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Chapter 1

Second quantization

In this first part, we shall consider nonrelativistic systems consisting of a large number of identi-
cal particles. In order to treat these, we will introduce a particularly efficient formalism, namely,
the method of second quantization.

Nature has given us two types of particle, bosons and fermions. These have states that are, re-
spectively, completely symmetric and completely antisymmetric. Fermions possess half-integer
spin values, whereas boson spins have integer values. This connection between spin and symme-
try (statistics) is proved within relativistic quantum field theory (the spin-statistics theorem).
An important consequence in many-particle physics is the existence of Fermi-Dirac statistics
and Bose-Einstein statistics.

We start with some preliminary remarks.

1.1 Identical particles and many particle states

Consider N “identical” particles (e.g. electrons, π-mesons, ...).
Hamilton-Operator: Ĥ = Ĥ(r1σ1, r2σ2, · · · , rNσN ) abbreviated as: Ĥ(1, 2, · · · , N)
Wave function: ψ = ψ(r1σ1, r2σ2, · · · , rNσN ) abbreviated as: ψ(1, 2, · · · , N).

Definition: permutation operator Pij :

Pijψ(· · · , i, · · · , j, · · · , N) = ψ(· · · , j, · · · , i, · · · , N)

Since P 2
ij = 1 the eigenvalues of Pij are ±1. Due to the symmetry of the Hamiltonian Ĥ under

particle exchange, one has for every element P of the permutation group:

∀ij : PijĤ = ĤPij

e.g. an ordinary many-particle Hamiltonian has the form:

Ĥ(r1, r2, . . . , rN ) =
N∑
i=1

p̂2
i

2m +
N∑
i=1

U(ri) +
∑
{i,j}

W (|ri − rj |)

⇒ Ĥ(. . . , ri, . . . , rj , . . . ) = Ĥ(. . . , rj , . . . , ri, . . . )

SN := Group of all permutations of N objects. #SN = N !.
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CHAPTER 1. SECOND QUANTIZATION

Each P ∈ SN can be represented as a product of transpositions Pij . P is said to be even (odd)
when the number of transpositions Pij composing it is even (odd).

Properties:

(i) ψ(1, · · · , N) is an eigenfunction of Ĥ with eigenvalue E
=⇒ Pψ(1, · · · , N) also eigenfunction with eigenvalue E

(ii) ∀P ∈ SN , 〈φ |ψ 〉 = 〈Pφ |Pψ 〉

(iii) P is unitary (P †P = PP †)

(iv) For every symmetric operator S(1, · · · , N) we have [P, S] = 0, ∀P ∈ SN and 〈Pψi |S |Pψj 〉 =
〈ψi |S |ψj 〉. The converse is also true.

Since identical particles are all influenced identically by any physical process (e.g. repul-
sion/attraction of a particle by a potential), all physical operators must be symmetric. Hence,
the states ψ and Pψ are experimentally indistinguishable. The question arises as to whether all
these N ! states are realized in nature.

In fact, the totally symmetric and totally antisymmetric states (ψS) and (ψA) do play a special
role. These states are defined by

∀ij, PijψS = +ψS ; PijψA = −ψA
Experimentally: It is an experimental fact that there are two types of particle, bosons and
fermions, whose states are totally symmetric and totally antisymmetric, respectively. As men-
tioned at the outset, bosons have integer, and fermions half-integer spin.

Bosons Fermions
totally symmetric totally antisymmetric
integer spin half-integer spin

Remarks:

(i) The symmetry character of a state does not change in the course of time:

ψ(t) = e−iĤt/~ψ(0) =⇒ Pψ(t) = e−iĤt/~Pψ(0)

(ii) ∀P ∈ SN :

PψS = ψS

PψA = (−1)sgn(P )ψA with(−1)sgn(P ) =
{

+1 for even permutations P
−1 for odd permutations P

Thus, the states ψS and ψA form the basis of two one-dimensional representations of the
permutation group SN .

Example:

N = 2 : ψS(1, 2) = ψ(1, 2) + ψ(2, 1)
ψA(1, 2) = ψ(1, 2)− ψ(2, 1)

7
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N = 3 : ψS(1, 2, 3) = ψ(1, 2, 3) + ψ(2, 1, 3) + ψ(1, 3, 2) + ψ(3, 2, 1) + ψ(3, 1, 2) + ψ(2, 3, 1)
ψA(1, 2, 3) = ψ(1, 2, 3)− ψ(2, 1, 3)− ψ(1, 3, 2)− ψ(3, 2, 1) + ψ(3, 1, 2) + ψ(2, 3, 1)

Remark: The minus sign in the fermionic case implicates that no two fermions can occupy the
same state, because the wave function then vanishes (can easily be seen in the examples above).
This fact is known as Pauli principle.

The permutations become necessary, because a state like ψ(1, 2, 3) contains too much infor-
mation. It is possible to assign a position to a specific particle, which isn’t possible in nature
for indistinguishable particles. On the other hand, the expressions become really confusing with
increasing N , so we are looking for a formalism to condense the information. This will lead to
the introduction of Fock states.

1.2 Totally symmetric and anti-symmetric states

Now let {| i 〉} = {| 1 〉, | 2 〉, ...} be a complete orthonormal system basis of one-particle states.
We denote a one-particle state of particle α as | i 〉α .
 basis states of the N -particle system:

|i1, · · · , iα, · · · , iN 〉 = |i1〉1 · · · |iα〉α · · · |iN 〉N
where |iα〉α means that particle α is in state iα.

{|i1, · · · , iN 〉} is a complete orthogonal basis of the N -particle Hilbert space HN (= HNS ⊕HNA ⊕
Rest)

The symmetrized and antisymmetrized basis states (i.e. the basis of HNS and HNA ) are defined
by

S± |i1, · · · , iN 〉 = 1√
N !

∑
P∈SN

(±1)sgn(P )P |i1, · · · , iN 〉

If |i1, · · · , iN 〉 contains single-particle states occurring more than once, then S+ |i1, · · · , iN 〉 is
no longer normalized to unity. Let us assume that the first state occurs n1 times, the second n2
times, etc. Then S+ |i1, · · · , iN 〉 contains only N !/n1!n2! · · · different terms and each of them
appears with multiplicity n1! · n2! · · · .

=⇒ 〈i1, · · · , iN |S†+S+ |i1, · · · , iN 〉 = 1
N ! (n1!n2! · · · )2 N !

n1!n2! · · · = n1!n2! · · ·

 The normalized Boson basis functions are
S+√

n1!n2! · · ·
|i1, · · · , iN 〉 = 1√

N !n1!n2! · · ·
∑
P∈SN

P |i1, · · · , iN 〉 (∗)

[ n.b. It is S− |i1, · · · , iN 〉 = 0 if in |i1, · · · , iN 〉 one-particle states occur more than once.]
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1.3 Bosons

The state (∗) is fully characterized by specifying the occupation numbers {ni} :

|n1, n2, · · · 〉 = S+√
n1!n2! · · ·

|i1, · · · , iN 〉

Here, n1 is the number of times that the state 1 occurs, n2 the number of times that state 2
occurs, etc. Alternatively: n1 is the number of particles in state 1, n2 is the number of particles
in state 2, .... The sum of all occupation numbers ni must be equal to the total number of
particles:

