading relativistic corrections of the Pauli equation. Corrections of higher order
in v/c can systematically be calculated by using the Foldy-Wouthuysen transformation.

If A # 0 one has to replace p through p — eA as well as adding the additional term gs5--S to
the Hamiltonian.
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The meanings and implications of each of the additional terms have already been discussed in
Quantum Mechanics I:

e The Darwin term only has an effect for s-states when considering a Coulomb potential,
because AL = 474(r).

e The p*-term follows from

2 2 1 2 \2 2 4
E:mc2 1+ ])22%7”62(1_}_]9_(]0 )):mc2+p— p

m=c

+ LS coupling refers to spin-orbit coupling: For a central potential we have V¢ = I¢/,

therefore:
eh h 1 ,
WO‘-(V(]ﬁxp):m;eqﬁ(r)o-(rxp)
h o ed .
=—5—0o-L, L : Orbital angular momentum
4m2c?2 r

6.4 Lorentz covariance of the Dirac equation

Lorentz covariance and the transformation of spinors

The principle of relativity states that the laws of nature are identical in every inertial reference
frame.

We consider two inertial frames I and I’ with the space-time coordinates x and z’. Let the
wave function of a particle in these two frames be v and v/, respectively. We write the Poincaré
transformation between I and I’ as

¥ =Ar+a. (6.26)

It must be possible to construct the wave function ¢’ from . This means that there must be a
local relationship between 1" and ):

V(') = F(y(x)) = F(p(A™ (2" — a))). (6.27)

The principle of relativity together with the functional relation (6.27) necessarily leads to the
requirement of Lorentz covariance: The Dirac equation in [ is transformed by (6.26) and (6.27)
into a Dirac equation in I’. (The Dirac equation is form invariant with respect to Poincaré
transformations.) In order that both ¢ and v’ may satisfy the linear Dirac equation, their
functional relationship must be linear, i.e.

¥(a') = S(A)() = S)BA ' — a)). (6.282)

Here, S(A) is a 4 x 4-matrix, with which the spinor 1 is to be multiplied. We will determine
S(A) below. In components, the transformation reads:

4
Ya(2') =) Sap(M)s(A™ (2" — a)). (6.28D)
p=1
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The Lorentz covariance of the Dirac equation requires that 1)’ obey the equation

(=y"0, +m)y'(a") =0, (c=1,h=1) (6.29)
where
0
r_
On = oz’

The ~-matrices are unchanged under the Lorentz transformations. In order to determine S,
we need to convert the Dirac equation in the primed and unprimed coordinate system into one
another. The Dirac equation in the unprimed coordinate system

(—07"0 + m) () = 0 (6.30)
can by means of the relation

0 or" 0
ozt Ozt Oz w0y

and
ST/ (@) = P(a),
be brought into the form
(—y*AY 0, +m) STHA) Y (') = 0. (6.31a)
After multiplying from the left by S, one obtains
—1SAY SO (7)) + my/ (2)) = 0. (6.31b)

From a comparison of (6.31b) with (6.29), it follows that the Dirac equation is form invariant
under Lorentz transformations, provided S(A) satisfies the following condition:

S(A) Y S(A) = AV, (6.32)

It is possible to show (see next section) that this equation has nonsingular solutions for S(A). A
wave function that transforms under a Lorentz transformation according to )’ = St is known
as a four-component Lorentz spinor.

111



CHAPTER 6. THE DIRAC EQUATION

Determination of the representation S(A)
Infinitesimal Lorentz transformations

We first consider infinitesimal (proper, orthochronous) Lorentz transformations

ANy =9", + AwYy, (6.33a)
with infinitesimal and antisymmetric Aw"*

Aw't = —Awh” . (6.33D)

This equation implies that Aw"# can have only 6 independent nonvanishing elements.
These transformations satisfy the defining relation for Lorentz transformations

A g AP, = g™ (6.34)
as can be seen by inserting (6.33) into this equation:
99" 9%y + A + AwP + O((Aw)?) = g™ . (6.35)

Each of the 6 independent elements of Aw*” generates an infinitesimal Lorentz transformation.
First we consider two typical special cases — rotations and Lorentz boosts:

Aw’ = =AW = —A¢ : Transformation to a coordinate
system moving with velocity cA& (6.36)
in the = direction
Awly = —Awl? = AY : Transformation to a coordinate
system that is rotated by an angle (6.37)

Av about the z axis (see Fig. 6.1).

Rotation around the z axis

The spatial components transform like (note that only the x and y coordinates are transformed):

1
A~ cosd sin
- —sin ¥ cos ¥
1
0
B 0 1 )
=1+ 10 + O(¥*)
0

for infinitesimal 9. Expressed as single components one finds
Ay =0, +0A",, where Al = —A% =1, all other 0.
It must be possible to expand S as a power series in A”,,. We write

S=1+7, S'=1-7, (6.38)
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Figure 6.1: Infinitesimal rotation, pas-
X sive transformation

where 7 = 7(¢) is likewise infinitesimal. We insert (6.38) into the equation for S, namely
Sy S =AY, y*, and get

(L =7y (L+7) =9"+9"T = 79"+ O(7%)
= (8 + D AY,) + O(0?)

from which the equation determining 7 follows as
= A7 -7y L A,
or At — 71yl = 942AL = 942

VT = =9y AN = iy

what yields the solution

B 9 (a3 0
T—’I/E 0 0_3 .
Proof:
. 1_22 0 o'\ [(c® 0 B ad 0 0 ot
TTETE =% =0t 0) o o 0 o3 \—o! 0
B ) 0 olod — g3g!
_Z§ —olo® + 30! 0
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QT_Tg_zﬁ 0 o2\ (c® 0 _ o 0 0 o2
K T 202 0/ lo o® 0 o) =02 0
B ﬁ 0 o203 — 5302
~ "9\ 6208 + 6302 0

0203_:201 v 0 27,0'1 . 1
) (—2101 0 )“197

To within an additive multiple of 1, this unambiguously determines 7. If there were two solutions,
then the difference between them would commute with all v#, and thus be proportional to 1.

By a succession of infinitesimal rotations we can construct the transformation matrix S for a
finite rotation through an angle 9. This is achieved by decomposing the finite rotation into a
sequence of N steps /N

S= lim (14 7(/N)Y

N—o0

o (100 (70 0}
e Y WIS

B 9 (o 0
P15 0 o3

Y 9 (o3
= cos o 1+ 2sin 5 <UO 003> . (6.39)

Note that in the arguments of cos and sin we find J/2, which results in

S2r)=-1 and S(4r) =+1.
This means that spinors do not regain their initial value after a rotation through 27, but only
after a rotation through 4, a fact that is also confirmed by neutron scattering experiments.

Also note that S(¢)) does not mix the upper and lower components of a 4-spinor . Therefore
the upper two components transform exactly like Pauli (2-)spinors with respect to rotations:

0= <b> o) = 37 olz).

For a rotation through an angle 9 about an arbitrary axis n = (ny, ns, n3)7, one has:

S =exp {zgn' (g 3)}
= exp {zg lnl <001 001> + no ((702 002> + ns (%3 ;)3)1} ) (6.40)
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Boost in z direction

As second example we want to consider a Lorentz boost in x direction. With the definition
tanh £ = v/c we find the matrix representation of A is given by (see Sec. B.2):

cosh¢é —sinh &[0 O

A= —sinh & coshé |0 O
o 0 0 1 0
0 0 01
0 —1]0 0
_ -1 0 0 9
0 0110 O

where to derive the second representation we assumed £ as infinitesimal. This yields the equation
AN, =14+¢AY,, where A% = Aly=—1, all other 0

for the single components of the transformation matrix. Analogous to the previous example of
a rotation, we take

S=1+4+r71, St=1-r,
where 7 = 7(§) is assumed infinitesimal. 7 is determined through
SIS = (1 -1 (1 +7)
— ¥ AT — Y+ O(72)
= 7(0, 6% + O(E).
which leads to the equations

= YT -1y = EAY,
or A7 —71° =¢y'A% = —&y!
yir =yt =6 Al = -6,

which are solved by

1,44 1.4 1({0 4!
T——§57V— 5504— <01 0]

2
Proof:
1
Vo= = =580y =2t = ¢y
—— ——

=1 :7.\/1

1
vyt = =580y ) = 6"
—— ~——

= ~ly140 =1

=—(-1)7"=°
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By a sequence of infinitesimal boosts, we can construct the transformation matrix .S of a finite
boost with the parameter { = N - ({/N), where we assume N — o0, so that £/N is infinitesimal.

This yields

1
:coshéh]l—sinh£<01 U)
2 2 \oo 0

We want to consider now a general infinitesimal Lorentz transformation
Ay =0, +Aw", and (Ahy, = 0, — Aw”,.
To first order the transformation S has the form

S(A)=1-— iJWAw’“’

resp. S(A)"'=1+ iUWAw’“’,

where the matrix o, needs to be determined. Condition (6.32), | v*A”, = S~14*S | implies

(1 — le'agAwa'B) ~H (1 + iaaﬁAwaﬁ> =" + i[’}/“, Uag]Awaﬁ

;’Y’u + AwMV»yV
- ih“, 0ap) AW = Awtyy | (6.41)
The equation (6.41) has the solution
1
Oaf = 5[’}@, vs] - (6.42)
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Proof:
[7#, 77y P] = Aty @qP — g Pt
=2gPH —~H~B
= Yy * P — 290 gPH it P
2gHH —y Xyt
= 29"y — 2g7°
1
= 5[7”, Yav8) = 1(g" a8 — 9" 87a)
(6.42) " " 1
= [ oasl = 17" (Va8 — V870)]

2
=1(9"av8 — 9" 87a) — 1" 3Ya — 9" aV8)
= 21(g" a8 — 9" 87Va)

) 1
Z[’Y“' Jaﬂ]Awaﬁ = _i(guo/yﬁ - g“ﬁ')/a) Awaﬁ

1
= —i(Aw“ﬁfm — AW v,)
=—AwH(*)
= —Awl,
= Awr,v”

(*) Note that we will address the antisymmetry of Aw”# later.

To arrive at a finite Lorentz transformation, we again use a sequence of infinitesimal transfor-
mations:

. ) 2 WtV N
SAW™)) = Jim (1 - 4N"W>

?
= exp { — 4aw,w“”}

As a conclusion, we will test our result on the concrete example of a rotation about the z axis.
We have

S=1+r71, with 7= —iaijw“"

= —i(auAu}lQ + ngAw21)

1
= —5012Aw12,

w21

where the antisymmetry of Aw'? = —A and 019 = —o91 were used. With the reminder
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Y= (7% =1, =42, —3), we further find:

7

o12 = 5[71,72]
1
= 5(’7172 - mm )
——
=—7172
=M
_, 0 —o1 0 —o?
o1 0 o? 0
=—403
=1| —glo? 0
0 —0109
- a0
—\o o3
Combining the previous results and using Aw'? = —Aw'ly = —9Aly = —19, we finally arrive at
=

S =1- %(712 Aw12

9 (o3 0
_1+22<0 03> v

which corresponds to the expected result. The remaining example of a boost in x direction

remains as an exercise for the reader.

Antisymmetry of Aw’

From a group theoretical standpoint we know that a Lorentz transformation L € SO(3,1), which

implies
AgAT = ¢
or A)‘Hg“”Ap,, =g
For an infinitesimal transformation A we find
Ay =6y + Aw?y,
what inserted in (6.43) leads to:
(67 4+ Aw? ) g™ (60 + AwPy) = g™

= ¢+ AN 4+ AP = ¢

= A = —Aw”
Note that for mixed indices, Aw?, is in general not antisymmetric, e.g.:

Awly = —Aw'? = + AW = —Aw? (cf. rotation around z axis)

A’y = —AW = + AW = + AW, (cf. boost in z direction)

(6.43a)

(6.43b)

(6.44)

118



CHAPTER 6. THE DIRAC EQUATION

Spatial Reflection, Parity

The Lorentz transformation corresponding to a spatial reflection is represented by

1 0 0 O
0o -1 0 0
no_
AF, = 0 0 -1 0 (6.45)
o 0 0 -1
The associated S is determined, according to (6.32), from
4
STIAES = APy =) gy = gttt (6.46)

v=1

where no summation over y is implied. One immediately sees that the solution of (6.46), which
we shall denote in this case by P, is given by

S=P=e¥y. (6.47)

Here, €'¥ is an unobservable phase factor. This is conventionally taken to have one of the four
values 1, +1; four reflections then yield the identity 1. The spinors transform under a spatial
reflection according to

V(@) =9 (x, 1) = ¢ (=x, 1) = 99 (x) = €97 09(—x', 1) . (6.48)
The complete spatial reflection (parity) transformation for spinors is denoted by
P = ey PO (6.48")

where P(©) causes the spatial reflection x — —x.

1

From the relationship 7° = 3 = 0 one sees in the rest frame of the particle, spinors of

0
-1
positive and negative energy that are eigenstates of P — with opposite eigenvalues, i.e., opposite
parity. This means that the intrinsic parities of particles and antiparticles are opposite.

Charge conjugation

We revisit the Dirac equation with an electromagnetic field given by (6.18)

{v“ (zﬁﬁu - ZA“) - mc} Y =0 (6.18)

If we take the adjoint (complex conjugation and transposition) of this equation, we find

= e
Pt l‘i (—zhau)—gfy’”AM—mc =0

0

=70 yry0

0 (i — 5 Y g — ) 0 _
= 1/17(7( 18M> C'y u—mc |y 0
=
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After multiplying this result from the right with 4° and taking the transpose, we get

<,yuT( —hdy - S4,) - mc> 3T =0 (6.49)
We now define the operator
2
C =1y = (_?02 g’ ) ., with Cl=-C, (6.50)

which applied to the transposed Dirac matrices yields the effect

CHIC= = 41, (6.51)

Examples:

AOT — 0 = OO = 1927040 (—iy2y0)

etc.

Applying the operator C' to the manipulated Dirac equation (6.49), one finds
c {wT( —1hdy — “A,) — mc} cleygt =0
c

{’Y”( —1h0,, — ZA#) — mc} CPpT =0

{’y“(zﬁ@#i—/izﬁlu) — mc} wc =0, (6.52)

note e——el

where we defined the charge conjugated solution

¢ =yt (6.53)

which represents a solution to the Dirac equation, where the sign of the charge has been flipped.

We consider the particle at rest as an example case. For negative energies and a spin down

(s, = —1/2), one possible solution of the Dirac equation is given by
0
(=) _ umcit/h 0
w\L € 0
1
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The charge conjugated solution is then

vC =[]

— 120, 0T
0
_ et/ (12) 8
1
1
_ pmtmet/h 8 :wg)
0

We find that starting with a solution v of negative energy and s, = —1/2, the charge conjugated
solution gives a solution with positive energy and s, = +1/2. Therefore we conclude that to
each particle with £ > 0, s, = +1/2 and charge e belongs a particle with F < 0, sz = F1/2
and charge —e. These are linked via charge conjugation.

£

electron
In 1930, Dirac postulated that

in the vacuum (ground state)
all states with negative energy > D
are occupied — these build the
so called “Dirac sea”.

hole

An excitation of an electron in the Dirac sea (with energy E < 0) into a state with £ > 0
leaves behind a “hole” in the Dirac sea with charge —e (e the charge of the electron), what
corresponds to the charge difference between the Dirac sea with hole and the Dirac sea without
hole. Respectively the energy F > 0 corresponds to the energy difference of the states of the
Dirac sea with hole and without hole.

The described “hole” is the positron — the charge conjugated particle of the electron — which
was observed in 1932.

Further Properties of S

For the calculation of the transformation of bilinear forms such as j*(z), we need to establish a
relationship between the adjoint transformations St and S~

Assertion:

ST40 = py0571, (6.54a)
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where
b=+1 for A% {2 o (6.54b)
< -1
Proof: We take as our starting point Eq. (6.32)
STIyHS =AM 4Y AF,  real, (6.55)
and write the adjoint relation
(AH )T = Tyt gi=t, (6.56)

The hermitian adjoint matrix can be expressed most concisely as

AT = A0qia 0. (6.57)

By means of the anticommutation relations, one easily checks that (6.57) is in accord with
A0t = A0 4FT = —~* We insert this into the left- and the right-hand sides of (6.56) and then
multiply by 7° from the left- and right-hand side to gain

V#7077 7090 = 70817 04#4 081140
Ay = 871918 = 70810445101,

since (7°)~! = 4%, Furthermore, on the left-hand side we have made the substitution A*,y" =
S~1y%S. We now multiply by S and S~!:

P = 5708101 (1781 TS T = (87051 0)y#(5778T0) T

Thus, S7°577° commutes with all 4* and is therefore a multiple of the unit matrix

5+081H0 = b1, (6.58)
which also implies that
SAYST = 0 (6.59)
and yields the relation we are seeking !
ST40 = b(5~%) "1 = by 0571, (6.54a)

Since (7v)F = 40 and S~°S* are hermitian, by taking the adjoint of (6.59) one obtains Sy°ST =
b*~0, from which it follows that

b =b (6.60)

and thus b is real. Making use of the fact that the normalization of S is fixed by det S = 1, on
calculating the determinant of (6.59), one obtains b* = 1. This, together with (6.60), yields:

b=+1. (6.61)

'Note: For the Lorentz transformation Ll (restricted L.T. and rotations) and for spatial reflections, one can
derive this relation with b = 1 from the explicit representations.
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The significance of the sign in (6.61) becomes apparent when one considers

S18 = 8179998 = by °5 71909 = by °A° 5"
3
= bA%T + Z bA, A09F (6.62)
——

k=1 ~

StS has positive definite eigenvalues, as can be seen from the following. Firstly, det StS =1 is
equal to the product of all the eigenvalues, and these must therefore all be nonzero. Furthermore,
S1S is hermitian and its eigenfunctions satisfy STSv, = ai),, whence

ahihy = P ST, = (S1ha) S, > 0

and thus a > 0. Since the trace of STS is equal to the sum of all the eigenvalues, we have, in
view of (6.62) and using Tra® = 0,

0 < Tr(STS) = 4bAY% .
Thus bA% > 0. Hence, we have the following relationship between the signs of A% and b:

A% > for b=1

=
6.54b
A< -1 for b=-1. ( )

For Lorentz transformations that do not change the direction of time, we have b = 1; while those
that do cause time reversal have b = —1.

Transformation of Bilinear Forms

The adjoint spinor is defined by
b =0 (6.63)

We recall that 9T is referred to as a hermitian adjoint spinor. The additional introduction of ¢
is useful because it allows quantities such as the current density to be written in a concise form.
We obtain the following transformation behaviour under a Lorentz transformation:

Y =5p = 9T =it = ¢ = 7510 = byly°s571, (6.64)
thus,
o =bpS~t. (6.65)
Given the above definition, the current density reads:
' = e’y = ety (6.66)
and thus transforms as

G = ebip SIS = cbipAM A b = bAM,GY . (6.67)
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Hence, j* transforms in the same way as a vector for Lorentz transformations without time
reflection. In the same way one immediately sees, using (6.28a) and (6.65), that ¥ (z)y(x)
transforms as a scalar:

& (@) (&) = bip(a”) ST SY(a')
= by (2)) ().
We now summarize the transformation behaviour of the most important bilinear quantities under

orthochronous Lorentz transformations, i.e., transformations that do not reverse the direction of
time:

(6.68a)

O (@) (2) = (x)(x) scalar (6.68a)
(@ (@) = M) (@) vector (6.68b)
Y (2ot (2]) = A AY o) () 0P () antisymmetric tensor (6.68¢)
D' () ysyH e (2') = (det A)AP )(2)ys7y () pseudovector (6.68d)
(2 )ys (2') = (det A)ap(x)y50(x) pseudoscalar , (6.68e)

where 75 = 17%y192~y3. We recall that det A = £1; for spatial reflections the sign is —1.
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Chapter 7

Quantization of the Klein-(GGordon
and the Dirac fields

7.1

Canonical quantization of a scalar field

Important quantization procedures:

a)

Canonical quantization: Canonical quantization is strongly oriented along the development
of quantum mechanics. Suitable canonically conjugated variables (of the fields) are sought
and then replaced by operators, where the Poisson bracket of classical physics turn into
the commutator. A problem with this method is that time is treated as a distinct coordi-
nate and so, inter alia, the Lorentz invariance of the quantized theory is not guaranteed.
However, it has the great advantage that only physical states exist, because only physical
modes are quantized. In addition, the procedure is simple, but its application can become
very complicated, as in the case of non-Abelian gauge theories, for example.