N =
∞∑
i=1

ni

Apart from this constraint the ni can take any of the values 0, 1, 2, .... These states form a com-
plete orthonormal system of completely symmetric N -particle states. By linear superposition,
one can construct from these any desired symmetric N-particle state.
We now combine the states for N = 0, 1, 2, ... and obtain a complete orthonormal system of
states for arbitrary particle number, which form the basis of the Fock-space:

Fock-space := H0 ⊕HS ⊕ · · · ⊕ HNS ⊕ · · ·

H0 = {|0〉} or vacuum (zero particles)
Complete orthonormal system: {|n1, n2, · · · 〉}ni=0,1,···
•Orthogonality relation 〈n1, n2, · · · |n′1, n′2, · · · 〉 = δn1n′1

δn2n′2
· · ·

•Completeness relation: ∑n1,n2,··· |n1, n2, · · · 〉 〈n1, n2, · · · | = 1

The operators we have considered so far act only within a subspace of fixed particle number.
On applying p, x etc. to an N -particle state, we obtain again an N -particle state. We now
define creation and annihilation operators, which lead from the space of N -particle states to the
spaces of N ± 1-particle states:

â†i |· · · , ni, · · · 〉 =
√
ni + 1 |· · · , ni + 1, · · · 〉

âi |· · · , ni, · · · 〉 = √
ni |· · · , ni − 1, · · · 〉

(∗∗)

The operators â†i and âi respectively increases and decreases the occupation number of the state
|i〉 by 1. One shows straightforwardly that â†i is indeed the adjoined operator of âi:

(∗∗) =⇒ 〈ni| âi =
√
ni + 1 〈ni + 1|

=⇒ 〈ni| âi
∣∣n′i〉 =

√
ni + 1

〈
ni + 1|n′i

〉
=
√
ni + 1δni+1,n′i

The above relations and the completeness of the states yield the Bose commutation relations

[âi, âj ] = 0 ;
[
â†i , â

+
j

]
= 0 ;

[
âi, â

†
j

]
= δij

9



CHAPTER 1. SECOND QUANTIZATION

(
â†i âi |ni〉 = â†i

√
ni |ni − 1〉 = ni |ni〉 ; âiâ

†
i |ni〉 =

√
ni + 1 âi |ni + 1〉 = (ni + 1) |ni〉

)
Starting from the ground state ≡ vacuum state | 0 〉 ≡ | 0, 0, · · · 〉 which contains no particles at
all, we can construct all states: single-particle states

â†i |0〉 = |0, · · · , ni = 1, · · · 〉
â†i â
†
j |0〉 = |0, · · · , ni = 1, · · · , nj = 1, · · · 〉 i 6= j

Generally:

|n1, n2, · · · 〉 =
∞∏
i=1

(â†i )ni√
ni!
| 0 〉

Definition:

n̂i := â†i âi is the particle number operator (occupation number operator for the state | i 〉)

n̂i |· · · , ni, · · · 〉 = ni |· · · , ni, · · · 〉

N̂ := ∑
i n̂i is the operator for the total number of particles

N̂ |n1, n2, · · · 〉 =
(∑

i

ni

)
|n1, n2, · · · 〉 = N |n1, n2, · · · 〉

Let us consider an operator for the N-particle system which is a sum of single-particle operators

T =
N∑
α=1

tα

where tα is a one-particle operator (e.g. tα = p2
α/2m or V (xα)). Let tij := 〈 i | t | j 〉 be the matrix

elements of the one-particle operator t. Then t = ∑
i,j tij | i 〉〈 j | and T = ∑

i,j tij
∑
α | i 〉α〈 j |α.

Our aim is to represent this operator in terms of creation and annihilation operators T = ∑
i,j tij â

†
i âj

Proof:
Consider first the effect of Âij := ∑

α | i 〉α〈 j |α on |n1, n2, · · · 〉 = S+√
n1!n2!··· |k1, k2, · · · , kN 〉 If

nj = 0, then ∀α ∈ {1, · · · , N} kα 6= j | i 〉α 〈 j |α n1, n2, ...〉 = 0

nj = 1, wlog k1 = j  | i 〉1 〈 j |1 k1, k2, · · · , kN 〉 = |i, k2, · · · , kN 〉
nj = 2, wlog k1 = k2 = j  | i 〉1 〈 j |1 k1, k2, · · · , kN 〉 = |i, k2, k3, · · · , kN 〉

| i 〉2 〈 j |2 k1, k2, · · · , kN 〉 = |k1, i, k3, · · · , kN 〉

etc.
This means Âij decreases nj by 1 and increases ni by 1, in nj summands.

10



CHAPTER 1. SECOND QUANTIZATION

 Âij |n1, n2, · · · 〉 = Âij
S+√

n1!n2! · · ·
|k1, k2, · · · , kN 〉

= S+√
n1!n2! · · ·

Âij |k1, k2, · · · , kN 〉

= S+√
n1!n2! · · ·

(|i, k2, · · · , kN 〉+ |k1, i, k3, · · · 〉+ · · ·+ |· · · , kj−1, i, kj+1, · · · 〉)︸ ︷︷ ︸
nj times

= nj ·
S+√

· · · (ni + 1)!/(ni + 1) · · · (nj − 1)!nj · · ·
|i, k2, · · · , kN 〉

= nj ·
√
ni + 1
nj

|· · · , ni + 1, · · · , nj − 1, · · · 〉

=
√
nj (ni + 1) |· · · , ni + 1, · · · , nj − 1, · · · 〉

= â†i âj |· · · , ni, · · · , nj , · · · 〉

For the special case that t is diagonal: tij = εiδij  H0 = ∑
i εiâ

†
i âi �

Analogously, one shows for the two-particle operators

F = 1
2
∑
α 6=β

f (2) (rα, rβ) (+)

that they can be written as

F = 1
2
∑

i,j,k,m

fijkmâ
†
i â
†
j âmâk

with

fijkm = 〈 i, j | f (2) | k,m 〉 =
∫
dr
∫
dr′ φ∗i (r)φ∗j (r)f (2)(r, r′)φk(r′)φm(r′)

Proof:
(+) means in the N -particle space

F = 1
2
∑
α 6=β

∑
i,j,k,m

〈 i, j | f (2) | k,m 〉 | i 〉α | j 〉β 〈 k |α 〈m |β

Now it is

∑
α 6=β
| i 〉α | j 〉β 〈 k |α 〈m |β =

∑
α 6=β
| i 〉α 〈 k |α | j 〉β 〈m |β

=
∑
α,β

| i 〉α 〈 k |α | j 〉β 〈m |β − 〈 k | j 〉︸ ︷︷ ︸
δkj

∑
α

| i 〉α 〈m |α

= â†i âk â
†
j âm − â

†
i

[
âk, â

†
j

]
âm

= â†i â
†
j âmâk

�
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1.4 Fermions

The symmetrized basis states for an N particle system of fermions are

S− |i1i2 · · · iN 〉 = 1√
N !

∣∣∣∣∣∣∣
|i1〉1 |i1〉2 · · · |i1〉N

...
...

...
...

|iN 〉1 |iN 〉2 · · · |iN 〉N

∣∣∣∣∣∣∣ (Slater determinant)

(n.b.: exchange of two particles =̂ exchange of two columns =̂ change of sign)
Here, too, we shall characterize the states by specifying their occupation numbers, which now
can take the values 0 and 1. The state with n1 particles in state 1, n2 particles in state 2, etc
is {|n1n2 · · · 〉}, which forms the basis of the Fock space. H0︸︷︷︸

{| 0 〉}

⊕H1 ⊕ · · · ⊕ HN ⊕ · · · . Scalar

product and completeness relation as for Bosons.
Here, we wish to introduce creation operators â†i once again. These must be defined such that
the result of applying them twice is zero. Furthermore, the order in which they are applied must
play a role. We thus define the creation operators â†i by
Definition:

S− |i1, i2, · · · , iN 〉 = â†i1 â
†
i2
· · · â†iN | 0 〉

S− |i2, i1, · · · , iN 〉 = â†i2 â
†
i1
· · · â†iN | 0 〉

Since S− |i1i2 · · · 〉 = −S− |i2i1 · · · 〉, it follows

{â†i , â
†
j} := â†i â

†
j + â†j âi+ = 0

and therefore also (
â†i

)2
= 0

In occupation number representation |n1n2 · · · 〉 =
(
â†1

)n1 (
â†2

)n2 · · · | 0 〉 with ni ∈ {0, 1}.

Then the effect of â†i is:

â†i |· · · , ni, · · · 〉 = (1− ni)︸ ︷︷ ︸
=0 for ni=1

(−1)
∑

j<i
nj |· · · , ni + 1, · · · 〉

∑
j<i nj : number of anti-commutations to bring bring â†i to position i.

The adjoined relation is

〈· · · , ni, · · · | âi = (1− ni) (−1)
∑

j<i
nj 〈· · · , ni + 1, · · · |

=⇒ 〈· · · , ni, · · · | âi
∣∣· · · , n′i, · · · 〉 = (1− ni) (−1)

∑
j<i

nj δni+1,n′i
With this we compute

âi
∣∣· · · , n′i, · · · 〉 =

∑
ni

|ni〉 〈ni| âi
∣∣n′i〉︸ ︷︷ ︸

=
{

0 for n′i = 0

(−1)
∑

j<i
nj
δni0 for n′i = 1

=
{

0 for n′i = 0
(−1)

∑
j<i

nj |· · · , n′i − 1, · · · 〉 for n′i = 1

12



CHAPTER 1. SECOND QUANTIZATION

therefore âi |· · · , ni, · · · 〉 = ni(−1)
∑

j<i
nj |· · · , ni − 1, · · · 〉

It follows

âiâ
†
i |· · · , ni, · · · 〉 = (1− ni) (−1)2

∑
j<i

nj (ni + 1) |· · · , ni, · · · 〉
= (1− ni) |· · · , ni, · · · 〉

â†i âi |· · · , ni, · · · 〉 = ni (−1)2
∑

j<i
nj (1− ni + 1) |· · · , ni, · · · 〉

= ni |· · · , ni, · · · 〉

â†i âi is obviously the occupation number operator for the state | i 〉. Moreover, by adding both
equations one gets {âi, â†i} = 1. For {âi, â†j} with i 6= j the phase factor in both summands is
different: {âi, â†j} ∝ (1− nj)ni(1− 1) = 0.
So, {âi, âj} has for i 6= j a different phase factor, and since âiâi = â2

i = 0 one obtains the

anti-commutation rules for for fermions

{âi, âj} = 0; {â†i , â
†
j} = 0; {âi, â†j} = δij

One shows the relation ∑α | i 〉α〈 j |α = â†i âj as follows: (wlog i1 < i2 < · · · < iN )

∑
α

| i 〉α 〈 j |α S− |i1, i2, · · · , iN 〉 = S−

(∑
α

| i 〉α 〈 j |α

)
|i1, i2, · · · , iN 〉

= nj (1− ni)S− |i1, i2, · · · , iN 〉 |j→i

|j→i means that the state | j 〉 is replaced by | i 〉. To get i to the right position one has to
perform for i ≤ j : ∑k<j nk +∑k<i nk line exchanges and for i > j : ∑k<j nk +∑k<i nk − 1 line
exchanges. This yields the same phase factor as by applying â†i âj .

â†i âj |· · · , ni, · · · , nj , · · · 〉 = nj (−1)
∑

k<j
nk â†i |· · · , ni, · · · , nj − 1〉

= ni (1− ni) (−1)
∑

k<i
nk+

∑
k<j

nk−δi>j |· · · , ni + 1, · · · , nj − 1〉

Thus one has for one-particle and two-particle operators – for fermions and for bosons

T =
∑
ij

tij â
†
i âj

F = 1
2
∑
ijkm

〈 i, j | f (2) | k,m 〉 â†i â
†
j âmâk

e.g.

Ĥ =
∑
ij

( bij︸︷︷︸
Ekin

+ Uij︸︷︷︸
Epot

) â†i âj + 1
2
∑
ijkm

fijkm︸ ︷︷ ︸
Eint

â†i â
†
j âmâk

13



CHAPTER 1. SECOND QUANTIZATION

1.5 Field operators

Let {|i〉} and {|ξ〉} be two complete orthogonal bases of one-particle states. Then one has
|ξ〉 = ∑

i |i〉 〈i|ξ〉.

⇐⇒ â†ξ =
∑
i

â†i 〈i|ξ〉 b.c. â†i (â†ξ) creates a particle in |i〉 (|ξ〉)

âξ =
∑
i

âi 〈ξ |i〉 follows from the adjugated relation

Important special case: Eigenstates of the position operator |r〉:

〈r|i〉 = φi(r) one-particle wave function in position representation

Definition: Field operators

ψ̂(r) =
∑
i

φi(r) âi

ψ̂†(r) =
∑
i

φ∗i (r) â†i

ψ̂†(r) generates a particle in the eigenstate |r〉, i.e. at position r. It is:[
ψ̂(r), ψ̂(r′)

]
±

= 0[
ψ̂†(r), ψ̂†(r′)

]
±

= 0[
ψ̂(r), ψ̂†(r′)

]
±

=
∑
i,j

φi(r)φ∗j (r′)
[
âi, â

†
j

]
±︸ ︷︷ ︸

δij

= δ(r− r′) ,

where

[•, •]+ = [•, •] commutator
[•, •]− = {•, •} anti-commutator

Operator can be expressed via field operators:

Kinetic energy:

∑
i,j

â†iTij âj =
∑
i,j

∫
dr â†iφ

∗
i (r)

(
− ~2

2m∆
)
φj(r)âj

=
ψ̂(r→∞)→0

~2

2m

∫
dr ∇ψ̂†(r) · ∇ψ̂(r)

One-particle potential:
∑
i,j

â†iUij âj =
∑
i,j

∫
dr â†iφ

∗
i (r)U(r)φj(r)âj

=
∫
dr U(r)ψ̂†(r)ψ̂(r)

14
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Two-particle interaction:

1
2
∑

i,j,k,m

∫
dr dr′ φ∗i (r)φ∗j (r′) V (r, r′) φk(r)φm(r′) â†i â

†
j âmâk

=1
2

∫
dr dr′ V (r, r′) ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)

Hamiltonian:

Ĥ =
∫
dr
(

~2

2m∇ψ̂
†(r)∇ψ̂(r) + Uψ̂†(r)ψ̂(r)

)

+ 1
2

∫
dr dr′ ψ̂†(r)ψ̂†(r′) V (r, r′) ψ̂(r′)ψ̂(r)

Particle density:

n̂(r) =
∑
α

δ (r− rα)