Path integral quantization: This procedure is very elegant and fairly general. It is a very
intuitive formulation that is also related to many other quantization methods. However, it
has the disadvantage that the occurring functional integrals can be mathematically tricky.

Gupta—Bleuler quantization: This method is also known as covariant quantization. In
contrast to canonical quantization, it preserves the Lorentz invariance of the classical
theory. However, unphysical states with a negative norm, so-called “ghosts”, are often
generated.

BRST quantization: This method is named after physicists Becchi, Rouet, Stora and
Tyupin. It is the most important quantization method for gauge theories, however, it also
generates “ghost” states. There is a close connection with the path integral quantization.

The most physically relevant example of a quantized field is surely the electromagnetic (EM)

field.

However, as a preliminary we want to start with the quantization of the simple Klein-

Gordon field. The insights gained in this way will benefit us later. The EM field is a vector field
which satisfies the Klein-Gordon equation.

We consider a real scalar field ¢ satisfying the free Klein-Gordon (KG) equation

m202
(D + ) é(z) =0, (7.1)
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with O = 9,0" = C%g—; — V2 and four-position 2. Equation (7.1) describes for a real-valued ¢
a neutral particle with spin 0. The case of a complex wave function, describing charged parti-
cles, contains additional difficulties and will be considered elsewhere. Let’s remind the Lorentz
invariance of the KG equation: the wave function transforms according to ¢'(z’') = ¢(z) under

Lorentz transformations z’ = Azx.

In the following we set h = ¢ = 1 and the free KG equation reads as

(O+m?) ¢x) =0.

In case of V¢ = 0, the KG equation reduces to the equation of a harmonic oscillator

82
g = -

In the following, we interpret the field ¢(x) = ¢(r,t) as a displacement of a vibrating string at
a position r and a time t. In addition, we consider the field to be in a volume V = L3 with
periodic boundary conditions and perform a spatial Fourier expansion

¢ma=}v2¢“%m (7.2)
k

with Fourier coefficients g = ¢_x, because ¢ is real-valued, and wave vectors k = 2T"(nw, Ty M)
with ng, . = 0,%£1,£2,..., due to periodicity of . We end up with an equation of motion for
the normal modes

dk+(k2+m2>qk:0

or

ik + wige =0

with the definition w; = vk? 4+ m?2.
We move on to the Hamiltonian formulation and set

Ge =p—r and p_p = —wiqk.
Hamilton’s equations read as
. OH 4 0 OH
Gr=>-— and pp=-—-—
Opk; g

and we obtain the energy (Hamiltonian) of the scalar field
1
H=3 5 (Pp—r + whara +) -
k

Next, we introduce the transformation
1 [ ]
w +p_
o . kAdk P—k

and rewrite the canonical coordinates and impulses as

b = and b} =

1
\/TTk [ka—k - Zpk]

1 . w .
@ = g (et bL) and po=—n /5 (b = b5y) (7.3)
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Inserting this into the Hamiltonian leads to
* k w * >k
H = Z [ bk—b ) (b_g —bk)-i—?k (bk—l—b_k) (b—r + b%)
- Z ZE Theb + b kb
~ 2

= wibjby -
k

The quantization is carried out in analogy to the quantization of harmonic oscillator: canonically
conjugated variables ¢; and p; become operators ¢ and pg, and the Poisson bracket is replaced
by the commutator:

[Gks D] = Orpr |Gk, Qi) = [Pr, Prr] =0

and using the new coordinates by, and b;, we obtain the following commutation relations:
|:Bk:a [;L/] = 6k,k‘/ ) |:l;k;7 Z)k/:| = |:Z;L, l;]t/:| =0.
Thus, inserting the quantized version of (7.3) into (7.2) leads to the field operator

! [Bk(t) + b (t)}

The Heisenberg picture yields the time dependence of the operator

A~

bi(t) = eMhy(0)e 1
from which follows that
8 k ~ T -
8t [bk, H} = Wg {bk, bkbk} = wkbk .
The solution of this simple differential equation is

bi(t) = by (0)e ™™kt = pre !

and analog to
bl (t) = bl (0)e okt = bl ekt

And the new representation of the field operator is

o(r,t) = { Wer—wit)p, 4 e~ (k’r_‘“’“t)i)z . (7.4)

fzm

Vacuum expectation values are:

(0[6/0) = 0
R 1 d*k
0[¢*(0) — /
When quantizing a classical Hamiltonian there is some freedom how to choose the operator
order, and different choices lead to different ground state energies. We have used the normal

diverges!
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order, i.e., all creation operators are to the left of all annihilation operators in the product.
We denote :0O: as the normal ordered form of O. It can be seen that when normally ordered
operators, such as

Dbl = bLby, bl b = blby, et
are applied to the vacuum, many contributions of expectation values disappear.

About micro-causality:

1 (k-rfwkt) + l;ltefz(k-rfwkt), l;k’ 6'L(k’-r’ﬂuk/t’) + BL,efz(k/-r’fwk/t’)]

[D(r,1), o(x', 1)) =

Z 2\/Wkwk/ [
Z[bk; bT ] l(kAr_wkt)efz(k/4r/,wk,t/>+[8;[{’ i)k/] o=t r—wyt) 1K T —wy t!)

\—\/—’ ~—

=0y k! =0y 1!

_ 1 ) % ( otk (r ) e (t—t) _ e—zk~(r—r’)+zwk(t—t’))
K Yk

QZIm(ezk-(r—r/)—zwk(t—t’))

= 1 /dgkilm (elk'R”"JkT)

(27‘(’)3 ka
withR=r—r'and T =t —¢.
N N 2 oo E2dk
1), ! t/ _ I / —ww T /dQ k'R
[¢(r ) ¢(r il )] (27T)3 m 0 2wk € €
| ——
= 2 [ df sin G030 = o7 [T dpetkhin
= QW% = ,% sin kR
(o]
= / kdk sin(kR) Ime™"“xT
2m2R  Jy Wk —
~—~ =—sin(wyT)
1 [too
S

oo kdk
= 7r2R / —— sin(kR) sin(wyT")

oowk

kdk
_ 5 2 R _ kR
= 87?2 Wsm (VEk? +m?2T) ( e ) (7.5)

Close integration contour and use residue theorem. The first term goes to et*Te*E when

|k| — oo. We get: e ImrETHR)HReE(ETHE) which gives zero for R > |T| for Rek > 0. With
these conditions,

iT+m

/ dke —E>O
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Im(k) 5
Im(k) A exp(ikR) | ATTTTIVPTY STT >
Re(k)
------------------------- > o
Re(k) imk)
A
exp(-ikR) ) Nkelelelleleleleh aleilelelebelelc >
Re(k)

Thus
[6(5,0),607, 1) =0 for [ —r/| > |t 7

and

[6(r, ), 60", )] £ 0 for [r— /| < |t —¥].

This result can be interpreted as follows. The field amplitude <13(r,t) is a physical quantity.
If the commutator vanishes then both quantities are compatible with each other: if QAS(r,t) is
precisely measurable then also ¢(r/,¢'). This is only possible for [r — /| > |t — #/|, i.e., only for
distances |r — r’| which can not be connected via a signal within |t — ¢'|. Thus, the fact that the
commutator vanishes for spacelike distances between events (r,t) and (r/,t') is closely related
to causality.

Now we can justify why we have choosen bosonic creation and annihilation operators during
quantization of the KG field. If we would consider fermions and thus use anti-commutation
relation {IA)k,lA)L} = O 1 etc., instead of [IA)k,ZA)L,} = 0y 1 etc., then [gzg(r,t),gg(r/,t’)} # 0 for all
(r,t) and (r/,¢'), and causality would not be satisfied.

We see that Fermi statistics is incompatible with the causality requirement of the Klein-Gordon
equation. This is an essential building block for the spin-statistics theorem. In general one can
say that for Klein-Gordon-like equations for particles with integer spins (0, 1, 2, ...) the Bose
statistics is enforced by the causality.

Now we want to estimate the momentum p of the quantized field qg(r) For that we have to
examine the behavior of ¢ under translation

~

T(a)p(r)T ' (a) = ¢(r+a) with T(a)=e P2,

If a is infinitesimal then T'(a) = 1 — 2 - a. With the Taylor expansion of ¢(r + a) up to first
order we get

(1—p-a)(r) (1+p-a) = §(r) + Vo(r) -a+ O(a?)

and thus
~1[B,6(r)| = Vo(r).
Using the expression for the quantized field (7.4) we obtain

[f),i)k} — kb .
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This determines the form of the momentum operator up to an additive constant

p=> kblby|.
k

7.2 Alternative quantization of a scalar field

A classical observable of a neutral meson wave is a real-valued scalar field
Y(z) =" (z),
which obeys the Klein-Gordon equation
(O4+m?)y(z) =0.
There are two types of solutions
bile) = 0 and () = et
with w = vV/m2 + k2.

Ansatz for a general solution is

W) = / (gi’; i (0 (k) + e (k) (7.6)

with k = (w, k) and kz = kz, = wt — k- x.
Quantization: The meson field ¢ (x) = (state|®(x)|state) is an observable corresponding to an
expectation value of a field operator ®(z).

&(z) is Hermitian, thus ®(z) = &' (z)
®(z) fulfills KG equation (D + m2) d(x) =0

Momentum and energy are observables and thus correspond to Hermitian operators p and H,
respectively. Due to relativistic invariance they are combined into a four-operator

p=(p") = (H,p)

and p* is time-independent because of energy-momentum conservation.
In the Heisenberg picture any operator A(t,x) obeys

At,x)]

A~

W, A(t,x)] for j=1,2,3.

gfl(t,x) = z[.ﬁl
|

—A(t,x) = —
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1st and 2nd assumption lead to a particle interpretations of the meson field.
In analogy to (7.6) the general form of the field operator is

b(x) = / (gjr];giu (%1 () + ¢ *a(k)) -

The operator af(k) denotes the Hermitian conjugate of a(k).
From (7.7) follows that

/ éjr];s oo (4t 1) + (o )a) = (jj:;g o (€7 [ a1 00] + 7 5, a0k)

and thus
[y (k)| = kua' (k) and [y, a(k)] = ~kya(k). (78)

We define |0) as a vacuum state (no particle exists), which is normalized as (0|0) = 1.
It is p,, |0) = 0 and thus
(s a7 (1] 10) = kua (k) [0) = puaf (k) ]0) = kuaf (k) 0) -

Thus |k) = a* (k) |0) is the eigenstate of the energy and momentum operator with eigenvalue
k, = (w, k). We identify this state as a one-meson-state with a sharp energy w and a sharp
momentum k.

Due to pua(k)|0) = —kua(k)|0) the state a(k)|0) would correspond to a state with negative
energy. Thus we demand
a(k)|0) =0  Vk.

Similarly, for a state [p) with p* |p) = p* |p), i.e., the eigenstate of the four-momentum, follows
with (7.8) that

prat(k) |p) = (p" + k") a' (k) |p)
pa(k) [p) = (p" — k") a(k) [p) .
And we obtain
pral(ln)a' (k) [0) = (k' + kb)) af (ki)al (k) [0)
—_——————
two-meson-state

and in a similar way one constructs a n-meson-state.
We can interpret @' as creation operator and @ as annihilation operator.

We do not know yet anything about the norm of states with one or more mesons. We need
an additional physical assumption. Consider a measurement of the meson field at two different
space-time points = (¢,x) and y = (¢, y). For (z—y)? < 0, z is outside the future light cone of
y and vice versa. Thus, no signal from the measurement at point x can reach y and vice versa.

Microcausality: {i’(:c), i)(y)} =0 for (z — y)2 <0
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That means

A

{Cb(t,x), @(t’,y)} =0for |t/ —t|<|x—y|#0

and, in particular, for x #y

In the following we want to show that the Bose character of mesons follows from microcausality.
The general form of the field operator and its time derivative reads as

z dgk 1 —ik-x wt A —awt A
@(t,x):/(2ﬂ)32we o (et (1) + e~k )

0 - . dgk v _kx wit At —wwt A
a6 = [y (a9 - a(-w)

The inverse Fourier transformation gives
e“tal (k) + e ™a(—k) = 2w / d3x eTKXP (¢, x) (7.9)
e"”t&T(k) — e ha(—k) = —2@/d3x e_’k'xgti)(t,x). (7.10)
Thus from (7.9) follows that

[elwlth(kl)+€_ZWIt&(_k1>7 ezwzt&T(k2)+e—zw2ta(_k2>}

= 2w12w2/d3xd3y e kX —tkay [@(t,x), é(t,y)}

microcausality

and

pru(witwa)t {dT(kl), &T(k2)} +emt@rte)t (5K, a(—ks)]
4+ etulwr—w2)t [&T(kO’ d(—kg)} 4 e Hwr—w2)t [fl(—kl), &T(kg)} =0.
To ensure that this is always true, the following must hold
[ (ky), a'(ke)] =0 and  [a(ki), a(ka)] =0 Vi, ks (7.11)
This means that mesons have Bose character.
The relation between microcausality and the Bose character of mesons does not only apply to
free fields considered here. In general, microcausality determines the Bose-character of all par-

ticles with integer spin (Pauli 1936, 1940).

Next, we want to compute the commutator of @ and a'. If we solve for @ and a' from (7.9) and
(7.10) , respectively, we obtain the following:
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Egs. (7.9)4(7.10) gives
af (k)ewt = /d3xe71k'x {w@(t,x) 8315 (¢, X)} ,
and Eqgs. (7.9)—(7.10) gives
a(k)e ™! = /d3xe”k'x {u@(t,x) + thé(t,x)] .
Therefore,
[a(ky),a' (ko)) = [e“‘”t/dgxe’kl'x {wﬁi)(t,x) + z@t@(t,x)} et @By emikay [wﬁ)(t,y) — z@t@(t,y)H

= e w2>f/d3 /dgyeZklx B2 Y (0B, %) + 10,B(1, %), wad(t, y) — 10:B(t, y)]
wr (04D (x, 1), D(y, 1)] —un [D(x, 1), 0D (y, 1)]

=0 for x#£y =0 for x#£y

The integrand vanishes for x # y and contains a § contribution for x =y, otherwise all creation
operators would commute with all annihilation operators and therefore all states obtained by
applying creation operators onto the vacuum state would equal the zero vector. Therefore, we
make an ansatz for the canonical commutation relation as

B(t,%). (0 y)| = ' (x—)
and obtain

[a(ky), al (k2)] = e’(wl_“’Q)t/d?’xe’(kl_k"’)'x(m + wo)

=(2m)363 (k1 —k2)
= 2(4)1(27’[‘)353(1{1 - kz),

since wy = wo if k1 = ka.

7.3 Lagrangian formalism and canonical quantization

Lagrangian density £(®,0,®) for scalar fields:

L= % 0,00"® — m?0?| (7.12)

which gives the Lagrange function:
L) = /d3xﬁ(<1>, 9,®).

The action is
- /d:cﬁ(@,f)ﬂq)) - /dmOL(xO).

Hamiltion principle gives the Klein-Gordon equation

6S[@®] =0 = 9,0"®+m?d =0.
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Proof:

oL oL

L =52560
L
o _8@ Ozt 0(0,P)

o [ or
5<1>+/de@ la@ma@]

_ oL _
*fasz do A(Ou®) 00=0

0S = 0 then gives the Euler-Lagrange equation:

oL o _or
0% dxr 9(0,)

We have for Eq. (7.12)
oL

2
= d d = oHd
0P m an 0(0,P) ’
which yields to the KG equation:
0
2 HP — % 2 —
m-® 8x“8 ®=0 = 0,0'P+m "®=0.

Definition: canonical conjugate momentum:

oL 0L oL

290 9d  9(8y®) [

Definition: Hamilton-function:

H(®,T1) = /d3x 16— £(®,9,®)] |

for the Hamilton-density .
H(P,IT) =P — L(P,0,P).

Since II = @,

1 )
H(D,TT) =112 — = |9y P°® + 9,80’ D —m> P>
2 | — T —
=T12 =(Vd)2

= % [ 4 (VD)2 + m?@?] .

Canonical quantization:
Since ® and II are canaonical conjugate fields (due to the definition II = %)7 one postulates
“Canonical commutation relations” (as in basic quantum mechanics):

r

[(i)(rv t), ﬁ(r/7 t)] :15(1‘ - /)’
[®(r, 1), &(r', t)] =[1I(r,t),TI(x', )] = 0.
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This procedure is called canonical quantization. For KG-field: I = 6,9,

{Ci)(r, t), gté(r', t)] =5(r —1').

For the free scalar field with a Lagrangian density (7.12) the canonical quantization yields the
same quantized field as obtained in the previous chapters and the Hamiltonian reads as

i % / x [(08) + (V8) + m?5?] .

Remark: For the gauge theories that dominate particle physics today, the canonical quantization
can only be carried out for special gauges (cf. quantization of the electromagnetic field).

7.4 Quantization of the Dirac Field

First we recapitulate the derivation of the calculation of the Dirac spinor. The Dirac equation
is
(—*9, + m)y = 0.

Ansatz (plane wave with positive energy):
Y = ue ke,

The equation for the spinor « is
(kyy" —m)u = 0.

Since
(kuy" —m) (kY +m) = kyuk, yHAY —m? =k, k" —m? =0,
——
=3{v =g

we have

ur (k) = N (kv +m)u,(0).
Normalization:

ur-(0) = (xr,0) and Upls = Ops.
o (k) = —— (k™ £ m)un(0)

Y 2m(m ¥ E) Y il

() 1 (E+m —k.a)<><r>_ VERx | E—I—m< Xr )
r\R) = o7 = k- = ko .

Note v#T = ~0~4#~0 and
uly” = N [(kuy* +m)u(0)]1°
Nu(0)" (kT +m)r® = Nu(0)"1° (ky* + m)

1 _
mu(o)(ku’Y” +m).

U
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Analogously for plane wave with negative energy:
'QZJ — ’UG—Hkm,

the equation for the spinor v is
(k" +m)v =0.

We can write

1
or(k) = —m(l‘@ﬁ“ —m)v,(0) |

ko
v (k‘) _ 1 <—E+m k-o ) (0) _ (w/Zm(erE‘)XT) _ E+m (ni{-fEXT>
Xr

2m(m + E) \ k-0 E+m B X 2m xr )’
and ]
V= ——-o-ou-0(0)(—=k,¥* +m).
m(m + E) ( )( wY )
Definition:

(k) r=1
wr(k) = {—vl(k:) r=2

is the charge conjugate of u,. Since then, for C' the charge conjugation operator,

Cur (k) = v?u; (k) = w,(k),
= 1yw U

Cuwr (k) (k) = ur(k)
Orthogonality relations:
Upts = Ops,  Wpws = —bps,  Upws =0,  wrus =0,
U us = =05, WY Wy = =6
m m

The general solution is then now

m
) = —— (bpruy k‘e_lkx—i—d: wy (k)e e
u}()%,/m(k() wwr (k)e )
with E, = vk2 + m2.