=
∑
α

∑
i,j

|i〉α α 〈i|δ(r− rα)|j〉α︸ ︷︷ ︸
=
∫
dr′ φ∗i (r′)δ(r−r′)φj(r′)

=φ∗i (r)φj(r)

〈j|α

=
∑
i,j

∑
α

|i〉α 〈j|α︸ ︷︷ ︸
=â†i âj

φ∗i (r)φj(r)

⇒ n̂(r) = ψ̂†(r)ψ̂(r)

Particle number operator:

N̂ =
∫
dr n̂(r) =

∫
dr ψ̂†(r)ψ̂(r)

 e.g. current density operator ̂(r) = ~
2ım

{
ψ̂†(r)

(
∇ψ̂(r)

)
−
(
∇ψ̂†(r)

)
ψ̂(r)

}
Field equation: Heisenberg picture for operators ψ̂(r, t) = eıĤt/~ ψ̂(r, 0) e−ıĤt/~

ı~
∂

∂t
ψ̂(r, t) =

(
− ~2

2m∆ + U(r)
)
ψ̂(r, t) +

∫
dr′ ψ̂†(r′, t) V (r, r′) ψ̂(r′, t)ψ̂(r, t)

Proof (see exercise): using Heisenberg equation of motion ı~ ∂
∂t ψ̂(r, t) = −

[
Ĥ, ψ̂(r, t)

]
analogous for ψ̂†(r, t) (yields a minus sign on the right hand side)
From this follows the equation of motion of the density operator:

∂

∂t
n̂(r, t) = ψ̂†

˙̂
ψ + ˙̂

ψ†ψ̂ = 1
ı~

(
− ~2

2m

){
ψ̂†
(
∆ψ̂

)
−
(
∆ψ̂†

)
ψ̂
}

i.e. ∂

∂t
n̂(r, t) = −∇̂(r, t)
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1.6 Momentum representation

We consider a cuboidal volume V = LxLyLz and periodic boundary conditions
φ(r + Lxêx) = φ(r) (analogous for the remaining spatial directions). Normalized momentum
eigenfunctions: ψk = eık·r/

√
V , where k = 2π

(
nx
Lx
,
ny
Ly
, nzLz

)
, nx, ny, nz ∈ Z

 
∫
dr φ∗k(r)φk′(r) = δkk′ (orthogonality)

Representation of the Hamiltonian in second quantization:

The matrix elements read

Ekin :
∫
dr φ∗k′(r)(−∆)φk(r) = k2 δk,k′

Epot :
∫
dr φ∗k′(r)U(r)φk(r) = 1

V
Uk′,−k︸ ︷︷ ︸

Fourier transfo
of U(r)

Eint: Consider two-particle potentials V (r, r′) which only depend on the distance r− r′

Define: Vq :=
∫
dr e−ıq·r V (r)

(
 V (r) = 1

V

∑
q Vqe

ıq·r
)

The two-particle matrix element then reads

〈p′,k′|V (r− r′)|p,k〉 = 1
V 2

∫
dr dr′ e−ıp′·re−ık′·r′ V (r− r′)eık′·r′eıp·r

= 1
V 3

∑
q
Vq

∫
dr dr′ e−ıp′·r−k′·r′+ıq·(r−r′)+ık·r′+ıp·r

= 1
V 3

∑
q
VqV δ−p′+q+p,0︸ ︷︷ ︸

p′=p+q

V δ−k′−q+k,0︸ ︷︷ ︸
k′=k−q

Combining the above results leads to:

Ĥ =
∑

k

(~k)2

2m â†kâk + 1
V

∑
k,k′

Uk′−kâ
†
k′ âk + 1

2V
∑

q,p,k
Vqâ

†
p+qâ

†
k−qâkâp︸ ︷︷ ︸

interaction term

â†k (âk) creates (annihilates) a particle with wave number k, where the following commutation
relations apply:

[âk, âk′ ]± = 0,
[
â†k, â

†
k′
]
±

= 0,
[
âk, â

†
k′
]

= δkk′

Visualization of the interaction term:

k−q p+q

k p

Vq
2nd order perturbation theory:
(double dispersion of two parti-
cles)

+q2p+q1

k p

k q p+q1

Vq2

Vq1

1

q2k q1
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Fourier transformation of the density:

n̂q =
∫
dr n̂(r)e−ıq·r =

∫
dr ψ̂†(r)ψ̂(r)e−ıq·r

Using the expressions ψ̂(r) = 1√
V

∑
p e

ıp·râp and ψ̂†(r) = 1√
V

∑
p e
−ıp·râ†p gives

n̂q =
∑

p
â†pâp+q

Consideration of spin:

ψ̂(r) → ψ̂σ(r)
âp → âp,σ

}
−→ n(r) = ∑

σ ψ̂
†
σ(r)ψ̂σ(r)

nq = ∑
p,σ â

†
p,σâp+q,σ

In the case of spin-1
2 fermions σ = ±1

2 .
Spin density operator:

Ŝ(r) =
∑
i

δ(r− r′)Ŝi = ~
2
∑
σ,σ′

ψ̂†σ(r)σσσ′ψ̂σ′(r) ,

where σσσ′ are the matrix elements of the Pauli matrices. Otherwise everything remains the
same with spin index σ.

1.7 Summary of second quantization

The most important facts about second quantization are summarized in the Table 1.1. Some of
the relations are identical for bosons and fermions: in those cases we use the generic notation â
for the annihilation operator. Otherwise we denote it b̂ for bosons and ĉ for fermions.
Let us end this chapter with a few practical tips concerning the creation-annihilation permuta-
tions (CAPs). In all applications of the second quantization, you run into expressions consisting
of a long product of CAPs, stacked between two basis vectors of the Fock-space. In order to
derive any useful result, you must be able to manipulate those products of CAPs, i.e. you must
master the definition and commutation relations of the CAPs at an operational level. You can
handle the following simple rules:

a) Do not panic. You can do this, it is a routine calculation.

b) Try to reduce the number of operators by converting them to occupation number operators
â†i âi |{nk}〉 = ni |{nk}〉.

c) In order to achieve this, permute the operators using the commutation rules.

d) Do not calculate parts which reduce obviously to zero. Use common sense and the definition
of CAPs to guess whether an expression is zero before evaluating it.

Let us illustrate this by evaluating the following expression involving fermionic operators:

〈{nk}| ĉ†i1 ĉ
†
i2
ĉi3 ĉi4 |{nk}〉

The last rule comes first. The bra and ket states are identical, and this allows us to establish
relations between the level indices i1, i2, i3, and i4. The two annihilation operators in the

17



CHAPTER 1. SECOND QUANTIZATION

expression kill particles in the ket state in the levels i3 and i4. In order to end up in |{nk}〉
again and thus have a non-zero result, the particles in these levels have to be re-created by the
creation operators. So we have to concentrate on two possibilities only:

i1 = i3, i2 = i4, i1 6= i2,

or i1 = i4, i2 = i3, i1 6= i2.

The case i1 = i2 = i3 = i4 gives zero since all levels can only be occupied once. The term ĉi3 ĉi3
then always produce zero.
We now focus on the first probability, and try to reduce the CAPs to occupation number
operators,

〈{nk}| ĉ†i1 ĉ
†
i2
ĉi1 ĉi2 |{nk}〉 = −〈{nk}| ĉ†i1 ĉi1 ĉ

†
i2
ĉi2 |{nk}〉

permuting the first and the third terms. We now use the reduction rule twice:

〈{nk}| ĉ†i1 ĉ
†
i2
ĉi1 ĉi2 |{nk}〉 = −ni2 〈{nk}| ĉ

†
i1
ĉi1 |{nk}〉 = −ni1ni2 .

Treating the second possibility in the same way, we find

〈{nk}| ĉ†i1 ĉ
†
i2
ĉi2 ĉi1 |{nk}〉 = −〈{nk}| ĉ†i1 ĉ

†
i2
ĉi1 ĉi2 |{nk}〉 = 〈{nk}| ĉ†i1 ĉi1 ĉ

†
i2
ĉi2 |{nk}〉

where we permute (i) the third and the fourth terms, and (ii) the second and the third terms.
We now use the reduction rule twice:

〈{nk}| ĉ†i1 ĉ
†
i2
ĉi2 ĉi1 |{nk}〉 = ni2 〈{nk}| ĉ

†
i1
ĉi1 |{nk}〉 = ni1ni2

We finally obtain:

〈{nk}| ĉ†i1 ĉ
†
i2
ĉi3 ĉi4 |{nk}〉 = −ni1ni2δi1,i3δi2,i4 + ni1ni2δi1,i4δi2,i3 .
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Bosons Fermions
Many-particle wave function fully symmetric fully antisymmetric

Ψ(|ri〉 , t)
Fock-space, where the basis states non-negative 0 or 1

are labeled by the sets {nk} integers
of occupations numbers

Creation and annihilation operators commute anticommute
[b̂k, b̂k′ ] = 0 {ĉk, ĉk′} = 0
[b̂†k, b̂

†
k′ ] = 0 {ĉ†k, ĉ

†
k′} = 0

[b̂†k, b̂k′ ] = δkk′ {ĉ†k, ĉk′} = δkk′

Occupation number operator
number of particles in same level k: n̂k = â†kâk

total number of particles: N̂ = ∑
k n̂k = ∑

k â
†
kâk

Hamiltonian Ĥ = ∑
k εkb̂

†
kb̂k+ the same,

with particle-particle interactions 1
2V

∑
k,k′,q

Vqb̂
†
k+qb̂

†
k′−qb̂kb̂k′ with spins

Field operators: Ψ̂(r) = ∑
k âkφk(r)

dynamics (without interactions): Schrödinger equation for the wave function
Heisenberg equation: i~∂tΨ̂(r, t) =

[
− ~2

2m∇
2 + V (r)

]
Ψ̂(r, t)

Table 1.1: Summary of second quantization
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Chapter 2

Application of second quantization

2.1 Spin-1
2 fermions

Non-interacting fermions, particle number N . For the ground state |φ0〉, all single-particle
states up to the wave number |p| < pF are occupied, where pF is called the Fermi wave number,
|p| < pF represents the Fermi sphere. The ground state is given by

|φ0〉 =
∏
p

|p|<pF

∏
σ

ĉ†p,σ |0〉 σ = ±~
2 pF

Expectation value of particle number operator in momentum space:

n̂p,σ = 〈φ0|ĉ†p,σ ĉp,σ|φ0〉 =
{

1 |p| ≤ pF
0 |p| > pF

For |q| > pF one has

ĉq,σ |φ0〉 =
∏
p

|p|<pF

∏
σ

ĉ†p,σ ĉq,σ |0〉 = 0

The total particle number is connected to the Fermi momentum by

N =
∑
p,σ

np,σ = 2
∑
|p|<pF

1 (∗)= 2V
∫ pF

0

dp
(2π)3 = V p3

F

3π2

(
(∗):

∑
k f(k)=

∑
k

∆k

( 2π
L )3 f(k)=( L

2π )3 ∫
dkf(k)

)
With this it follows

pF =
(

3π2N

V

)1/3

= (3π2n)1/3 with n = N

V
mean particle density.

~pF : the Fermi momentum, and εF = (~pF )2/2m: the Fermi energy.
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The total energy is

E

V
= 1
V

∑
p,σ

εp,σ = 2
V

∑
|p|<pF

~2p2

2m = 2
∫ pF

0

dp
(2π)3

~2p2

2m = ~2

2π2m

∫ pF

0
dp p4 = ~2p5

F

10π2m
.

The relation with the Fermi energy is then:

E

V
= εF

p3
F

5π2 = 3
5nεF and E

N
= 3

5εF ,

and the relation with the density n is:

E

V
= 3~2

10π2m
(3π2n)5/3.

Expectation value of particle density:

〈n̂〉 =
∑
σ

〈φ0|ψ̂†σ(r)ψ̂σ(r)|φ0〉

=
∑
σ

∑
p,p′

e−ıp·reıp
′·r

V
〈φ0|ĉ†p,σ ĉp′,σ|φ0〉︸ ︷︷ ︸

=δp,p′np,σ

= 1
V

∑
p,σ

np,σ = N

V
= n.

Excitation of a Fermi gas:

|φ〉 = ĉ†k2,σ2
ĉk1,σ1 |φ0〉 ≡ particle hole pair

b̂k,σ = ĉ†−k,−σ hole annihilator

b̂†k,σ = ĉ−k,−σ hole creator
k

1111
σ

σ k
2 2

Correlation function of the field operators (for the ground state):

Gσ
(
r− r′

)
= 〈φ0|ψ̂†σ(r)ψ̂σ(r′)|φ0〉

≡ n

2 × prob. amp. for ψ̂σ(r′) |φ0〉︸ ︷︷ ︸
particle missing at pos. r′

→ ψ̂σ(r) |φ0〉︸ ︷︷ ︸
particle missing at pos. r~ww

b.c.
(
〈φ0|ψ̂†σ(r′)ψ̂σ(r′)|φ0〉 = n

2

)
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Gσ
(
r− r′

)
=
∑
p,p′

1
V
e−ıp·r+ıp′·r′ 〈φ0|ĉ†p,σ ĉp′,σ|φ0〉︸ ︷︷ ︸

=δp,p′np,σ=δp,p′Θ(pF−|p|)

= 1
V

∑
|p|<pF

e−ıp·(r−r′) =
∫
|p|<pF

dp
(2π)3 e

−ıp·(r−r′)

= 1
(2π)2

∫ pF

0
dp p2

∫ 1

−1
dη eıp|r−r

′|η

︸ ︷︷ ︸
= eıpr−e−ıpr

ıpr
, r=|r−r′|

, (η = cos(θ))

= 1
2π2r

∫ pF

0
dp p sin(pr)︸ ︷︷ ︸

= − ∂
∂r

∫ pF
0 dp cos(pr)

= − ∂
∂r

sin(pF r)
r

= sin(pF r)
r2 − pF cos(pF r)

r

= sin(pF r)− pF r cos(pF r)
2π2r3

i.e. Gσ(r) = 3n
2

sin(pF r)− pF r cos(pF r)
(pF r)3

π 2π 3π 4π

p
F
r

n/2

G(r)

Pair distribution function:
Consider a (N − 1)-particle state |φ′(r, σ)〉 = ψ̂σ(r) |φ0〉. The density distribution of this state
reads

〈φ′(r, σ)|ψ̂†σ′(r
′)ψ̂σ′(r′)|φ′(r, σ)〉 = 〈φ0|ψ̂†σ(r)ψ̂†σ′(r

′)ψ̂σ′(r′)ψ̂σ(r)|φ0〉

=
(
n

2

)2
gσσ′(r− r′)︸ ︷︷ ︸

pair distribution function

It is(
n

2

)2
gσσ′

(
r− r′

)
= 〈φ0|ψ̂†σ(r)ψ̂σ(r)ψ̂†σ′(r

′)ψ̂σ′(r′)|φ0〉 − δσ,σ′δ
(
r− r′

)
〈φ0|ψ̂†σ(r)ψ̂σ′(r′)|φ0〉

= 〈φ0|n̂σ(r)n̂σ′(r′)|φ0〉 − δσ,σ′δ
(
r− r′

)
〈φ0|n̂σ(r)|φ0〉
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In the Fourier-space we have

(
n

2

)2
gσσ′(r− r′) = 1

V 2

∑
kk′pp′

e−ık·re−ıp·r
′
eıp
′·r′eık

′·r 〈φ0| ĉ†k,σ ĉ
†
p,σ′ ĉp′,σ′ ĉk′,σ |φ0〉 .