Quantization: We consider the Dirac spinor as a field operator. As in the case of the meson field,
we expand the field operator in terms of plane waves, where the expansion coefficients become
operators, i.e., we replace the Fourier coefficients according to

Y=, b — by and dyy — dyp  with
{Brkv Bi’k/} = 6rr’5kk’7 {Czrky Czj;/k/} = 57’7“’ 6kk’7

and all other commutators are zero. The solution of the Dirac equation in the quantized form

is thus
n _ m 7 —ikx 7t +ikx
(z) = }k Tj Ve o (briup (k)e ™™ + dlyw, (k)e ko) |
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The properties of the operators b and df will be investigated in the following.

We postulate again that the Heisenberg equation is fulfilled:
Oi(x)

oxH

= {]ﬁu, 1&(:17)] .

Thus

A
A

{ﬁua Elk} = p&lk, {ﬁuv Jik} = p/idikv {ﬁm 354 = _pui)skv [pm Czsk’} = —Pudsk

for s = :I:%.
Like for the meson field, we require that

be| 0) = dg| 0) = 0.

Instead of one set of creation operators, we have now four. Accordingly, for each fixed momentum
p, we can construct four one-particle states:

A 1

(a) blel0), s =3
1

(b) dii0),  s=+7

The states in (a) correspond to an electron with a fixed momentum p and two linearly inde-
pendent spin-states. If we take the theory seriously, then we have to postulate that an another
particle with exactly the same mass exists (DIRAC 1930, OPPENHEIM 1930). This was confirmed
by the discovery of the positron (ANDERSSON 1932, 1933). We identify (b) as positrons, and
will see that within Dirac’s theory electrons and positrons have by default an opposite charge.

Which algebra is valid for the creation and annihilation operators?
In case we would postulate the same commutation relations as for the meson field, namely,

{B,«k, Blk’} = (5rs(5kk’
[Jm, cfik,} = OOk

and all other commutators equal zero, then we would find nonvanishing commutators for space-
like distances, for example,

[zﬁ(x, t), é(y, t)} #0 forx#y, (7.13)

which is in contradiction to microcausality.

One could argue that the Dirac spinor is not directly observable. But (7.13) also implies a
violation of the microcausality for bilinear expressions in the Dirac field operator, which we want
to identify as observable fields. Thus, electrons cannot be bosons (confirmed experimentally as
electrons satisfy the Pauli principle).

The proper commutation relations for the creation and annihilation operators of the Dirac field
are anticommutators (JORDAN and WIGNER 1927, 1928):

{BT’“’ gik/} = OrsOkks {Jrk, Czj[sk’} = 050Kk
{Bika Bik’} = {Erk, Bsk'} = {Ci:[k, d:tk,} = {c@«k, Bsk,} = {z}iw jsk,} _ {giw Jgk/} —0.
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With this we get

{d6e,1), Dy, 1)} = {dx,1), oy, )} =0 (7.14)
{96c,t), by, D} =%6(x —y). (7.15)
Proof:
{15( TZ Z Ek:Ek/ Z { rkuT —zkw + djnkwT(k)emza Bi/k/ﬂr’(k,)elk/y + dr’k”@r/(k/)e_m/y} :

kk’

Since {brk, br’k’} = {drk, d;r,k,} = 0,01 and all other commutators are zero, we obtain

A = 1 m
{w(fﬂ)ﬂl)(y)}zv;m{ —rk(e=) Zur k) + e*(@=v) Zwr Wy ( }
We have:
Zur(k)ar(k) = ZNQ(I‘;M'Y# + m)u, (0)ur (0) (k" + m)

_,/\/'2 kuy" +m Zur i (0) (kyy" +m)

(1 0

\0 0
_ A2 E+m —k-o 1 0\ (E+m —-k-o
o k-o -E+m/\0 0 k-o —FE+m
_ A2 E4+m 0\ (E+m -k-o
o k-o 0 k-o —-E+m

B 1 (E+m)?> —k-o(E+m)
C2m(E4+m) \(E+m)k-o —k?

1 <E+m —k-a)
= — k2
2m \ k-o —Em

1
= %(ku’yu +m),

since k2 = (E + m)(E — m), and analogously:
1

> wp (k)i (k) = 5 —(kyy" —m).
Then
(B(@), D)} = 12m{e—*<x—y>1<k A4 m) 4 et L e >}
’ V 4~ By om - H om P
1 1
— V%:TEIC {(wua £ m)e*@Y) _ (4y19, 1 m)etk(@ y)}

1 1
e H’a J— - —zk(a:—y) _ Zk‘(l’—y)
("0, +m) v gk 2, {e e }

A= T g (Y0 )
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As appeared in the proof of the microcausality for the Klein-Gordon field (with Eq. (7.5)),
A(z—y) = 0 for (z—y)? < 0, i.e. for space-like distances. Then {1)(z), ¢ (y)} = 0 for (z—y)? < 0.

Anti-commutator for equal times (note that k°(xg — yo) = Ex(t —t) = 0):

{(t, %), Q,Z:)(t, y)} = %Z 2]15‘16 {6lk-(x—}’)(ku,y# +m) + e—zk.(x—Y)(kufyﬂ _ m)}
k

_ 1 1 k- (x—y) 0 —ik-(x—y) 0
D (A )
- zk (x—y) o k-(x—y) 0 o~y
ZQEk{ (Ek'y k-v+m)+e (Exy" +k-v m)}
7270 ok

d*k
_ A0 ik(x—y) _ ,0¢3 o

Spin-statistic theorem (for fermions):

Consider an observable like ¢(z)¢)(x) and compute the commutator for two space-time coordi-
nates x and y:

[ (2), B (w)b3(0)] = () (). B (0) 1 (0) — D () (). B (0) ()
= (@) (=70 + ot (e ~ )] F5(0)
() (=79 + m)agA(w — y)] ()
=0

for (z —y)? < 0.

That implies for observable fields ¢ (z)uth(z), where u = @ are 4 x 4 matrices, commutation
relations, which are consistent with microcausality. For example, for arbitrary 4 x 4 matrices u
and uo we get

[D0x, b (x,0)), Py, usdh(y, )] =0 for x#£y,
which follows directly from (7.14) and (7.15).
Single-electron- (or positron) state with a sharp momentum:
e (k,s)) = b,|0)
‘e+(k,s)> = C’Zk 10)

139



CHAPTER 7. QUANTIZATION OF THE KLEIN-GORDON AND THE DIRAC FIELDS

Normalization:
(e (K m)le” (ky5)) = (0] {boar, Bl }10) = 66
(e (', m)]e* (kys)) = (O] {dur, i) } 10) = 6r60
Two-electron-state:
e (k,7), e (K, 8)) = L1, 10) = =Bl b, |0) = —|e”(K,s), e (k, 7)) ,

thus the Pauli principle applies.

What if we would have chosen commutation rules, [IA)M, IA)I%,] = [drk,@/k,] = 0,0k instead of
anti-commutation rules?
Remark that now [aﬁk, dygt] = =0y Oggr. Then

[ (), ¥(y) Z

with

Az —y) = %Z ng {e—zk(z—y) + ezk(r—y)}

V2 2
27r2R/ cos(Vk? +m?T) cos(kR)

k2 +m2

with R = |x —y| and T = 2° — ¢°, from Eq. (7.5).

Now this integrand is an odd function of k£ for which reason f_ooo = — /o7 and therefore the
integration cannot be performed from —oo to 400 and the residue theorem cannot be applied.
Then Aj(x —y) # 0 also for (z — y)? < 0 which leads to a contradiction to microcausality.
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Chapter 8

Quantum electrodynamics

8.1 Quantization of the electromagnetic field — Lorentz covari-
ant formulation

The four-potential A* = (¢, A) in Lorenz gauge, J,A" = 0, and in source-free case, j* = 0,
obeys the wave equation

DA, =0.

As for mesons, the Fourier expansion of the field operators A, reads as

A= | @f}‘;’;‘fw [e™a () + e a, (k) )
with
k= (:) , w=lk|, kr=Fk'z,=wt-k- x.
Microcausality leads to Bose commutation relations:
(af,(k), af (k)] = [au(k), a,(k)] =0,
(au(k), af(K)] = Z, (27)*2 5% (k — K)

with initially unknown Z,,,.

The operators a,, aL act in the Fock space and its vacuum state is characterized by
a,(k)|0) =0  Vuk.

For an explicit Lorentz covariance of the theory, Z,, must be a constant second order tensor.
The only possible candidate is the metric tensor g,,,. We still have a freedom to choose the sign
Zuy = £guv- As it turns out later, the correct choice is

|4, (), al (k)] = —g,u (27)*2 6% (k — K),

albeit applying the operator aé to the vacuum leads to states with a negative norm (is not a

probability density) and a; with 7 = 1,2, 3 leads to states with a positive norm.
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Consider a general state: | f) = [ (2;)121‘ = 2u fu(k)aL(k) |10)

Inner product:

31 A3/
U1 = [ i 2 K09 01,00} 00 )
>0 for fo=0

3
= [ [FIR0OF + AR + 220 + 100 {<0 e P fraa o

In addition to states with a negative norm there are states
[k, ) = —¢"a], (k) |0)

with an arbitrary polarization four-vector of the photon £#, such that at a fixed k we have four
linearly independent polarization directions instead of just two as observed experimentally.

The method of GUPTA and BLEULER (1950) guarantees positive norm and gets rid of the two
unwanted polarization directions: states are constrained to the Lorenz gauge condition.

We declare only a part of the state vectors in the Fock space to be physical, namely those which
in a certain way satisfy the Lorenz gauge condition. We take the part of A, that just contains
annihilation operators:
A (z) = /dgke—zlma (k)
# ' (27)32w a

and postulate for physical state vectors
8”14;(;)(1') |physical state) =0

or

k'a,(k) |physical state) =0 Vk.

Because of that
(physical state] 8“14}(;)(3:) |physical state) =0,

i.e., the expectation value of the divergence of the field A, vanishes for any physical state. The
subspace {|physical state)} is obviously a linear space.

Claim:
(physical state | physical state) > 0,

i.e., the subspace {| physical state)} has a positive semi-definite metric.

Proof:

We choose a new basis for creation and annihilation operators. We consider aL(k) at fixed k. We
choose two unit vectors e, es Lk, such that e;, es, es = k/|k| form an orthonormal trihedron,
i.e., € e = 513

We define operators o, as

ajk) = 5 (ah(l) — es-a (k)
ai(k) = e;-al(k)
ag(k) = ey-al(k)
ojk) = = (a}k) + ea-al(h)
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where af = (aJ{, ag, ag).

Commutation relations are

1

[0 (k). af ()] = 5 [an(k) €5 alk), af (k') — e5 -al ()
= % [a0(k), af (k)] —e5 - [a(k), af(K)] - [a(k),es - al ()] + [e5 - a(k), e5 - af (k)]

—(27)32wd,1r =0 =0

Now,
les - a(k), e3 - af (k)] = [chai(k), efal(k)]
= egegém [—}—(2%) 2w6kk/}
= |es|?(27)3 2wl
=1

= +(27)3 2w
So,

T

[ao(k), af(k)] =0,

Analogously,

Therefore, we obtain

Next,

—

ag(k) - e3 - a(k),ah(K') + es - al (k)]

{—(27r)32w5kk/ — (27r)32w5k.k/}
= —(277)32w5kk/

[a3(19), @b (1)) = 3 [a0(1) + 5 - ak), af () — es -af (k)]
= —(2m)3 2w

Therefore, we obtain

|a0(k), (k)] = [as(k), af(k)] = —(27)*2w oy (8.2)
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And finally,
la1(k), a](K)] = [e1 -a(k),e; -al (k)]
—=clel {al(k),a;(k')}
+(2m)32w 8,10
= ‘61’2(271')3200 5kk’
=1

= (27r)32w 5kk’

Analogously,

and we obtain the final relation as
|01 (k), af(K)] = [as(k), ad(k)| = +(27)*2w S

For the other relations,

1

(a0 (k), o] (k)] = = [a0(k) — €3 - a(k), e1 - al (k)|
= —\26%6{ [ai,aﬂ xez-e; =0,
——

océij

since e3_Le;. Analogously, {ao(k), ag(k/)} = 0.

Now,
1
ap(k)|physical state) = 7 (ao(k) — es - a(k)) |physical state)
11
= —— (koao(k) — k - a(k)) |physical state
5 (Roao(i) = k-a(10) foby )
1
= mk"a#(k)|physical state)
where

0=ktk, = ki —k* ~ ki =k* ~ ko = k|.
The constraint k*a,(k)|physical state) = 0 reads now as
ap(k)|physical state) = 0.
Consider the following state vector in the Hilbert space
ol (k)od (ko) --ab---af---al---10),

i.e. an arbitrary product of creation operators applied to vacuum.

(8.3)
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Consider a;r)) |0):

aga}|0) = [ao, a}] [0) + a} aol0) .
—— R
£0 =0

which implies that due to commutation relations (8.1-8.3), the constraint (8.4) is only fulfilled

if no operator a;[) occurs or |physical state) cannot contain a;f,) if (8.4) is fulfilled. For example,

from state vectors az(k)| 0) only ag(k)| 0), a{(k)\ 0) and a;(k)| 0) are physical. These are
orthogonal and their squared lengths are greater than or equal to zero:
(0] ao(k)af (k') 0)
(0] a1 (k)ad (i) |0)
(0] az(k)a (k') |0) =

(8.6)

0
(2m)32w 63 (k — K')
(2m)32w 63 (k — /)

An arbitrary physical state vector is a linear combination of state vectors of the form (8.5),
which do not contain ag. For these it is then easy to show that their squared lengths are greater
than or equal to zero. [ |

From here it is easy to construct a Hilbert space with a positive-definite metric, which allows a
probability interpretation in the sense of quantum mechanics.

Definition: Equivalence relation of state vectors:
1) ~12) = ((1=(2D(1)=12))=0
The linear Hilbert space of equivalence classes then has positive-definite metric.

Physical interpretation:

The state of a system of photons is described by a whole class of equivalent state vectors. One
can show that the expectation value of observable quantities (like field strength tensor, en-
ergy etc.) is identical for equivalent state vectors. In practice, for example, when calculating
matrix elements, one can always take any representative of an equivalence class as a state vector.

Due to (8.6) the state vector o (k)|0) is equivalent to the zero vector and only linear combi-
nations of

with

correspond to physical one-photon-states. This is consistent with experimental findings of two
linearly independent one-photon-states for each k.

Physical one-photon-states for fixed k:

k,e) = —e"al,(k) |0) =e-af(k) [0), (8.7)
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(2

satisfy e =0, e - k =0, |e| = 1 and, as a consequence, e#k,, = 0.
This states satisfy the continuum normalization

where

(K ek e) = (e - €) (27m)3 2w 6* (k — K)

Remember, linearly polarized photons are described by real polarization vectors € = €*, right
and left circularly polarized photons by

1
€4 = $ﬁ(e1 +e9).

Why didn’t we just focus on state vectors (8.7)7 Because the transversality condition on the
polarization vector ¢ is not Lorentz covariant. Consider a Lorentz transformation A:

k— kK =Ak and 5:<2>—>6’:A6

From ek, = 0 follows that e’k), = 0, which implies

,Ok/'k/ _
K|
= e - kK =0

k) —€e K —¢

— €1k

. 8/O
€ = / 0 k' .
e +EOW

It is e - “E%' = 0 but in general €0 # 0.

and thus

Comment: However, the corresponding state vector is equivalent to that of a purely transverse
photon:

k/
—e’uaL(k’) 10) = {—z-:'oag + (e'—i—e’ou{,’) aT(k’)}m)

- {e/ caf(k) — & [ag(k’) - “lj| : a*(k’)] } 10)

~ € -af(k)|0).

8.2 Normal and time ordered products

We now want to give the expectation values of some physical observables — (...) means the
expectation values in any physical state.
Now,

A, = /(27?;);{200 {e”maL(k‘) + e_m”"au(k)}
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It is
aT:L<aT+aT) GTZL(O;_O;)
0= g\ M0Tas) G5 = TE Y0 T A
= ag)]physical state) =0 a£|physica1 state) =0,
since

ag\physical state) = 0
ag\physical state) = 0.
This implies

al(k)|physical state) = (eloﬂ; (k) + GQOé;(k)> |physical state) ,

since
eral(k) = af(k)
ezal (k) = ol (k)
Therefore,
A|physical state) = / (27(3:;3:2“ {e”” [eloﬂi (k) + egag(k)} + e % [e1ay (k) + ezan (k)] } |physical state) .

Due to B = rotA it is

B = [ (Qiji,;w {er (i x era] () + exal )]
+aﬁﬂmx@mﬂm+@@&m}.@&
With E = —V A4y — dpA follows (E) = —(9pA) since (VAg) = 0 because
(physical state] ag(k) |physical state) =

1
(physical state| 7z (ag(k) + oz;g(k)) |physical state) =0, (8.9)

since oz(T) |physical state) = 0 and (physical state| ozg = 0, because |physical state) does not con-
tain any at. Analogous arguments apply to (physical state| ag(k) |physical state) = 0. Thus
y Q3 g g y Y Y

(E) = — (QA)

= /(22;)51:2w {—zwem <6101J{ (k) + e2a£(k)> + we *® (e (k) + eQaQ(k»}

In agreement with the experiment, only the transversal degrees of freedom of the photons con-
tribute.

Classical expressions for the energy p° and the momentum p of the electromagnetic field are
1
P’ = / d3z = [E(SU)Q + B(a:)ﬂ
t=const. 2

p — / P2 E(z) x B(z).
t=const.
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If we consider E and B as field operator then we get for an arbitrary physical state:

) = L 2:3:1:% <§:{aj(k)ai(k)+ai(k)ag(k)}>

=1
3 2

®) = 5 Gk <Z{a2<k>ai<k>+ai<k>a1<k>}>
=1

Again only the physical degrees of freedom of the photons contribute.

There is a new difficulty. Consider vacuum expectation values:

3 2
01p°10) = K S (0 ai(k)al () [0)

(971394
2 @mpw &

_ §/d3kw~263(0)

_ %/d3kw 9 (2‘;)3 (8.10)

0/ p'l0) = ;/d3kk-263(0)

_ ;/dgkk-QW, (8.11)

where we have used Fermi’s trick to replace (27)3§3(0) by the normalization volume V:

<

3
Pk-x) = | (dz);s SO ma0) = [dx oV,
™

which is true for an integral over a finite volume V.

(8.11) is relatively harmless: symmetrical integration over all momenta gives zero.

(8.10) represents the zero-point energy of the electromagnetic field in a volume V. Only energy
differences can be measured and we choose vacuum as the zero point for the energy. The
present energy operator is replaced by

P’ =p" —(0]p"|0)

and the expectation value for the new operator is

2
Wy =/ (Qj;”;;ww@z{ank)%(k)mi(k)@(k)—<0|ai<k>a1<k>\0>}>

i=1

- [ wi;{m” <;i{ag<k>ai<k> + ai(k)al (k) — [ai(k), o ()] }>
3
- 27(1 ?l’{2w <Zo¢ >

Note that, all creation operators are to the left of the annihilation operators and that gives
a well-defined operator without divergences.
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Mathematically, the divergence problems are caused by products of field operators at the same
position such as E(z)?, which turned out to be too singular. We can achieve the subtraction of
the vacuum energy automatically if we introduce a new kind of product of field operators, the
so-called normal ordered product.