It is non zero only if p = p′, k = k′ or p = k′, k = p′. These conditions give

(
n

2

)2
gσσ′(r− r′) = 1

V 2

∑
kp

〈φ0| ĉ†k,σ ĉ
†
p,σ′ ĉp,σ′ ĉk,σ |φ0〉︸ ︷︷ ︸

=〈φ0|ĉ†k,σ ĉk,σ ĉ
†
p,σ′ ĉp,σ′ |φ0〉−δσσ′δpk〈φ0|ĉ†k,σ ĉp,σ′ |φ0〉

+ 1
V 2

∑
kp
e−ık·(r−r′)e−ıp·(r

′−r) 〈φ0| ĉ†k,σ ĉ
†
p,σ′ ĉk,σ′ ĉp,σ |φ0〉︸ ︷︷ ︸

=−〈φ0|ĉ†k,σ ĉk,σ′ ĉ
†
p,σ′ ĉp,σ |φ0〉+δσσ′δpk〈φ0|ĉ†k,σ ĉp,σ |φ0〉

= 1
V 2

∑
kp
〈φ0| n̂k,σn̂p,σ′ |φ0〉 − δσσ′

1
V 2

∑
kp
e−ık·(r−r′)e−ıp·(r

′−r) 〈φ0| n̂k,σn̂p,σ |φ0〉

For σ 6= σ′, we find

(
n

2

)2
gσσ′

(
r− r′

)
= 1
V 2 〈φ0|

∑
k
n̂k,σ︸ ︷︷ ︸

 N/2

∑
p
n̂p,σ′︸ ︷︷ ︸

 N/2

|φ0〉 = 1
V 2 ·

N

2 ·
N

2 = n2

4 ,

which gives gσσ′ (r− r′) = 1.
For σ = σ′, we find

(
n

2

)2
gσσ(r− r′) =

(
n

2

)2
− 〈φ0|

1
V

∑
k
e−ık·(r−r′)n̂k,σ︸ ︷︷ ︸
 Gσ(r−r′)

1
V

∑
p
e−ıp·(r

′−r)n̂p,σ︸ ︷︷ ︸
 G∗σ(r−r′)

|φ0〉

=
(
n

2

)2
−
[
Gσ(r− r′)

]2
.

Combining these results leads to

⇒ gσσ′
(
r− r′

)
= 1− 9

(pF r)6

(
sin(pF r)− pF r cos(pF r)

)2
δσσ′ , r =

∣∣r− r′
∣∣
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π 2π 3π p
F
r

0.5

1

g
σσ

(r)

g(r) = V

N(N − 1)

〈∑
α 6=β

δ (r− rα + rβ)
〉

Because of the above relation, the pair dis-
tribution function represents the probability
density for pair of particles to be at a distance
r! The reduction of g(r) for distances . p−1

F

is called the correlation or exchange hole. It is
an effect of the antisymmetry of the N -particle
state.

Density correlation function:

G̃(r) = 〈n̂(r)n̂(0)〉 = 1
V

∫
dr′ 〈n̂(r + r′)n̂(r′)〉

= 1
V

∑
α,β

∫
dr′ 〈δ(r + r′ − rα)δ(r′ − rβ)〉 = 1

V

∑
α,β

〈δ(r− rα + rβ)〉

= 1
V

(∑
α

δ(r) + N(N − 1)
V

g(r)
)

= nδ(r) + N(N − 1)
V 2 g(r)

∑
α 6=β

δ(r− rα + rβ) −→
∫
dr′ dr′′ ψ̂†(r′)ψ̂†(r′′)δ(r− r′ + r′′)ψ̂(r′′)ψ̂(r′)

=
∫
dr′ψ̂†(r′)ψ̂†(r′ − r)ψ̂(r′ − r)ψ̂(r′)

〈∑
α 6=β

δ(r− rα + rβ)
〉

= V
〈
ψ̂†(r′)ψ̂†(r′ − r)ψ̂(r′ − r)ψ̂(r′)

〉
Static structure factor:

S(q) := 1
N

〈∑
α,β

e−ıq·(rα−rβ)
〉
−Nδq,0 = 1

N
〈n̂qn̂−q〉 −Nδq,0

= N

V

∫
dr e−ıq·rg(r) + 1−Nδq,0,

i.e.
S(q)− 1 = n

∫
dr e−ıq·r (g(r)− 1) ,

and
g(r)− 1 = 1

n

∫
dq

(2π)3 e
ıq·r (S(q)− 1) .
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2.2 Magnetic (polarized) ground state of interacting Fermi gas

The ground-state of interacting Fermi gas is polarized. The Hamiltonian writes Ĥ = Ĥkin +Ĥint
with

Ĥkin =
∑
k,σ

~2k2

2m c†k,σck,σ and Ĥint = 1
2V

∑
k,k′,q

∑
σ,σ′

Uqc
†
k+q,σc

†
k′−q,σ′ck′,σ′ck,σ.

The polarization is defined by

P = N↑ +N↓
N

where N↑ and N↓ are the number of particles in the spin states σ =↑ and σ =↓, respectively.
Note that N = N↑ +N↓. Then we have the populations

N↑,↓ = N

2 (1± P ).

The ground-state is supposed polarized, i.e. with a polarization P 6= 0. We will prove it with a
variational calculation with a polarized trial wave function:

|gP 〉 =

 ∏
|k|<kF,↑

c†k,↑

 ∏
|k|<kF,↓

c†k,↓

 |0〉 ,
where N↑ are created in the state ↑ and N↓ in the state ↓. Note that if N↑ = N↓ = N/2 for a
zero-polarization, the Fermi momemtum are equal to kF,↑ = kF,↓ = (3π2n)1/3 and the ground-
state is |gP 〉 = |φ0〉. We use the variational calculus based on the determination of the minimal
energy:

EGS = min
Ψ

〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

where |Ψ〉 = |gP 〉 for an infinitely many polarizations. We will then compute the expression for
the energy and calculate the polarization of its minimum.
Kinetic energy:

Ekin(P ) = 〈gP | Ĥkin |gP 〉 =
∑
k,σ

~2k2

2m nk,σ

where nk,σ = Θ(kF,σ − |k|). It gives:

Ekin(P )
V

= 1 ·
∫
|k|<kF,↑

d3k
(2π)3

~2k2

2m + 1 ·
∫
|k|<kF,↓

d3k
(2π)3

~2k2

2m = 1
2

{
~2k5

F,↑
10π2m

+
~2k5

F,↓
10π2m

}
.

and we have

n↑ = N↑
V

= 1 ·
∫
|k|<kF,↑

d3k
(2π)3 = 1

2
k3
F,↑

3π2 , n↓ = 1
2
k3
F,↓

3π2 ,

which give the Fermi momenta:

kF,↑↓ = (2 · 3π2n↑↓)1/3.
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Remember we have

EK
V
≡ E(P = 0)

V
= (3π2)2/3 3~2

10m︸ ︷︷ ︸
≡C

(
N

V

)5/3
⇒ C = EK

V

(
V

N

)5/3
.

Ekin(P )
V

= C

2
[
(2n↑)5/3 + (2n↓)5/3

]
= EK

2V

(
V

N

)5/3
[(

2N↑
V

)5/3
+
(

2N↓
V

)5/3
]

= EK
2V

[(
2N↑
N

)5/3
+
(

2N↓
N

)5/3
]

Hence the kinetic energy is

Ekin(P ) = EK
2
[
(1 + P )5/3 + (1− P )5/3

]
,

which is minimum for P = 0 with the value E(P = 0) = EK .
Potential energy:
The Coulomb potential is

U(r) = e2

4πr ⇒ U(q) = e2

q2 .

Since electron-electron interaction is screened (Yukawa potential):

U(r) = e2

4πr exp(−r/rc)⇒ U(q) = e2

q2 + r−2
c
.

We use here a simpler model (very strongly screened |q|rc � 1:

U(r) = Uδ(r)⇒ U(q) = U.

The potential energy is then

〈gP | Ĥint |gP 〉 = U

2V
∑

k,k′,q

∑
σ,σ′

〈gP | c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ |gP 〉︸ ︷︷ ︸

6=0 only for
(A) k′ − q = k′, k + q = k ⇒ q = 0
(B) k′ − q = k, k + q = k′, σ = σ′

.

Diagrams of corresponding interactions:

k,�

k',�'
k'-q,�'

k+q,�

U(q)

k,� k',�'

U(0)

k,�

k+q,�

U(q)

A: B:�int:
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(A) Hartree term:

EH = U

2V
∑
k,k′

∑
σ,σ′

〈gP | c†k,σc
†
k′,σ′ck′,σ′ck,σ |gP 〉︸ ︷︷ ︸

= 〈gP | c†k,σck,σc
†
k′,σ′ck′,σ′ |gP 〉 − δk,k′δσ,σ′ 〈gP | c†k,σck,σ |gP 〉

= nk′,σ′nk,σ − δk,k′δσ,σ′nk,σ

= U

2V

(∑
k

∑
σ

nk,σ

)2

−
∑

k

∑
σ

nk,σ

 = U

2V (N2 −N) ' UV

2 n2

for a large number of particles N � 1. EH is independent of the polarization P .
(B) Fock term:

EFock = U

2V
∑
k,k′

∑
σ

〈gP | c†k′,σc
†
k,σck′,σck,σ |gP 〉︸ ︷︷ ︸

= −〈gP | c†k′,σck′,σc
†
k,σck,σ |gP 〉+ δk,k′ 〈gP | c†k′,σck,σ |gP 〉

= −nk′,σ′nk,σ + δk,k′nk,σ

= − U

2V

∑
σ

(∑
k
nk,σ

)2

−
∑

k

∑
σ

nk,σ

 = − U

2V (N2
↑ +N2

↓ −N)

' −EH

(
N2
↑

N2 +
N2
↓

N2

)
= −EH

(
(1 + P )2

4 + (1− P )2

4

)
= −EH

1 + P 2

2 .

EFock is minimal for |P | = 1. It comes from the Pauli principle.
Total energy:

E(P ) = EK
2
[
(1 + P )5/3 + (1− P )5/3

]
+ EH

2 (1− P 2).

For EH/EK the optimal polarization can be determined as being the state with minimal total
energy:

∂E

∂P
(P ) = 5EK

6
[
(1 + P )2/3 − (1− P )2/3

]
− EHP = 0

⇒ EH
EK

= 5
6P

[
(1 + P )2/3 − (1− P )2/3

]
.

Although it is impossible to solve this equation analytically with respect to P , it suffices to plot
the optimal polarization versus EH/EK , as in the figure below.
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P

0.0
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E
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)/
E

K
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|
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From the plot we understand the following:

a) If the interaction is weak, EH/EK < 10/9, the ground state is non-magnetic.

b) A transition to a magnetic state occurs at EH/EK = 10/9. The polarization is still
vanishing at the transition point and gradually increases above it.

c) At EH/EK > 5/6 · 22/3 the ground state is completely polarized.

Of course our model is too simplistic to account for all details of ferromagnetism in metals.
However, we manage to capture several qualitative features of the phenomenon.
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2.3 Free bosons

Pair distribution function for free bosons. We assume non-interacting bosons with spin zero.  
Only quantum number is the momentum.
Consider the N -particle state

|φ〉 = |np0 , np1 , . . .〉 npi ∈ {0, 1, 2, . . . }

Particle density:

〈φ|ψ̂†(r)ψ̂(r)|φ〉 = 1
V

∑
k,k′

e−ık·r+ık′·r 〈φ|b̂†kb̂k′ |φ〉 = 1
V

∑
k
nk = N

V
= n.

 No position dependency of the density for the state |φ〉.

Pair distribution function:

n2g(r− r′) = 〈φ|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|φ〉 = 1
V 2

∑
k,k′,
q,q′

e−ıkr−ıqr′+ıq′r′+ık′r 〈φ|b̂†kb̂
†
qb̂q′ b̂k′ |φ〉 .

〈φ|b̂†kb̂
†
qb̂q′ b̂k′ |φ〉: This term is only different form 0 when k = k′ and q = q′ or k = q′ and

q = k′. Consider case k = q separately

〈φ|b̂†kb̂
†
qb̂q′ b̂k′ |φ〉 =

(
1− δkq

) (
δkk′δqq′ 〈φ|b̂†kb̂

†
qb̂qb̂k|φ〉+ δkq′δqk′ 〈φ|b̂†kb̂

†
qb̂kb̂q|φ〉

)
+ δkqδkk′δqq′ 〈φ|b̂†kb̂

†
kb̂kb̂k|φ〉

=
(
1− δkq

) (
δkk′δqq′ + δkq′δqk′

)
nknq + δkqδkk′δqq′nk (nk − 1)

With this it follows

〈φ|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|φ〉 = 1
V 2

∑
kq

(
1− δk,q

) (
1 + e−ı(k−q)(r−r′)

)
nknq +

∑
k
nk (nk − 1)


= 1
V 2

∑
k,q

nknq −
∑

k
n2

k +
∣∣∣∣∣∑

k
e−ık(r−r′)nk

∣∣∣∣∣
2

−
∑

k
n2

k +
∑

k
n2

k −
∑

k
nk


=n2 +

∣∣∣∣∣ 1
V

∑
k
e−ık(r−r′)nk

∣∣∣∣∣
2

− 1
V 2

∑
k
nk (nk + 1) (∗)

In contrast to fermions the second term is positive, the last term is completely missing for
fermions.