Definition: In the normal product, all creation operators act as if they were to the left to all
annihilation operators.

ZCLTCL,TI = CLTCL,T
2CLTCL/I = CLTCL,
ZCLCL/TZ = CL/TCL

/ !/
aa . = aa

where a, a’ are arbitrary annihilation operators of Bose fields. In the case of fermions, an addi-
tional minus sign appears when exchanging operators.

Example:
E(z)~d +a = :E*z): ~ :(aT—i—a) (aT—i—a):
= : (aTaT +a'a+ ad + aa) :
= d'a'+2d'a+ aa

The correct expressions for energy and momentum are
1
P’ = / d3x = (EQ(JJ) + B2(x)) :
t=const 2
p = / d*x :E(z) x B(z):
t=const

The analogous problem occurs with the Dirac field and can also be solved by the normal prod-
uct. Note that the Dirac current (x)y*¢(z) transforms like a four-current density. Originally,
the Dirac field was considered to be a relativistic probability amplitude of an electron. The zero
component of the Dirac current was interpreted as a probability density, because for a Dirac
spinor it is 1 (x)y0(x) = ¥ (x)(x) > 0 for ¥(z) # 0. However, a one-particle interpretation
of the Dirac spinor is not tenable and the question arises: What role does the Dirac current play
in the theory of the free quantized Dirac field?

Charge and current distribution, i.e. the electromagnetic four-current density j*(z) of a system
of electrons and positrons is definitively an observable. We make the ansatz:

P(x) = —ed(x)y"P(x),

where —e denotes a negative elementary charge.
Thus the total charge operator is

Q = / dx P (x, 1) = —e / B (x, D7 b (x, ).

Reminder:

v = [ 55 2p0 %) {e7 0, ()b} (P) + ¢ us(p)as(p)}
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Thus

@ =~ [ s JQPO 3 {al®)as(p) +b.(p)bi(p)}

_il

and we get

00 = o[ gEs P Z (0] b(p)V (p) [0)

- / 2 32p0 Z O’{ ( )}|O>

d3
— e / Gy Zl (27)32p°6(0)
= —e/dgp 26%(0)

= oo for V — o0,

which is a similar problem as with the zero point of the energy. We obtain a “good” charge
operator @, if we choose the total charge of the vacuum as the zero point.

Q = Q (0\69'!0)
_ / - 32p0 Z (al(Pas(p) + b (P)1L(p) — {bu(p). l(P)})

s 5 (o o)

2

@ has positive and negative eigenvalues, electrons have charge —e and positrons +e. The infinite
self-charge of the vacuum is mathematically again caused by products of two field operators at
the same position and can be avoided by mormal order of the fermionic field operators as in the
case bosons.

Definition:
ar(p)al(p’): = —al(p’)ar(p),

i.e., for every interchange of fermionic field operators we get an additional factor —1 according
to anti-commutation relations of fermions.

Thus, we obtain a four-current density with a vanishing total charge of the vacuum as

P(z) = —ep(x)yh(2): .

Note that :)y%): is not anymore positive.

150



CHAPTER 8. QUANTUM ELECTRODYNAMICS

8.3 Electromagnetic coupling and perturbation theory

Lagrangian of EM field:

In the framework of a deductive construction of QED one puts the Lagrangian L of the coupled
Maxwell-Dirac system at the top, namely first for the classical fields:

L= /d3x£(x,t)
with the Lagrangian density
L(z) = Lo(x) + Lint(x),
which consists of terms due to free fields, the electromagnetic and the Dirac field,

Lo(x) = —3 Fyu(2) ¥ (2) + () (178 — m)ib(a)

and the interaction term

Linle) = —"(@)A()
= (o) Au(a)(z).

The Lagrangian density of the electromagnetic field is not unique. One can derive the Maxwell
equations from

1
L= FuF" — g A", (8.12)
with
0A
Fo =Auy —Avyp, App = 63:5

where F),, is the electromagnetic field tensor.
Euler-Lagrange Equation:

oc 5 oL

0A, N V(‘)A,W

From the Lagrangian (8.12) we have

oL 0 1
= _ - (= _ a8 pB«
Oy aA#,V Oy {814“,1, < 4 (Aoc,ﬁ A/B,a) (A A ))}

1 9
_ gl 0 o _ o _ b fa
10 { 5 (AapA™ — A A™P — Mg g AP + Ag o A )}

= —ia,, {2(AMY — AVH 4 ARV — AV}

1
_ = 2 Vi
= 28,, (F F )
—=—Fhv

= —0,F",
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and

o o P
_— [ — K = —(— H = — M
A, 8AM( anA") 8AM( P A) = =1"

The Euler-Lagrange equation yields

8, FH = g,

Now, applying 0, to (A*Y — A¥H), we get
Oy (AY — AVH) = 9, (0¥ A¥ — M A”)

= OA¥ — 919, A"
= .
For the Lorentz Gauge
0,A” =0,
we get,
gAr =g,

which is the Maxwell equation for 4-vector potential.

Question: What is y* in the presence of charged particles, e.g. electrons, described by the Dirac
field ¥?

Answer: j* = —etpyHep.

Dirac equation from the Lagrangian density of the Dirac field:

The Lagrangian density for a Dirac field is

Lo=1 (7’7“8/1 —m)y

Proof:
oL
677,; = ("0 —m)
OHL == 0
d (auw)
The Euler-Lagrange equation reads
8—E_ —8M87£_ = (0, —m)y =0.
8¢ o (8M1/}> Dirac Equation
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Analogously,
oL oL
a0 Om 0 +my) =0
o0 (10" i) =
:—qu :a‘u (“L"Y“) AdjOil’lt Dirac Equation

Dirac field in the presence of EM field:

We had already derived the form of the coupling term in the context of the interaction between
the quantized radiation field and matter. These so-called minimal coupling results from Ly by
the substitution

Oy — Oy — 1A,
then,
Y (1y K0, —1eA,) —m)

J} (27M8 - ) (s 6717)'7“14#11)
EO J A/L?

with j* = —etpy4p. This makes the theory locally gauge invariant under U (1).

Why “minimal coupling”?
Dirac-Lagrangian is invariant under a “global” U(1) transformation:

P — M)y =/ with A = Const.

= ey =
Since

Ly =4 (0" —m)yf
_ efzeAQZ) (,La ,y,u, o m) ezeAw
= %Z) (z@,w —m)p

From this global U(1) symmetry follows, in accordance with the Noether-theorem, the conser-
vation of charge

Q= —e/d3x1/;701/) ie. EQ =0.
dt
Proof. We assume the transformation as follows,

P(A) = exp(eA)y(0)
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Then we get,
0— oL 0L O oL 0(0u)

ON — 9 ON T D (9,)  OA
=5, 2%

_O0LOY o (_OL 0¥\ (5 OL \0Ov
o oA T "\ 9 (0,0) 0A "9 (0u) ) OA

(e, o Nov o o ov
S \ow Ma0w) ) on M\ () OA
=0 due to Euler-Lagrange

ac oy
o (mamaA) -

—_—————
::]H

which implies that j* is a conserved current, 7.e.
, 0
9o’ = 0ij' =V
0] iJ or, 9 t] J

d
et d3 0:
0 dt/ r) 0

=:Q ,the conserved charge
Now,

oL o ;- _
= S on — (P") ew) = —eiry

Lo is invariant under ¢ — e** ) with A = const, i.e., the Lagrange function does not change
when the Dirac spinor is multiplied by a constant phase factor. This invariance of the Lagrangian
function under a global gauge transformation results, according to the Noether’s theorem, in a
conservation law and in this case charge is conserved (already proven). Since A is constant, the
gauge transformation must be the same at every point of space-time, i.e., it is a global gauge
transformation. This means that if we rotate the phase of the spinor at one point by the angle
A, we must perform the same rotation at all other points simultaneously.

If one takes this physical interpretation seriously, then one sees that it is impossible to fulfill,
since it violates the spirit of relativity, according to which there must be a minimal delay, which
corresponds to the time that the light needs to travel from one point in space to another.

To get around this problem, one gives up the requirement that A must be a constant and writes
the phase factor A(z) as an arbitrary function of space-time x. This is a local gauge transforma-
tion, it varies from point to point. It is also called the “gauge transformation of second kind”.

The principle of relativity requires that £ should also be invariant under local U(1) transforma-
tion:

W — My (8.13)
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This can be achieved when the derivative d,, is replaced by:
Oy — 0y — 1A,
and the vector potential is transformed as
Ay — A+ 0,A (), (8.14)

which is a gauge transformation.
Then, starting with £ and with the following transformation of ¢ as v’

L= (Op —1eAp) Y —ml, P = eeh@)y,

we get,

L= [1(0y —1eAu) 7 — m]

= ¢ M@y [+ (0 —1e (Ay + OuA(x))) Y — m] M@y,
b [1 (9 — 1eA) " = m] Y + e A(x)y" P — e M)y
:1/_}[Z(au_Z€AM)7# —m]=L.

which is invariant under the given gauge transformation.
Here, the Lagrangian density

L =1 ([0, —1ed )y —m)
= (Wuy" —m) Y + ey Ay
—_———
:_JHAN
= ¢ (107 —m) — e Ay
In other words, £ is invariant under the local gauge transformation (8.13) and (8.14). This
invariance of the coupled Maxwell-Dirac system, discovered by H. WEYL in 1929, is called
nowadays a U(1) gauge symmetry. Gauge symmetries are the cornerstone of modern theories of

elementary particles. Both the strong and weak interactions are governed by gauge symmetries,
which are a generalization of the gauge symmetry of QED.

If we neglect the coupling term in L, i.e. we set e = 0, then we get the free Maxwell and Dirac
equations as Euler-Lagrange equations. The quantization of the corresponding fields is done as
discussed already. The idea is now to perform a series expansion in e in order to account for the
coupling. Such a approach is called perturbation theory.

The interaction or Dirac representation:
H=Ho+ Hint

The field operators obey

%A(t):z[?-[g, Alt)] = A(t) = Mol ge= Mot

Time-evolution of states due to

2% 1) = M (8) [t) = [t) = Texp (—z /0 t dmimm) it = 0) (8.15)
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where T is the time-ordering operator.

Since the coupling term L, in the Lagrangian density does not contain any time derivatives,
the interaction energy Hin(t) equals Liy, except for a sign:

mt /d rEmt /d3I'j ( t)a

this means
Hune(t) = —¢ [ @+ 007" 0(e,0) Aulr.t). (8.16)
The equations (8.15) and (8.16) are the basis for the Feynman rules of QED.

We consider the following physical problem: At time t — —o0, a certain number of electrons e,
positrons et, and photons v are present, all widely separated from each other. These particles
can over time hit each other, scatter off each other, annihilate each other or create new particles.
We ask about the state at time t — o0, in particular, about the transition amplitude into a
given state with a certain number of electrons, positrons and photons.

e (p)+...+et(q)+...+vk)+... — e @)+...+et(@)+... +~(K) +

8.4 Feynman rules

We start from equation (8.15) and expand in (8.16)_12, ¢ and A, in terms of creation and
annihilation operators, where we schematically set 1 ~ b+ af, ¥ ~ bl + q, A, o~ af + a.
Reminder:

3
v = [ o X {emue) e )

s==£1/2

We obtain the following structure for Hiyg:
Hing ~ (b + aT) (bT + a) : (aT + a)
~ —bTb( —I—a)—l—aTbT< >+ba (aT+a>+aTa (OzT+a)

(a) (b) (c) (d)

If we apply Hint to any state then, for example, the term (d) causes the following: By a an
electron is annihilated, by a an electron with a in general different momentum is re-created.
Thereby a photon is either emitted (af) or absorbed (a).

Diagrammatic illustration:

(a) Emission or absorption of a photon by a positron.
(b) Creation of an electron-positron pair under emission or absorption of a photon.
(c) Annihilation of an electron-positron pair under emission or absorption of a photon.

(d) Emission or absorption of a photon by an electron.
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(***)

Zeit
(a) K
(b) Y

(c)

<> ds

(@
AN

All processes can be represented by a single diagram, see (x * ), if one defines to symbolize
positrons by electron lines running backwards in time.

At the time t — oo we have a certain number of electrons, positrons and photons, which we
indicate by corresponding lines. According to (8.15) there is a probability per unit time for a
transition to an other state, where one of the processes (a)-(d) is possible. This can repeat.
According to the rules of quantum mechanics, the transition amplitudes into a certain final
state must be added coherently, independent of the intermediate steps leading to this state. The
correct superposition results from the formal solution of (8.15):

t/

t) = {1 + (=) /_too dt’ Hint(t’) + (—2)2 /_too dt/ 4" Hint(t/)Hint(t”) 4. } It = —o0)

—0o0

This results in the S operator, which describes the time evolution of the states from ¢ — —oo
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to ¢ — +oo:
|t = +o00) =S|t = —00)
00 00 t/
= {1 + (—Z)/ dt’ Hing (') + (—1)2/ dt// dt” Hing () Hine (") + ... } |t = —o0)

Using the time ordered product, S can be written in a bit compact way:

s = Zjo . [t [ At T (i) - His(t2)

=1 e[ [ arrin)]} (8.17)

Since Hiyt is proportional to e, (8.17) is basically an expansion of the S operator in powers of
e = V4wra, where « is the fine-structure constant.

2nd order in e 4th order in e

Figure 8.1: Some diagrams for the electron-electron scattering.
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8.5 Simple reaction: electron-electron scattering

e (p1,r1) +e (p2,7m2) — e (p3,73) +€ (par4) (8.18)

Four-momenta in the center-of-mass system:

o(5) me(5) me () n ()

Before scattering After scattering

where [p| = |p/|.

Figure 8.2: Electron-electron scattering in the center-of-mass system.

State before scattering:
|t = —00) = a,f, (P1)a,},(p2)] 0)

Transition amplitudes for the reaction (8.18):

St = (e(ps3, r3) e (pa, 74)| S le (p1, 1) € (2, 72))
= (0] ary(p3)ar,(ps) Sal, (p1)al,(p2)]0) (8.19)

We truncate the expansion of S after terms of order e?:

S—1 { does not contribute to (8.19) if

(p1,71),(p2,72)#(P3,73),(Pa,74)

does not contribute to (8.19), contains only
one photon creation or annihilation operator

+ (=) [ O:O At Hoe (¢)

(*2)2 * / ° " / " . 2
+ o1 / dt / dt" T'(Hint () Hint (t7)) + { relevant, is of order e
: —00 —00

Thus

—2)2 oo 00
Spi = ( 2!) /_oo dt'/_oo dt” (e(ps, r3)e(ps, ra) [ T(H(EVH(")) le(pr,r1)e(p2, m2))

Inserting the explicit form of the interaction energy Hin(t) from (8.16) leads to

7 2
Sri = %62 /dx'dx" (0| ars(P3)ar, (Pa)

T{: P y(a) : Aua) -

($//)7V¢(x//): Ay<m”)}
af, (p1)al, (p2) [0) (8.20)
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Structure of the matrix element:
(0]aa : (b+a")(b' +a) : (a+al) : (b+a")(b +a) : (a+al)dlal|0)

Evaluation is made easier by use of Wick’s theorem.
Reminder:

T _ S RS S|
(0]aia;|0) = (0]{ai,a;} —aja;|0) ={a;,a;}

thus

(O|a1a£a3a}1 |0) = (0] ({al,ag} - agal) ({ag,aT} - a§a4> |0)

= o ol} o)

= (0]a1ab|0)(0|asal|0)

Definition: “Contraction”: (0]a;a T|O> aa

7
[
That means: (O|w£%1|0>— al a3 1
Consider
<0|a1a2agal|0> = (0|a ({ag,ag}fagag)al|0>
= (0] aal[0) {as,a}} — (0] arafasal |0)
= (0] a10}10) (0] azaf[0) = (0] a1a}0) (0| aza} | 0)
ie.

(0]arasalal[0) = (0]arazala}|0) + (0] arazalal|0)

For fermions!
= JralaJf CLQCLT — alaJr CLQCLT
L4 e L3 e

Wick’s theorem: Vacuum expectation value of a product of creation and annihilation operators

is equal to the sum of all contractions.

Regarding Sy;: The operators a, af from A, (z') can only be contracted with those from A, (z”).

In the case of contraction of Fermi operators, we do not get a contribution if an operator from
(') is connected with one from v (z”), because then also at least one contraction of an incom-
ing electron operator with an outgoing one occurs, which vanishes because of (p1,r1), (p2,72) #

(p3,73), (P4, 74)-

Thus, there are only contributions from contraction of incoming and outgoing electrons with the
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field operators 1 and 1), respectively. For example, a;f (p1) with ¢(z) and ¢ (2") etc.

(0]a(ps)a(pa) : Y@ (a') :: Pa”)V (") = a'(p1)a’(p2)]0)
= a(ps)alp D4) 1 (2 )y (') :@(w”)’v”w(m”)ra*(pl)aT(m)
————— @ |

+ a(?s)a(p4):@(w')v“¢(x’)!17( )7 (z")  al (p1)al (p2)

+ a(p3)a(pa) :@(w')v“@b(fv’) (2 )y (a") sl (pr)al (p2)

I —

+a(py)a(pa) : P(a)y (@) : : 0"y (2") s al (p1)al (p2)
f — |

= {’a(P4)elpml’Y“u(pl)eﬂplx, - a(p3)eP AV u(pg)e 2"
—(12)—B<4)+ (1< 2,3<4)}.

@

Because contractions of Fermi operators yield the same for z > x(j and z{ > xy), inserting this
result into (8.20) leads to thus

Spi =

"{0(xt — 2) (0] Au(2") Ay (") 10) + 0(z5 — 25) (0] Ay (z") Ap(2") [0)}

: {ﬁ(m)v“u(m)e Upa=P)T . i(pg )y u(pa) e3P — (145 2) — (3 4) + (1 2,3 & 4)} .

Pooling of terms, which differ only by the name of the integration and summation variables,
gives

Photon propagator
Spi = (1e)? / da'dz" (0| T(A, (') Ay (")) |0)
{upa o a(po) o) B s

—(ps) Y u(p1)i(pa)y u(pa)e! PP etpamp)e L

With

' " _ dk —ik(a!—z'") —"Gpv
OIT (A A 10 = [ e S (e 0)

the integrals over 2’ and 2" can be easily performed and give d-functions for the four-momenta.
The final result is

Sfi = Z(27T)45(p4 +p3 —p2 — pl) Tfi R (8.21)

where

y; =+ {pn) erulpr) () 1 ()

(p4 - pl)
—U(p:a)(wv")U(pl)mmm)(m”)uwz)} .
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v(pa—p1) Y(p3—p1)

e~ (p1) e (p2) e (p1) e (p2)

Figure 8.3: Four-momentum conservation applies to every vertex.

8.6 Photon propagator

Field operator of the four-potential A, reads as
d*k k
_ 7 T —k
A= | e 10 a0 + e e ()
with

kz(ii), w=lk|, kr=Fk'r,=wt-k- x.

Vacuum expectation value of an ordinary product of two four-potentials:

3
(0] Au(2) Au(y) |0) = —gpu / (ziﬁm o= th(@—y)

Definition of a time-ordered product of two operators A,
T(Au(2)Au(y)) = 02 = y°) Au() Au(y) +0(y° — 2°) A (y) () -
Time-ordered product independent of the reference system due to

Au@), A) =0 for (x—y)*<0.

Figure 8.4: Illustration of the definition of the time-ordered product (8.23).

(8.22)

(8.23)
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Claim:
O] T(Au(z)Au(Y)) 10) = 19, Dr(z — y) (8.24)
with dk
— ) = 1 —1k(z—y) "
aDr(e =) = liy [ e
where
dk = dk°dktdk2dk3 .

Proof:

19 Dp(z —y) = /dgkezk(x—y) /Oo dikoe—zko(wo—yo) _ (8.25)

G2 F Y) = G (2m)3 —oo 2m1 (k0)? — k2 4 1¢ '

The poles of integration are at
KO = £Vk2 —1e — £K|,

as indicated in the Figure 8.5.

Im (k%)

—|k|+2e

A 4

Re(k?)

Figure 8.5: Position of the poles and the integration path in the k’-plane for the integral (8.25)

For 20 > 40 it is oo o
e ) 0 for Imk® — —o0.
We can then add a very large semicircle to the integration path in the lower half of the k%-plane

and apply the residual theorem. We obtain

Bl et KIE )k ()]
ZguuDF(x - y) = _gw// (

2m)3 2|k
and by comparison with (8.22)

19 Dr (e — ) = (0| A, (@) A ) [0) for 2° > ",
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For 2° < 3° we can close the integration path in the upper half-plane and we get

Bk etk —20)—k-(x~y)]
ZguuDF(x - y) = *guy/ (

2m)3 2|k|
= (0] Ay (y)Au(z) |0) for 20 < yo.

With this (8.24) is proven. The function g, Dp(x — y) or its Fourier transform —ug,,,/(k* -+ 1€)
is called Feynman propagator of the free photon field. It plays a crucial role in the framework
of the Feynman rules. The transition amplitude for a designated reaction is given by the sum
of all diagrams with predefined incoming and outgoing lines. Within a diagram an arbitrary
number of vertices is permitted. At every vertex, the four-momentum conservation is granted,
which implies a momentum conservation as a whole (3} inc.p = Y outg. p).

Example: Photon-photon scattering, (k1) + vy(k2) — v(k3) + v(ka)

k4 ks

0+ ki + ko — k3
<

/A 4 Ag—f—k}l—l‘k’z

>
(rljr 0+ ky

k1

k2

The loop momentum is ¢. One always has to integrate over it with measure [ %.

For the S-matrix element, a factor considering the energy momentum conservation has to be
added:

(2m)*s (pr - ZPZ) ;
7 3

where p; represent the momenta of the incoming particles and p; the momenta of the outgoing
particles respectively. There is also a factor of (—1) for every closed fermion loop. If a permu-
tation of outer momenta of fermions takes place, there is also an additional factor given by the
sign of the permutation, e.g.:
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Ps3 P4 P4 P3

P1 P1
b2 P2

8.7 Electron propagator

The electron propagator is defined in terms of the expectation value of the time-ordered product

(OIT (2a(2)ig (2))[0) =: 155 (z — ') ,
where the action of the time-ordering operator T is given by
Yalz) (z'), fort >t
—&&(xl)wa(iﬂ) . fort <t

For convenience we will drop the spinor indices o and o/ in the following but will keep in mind
that Y=, etc. We calculate

T(a(2)d5(2) = {

2

(@)oo} = 5+ (%) D01 (brur (Rye ™ + ooy (k)™

kK

=517 (kuyt+m)
d3k e—tk(@—a')
= (za,fy“ —l—m) / o} 25

=1AT (z — 2)

(0] (2)]0) = —% 3 @2) {em“’) S i () (k) }
k r

=5 (ku’Y“ —m)

2m

d3k ezk(xfx’)
_ "
(187" + m) / S 3E

=1A" (z — 1)

This yields

At(z), t>0
A= (z), t<0
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Claim:

d4]{7 ezkm
A =1i
#(2) 50 (2m)4 k2 — m? +ie

Proof:
We rewrite k2 — m? + 1 as

kg — (we —m)? = k§ — wi + 2wy +n?
—_— ——

—k2—m?2 =ue
and using this to express Ap(z) as
d3k v [ ¢~ tho”
Ap(z) = li kX — [ dk :
#(z) a0 (2m)3 211 ) e Y k3 — (wi, —n)?

evaluate with
residue theorem

To use the residue theorem we rewrite the denominator of the second integral as

1 1 1 1
= + ,
kg — (wp — )2 2k { ko — (wg —m) ko + (wk — ) }
which shows that there exists two poles, one at wy — ), the other at —(wy — ).

N Im(%°)

_ 0
e 1kox 0

for t(=a2%) >0  if Imky <0
’ko’ — 00
for t(=2%) < 0 if Imko>0

|k‘0| — 00

_ 0
e 1kox

1 00
= — dk
2m /_oo 0 k¢ — (wi —n)?
1 % dk { e—zkzoxo e—zkoxo }

= +
211 J—oo 2ko | ko — (wk — ) ko + (wg — )
————

dk
_ Jo, oie fort>0
o S fort>0

e—Zwkt
t>0
_ ) 2w
- €+1wkt
, <0
2wk
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fz) _

3= = [(20) to evaluate the integrals.

Note: We used Cauchy’s integral formula ﬁ §dz

This yields the intermediate result

d3k e:FZwkt d3k eq:zkx
A _ 1k-x :/
r(@) /(277)36 8 2wy, (2m)3 2wy

43 kY

where in the exponent the “—” corresponds to t > 0 and the “4+” to t < 0 respectively. Also
note that we made use of the fact that [ dke®* = [ d3k 7k,

Coming back to the definition of the propagator, we further calculate

d4]€ efzkz

Sr(z) = (0" + m)/ ol it

_ / d4k k/fyu +m e—zkx
) @)t k2 —m2 +ae

and the corresponding Fourier transformation

N F+m 1
kj = =
S (k) k2—m2+1.e F—m+ae’

since (F —m)(F +m) = k? —m2.

Remark: He have

1 1, i S T P A o O P A
—_ T WT _ ey 7, S(k? — 1kx
V 22E," /(277)3 2E, " 2/ (k7 = m7)e

is Lorentz invariant since d*p = det Ad*p'.

8.8 Feynman Rules of Quantum Electrodynamics

For given initial and final states |i) and |f), the S-matrix element has the form

N 454)(p. _ p, m 1
(fISli) = b5 + [(2m)" 0"V (P — B) H\/; eg 2V k| M,

ext.
fermions photons

where P; and Py are the total momenta of the initial and final states. In order to determine M,
one draws all topologically distinct diagrams up to the desired order in the interaction and sums
over the amplitudes of these diagrams. The amplitude associated with a particular Feynman
diagram is itself determined as follows:

1.) One assigns a factor of —ey* to every vertex point.

—ghv

2.) For every internal photon line one writes a factor «Dp,, (k) = 1%
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3.)

4)

_ 1
- Zp—m—l—zs :

For every internal fermion line one writes 1Sp(p)

To the external lines one assigns the following free spinors and polarization vectors:
incoming electron: u,(p)

outgoing electron: u,(p)

incoming positron: w,(p)

outgoing positron: w;(p)

incoming photon: €y, (k)
outgoing photon: €y, (k)

The spinor factors (v matrices, Sp propagators, four-spinors) are ordered for each fermion
line such tat reading them from right to left amounts to following the arrows along the
fermion lines.

For each closed fermion loop, multiply, multiply by a factor (—1) and take the trace over
the spinor indices.

At every vertex, the four-momenta of the three lines that meet at this point satisfy energy
and momentum conservation.

It is necessary to integrate over all free momenta (i.e., those not fixed by four-momentum
4
conservation): [ (;17‘)14.

One multiplies by a phase factor 6, = 1 (or —1), depending on whether an even or odd
number of transpositions is necessary to bring the fermion operators into normal order.

The minus sign for a closed fermion loop has the following origin: proceeding from the T-product

part, which gives the closed loop, T'(. .. ¢(z1) A(z1)(21) Y (z2) A(z2)p(@2) . . . (2 f) Az )b (zy) . ..

one has to permute the operator ¢ (z;) with an uneven number of fermion fields and gets the

sequence of propagators ©(x1)Y(x2) ... ¥ (zs)Y(x1) with a minus sign.

.

q+k

Figure 8.7: Example of a closed fermionic loop.
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FExternal lines

//w (p) / U (p)

incident electron outgoing electron
//w7.(p) / wy(p)

incident positron outgoing positron
;f;(k) ﬁfew)

incident photon outgoing photon

><"W"V‘”< Aep(k)

external field

Internal lines

D k
e —_—> %
—  » 9 ZSF(p) — Z,p’—’ril-‘rle ZL'\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\I./ ZD%V(]{;) = Zik;zkle

internal electron line ] )
internal photon line

4 vertex

Figure 8.6: Feynman rules of quantum electrodynamics in momentum space.
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8.9 Scattering Cross Section

8.9.1 Electron-electron scattering

We come back to the electron-electron scattering process (see 8.5)

e (p1,r1) + e (p2,7m2) = e (p3,r3) + € (pa,74),

where the momenta are given in the center of mass frame as

o) () me(0) me(5)

with |p| = |p’|.

Figure 8.8: Sketch of the electron-electron scattering process.

We now want to calculate the scattering cross section from the amplitude of this process.

J transition rate to ps, p4 dwy; /T
o = =
flux of incoming particles ¢
1 1\? dps dp4 / 2
= :<> (2m)52p9 20 (2m)* 5(p1 + p2 — ps — pa) | Tyl
Ji 2p{ 2pY \V (2m)6 2pJ 2p szirgs { fi }
——

normalization Lorentz invariant . .

of the incoming  volume element averaging/summation

electron states in (p3/p4)-space over the spin direction
of electrons in

the initial/final state

The square of the d-function can be interpreted with Fermi’s trick:

2
(@m) 0(pr+p2—ps—pa)| = [ dw e@rtpomsmr0T(0m)d 5(py 4 py — py — pa)

V,T
—~—
large but finite
volume V /time T'

=V T (27)" 6(p1 + p2 — p3 — pa)

(cf.(8.21))
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dwfz- . 1 1

dp3 dp4 / 2
= == 2m)4s —p3—p1) mesoag D [Ty

spins

We now have to consider the flux of incoming particles ¢. We choose the rest frame of es as

reference frame (the final result will be Lorentz invariant). Then

= Ll where o= 21 p1=<E1), p3=<m2),
V —~~ P1 p1 m

normalization of velocity of
incoming state particle 1

since |p1| = ym|v1| and By = ymc?. We define the center of mass energy as

s:=(p1 +p2)2
= p? + 2p1ps + P}
=m? + 2myEy 4+ m3

22
N Elzs my —ms (%)

2m2

E
Note that in the rest frame of e5 we have p; = <pl and po = <ﬂ82> and therefore p1ps = E1ms.
1

We then find for the absolute value of the momentum of particle 1

» 1
Ip1| = \/E% —m? = —[(s — m% — m%)2 — 4m%m%}

2’)7‘L2

N|=

a 2m2

N

{32 + mil +mg — 2sm3 — 2sm3 — Qm%mg}

1

~——

v w(s,m?,m3), where |w(z,y,2) = [$2 +y? + 2% — 20y — 222 — 2yz
ma

1
2

=Y
Using above result we find for the flux the expression

6= 11 w(s,m%,m%)
V! 2p)

Combining our previous results yields a scattering cross section do of

1 dp3 dpa 4 o
do = o)t 5 —py— T,
7= (s, mi,m) @mpapagy o) O P2 = s ) > 1Tyl

spins

(8.26)

171




CHAPTER 8. QUANTUM ELECTRODYNAMICS

Now it is for the sum over the matrix elements T';

|l =TTy

spins spins

—Z{

spins

u(p2)ypu(ps)u(pr)y u(ps) — ﬁ(m)vw(pa)ﬂ(pz)v“u(m)}

(pa —pl) (p3 — p1)?

{(1)2U(P4)’YVU(P1)U(P3)7VU(I?2) - (ps_lpl)zU(p4)%u(291)u(p3)’yyu(p1)

- 24 {1 T (6, + m)py & m)w] - T [, +m)r (g, +m)y’]
- —Tr WQ +m)yu(py + m)vp, +m)v(p, + m)ﬂ + B—= 4)} :
where in the last step we used

Zus s p+m p7u+m
s==£1/2

and
wi=(ps—p)®, t:=(p3—p1)*.

We further calculate

T [(p, + )7y + M) | = 4(gum® + poups, + Poupsu — Gups - ps)
and

T [, + M)y + M) (B, + M (p, +m)y”|

=16 ( — 2p1papspa +mPp1 - p3 +m®(p1 +p3) - (p2 + pa) + m’pa - ps — 2m4) :

After a lengthy calculation one finds using the definitions of s, u and ¢

6472’
> Tyl = t;T 5 {(s —2m?)2(t? 4 u?) 4 ut(—4m?s + 12m* + ut)} .

Inserting in (8.26) yields in center of mass variables

o 0 ’p?)‘ ’p3’ p42[5(5—4m2)]1/2 (27r)2 2]?3 2;02 (f P3 p4) (p3-|-p4) Z ’ ’ ’
and finally
2
% - %{(S —2m®)?(t* + u®) + ut(—4m®s + 12m*) + ut} (Mgller 1932)
St°Uu

where we have

E=+2/2, t=—4|p;1|*sin®

N D

2 cos?

NGRS

) u = _4‘p1
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We will now determine the kinematic boundaries of 6, respectively . Quantum mechanically,
both electrons have to be viewed as identical particles in their initial and final states. The
question of whether the particle coming from the right or the one coming from the left is hitting
a counter placed under an angle of # is meaningless (see Fig. 8.8). We only can detect that
one electron leaves the point of interaction under an angle 6, the other electron under © — 6.

Therefore the angle range |0 < 6 < 7/2| already captures all distinct final states. This ensues

0>t>—3(s—4m?) |

We find in the non-relativistic limiting case, |p| < m:

2 1 1 1

+ _
ind ¢ 4 0 in2 8 20
S1n 2 COS 2 S1n 2 COS 2

= classical Rutherford additional QM term
scattering resulting from the

interference of
both electrons

do a’m

dQ — 16]p|*

(Mott 1930)

The additional term results from the quantum mechanical addition of the amplitudes — which
correspond to both of the Feynman diagrams — and the concluding formation of the modulus
when calculating the cross section. The minus sign in the interference term results from the
Fermi statistics; for bosons one obtains a plus sign.

We can also determine an ultra relativistic case, [p| > m:

da_a2 1 n 1 1
Qs sin4g cos4g

B oﬁ (3 + cos? 6)?

s sin 0

n.b.: s- g—g is no longer dependent of s. This scaling behaviour of the cross section is

interpreted as an indication of the point like nature of the electron. If the electron would

possess an finite “extent” v = 1/A, one would expect that s - g—g is a nontrivial function of the

dimensionless variable s/A2%, ie. s - 3—6 would not be independent of s. Predictions from the

theory of electron-electron scattering were throughout verified in experiments.
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8.9.2 Electron-positron scattering (Bhabha-Scattering)
We consider the process
e (p1) + e’ (p2) = e (p3) + e (pa),

which possesses the same kinematic as the previous electron-electron scattering process. The
Feynman diagrams of lowest order are given by:

e (ps) et (pa)
e (p3) et (pa)
p1+ P2
P1—Pp3
e~ (p1) et (p2)
e (p1) et (p2)
“Scattering” “ Annihilation”
(p1—p3)? <0 (p1 + p2)? > 4m?

For unpolarized electrons and positrons in the ultra relativistic limiting case, we find in center
of mass coordinates

dr o [11+4cos*d 1 5 cos? &
—=—{ - 2 (1 0) — 2
ds2 2{2 sin4g +4( +eos ) sinQ%
2 2 0\2
3 0
o7 BHeos” O b s am?

~ 16s sin4 g

We are considering two distinguishable particles in the initial and final states, therefore we have
an kinematic range of 0 < 6 < 7.

Bhabha-scattering was studied at the collider PETRA in Hamburg, where the highest center-
of-mass energy was /s &~ 45GeV. A really good agreement of experiment and theory was
found.

If one assumes that quantum electrodynamics needs to be modified from an energy scale A on,
then for

do [ doQED

2 . aadt b 2
SN 22/ e = 14 O(s/A?)

and with an experimental precision of s ~ 103 GeV? it follows

S

1z <0.05, ie A>150GeV resp. 1.3-10" % cm.

Deviations on this energy scale can thus be explained by the need to extent the QED through
the electroweak interaction.
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8.9.3 Compton scattering

v(K')
" Figure 8.9: The Compton scattering process in
(k) V0 the laboratory frame, where the incoming elec-
tron rests.
e (p)

We look at the process

v(k) +e (p) = (k) +e (),

where the incoming electron rests in the laboratory frame. The momenta are therefore described

(). 5 ()

0 p

=) o)

where w = |k| and w’ = |K/|. Energy conservation yields

m+w=1/m2+p?+u
=/m?+ (k—K)2+uo

o = %(1 — oS 192)

resp. N —\= 2%(1 — co8 ?92) )

w—w

=

where the corresponding wavelength is 3.86 - 107'* cm. The Feynman diagram of lowest order
for the calculation of the scattering cross section are given below:

e (p') 7 (K) e ()

e (p)

For unpolarized electrons and photons, we find the result

do oﬁ 1 w?(1 — cos 1¥2)?
dQQ 2 m[

N 1+ cos® ¥ Klein, Nishina 1929
[m + w(1 — cos ¥2)]? m + w(1l — cos ¥2)] +hAcos 2} (Klein, Nishina )

In the non-relativistic limiting case, w < m, we find

, do a? 14 cos? ¥y 81 a?
W =w _——1 o = — — .
’ dQy  m? 2 ’ ot T T3 2
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We also can determine an ultra relativistic case with w > m, resp. A < 1/m:

1—(:0592<<m = N=\N, —~r—
w

do a? 1

ds ~ 2mw(1 — cos 65) o

2
1—00892>>@ = )\/%—W(l—cosﬁg),
w m

where in the second case the scattered wavelength )\ is independent of the incoming photon.

Note: Compton scattering is related by crossing symmetry to pair annihilation. Under
crossing symmetry one understands that, given a particle interaction, related interactions can
be anticipated from the fact that any of the particles can be replaced by its antiparticle on the
other side of the interaction. Looking at an arbitrary reaction

A+B—-C+ D,
this implies the existence of the following reactions:

A—-B+C+D
A+C - B+ D
C—A+B+D
C+D — A+ B
Crossing symmetry applies to all known particles, including the photon, which is its own an-
tiparticle. Considering the Compton process, if the electron on the right side of the process is

replaced by its antiparticle — the positron — on the other side of the interaction, as well as the
photon on the left wanders to the right, the result represents a pair annihilation, as seen below.

e” + a — 6 +v (Compton scattering)
e~ + — @ + 7 (Pair annihilation)

It could be said that the observation of Compton scattering implies the existence of pair anni-
hilation and predicts that it will produce a pair of photons.

8.10 Problems with external fields

Until now we only considered reactions inside the vacuum, but in reality one often finds prede-
fined external fields (e.g. capacitors, electromagnets, nuclei).
Some examples are

(1) Scattering of an electron at a predefined charge distribution (e.g. a heavy nucleus)
(2) Emission of synchrotron radiation of an electron in an accelerator

(3) Emission of Bremsstrahlung from an electron, which is decelerated in the field of a nucleus
(— generation of X-radiation in a X-ray tube)
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(4) Creation of an electron-positron pair via a photon in the field of a heavy nucleus (— dis-
covery of the positron, Anderson 1932).
Today, this process is usually used in high-energy physics to detect electrons in experi-
ments.

Starting point:

Hint(t) = /d3r J(r,t) Au(r,t)

Au(r,t) = A (r, 1) + AT (r, 1)
S—— N——

quantum external

field potential

The sources of A’fj‘t are the external charges and currents ]Z"t, where the following Lorentz
conditions are satisfied:

ext __ ext
DAM (JJ) _]u (J))
xt _
§ASY () = 0.

We again employ the Dirac- or interaction-picture: 13- |t) = Hine(t) [¢).

Let us take a closer look at the structure of Hins:

Hine ~ (b+ a") (0! + a) A=
~ =b1b A 4 aThl A™ 4 pa AT 4t AT
—_——— — —
(@) (3) @) (1)

where the appearing parts have the following interpretation:
(1’) Scattering of an electron at an external potential
(2’) Annihilation of an electron-positron pair through an external field
(3’) Creation of an electron-positron pair through an external field

(47) Scattering of a potential at an external potential

Diagrammatic visualization:

ze’y“/dx e’(p/_p)xA‘;Xt(x)

1 /
= eyt —— /dx PPy L gext gy
(p—1')? 8
If a vertex of the above kind appears in a diagram, one omits the J-function of the energy-

momentum conservation in the S-matrix element.

Feynman rules:
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8.11 Radiative corrections / Renormalization

Until now, we considered reaction in the QED in lowest order, what gives finite results which
are in good accordance with experiments. But terms of higher order exist in theory and have to
be taken into account regarding precision measurements. When calculating higher orders, the
so called radiative corrections, infinities occur. The systematic procedure to calculate terms of
higher order with finite result is called renormalization.

Example: Scattering of an electron at an external potential

e(p’)
Lowest order
e(p) ok v
Next higher order:
e (p) e (p)
Aixt Aixt
e (p) e (p)

ext
AM

(d)

When we look at diagram (c), the Feynman rules tell us that we have to integrate over the loop-
momentum (schematic for the amplitude):

A(C)N/d4fl p+[+me ﬁ),_[“‘me
2 p2 4+ 2pl + 02 — m2 p'2 — 2p/0 + 02 — m2

The above integral diverges for ¢ — oo logarithmically ([ d4€£%%%, note that d*¢ contains a £3,
hence logarithmic), what leads to the so called “ultraviolet catastrophe”. Even for ¢ — 0 the
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integral diverges. Because of p? = p2 = m?2 follows A(®) ol S/ d4€€% ﬁ;%z and we have the so
—
called “infrared catastrophe”.

The infrared catastrophe can easily be fixed (“soft photons”).

Quantum mechanical considerations regarding the infrared divergence:

What do we observe, when we say a detector measured an electron? We only have a finite energy
resolution AF| so experimentally it can not be distinguished, if an electron comes in isolated or
accompanied by a “soft“ photon of energy w < AF.

= %P = g(1 electron)

= (1 electron 4+ 1 photon of energy w < AF)

(%)

= (1 electron + 2 photons of total energy w < AF)

Calculations yield

Wmin Wmin—0

o(1 electron + 1 photon of energy wmin < w < AFE) x 7 ln

The theory should give finite results for observable quantities. This would be the case, if the
scattering cross section summed over all final states in (x) is finite. Further calculations show
that in every order of «, the infrared divergences of o(1 electron) of the higher order diagrams
and the infrared divergences in (xx) cancel each other out.

To avoid problems with divergent integrals in intermediate steps, one introduces a small photon
mass which can be set to zero in the final result. This final result also reveals the resolution AFE
of the apparatus.

To overcome the ultraviolet catastrophe is more difficult and subject of the renormalization
theory. The basic idea is that divergent integrals are useless and must be made finite by hand,
i.e. must be regularised. Different regularisation procedures were proposed, e.g. to abort all
divergent integral at a parameter A:

1 1 1 1 1 1
/ dé— - — / dl— - .
Cp+f—mp —f—m <n Cp+f—my —f—m
The results then depend logarithmically on A. There exist different cutting-off procedures, like
the Pauli-Villars or dimensional regularisation, which are of better use for the QED.

After the regularisation one has a theory which is completely finite. The theory makes use of
the following parameters for the electron:

€0 ) mo y A
charge mass
parameter parameter

(similar to the Hamilton function resp. the Feynman rules).

Foundation of the renormalization theory is the assumption, that ey and mg are not identical
with the observable charge e and mass m of the electron.
How can one measure the charge of an electron? One possibility is to use a magnetic field and

the formula
K= (—¢)(vxB), ( % %)
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which, viewed in the context of the QED, corresponds to the scattering of a particle at an
external potential. Calculations using the renormalization theory actually result in a force in
the shape of (x x *), but for the charge one finds e # ¢g. It is (with constants a1, ag, etc.):

2 A 4 AN
e=ep|l+aegln — +agey |In — ) +... (8.27)
mo mo
Analogous one finds for the observable mass m (witch constants by, be, etc.):
A
m:mo[l—i—ble%ln—i—...]. (8.28)
mo

Since in the limit A — oo e and m seem to diverge, they are still meaningless. One way out
of this problem is the assumption that ey and mg only have a mathematical existence. When
calculating the limit A — oo, it is done in such a way that the observable quantities e and m
are fixed and the mathematical parameters ey and mg vary with A. The original quantities eq
and myq then diverge for A — oo, which is irrelevant, because they cannot be observed.

This gives us the following program to follow: We calculate a transition amplitude A in the
regularised theory with the aid of the known techniques. A will be a function of the “bare”
parameters eg, mo and A (cutting-off parameter):

A= F(eOa mo, Aav) (829)

Texternal momenta and polarisation

By inversion of (8.27) and (8.28), we express the “bare” parameters via physical ones:
eo = egle,m, A)
mo = mo(e,m, A)
Substitution in (8.29) yields A as a function of the parameters e, m and A:

A= F(eo(e,m,A), mo(e,m, A), A, )

We then take A — oo, where e and m are now fixed.

Central theorem of the renormalization theory:

The limit of the expansion with respect to e exists in every order (and
after the separation of a suitable scale factor Z, which is not dependent
on external momenta).

We define the renormalised Amplitude A’ as a function F’ of the physical (observable) parameters
e and m and of the external variables:

A" = lim Z(e,m,A)F(eo(e,m,A), mo(e,m, A), A, )

A—oo

=F'(e,m,...)
The renormalization theory gives an expansion in powers of e of the renormalised amplitudes:
Fle,m,...)=Fj(m,...) +eF/(m,...)+Fy(m,...) +...,

where all F/ are finite. The convergence of the series is not stated though (in most cases not
convergent but asymptotic).

The mathematical execution is in most cases tedious. The theory finds excellent confirmation
in experiments.
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8.12 Principles of Strong Interaction / Quantum Chromody-
namics

Hadrons (protons p, neutrons n, pions or m-mesons 7+, 7° and 7~, as wellas A, SH0~ K, ...)

are compound particles — the fundamental particles are quarks.

mesons ~ qq (quark-antiquark)

Thereby: baryons ~ qqq (3-quark states)

Initially 3 different types of quarks were postulated, so called quark flavours

name spin charge baryon number strangeness
u “up” /2 2/3 1/3 0
d “down” 1/2 —1/3 1/3 0
s “strange” 1/2 —1/3 1/3 -1
E.g. for m- and K-mesons resp. baryons:
mesons baryons
™t ~ud | p e~ (uud),
70 ~ %(uﬂ —dd) | n ~ (ddu)-

T ~du A ~ (uds),

Kt ~us

K° ~ ds

The Q~-particle (baryon) has spin —3/2 and a strangeness of s = —3

Q7 (3/2,3/2) ~ 55 g e m)
~ ———
totally

Tspatial wave function of the 3 quarks,
orbital angular momentum 0
= totally sym.

symmetrical

This would give a totally symmetric wave function for a particle with half-integer spin, which
is prohibited by the Pauli principle. Therefore an additional quantum number, the color, is
introduced in 3 different versions,

Uy, U2, U3 ; d17d27d3; 51,582,583,

which gives for the Q™ -particle

_ T 11
Q (3/2a 3/2) ~ SaSESyEapfy ¢(r1,r2,r3) v

totally totally sym.
anti-symmetrical

States are invariant under rotation inside the color space,

3
Qo — qs5 uﬁav
6:1\/
~e{u,d,s}
where U € SU(3) (color-SU(3)) plays a fundamental role in QCD.
E.g. 7" ~wuydy + uady + ugds  is invariant under SU(3).
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Experiments showed that, besides the quarks, other flavour-neutral constituents (“partonen”) of
the nucleons must be present (which carry a part of the total momentum of the nucleon). These
particles are responsible for the interaction of the quarks among themselves inside the nucleon.
These particles are called gluons and follow in a natural way from a SU(3)-gauge theory for
the strong interaction of the QCD.

8.12.1 Lagrange density of the QCD: SU(3)-gauge theory

Kinetic term for the quarks:

Lo(@) = 37 (@) ("9 —my) ¢ (),

J=1

where j = 1,..., f are the quark flavours and m; the corresponding mass. We have

The quark fields ¢/ have three color-components each ¢/ = | ¢}

a
Since the physical bonding states of the quarks (e.g. mesons, baryons) are invariant under
SU(3)-rotations in color-space, this should be a consequence of an invariance of the fundamental
Lagrange density.

L2(x) is indeed invariant under ¢/ (z) - U - ¢/(z), (j=1,...,f), where UUT =1, det U =1
(i.e. U € SU(3)) and U = const.

The global invariance is — much like the global U(1)-invariance of the Dirac field in the QED —
not satisfying from a relativistic standpoint. Therefore one requires a local gauge invariance of
the theory:

¢ (x) = Ux) - ¢’ (), Ulx) € SU(3).

Inside the QED framework, this gauge principle is established by the photon. In the QCD it
will happen via the introduction of the gluon.

The physical postulate of the invariance under color transformations of the quark field can be
understood as the “reason” for the existence of gluons.

Apparently £)(z) is not invariant under ¢/ (z) — U(z) - ¢/ (), since

f
L£3() = Y7 @) (109 — mj + " U (@)9U ) (=)
j=1

In the QED, we needed a photon field A, to generate the local gauge invariance according to
the number of generators of the gauge group U(1). In the QCD we need 8 gluon fields according
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to the eight linear independent generators of the SU(3) color-group: Aj(z) (witha =1,...,8),
8 gluon four-potentials. We combine these into a 3 x 3 Hermitian traceless matrix

Aua) = A3) 2 = @), Tr Au(e) =0,

where the )\, represent the Gell-Mann-A matrices, which operate in the color space

010 0 — 0 1 0 0 00 1
M=1 00|, X=[: 0 0|, x=]0 -1 0], =00 0],
000 0 0 0 0 0 0 100
00 —1 00 0 00 0 L (100
=100 0|, =[01 0], m=]00 —|, X=—=]01 0
1 0 0 00 —1 0 1 0 V3lo 0 2

(n.b.: infinitesimal transformations in the SU(3): U = 1 + 15p,a3A, = finite transformations:
U= exp(z&paé)\a))

The gluons are coupled to the quarks via a minimal coupling scheme (analogous to the QED)

Op — Dy = 8H+z\gf/Au(x)

“covariant, dimensionless
derivative” coupling constant

(=charge in QED)

With this the Lagrangian becomes

L, is invariant under local gauge transformations ¢’/(z) — U - ¢/ (z) if we transform the gluon
potential in the following way:

A(x) = Al(z) = U(z) A (@)U () - iL{(x)auUT(:c) (8.30)

A’ (z) is again Hermitian with a trace of zero for arbitrary U(z) € SU(3):
Uput@) =1 = U@ @)+ (0u@))ul @) =0 =  Al(@) = Au()

and Tr (L[(:c)(?MZ/{T(a:)) =0 = TrA,=TrA,- gi Tr (U@uUT) =0
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The gluon field A, (z) itself must be a dynamical variable. Construction of the part containing
the gluon dynamics of the Lagrange density is done analogous to the QED. One defines a gluon
field tensor F, (x):

Fu (@) = 0,4, (x) — 0,A,(z) + 19, [Au(), Ay(2)] (8.31)

For fixed x it represents a Hermitian, traceless matrix, where its components are defined by

a )\a
F/U/( ) F,Lw( ) ? ’
where with (8.31) one finds

Fi () = 0, A% (x) — 8, A5 () — g5 e Aj (2) Af () |

ju%

where fupe represents the structure constants of SU(3). These result from the algebra of the
generators by [Ag, A\p] = 200 Ae.

The term quadratic in the gluon potentials has no analogue in the QED and is typical for
the non-abelian character of the color group SU(3). This term is necessary to archive a
simple transformation behaviour for F,,, under a gauge transformation, because according to the
transformation of the gluon potential (8.30) follows F,, — Z/lFWI/IT. Then the gauge invariant
Lagrange density for quarks and gluons is given by

Lqocp(z) = f% Tr (FWF‘“’) + i 7 (Z’y“D — m])qj (x)
1

= L e ﬁ ) [ (0 + 19430 3 ) = ] /@)

Above equation defines the fundamental Lagrange density of the QCD with a similar structure
to the QED pendant.

Comparison of QED and QCD

QED QCD
quantum number electrical charge color
fermions electrons quarks (color triplet)
vector bosons photons (uncharged)  gluons (color octet)
gauge group U(1) (abelian) SU(3) (non-abelian)
coupling constant e, a=e?/4m gs, s = g2 /4T
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Appendix A

Correlation Functions, Scattering,
and Response

A.1 Scattering and Response

If a time-dependent field E e*¥*~) is applied to many-particle system (solid, liquid, or gas),
this induces a “polarization”:

P(k,w) 6(z(k]z'—wii) +P(k, 2w) ez(kr—2wt) + P(2k,w) ez(2kr—wt) +. .

periodicity as the applied field nonlinear effects

Linear susceptibility is a property of the unperturbed sample:

. Pk,w

Scattering experiments with particles:

The wavelength of the particles must be similar to the scale of the structure that one wants to
resolve.

Energy must be comparable to the excitation energies of the quasiparticles.

For example, neutron scattering with thermal neutrons from nuclear reactors.

(A~ 0.18 nm for E = 25meV =290 K).

Inelastic scattering cross-section

Hy: Hamiltonian of a many-particle system (sample)

X' Coordinates of the particles of the sample (position and other degrees of freedom)
m, T, mg: mass, position and spin of the incident particle.

2
H = H0+2p—m+W({xa},r)

with the kinetic energy of the incident particle p?/2m and the interaction between the sample
and the incident particle W ({x,},1).
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In second quantization

2
H = H0+L+ Z (Zk/ 1Ak u—/d?’re k' —K")r WGU ({Xa} )
2m
k/kl/ ! //
2 g
= HO + T —+ Z ak/ /ak"U”Wk’ K" {Xa})
m
K'K" o' o

aL ., creates a incident particle with k', o’
axr,» annihilates a incident particle with k”, o”

Eigenstates of Hy: Hyp|n) = E,|n)
dk,
k, V¢ Inelastic scattering
Momentum transfer: k = k; — ko
2
k, A Energy transfer: iw = ;—m(k% — k2)

Initial state |ki,ms,,n1) (Jnq) initial state of the sample)

Final state |ko, ms,,n2) (|n2) final state of the sample)

The transition probability per unit time (Fermi’s golden rule):

P(kb Mgy, M1 — k27 Mgy, nQ)

2
7’<k27m527n2‘W‘k27msunl” 5( En2 +hw)

where (ka, mg,, no|Wlka, ms,,n1) = Wmslm”({xa}) and fw = —;(k% —k3).
The distribution of initial states of the sample |n;) is p(n1) > 0 with Y p(ny) =1
n1
The distribution of the spin states of the incident particle ms, is ps(ms,) with Y. ps(ms1) =1
My
If only ko (and not mg, ) is measured:
Tk > ko)=Y > p(n)ps(ms,) D(ky,mg,,n1 — ko, mg,, n2)

n2,Mm1 Msq,Msy

The differential scattering cross-section per atom:

d*o IO0de probablility of transition into dQ2de/s
dQde ~ humber of scatterers x flux of incident particles

The element of the solid angle into which is scattered is df2, the flux of incident particles is equal
to the magnitude of their current density, the number of scatterers is N, the normalization
volume is L3.
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Lg}/z e’¥17 thus the current density is j(r) =

(T — (V) = B9 and e dde = 1 mE T (k5 ko) (&) dhy

The states of the incident particles are ¥y, (r) =

3
The number of final states, i.e., the number of ks values in the interval d®ks is (%) d3ksy

~BEn
Remark: Systems in equilibrium: p(n;) = “—— (from density matrix p =

—BH,
[ > 0).
Due to §(w) = [ &L ™t the scattering cross-section contains the factor
1 [dt
[ g €T E I e
1 4
:% / dt ezwt<n1|ezH0t/hefzkxaeszot/h|n2>

fi iwt —1kXq (1)
_27Th/dt€ (nile |n2)

dt 2w 1 —1kx, 1kx 1
= ng?(kﬂﬂ) :/%6 tﬁz<6 k &(t)ek B(0)><6 5)
af o

where the index coh or inc refers to coherent or incoherent dynamical structure function, re-
spectively. Both contain an elastic (w = 0) and an inelastic (w # 0) component.

<7 (n|Oln) = Tr(pO).

The thermal average of an operator O is defined by (O) =

Density operator of the target system (sample):

p(x,t) = 37 6(x — xalt))

and its Fourier transform:

N
Pk(t) /d?’xe 1kx X t Z —1kxa (t

a:l

dt Vv

= Scoh(kvw) = 27Th zwt N<pk( )pfk(o»

with the density-density correlation function (px(t) p_k(0)), the momentum fik and the energy
transfer fw from the scattered particles to the target system.

Application: scattering from solids to determine the lattice dynamics.

The one-phonon scattering: resonances at +wy, (k) and fw, (k) (two transverse phonons), and
at tw;(k) (longitudinal phonons)

The width of the resonances: lifetime of the phonons.
The background intensity is due to multiphonon scattering.
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The intensity of the resonances depends on the scattering geometry via the scalar product of k
with the polarization vector of the phonons and via the Debye-Waller factor.

Scattering cross-section <— correlation functions of the many-particle system

In the following: correlation functions «— response function

With € h 2 , it follows that de = [ kQ dko and d3ke = 7z M ko de d)
d?o m \?2 ko LS
o= (o) BN X pn)pome) (. ey W ki ey o) 8(Bry — B+ i)
ny,mng

Msy,Mso

Special case: neutron scattering (neutral particle)
~» Scattering solely by nuclei.
The range of the nuclear force: R~ 1072¢em = kiR~ 107% < 1 = only s-wave scattering.

= The interaction can be represented by an effective pseudopotential.

27Th2 N

§ aq 0(Xq — X

where a, is the scattering lengths of the nuclei (Born approximation).
~ independent of the spin mg, !

N 2
S aa (e ng)| 8(Epy — By, + hw)

a=1

o B LS )
dQde ~ &y N =P

We have used

27Th2 3 —k1x 1kox
(k1| W ko) = —73 /d re Zaaé(x—xa)e 2

2mh? (ki —
=5 D _ae Tl
«
and
N 2
Y aa{mle™ng)| =" agag(nile e ng) (n2|e" 1) 8(Ep, — Ep, + kw)
a=1 a,fB

Averaging over the various isotopes with different scattering lengths.
Assumption: positions of the isotopes are randomly distributed:

aa%:{a or a7 3 with EZNZaa and aZZNZai
a=1 a=1

a2 fora=p
= Decomposition of the scattering cross-section into a coherent and an incoherent part

d?o

m = Acoh Scohkv w) =+ Ainc Sinc(k’ O.))
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With

k — k
— a2 2 o= (a2 — 2
Acoh =@ Ky y Aine (a )kl

amplitudes superpose, interference

1
Seon = 37 D 2 () (ma|e7" na) (na] "7 |n1) 6(Eny — En, + hw)

aff nin2

1 —1KX
=52 2 p(m) [{nale ™" o) | 0(En, — Ep, + hw)

a nin2

intensities superpose, no interference

Secon contains information about the correlations between different atoms.
Sine contains information about the correlation of each atom with itself.

A.2 Correlation and response functions

Hy: time independent Hamiltonian of a many-particle system
Schrodinger equation: 1/ % |, t) = Ho |y, t)
Formal solution:

6. = R 1y
=:U(t,to0)

Heisenberg representation:

State V) = |[¥, to) is time-independent,
Operator A(t) = Ug(t, to) AUo(t,to) is time-dependent

d 1
Heisenberg equation of motion 7 A(t) = 7 {HO, A(t)}
Density matrix:
—BHo
p="° Z— with Z=Tr e~ FHo
—B(Ho—pN)
PG = A with Zg = Tr e PUHo—nN)
Za

Mean values:  (O) = Tr (pO)

Correlation function:

Cap(t,t') : = (A(t) B(t'))
( ’LHot/h Ae—ZHot/fL 1Hot' /hB —1Hot' /f)

Tr
Tr ( ’LHO t— t /hA —lHQ(t t)/fB)
Ca

p(t—1t,0) = temporal translational invariance
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Definition:
Giplt) = (A() B(0)>} ~+ Fourier transform: G;B /dt et GAB( )
Gip(t) = (B(0) A(1))
~ G p(w /dt et Tr (peZHOt/hAe Hot/h g)
/dt ot Z HOt A1 m) (e~ Hot/n B )

= /dt e“”t 7 Ze_BE"e’E"t/h<n\A|m> e_’Emt/ﬁ(m\Bm}

= %ZefﬁE"<n!A\m><mlB\n> /dt O
2 E,—E,
= Gpw) = 7” 52 e GulAlm) oml B 9 (P +) (A1)
—BE Em - En
and G5pw) Ze " (n|B|m){(m|A|n) ¢ — +w (A.2)
= Gap(-w) = GEA(W)
Gip(w) = Giplw) e ™ (A.3)
(mesn) = =223 e 8B (m|Bln) (n] Alm) 6 (M‘ + w) (A4)
Z ~ h '
= E,=FE,+ (A.5)
For example:
A=pr and B=p_y
Ly (t
ith the Fourier transform / dr ef’kr rt)=— e Krall
w pk ) \/V agl

of the density operator p(r,t) = Z d(r —ry(r))

Density-density correlation function (py(t)p_k(t))
Coherent scattering cross-section

dt oV
o5 € N<pk( )p—k(t)

Secon(k,w) =
Due to (A.3) follows:
Seon(k, —w) = e S 1 (—k,w)
e P Secon(k,w) for systems with inversion symmetry

= Anti-Stokes lines (energy loss by the sample) are weaker by a factor e™#™ than the Stokeslines
(energy gain).

ForT -0 Sconk,w <0)—0

(system is then in the ground cannot transfer any energy to the scattered particle).
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A.3 Dynamical Susceptibility

Consider a many-particle system influenced by an external force F'(t) which couples to the
operator B:

H=Hy+H(t); H(t)=-Ft)B (A.6)

For t < ty: F(t) =0 (the system is in equilibrium).
How does the system response to the perturbation (A.6)?

The mean value of A at time ¢:
A(D) = Tr(ps(t)A) = Tr(U(t, o) ps(to) U' (¢, t0) A)
——
= Tr(ps(to) UT(t, to) AU(t, )

e_ﬁHO
=Tr|— UT(t,to) AU(t, to)

— (UT(t, 1) AU(t, to))o = e~ H(E—t0)/h

The system is in equilibrium at g, thus pg(tg) = e #H0/Z.

U(t,ty) can be determined perturbation theoretically in the interaction representation.
Equation of motion: zh% U(t, to) = HU(t, o)

Ansatz:

Ut to) = e Holl=t)/h ' (¢ 14)

d
= mdt U'(t, to) = ePot=t)/h (_ gy + HYU

d
Thus m% U'(t,to) = Hy(t) U'(t,t0)
H}(t) — eZHQ(tfto)/hH/(t) eszQ(tfto)/ﬁ

“Interaction representation of H'”.

t
= U'(t,tp) =1+ %/dt’ Hi (U (t, o)

_1+m/dt Hi (¢ /dt/dt”HI YH (") + ... (A7)
to

1
=T exp {Zﬁ /dt’ H}(t’)}
to

with the time-ordering operator 7.
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For the linear response, we need only the first two terms in (A.7).

~ <A(t)> — <U/T(t, 750) eﬂHo(tfto)/hA eszo(tfto)/hU/(t7 t0)>0

t t
= <<1 - ih / dt’H}(t’)) etHot=to)/h g g=Holt=to)/h (1 + iﬁ / dt'H}(t’)>>
1 2
to to

<61H0(t—t0)/ﬁ A e—ZHo(t—to)/ﬁ>0

. e*iHo ezHO(t—tO)/hAe—zHO(t—tO)/h,) :Tr(efiHo A):(A)o

t
+ 1/dt/ <[eZHo(t—t0)/ﬁAe—ULIo(lt—lto)/ﬁ7 Hi(t])o

——
:ezHO(t—t/)/hH/ e_ZHO(t_t/)/h:—B(t’)~F(t/)

0

Initially tg — —oo the system is in equilibrium and F'(¢') is switched on at a later instant.

A(A®B) = (AW®) ~ (o= [ dt'xanlt— ) F(¥)

with gt — 1) = £O(t — £)([AR), B{)])o

with dynamical susceptibility or linear response function x 4p and the step function

1 >0
mmz{ e
0 <0

which ensures causality.

Fourier transform of the dynamical susceptibility
oo
xap(z) = / dt e’ZtXAB(t) with complex z
—00

Consider a very slowly switched on periodic perturbation (¢ — 0,e > 0)

H' =~ (BE,e™" + BIF} ') e

o0

= AAD) = [ d (xap(t — ) Fuoe™ 5 xup(t =) Fre’) &)
— 00 —1

* _—wwt

= xap(w) F,e ™ + xapt(—w) Fe
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The effect of the periodic perturbation on A(A(t)) is proportional to the force.

Resonances in the susceptibility: strong reaction to forces at the corresponding frequency.

A.4 Dispersion Relations

Causality = xap(t)=0fort <0
= xaB(z) is analytical in the upper half plane (due to e~'™?! in the Fourier transform)
=  xan(?) = = f dz! XAP~ ( ) (Cauchy’s integral theorem)

< The semicircular part of the integration
- path does not contribute if xap(z’) is
sufficiently small at infinity.
- » Re(z2)
C
o0
1 xaB ()
= Z) = — dz’
Xan(2) 2m / =z
—00
d / /
for reglz xap(z) = hm xaB(z +1€) = lim dr’_xap(r)

e—0) 2m o' —x — 1€

“+o00 r—e€ +oo
) dx’  f(2) ) dx’ d' \ f(«') 1 [dz f(2)
lim — = = lim — 4+ —_— ] - —
e—0 2wy &' —x — 1€ >0 211 2m | ' —x 2 ) 2m z—=x
00 ﬁ—/

—00 T+e
=f(z)

—p (BT sl ).

2max’ —x

with the Cauchy principal value defined as

P [ 5 Eﬁo(/dﬁ/dx)#j

r+€
Or formal:
1 1
P R— :P<x’—x> +md(z’ —x),
ie.
dx’ xap(z') 1
xan@) =P [ o Sz T pxasl@)

xaB(x')
ZI,' — X

1
=  xap(z) = EP da’
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i.e.

Re xap(z) ZRe{ P/d jdmxap(a’) + ReXAB(ZU/)}

./L'*IL'
P/d/ImXAB )

-z

Re xap(z')
$ — X

Im xap(x :——P/d/

A.5 Spectral Representation
Definition: Dissipative response X// (t) = %([A(t), B(0)]),

Fourier transform: x’jz(w) = f dt et '\ ().

Due to O(t) = lim¢_, f Lo g—wt o we get

xAB(w /dte’lmg )20 X4 p5(t)
/ do’ Xap(w') (A.8)
W —w — 1€

— ;P/dw’ Xj/B_( w) +ux'ag(w)
=45 (W)

= Xap(Ww) + 1x4p(w)

Decomposition into real and imaginary parts if x’j 5(w) is real.

A.6 Fluctuation-Dissipation Theorem

Due to
Xhn(t) = o= {(A()B(0)) — (BO)A®)
it is
Xap(w) Qh{GjB() GEB(W) }
ap(w)e P
thus
1 —Bhw
Xap(w) %GAB( ) )
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is the so-called fluctuation-dissipation theorem or with (A.8)

W) (1 — e By
xa(@) = 5 - / (A9)

w —w — 1€

Classical limit: fhw < 1 (+ frequency and temperature region)

i.e.
XAB =p / GAB BGAB( 0)

where xap(w = 0) is the static susceptibility and G75z(t = 0) is the equal-time correlation
function of A and B.

The name fluctuation-dissipation theorem is appropriate since G 4p(w) is a measure of the cor-
relation between fluctuations of A and B, whilst x’j 5 describes the dissipation.

That x’j 5 has to do with dissipation can be seen as follows: Consider a perturbation of the form
H = 0O(t )(ATF et + AF*e™!), where F' is complex. The golden rule gives a transition rate
per unit time from the state n into the state m:

Cocom = 7 {8 = B — ) [l ATF? + 8(E — By + h)l sl AF* o)}

= The power of the external force (= the energy absorbed per unit time)

ﬁEn
E :wE
=\ 2 ¢ | Alm) (| AYn) |F? §( B — By — hw) - ="
S BB ) ATm) (| Aln) [ F? 6(Ey — By + o) - 2~ En
m n h

n,m —————

= 2 {G4 @) = G5y @} PP = 20xf 1 (w) - [FP?

A.7 Example of Application: Harmonic crystal

Assumption: A Bravais lattice, i.e. a lattice with one atom per unit cell.

Ny Ng -« Qg
Index n=1] n, and equilibrium position of an atom an, = | ny-a,
Ny Ny -Gy

with ng . =1,..., Nz . and the number of lattice points N = N, - N, - N..
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Displacement from the equilibrium position u, = x, —ap

Harmonic approximation of the Hamiltonian (Taylor expansion of the potential energy around
the equilibrium position):

= Z + Z Un Dy ply with  py = —1hVy,

nn

Normal coordinates () diagonalize the potential energy in the harmonic approximation.

> ek el ) Qi (A.10)

Up

\ﬁ

where €(k, \) are the three polarization vectors (A = 1,2,3) and k is the wave vector with
components k; = n; N due to periodic boundary conditions.
Thus

A K2
H=-%" B Ag+ Y wi Qi
Y Y

Define a creation and annihilation operators like for the harmonic oscillator:

A h
_ T
Q= 4/ 2o (ak,/\ + ak)\> (A.11)

1
Z akAak,\—i— )
2 ek (e 3

Thus

Commutation relations: {akv,\, CLL, /\} = d) Ok and {ak}\, ak/7,\/] = [(ZL, A\ OLL )\,} =0.
Dynamical susceptibility for the displacements:

X (n = ') = SO {[ub (1), wp (0)]) (A.12)
or " n— ') = o (1), wl (0)]) (A1)

Thus
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Remark: (n —n') instead of (n,n’) due to translational invariance.

Phonon correlation function:

DY(n —n',1) = (uj, (1) u}, (0))
Insert (A.11) into (A.10), and use this (@ expressed in terms of a, a') in (A.13):

X”ij(n _ n’,t) - etkantik'a,, Gi(k, A) & (k/X)

s (@0 4l (0) (e 0)+ 2l 0)])

with ak’,\(t) = e Wikt ak’)\(O)

Augiliary calculation: For H = hwala it is a(t) = eTia g e—wiala  thyg

+w(n—m)t < —zwt<

(nla(t)|m) = e nlalm) = e”*"*(nla|m)
Oc(sn,m—l

Thus

[(aea(t) +al o 1 (1), (e x (0) +al 4o (0))]
= [al @) @ x ()] + [arca(®),al o (0)]

= — e NG Sy x + €N 1y

3 1 . 4 1
- X//z] (l’l N 1’1/7t) _ ezk(an—an/) El(k, )\) e+ (k, )\) (e—lwk,)\t - ezkat)
AN M Y %(/—; wk)\
’ =€l (—k,\

The polarization vectors for Bravais lattices are real, thus

- — 1 J
X//zg (1’1 _ n/, t) _ t Z 6zk(an—an/) € (kv )‘)6 (k7 )‘)

= sin wk)\t
2NM kA Wk \ ( )

It is x¥(n —n',t) = 200(¢) XY (n — n’, t), thus
¢'(k, \)e’ (k, )

1
X9(n—n't) = — k(an—ay) sin(wk at) O(t
( W i, (rrt) O(1)
or x9(n—n',w) —1 Zezk an—ay) €'k, Vel ( /dt et sin(wi at)
NM KA wk)\
—1; 1 1 1
7612;% 2 { w+wk’)\+ze - w—wk7A+zs }
Auziliary calculation:
i 11 1
/ dt et = hm dt e“te™ = lim — = = lim —
e—0 7,0 e—0 1w —€ =0 W€
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Spatial Fourier transform:

’Lj q’ Ze 1qan 2] n w)

—san( e'(k, \)é (k, \) 1 1
2NM D> el \ { B }

o W, W+ Wk 1€ wW— Wiy T+ e
=Nk, q
1 5 €'(q, el (g, \) { 1 B 1 }
2M S W, W+ wgr+12€  W—wgt+ 1€
For the decompositions
X/ (n—n',w) =" (n-n',w) +1x"(n - n',w)

this leads to

k, \)el (k 1 1
XY (n—n',w) ek(an—ay) M «xdpl——— | -p | ——
2N T Wk, \ w + Wik A W — Wk,

—_

= _ k,\)el (k, \)
"I —n' w) = T k(@n a“')e(’—jx Ow —w —0wtw
X )= oNi = Wi\ VB =) = 0o+ )}
or
ilond
X’Z] LZ q7 ) epsilon’(a, %) X< P # - P #
2M = Wa,\ Wt Wa @ e
" (q _ T Z Q X {0(w —wg\) = d(w +wg )}
2M N Wq,\

The phonon correlation function can be either calculated directly, or determined with the help
of the fluctuation-dissipation theorem from x”¥(n — n’, w):
B eﬂﬁw
DY(n—n' w) = 27171
=2 (1 +n(w))X"(n—n',w)

mh tk(an—a Ei(kv )‘)ej(k’ >‘)
=N T =
K ;

X//ij(n o n’,w)

X {(1 + nk,,\)é(w — wk)\) — nk?,\é(w + wk)\)}

or

DY (q,w) = 2h(1 + n(w)) X" (q,w)
mh €(q,\)e (q, A
_ Ty (a, Ve (g ){(

=37 d o 14 ngx)0(w —wg,n) —nq7A5(w+wq7A)}
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with ng\ = <a:;7 \GgqA) = eﬁ”“qﬁ the average thermal occupation number for phonons of wave
vector q and polarization .

The phonon resonances in D%(q,w) for a particular q are sharp d-function-like peaks at the
positions Fwq .

The expansion of the density-density correlation function, which determines the inelastic neutron
scattering cross-section, contains the phonon correlation function D% (q,w).

~~ The excitations of the many-particle system (in this case the phonons) express themselves as
resonances in the scattering cross-section.

In reality, the phonons interact with one another and also with other excitations of the system,
e.g, with the electrons in a metal — Damping of the phonons.
Replace € by a finite damping constant — The phonon resonances then acquire a finite width.
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Recap: Lorentz transformations

B.1 Infinitesimal Lorentz transformation

The subset [,E_ where det(A) = +1 (proper) and A% > 1 (orthochronous) is called proper
orthochronous Lorentz group or simply restricted Lorentz group. It is a continuous
group — a so called Lie group. The easiest way of analysing a continuous group is through
infinitesimal transformations. Finite transformations are then obtained by repeated application
of the infinitesimal transformation — an exponentiation.

We write
A, =61, + Aty
for the Lorentz transformation. Substitution in the constraint g = AT gA gives
Gpo = (0" + Aw” ) g (6" 5 + AW’ ) = gpo + Guo AW, + g Aw” s + O(Aw?).
There following statements must be satisfied:

AWl = + AW

Awy, = —Aw or ) s
ap ra Aw'; = —Aw/;

In other words, the infinitesimal 4 x 4-matrix Aw,,,, must be antisymmetrical. This leaves us with
6 free variables. The conditions det(A) = +1 ans A% > 1 are guaranteed by the assumption that
the transformation is an infinitesimal deviation from the identity matrix. Using the notation
Aw’; = —An; and Awij = eijkAGk = €k, A0y, the matrix Aw with its elements Aw*, can be
written as

0 —Ant —An? —Ap?
—An! 0 AG —AG?
—An? —AH 0 AG!
—Anp®  A#? AG! 0

Aw = = 1AO T — zAmlCi .

The matrices Z° and K¢ can be directly be read off from the equation, but will be later later
explicitly represented after the meaning of this matrices is determined.
Example I: Rotations. An infinitesimal rotation about the x3-axis (A3 = 6/N):

20 1 0 0 0\ /2° 00 0 O

0 2/ 0o 1 £ ol|at 810 0 — 0 0

A= Ry (N) 22 0 -4 1 of|22|" A=ty , o o ='W
x’3 0 0 0 1) \a3 00 0 0
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For /N < 1 we can approximate (1 + %23) ~ en T’

0 via

and we have a finite rotation by the angle

0 ; 0 \" _ . L3\ N
N)—J&imoo(“%\rz) = Jim_ (%)

R3() = lim RY (
10 0 0
0
0
0

N—oo

cosf sinf O
—sinf® cosf O
0 0 1

3
_ ezOI _

We can identify Z% as the generatrix of the rotation about the z3-axis.

4 )
Rotation group
Rotations about the three axes z', 22, 2® are described by
Ri(0) = ™'
where
00 0 O 0 0 0O 00 0 O
00 0 O 0 0 0 =« 0 0 — O
1 2 3 _
b= 0 00 —2)”’ b= 0 0 0 0f” b= 0 2 0 O
0 0 « O 0 — 0 O 00 0 O
The generator D satisfy the su(2)-algebra
[Di, Dj] = zeijkl)k = zeijka .
\ J
Example II: Lorentz boosts. An infinitesimal boost along the z!-axis:
0 1 —% 0 0\ [a" 0 -1 00
B ny . |2 _[-% 1 0 of]=a (-1 0 0 0|_  m,.q
A_L1<N>' 21710 o0 1 oll2] T N[0 o 0o WN
'3 0 0 0 1) \a? 0 0 00

U g !
1K

For n/N < 1 we can approximate (1 — %K') ~ e
boost via

and we have a finite rotation by the

N

. _, 0 e\ N

= lim (e ZNK)
N—oo

Li(n) = lim lev (Z) = lim (]l —Z%}Cl

N—oo

oK —sinhn coshn O
0 0 1
0

coshn —sinhnp 0 0O
0
0
0 0 1
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-
Boosts

Boosts along the three axes ', 2, 2% are described by

Li(n) = e

where
0O — 0 0 0 0 — O 0 0 0 —
1 _|— 0 00 9 0O 0 0 O 3 0 0 0 O
= 0O 0 0 0}’ = -2 0 0 0]’ = 0 0 0 O
0O 0 00 0O 0 0 O — 0 0 O

The generators Z° do not form a closed algebra and the Lorentz boosts also do not form a
subset of the Lorentz group. Instead we have

[Ii, I]} = —zeijka = —zeijka.

( Lorentz algebra
A general infinitesimal Lorentz transformation in the restricted Lorentz group Ei
M, =60, + Awt,
can be expressed via the generators of rotations and boosts
Aw = 1A0; D" — 1 An T .
The generators form an algebra with
[DZ‘, DJ} = 164D , [f, IJ‘] = —1€;xDF [Di, Ij] = 1€ " .

One gets a finite transformations by exponentiation of the infinitesimal transformations

Ri(0) =™, Li(m) ="
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B.2 Matrix representation of a Lorentz boost
We want to look at a boost in ! direction and define

B:=Y —tanh ¢
C
1

T A= (o)

=

1
\/1—tanh? ¢
_
3
3
1

sinh?
\/ 1 cosh?

Coslh £ cosh? ¢ —sinh? ¢

=1
= cosh £

Then we have

v/c
V1= (v/c)?
tanh &
VI=(v/c)?
= cosh £ - tanh &
=sinh &.

By =

With this, we can write the transformed 2° = ¢t and x! component as

1
n v — vt

~ V- (v/e)?
= 71 ! — et v/c

V1= (v/c)? 1—(v/c)?

=cosh - z! —sinh & - 2°

0 _ = ct — (U/C)xl
1—(v/c)?

=cosh - z° —sinh £ - 2!,

T

while 22 and 3 remain unchanged. We can therefore write the transformation as a matrix
equation:

z"° coshé —sinh &0 0 20
2| | —sinh¢ coshé [0 0 a!
% 0 0 1 0 ||=?
a3 0 0 |0 1) \a*
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Alternative derivation of the Dirac

equation

C.1 Derivation of the Dirac equation through the transforma-

tion behaviour of spinors

Rotation in R3: v’ = Rr with RTR = 1, i.e. R € O(3)

Example:
Rotation about the z,y, 2z axis:

cos sinf O
R.(0)=|—sinf cosf 0
0 0 1
1 0 0
Rs(¢) =10 cos¢ sin¢
0 —sin¢ cos ¢
cosyp 0 —siny
R)=| 0 1 0
sin®y 0 cos Y

O(3) is a non-abelian group, i.e. its elements do not commute in general.
O(3) is a Lie group, i.e. a continuous group with a non-finite number of elements.

A general rotation has three parameters, e.g. Euler angles.

= There exist three (hermitian) generators:

~ 1dR.(9) B
e
g LaRa(0)]

7 d¢ $=0
LR, _
Y 7 dw 1;[1:0
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APPENDIX C. ALTERNATIVE DERIVATION OF THE DIRAC EQUATION

Infinitesimal rotation: e.g. R,(00) = 1+ 1J,00, R, (0¢) =~ 1+ 1J,d¢
E.g. the commutator is:

xT

=1- (592 + 5¢2) —2[J., Ju] 606 + O(5%)
J,
1y

R:(60)Ra(60)RZ (00)R; " (50)
]

= J is the angular momentum operator with the commutation relation | [J;, J,| = 1J | and

cyclic permutations.

Rotation by an finite angle:
e.g. 0 =N 60 (N — ), 60 = 0/N

= R.(0) = [R.(0)]
= (1+12.00)"

0 N
- (1 4 ZJZN) —>N%OO exp(zJ,0)

In general: rotation about an axis n by an angle 6:

Rn(0) = exp (ZJ : 0) = exp (z(J -n) 9)

Consider now SU(2): 2 x 2 unitary matrices with determinants 1, UUT = 1, det U = 1. Every
element in SU(2) can be written as

u=ep(:Z%). 0 =(00,0.) = n (+)

(o1 (0 — (1 0
=\10) T\ o) 7“7 o -1

the Pauli matrices. J = %0 is the angular momentum operator (h = 1).
One has the commutation relations

with

o
— } = z?’z and cyclic permutations .

In other words: SU(2) is a 2-dimensional representation of the rotation group and acts on the

&
&)’
SU(2) and O(3) have a similar structure, however two elements each of SU(2) correspond to one
element of O(3) due to the factor of 1/2 in the exponent of (x).

space of the double- (or Pauli-)spinors
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C.1.1 SL(2,C) and the Lorentz group

SL(2,C) = {U |U : complex 2 x 2-matrix with det U =1}
In analogy to the correspondence between SU(2) and the rotation group, there is a correspon-
dence between SL(2,C) and the Lorentz group.

Pure Lorentz boosts: e.g. movement along the z axis with velocity v:

x + vt t+ Sz
o=, Y=y, =z, =L

2 / 2
v v

Definition:

=20 =420+ BzY) 2t =480 +al), 22=22, =2

Because of v — (73)? = 1, we can set

v =:cosh ¢, B =:sinh ¢, v =: tanh ¢.
c

This leads to the matrix representation

/0 cosh ¢ sinh¢ 0 0\ [z°
N 2z |sinh¢ coshg 0 0] [t
2| 0 0 1 0f|a?
z3 0 0 0 1) \a3
=: B, Boost matrix
Generator of this boost transformation is
01 00
_ 1 El? _ ., 1 0 0O
T 100 $=0 a 00 0 O
00 0O
and analogous for the other spatial directions
0 01 0 0 001
0 0 0O 0 00O
By==11 00 0] %==7"10 0 0 0
00 0O 1 0 0O

00 0 0 000 0 0 0 00
00 0 0 000 —1 0 0 10
L==g 0 o 1| "= ooo ol "o -1 0 0
00 —1 0 010 0 0 0 00
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General Lorentz transformation: consisting of boosts in 3 directions and rotations about 3 axis,
i.e. 6 generators (see above).

Commutation relations:

[

[z, Jy] =], and cyclic permutations
[Jz, K] = 1K,

[Jz, K] =0 etc

n.b.: Pure Lorentz transformations do not form a group, because K does not represent a closed
algebra under the commutation relations. E.g. for 2 infinitesimal boosts, the term

w00 g fyov o miR00 oIV — ) (I, K16 8 + K2(0¢)2 K2 (00) + ...

contains a rotation about the z axis because of K, K,] = —tJ, (~ Thomas precession).

C.1.2 Transformation behaviour of Pauli matrizen under
Lorentz transformations

Remark:
K = £19 satisfies the above commutation relation ~» two types of spinors related to + resp. —.

Definition:
The generators

A = % (J +:K) [Az, Ay] = 1A, cycl
1 = [By, By] = B, cycl
Bi=3(J—K) [Ai, Bj] = 0 (i,j==m,y,2)

generate both a group SU(2) respectively and both groups commute, i.e. the Lorentz group is
in essence equivalent SU(2) ® SU(2) and states that transform in a well-defined way are denoted
with two angular momenta: (j, j'), j corresponds to A, j’ corresponds to B.

In particular:

Definition: 2 types of spinors:

e Typel:
(1, 0): JU2) =g/2, K1/2 = —40/2, spinor €.
Let be 8 and ¢ the parameters of a rotation and a pure Lorentz transformation respectively.
Then ¢ transforms like

¢ — ew(15-0+7 ¢)c—ewn(sT (0-10))¢

=U
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o Type II:
(0, %) J/2) — o/2, K1/2) — 107/2,  spinor 7.

n — exp (Zg : (9+Z¢)> n

=N

n.b.: These are non-equivalent representations of the Lorentz group, i.e. there exists no matrix
S in such a way that N' = SUS ™. Instead there are connected via ' = (U*¢ ™! where ¢ = —105.
Furthermore it is det & = det N = 1.

b
~ U and N form group SL(2,C). 6 parameters CCL Ik ad —bc=1
Therefore there are two different types of 2-component spinors, which transform differently
under Lorentz transformations, £ and 7. These correspond to the representations (1/2, 0) and
(0, 1/2) of the Lorentz group.
Essentially the Dirac equation is a relation between these spinors.

Parity operator: r — r’
= velocity in the Lorentz boost: v — —v

= generator K — —K (= vector), but J — +J (angular momentum is an axial or pseudo
vector)

= representations (j, 0) and (0, j) are exchanged under parity: (j, 0) — (0, j) and therefore
£

If we consider the parity, we see it is no longer sufficient to view £ and 7 separately, but the

4-spinor
RS
= (i)

Under a Lorentz transformation:

where D(A) = (D*(A)¢™! and A the Lorentz transformation: z'* = A¥, zV.

Under parity transformation:
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The 4-spinor v is a irreducible representation of the Lorentz group eztended by parity (is not
unitary b.c. exp(0 - ¢) < L group is not compact).

Consider now Lorentz boosts especially (§ = 0) and define £ = ¢ and n = ¢r, (R: right, L: left)

1. ¢ . o
oR e oR cos (2)+0' n sin (2> oR
direction of the—
Lorentz boost

Let ¢r(0) be the spinor for a particle at rest, ¢r(p) the spinor for a particle with momentum p
respectively.

Because of cos(¢/2) = [(r41)/2]"/? , sinh(¢/2) = [(r—1)/2]"/2 r = \/11_7, (where we set ¢ = 1),

or(P) = {(T—;l)l/QJra-p (T;1>1/2}¢R(0).

Because for a particle with (total) energy E, mass m and momentum p holds E = ym (c = 1),
it follows

follows

_ E+m+o-p
(;SR(p) - [2m (E—|—m)}1/2 ¢R(0)7
or analogous
_ E+m-—o0o-p _ E+m+o-p

The spin of a resting particle cannot be defined as left- or right-handed ~~ ¢g(0) = ¢1,(0).

_ E+m+o-p . E+m+40o-p
= ¢R<p)_[2m(E+m)}1/2 [2m(E+m)]1/2¢R(p)

(E+m)?+ 20 p(E+m)+p?

- 2m(E +m) o1.(p)
E .
= ZTTR G (),
m
respectively
E—o-
oL(p) =~ 6u.(p)
We find in matrix form:
-m  po+o-p\ (¢r(pP)
(po —o-p —m ) (¢L(P)> (1)
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Definition: The 4-spinor

and the 4 x 4-matrices

let us write (C.1) write as

respectively

(Y'pp —m)p(p) =0

what corresponds to the Dirac equation.

n.b.: ¢ and ~* are given here in the so called chiral representation (since ¢r and ¢, are
eigenstates of the chirality operator, what we will see later). The standard representation —
that we already get to know — results form a similarity transformation:

_ 1 /1 1 _
Ysr = Svcr, Y =SVERST, Wheres:ﬁ(l 1) =57

V2 \¢r — o1
o 1(1 1\[(o 1\(1 1) (1 0
TR=511 —1)\1 o)\1 =1) " \lo =1
i 0 O'i
PYSR:<_0.i 0)

For a particle at rest this surely yields the more adept representation:

¢SR —_ 1 <¢R + ¢L>

N

Ysr = u(0)e ™ positive energy

Ysr = v(0)et™ negative energy ,

with the already known 4-spinors:

ut(0) = u?(0) =

OO\'OH
OOJ&—‘O
O = O O
_ o O O
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Lorentz boost in moving co-system (6 = 0) in chiral representation:

R dk) _ [ez7® 0 R
(¢L> - <¢/L>_< 0 e‘é"'d’) <¢L>

UCR

= Boos matrix in standard representation:

¢ 0k @
ush = SucpS—! = ( cosh 5 o - n sinh 2)

o - n sinh

OFS-

@
cosh 5

and through

é (E+m)1/2 b (E—m)1/2 . h¢ p
cos — = sin — = anh &~ =
2 2m ’ 2 2m ’ 2 E+m’

where p = VE? — mZ2, follows

Pz Pz —1Dy
1 0 E+m E+m
0 1 Pz +1py —Dz
_ E+m E+m
USR(p) - Pz Pz —Py 1 0
E+m E+m
Pa+1py —p= 0 1

E+m E+m

The corresponding spinors psi (which are identical with the ones we derived from the explicit
solution of the Dirac equation) are given by

(@) =u(p)e”™,  u®(p) = usr(p) u®(0)
(@) = v (p)e™P, v (p) = usr(p) v*(0)
where a = 1, 2, or explicitly written out
Pz Pa—1p
1 0 E+m E—i—my
0 1 Pz tpy —Pz
w=N| g |, w=N oy, |, v =N T WP = N B
E+4+m E+m 1 0
Pz Py —Pz 0 1
E+m E+m

where the normalization is given by N = E;r—mm, what gives u®u® = 1.
It is
a*(p) u® (p) = S
0*(p) v (p) = —baar
a*(p) v (p) = 0
u (o) u (p) = v (0) 0¥ (5) = oy
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Furthermore u and v satisfy (insertion in the Dirac equation)

(VP —m) u(p) = (p — m) u(p) = 0
(Y'pu +m)v(p) = (p+m)v(p) =0,

and the adjoint spinors satisfy

u(p) (V'pu —m) =u(p) (p —m) =
v(p) (Ypu +m) = o(p) (p+m) =0.

The operator

Py = u®(p)u*(p)

«

is a projection operator since

PE =23 u(p)u®(p)u’(p) @’ (p)
a,B _gaB

=Y u*(p)u®(p) = Py

and projects on states with positive energy. One can show that the operator P, can be expressed
as

:3ﬁ+m

P
+ 2m

Analogous one defines

Obviously one has Py + P_ = 1.

C.1.3 Lorentz covariance of the Dirac equation

When performing a Lorentz transformation from one reference frame I to another reference
frame I’, the coordinates transform like

= Az, ie. z=A"1a

and the Dirac spinor according to
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where the transformation matrix, S(A), is blockdiagonal in chiral representation:

D) 0
SW:( 0 D(A))'

The Dirac equation should be form-invariant under this Lorentz transformation

(ry“@u - m) P(x)=0 (inl) << (w“@L — m) P'(z')=0 (inlI)

For the derivation applies

v
0 _0a" 0, 0y

O = oxH oxH Ox'v * g

and with S~/ (2") = ¢(z) follows for the Dirac equation in the reference frame I:
(Z’YMAV#(?/V - m) S YA (&) =0.
Multiplying above equation from the left with S(A) gives

(:S(A)7*STH(A)AY,8,, — mBig)y' =0,

If | S(A)YSTH(A) = (A71)# A7 |, then S(A)YSTHA)AY, = (A"HH,AY /™ =+ and we arrive
at the equation of the reference frame I'.

It remains to show that for all Lorentz transformations A

STHAN'S(A) = Ay

(Note that S71(A) = S(A_l))

Reminder:

S(A) = (eXp (300 -19) 0 )

0 exp (%a (0 + z¢))
Due to the fact that every Lorentz transformation can be composed of 3 Lorentz boosts along the
x-, y- and z-axes and 3 rotations about the same 3 axes, we will look at these cases separately.

Lorentz boosts, i.e. 8 =0; w.lo.g. ¢ = (4,0,0) (boost along the = axis)

) cosh ¢ sinh ¢

et290" 0 sinh ¢ cosh ¢
=S(A) = ( o and A= 0 0
0 0

o = O O
_ o O O
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Now we have

3¢ 0 1) [et3%" 0
-1, 0c_ o1 2? 2
st ] )8 wa)(n DI

0 _ 0 cosh ¢ — 0% sinh ¢
ebo” ~ \cosh ¢ + 0% sinh ¢ 0

1. 1lc__ co—1 0 —0 6¢U
STy S§=S (a )S o €¢a )
—o® ( cosh ¢ — 0% sinh <b)
COSh ¢ + 0% sinh ¢) 0

O'yVZ

_l T _l xT
8172’35281< 0 —Uyz> S — —e 7297 gUrem 2% )

<€2¢U O-y7 62¢J 0
—Uy ” 2,3

Furthermore we find:

. 0 cosh ¢ — 0% sinh ¢
0 v 0 1 _
A",y" = cosh ¢7” + sinh ¢y = (cosh ¢ + 0% sinh ¢ 0 ) 7
‘ 0 sinh ¢ — o® cosh ¢
1 v 0 1 _
A"yY = sinh ¢ + cosh ¢y = (sinh ¢ + o* cosh ¢ 0 ) ’

AZ2 4 = 23
By comparing the left and right side one finds the given identity.

Rotations, i.e. ¢ =0, w.l.o.g. € = (6,0,0) (rotation about the z axis). Analogous to previous
case one finds

0 0 0
1 0 0
0 cosf sinf
0 —sinf cosf

o O o=

C.1.4 Transformation behaviour of bilinear forms

We will again use the chiral representation

_(or
w—(¢L),
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which transforms under Lorentz transformations like

¢r — exp BU (60— Z¢)} PR ; ¢ — exp [;0' (0 + Z¢)} oL
~ ‘15; — gf)E exp {—;a (0 + uﬁ)] ; ¢£ — ¢£ exp {—;a (0 — qu)] .

It is immediately clear that ¢ = qbl—,r{qu + ¢£¢L is nmot invariant. However the adjoint spinor
has the components

peut= (o) (7 5) =6 o)

and therefore we have that

D = ¢l PR + Pl b

is invariant under Lorentz transformations (i.e. is “scalar”).

Furthermore is under parity transformations ¢r <> ¢r, so that Y1) — b, which means that
Y1) is a true scalar, i.e. it does not change it sign under parity transformations.

We now define the 4 x 4-matrix

1 0
5 _ 0.1.2 3 __ _
YV =1y Y = (0 _]1>-

in chiral repres.

Then the expression is
%%=@L¢D@ 3)@ﬁ=ﬂmrwwL

invariant under Lorentz transformations, but changes its sign under parity transformations, i.e.

@E’y‘r’w is a pseudo scalar |.

We will now consider the quantity | 1y*1) | and show that it behaves like 4-vector under Lorentz
transformations

v = ¢hor + 8l o,
iwwﬁﬁlﬁ)c'f>@ﬂz—&fm+@a@.

o

Under spatial rotations (6 # 0, ¢ = 0) we find

Py — Y%y (%)
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and for infinitesimal @
O s T S g
=4l (1—30'9)0(1+;a-0> L+ ol (1—50'0>0<1+;0~0>¢R
=~ ¢l (0 -0 x0)pL+ ok (0 —0x0)ér
= 970 - 0 x (V7y) (¥)
The above equation (%) describes the behaviour of a vector under rotations. Since the time-

component is invariant under rotations due to (kx), the expression yH1) actually behaves like
a 4-vector under rotations.

In a similar fashion one can show that ¥y*1) behaves also like a 4-vector under Lorentz boosts.
Under parity transformations one has 1)y%) — 1)y, but ¢y — —1py1p, which means we have
a polar vector, i.e. ¢/ (z' )y’ (z') = AH b ()7 (x).

Analogous, ¥y"~%1 behaves like an axial vector, i.e. like a vector under Lorentz transforma-
tions, but under parity transformations one finds ¥y7°y — ¥y3°y, ie. ' (a)yy2Y (x!) —
A (@) 7P (@) - det(A).

We summarize:

o 1) scalar

o Y2 pseudo scalar
o pyHa) polar vector
o hryHAS axial vector

o (Y — 4Y4*)p  antisym. tensor
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