Looking at two examples:
1) All bosons occupying the same state p0. Then

n2g(r− r′) = n2 + n2 − 1
V 2N(N + 1) = N(N − 1)

V 2

i.e. the pair distribution function is independent of the position. The amplitude of detecting
the first particle is N/V , for the second particle it is (N − 1)/V .
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2) Particle distributed over many momentum states. Distribution given by a Gaussian.

nk = (2π)3n

(
√
π∆)3 e

−(k−k0)2/∆2 with
∫

dp
(2π)3np = n (normalization)

as for instance for the ground state of free Bosons in a harmonic external potential (remember
harmonic oscillator, TP3). One then finds∫

dk
(2π)3 e

−ık(r−r′)nk = n e−
∆2
4 (r−r′)2

e−ık0(r−r′)

and

1
V

∫
dk

(2π)3n
2
k = 1

V

[
(2π)3n

(
√
π∆)3

]2 ∫
dk

(2π)3 e
−2(k−k0)2/∆2 ∼ n2∆3

V∆6 ∼
n2

V∆3

For n ≡ const. and ∆ ≡ const. disappears the third term in (∗) when V −→∞.

n2g(r− r′) = n2
(

1 + e−
∆2
2 (r−r′)2

)

0 1 2 3 4

∆|r|

0

1

2

g(r)

When r < ∆−1, the probability of finding two particles is increased. Because of the symmetry
of the wave function bosons tend to cluster.
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2.4 Weakly interacting Bosons

Non-interacting Bose gas

The Hamiltonian for non-interacting bosons (NIB) is

Ĥ(1) =
∑

k
E(k)b̂†kb̂k; E(k) = ~2k2

2m .

Ground state: all particles are in k = 0-level:

|N〉 =

(
b̂0
)N

√
N !
|0〉 = |N, 0, 0, 0, · · ·〉 .

Note: states with different particle number N have the same energy, namely zero. Hence any
superposition also has zero energy, e.g.

|φ〉 =
∑
N

|N〉 .

The model of the NIB is too idealized to decide upon the real ground state. Hence we take into
account the interactions.

Weakly interacting Bosons

Hamiltonian:
Ĥ =

∑
k

~2k2

2m b̂†kb̂k + 1
2V

∑
k,p,q

Uqb̂
†
k+qb̂

†
p−qb̂pb̂k , (2.1)

where b̂k and b̂†k are bosonic annihilator/creator.
Low temperatures: Bose-Einstein-condensation in the (k = 0)-mode, i.e. even with a weak
interaction U(r) is present, we assume that in the ground state |N〉 the single-particle state
with k = 0 is macroscopically occupied.

N0 = 〈N |b̂†0b̂0|N〉 . N,

i.e. the number of excited particles is small:

N −N0 � N0 . N.

Neglecting the interaction among excited particles, we restrict ourself to the interaction of excited
particles with particles of the condensate

Ĥ =
∑

k

~2k2

2m b̂†kb̂k + 1
2V U0b̂

†
0b̂
†
0b̂0b̂0 (k = p = q = 0 in (2.1))

+ 1
V

∑
k 6=0

(U0 + Uk) b̂†0b̂0b̂
†
kb̂k

(
p = q = 0,

resp. p = q,k = 0 in (2.1)

)
+ 1

2V
∑
k 6=0

Uk
(
b̂†kb̂
†
−kb̂0b̂0 + b̂†0b̂

†
0b̂kb̂−k

) (
k = 0, p = 0

resp. k = −q, p = q in (2.1)

)
+O(b̂3k)
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Because

b̂0 |. . . , N0, . . .〉 =
√
N0 |. . . , N0 − 1, . . .〉

b̂†0 |. . . , N0, . . .〉 =
√
N0 + 1 |. . . , N0 + 1, . . .〉

b̂0b̂
†
0 − b̂

†
0b̂0 = 1

and N0 ∝ 1023 � 1, we neglect the operator properties of b̂†0 and b̂0 and treat them as complex
numbers:

b̂†0 ≈ b̂0 ≈
√
N0.

=⇒ Ĥ =
∑
k 6=0

~2k2

2m b̂†kb̂k + 1
2V N

2
0U0 + N0

V

∑
k 6=0

[
(U0 + Uk) b̂†kb̂k + 1

2Uk
(
b̂†kb̂
†
−k + b̂kb̂−k

)]
+ . . .

N0 is currently unknown, but we know that must hold:

N̂ = N0 +
∑
k 6=0

b̂†kb̂k

(total particle number = #(condensated bosons) + #(excited particles))
It is for example

U0
2V N

2
0 = U0

2V N
2 − NU0

V

∑
k 6=0

b̂†kb̂k + U0
2V

∑
k,k′ 6=0

b̂†kb̂kb̂
†
k′ b̂k′

and

Ĥ =
∑
k 6=0

~2k2

2m b̂†kb̂k + U0
2V N

2
0 + N0

V

∑
k
U0b̂
†
kb̂k︸ ︷︷ ︸

≈N
2U0
2V

+N0
V

∑
k 6=0

Ukb̂
†
kb̂k + N0

V

∑
k 6=0

Uk
(
b̂†kb̂
†
−k + b̂kb̂−k

)

≈
∑
k 6=0

~2k2

2m b̂†kb̂k + N2

2V U0 + N

V

∑
k 6=0

Ukb̂
†
kb̂k + N

2V
∑
k 6=0

Uk
(
b̂†kb̂
†
−k + b̂kb̂−k

)
+ Ĥ ′

Ĥ ′ contains terms with 4 creation and annihilation operators (k 6= 0) and these are in the
order of (n′)2 = (N − N0)2/V 2. The Bogolivbov approximation (neglecting Ĥ ′) is a good
approximation when n′ � n. We will see that this condition is fulfilled for a dilute, weakly
interacting Bose gas. Note that

N

V
= n.

Ĥ is a quadric form (in b̂†kb̂k), which still has to be diagonalized ( Bogolivbov transformation).

Ansatz:

b̂k = Ukα̂k + vkα̂
†
−k

b̂†k = Ukα̂
†
k + vkα̂−k
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If u2
k − v2

k = 1 fulfilled, then α̂k and α̂†k are again bosonic operators:

[α̂k, α̂k′ ] =
[
α̂†k, α̂

†
k′
]

= 0[
α̂k, α̂

†
k′
]

= δk,k′

(Proof: see exercise)
The inverse transformation reads

α̂k = Ukb̂k − vkb̂
†
−k

α̂†k = Ukb̂
†
k − vkb̂−k

A longer calculation (see exercise) leads to

Ĥ = 1
2V N

2U0 +
∑
k 6=0

(
~2k2

2m + nUk

)[
u2

kα̂
†
kα̂k + v2

kα̂kα̂
†
k + ukvk

(
α̂†kα̂

†
−k + α̂kα̂−k

)]

+ N

2V
∑
k 6=0

Uk

[(
u2

k + v2
k

) (
α̂†kα̂

†
−k + α̂kα̂−k

)
+ 2ukvk

(
α̂†kα̂k + α̂kα̂

†
k

)]

For the non-diagonal term (underlined) to disappear, one needs

(
~2k2

2m + nUk

)
ukvk + n

2Uk
(
u2

k + v2
k

)
= 0

With the condition u2
k − v2

k = 1 one calculates

u2
k =

ωk +
(
~2k2

2m + nUk
)

2ωk

v2
k =
−ωk +

(
~2k2

2m + nUk
)

2ωk
,

where

ωk =

(~2k2

2m + nUk

)2

− (nUk)2

1/2

=

(~2k2

2m

)2

+ n~2k2Uk
m

1/2

It follows

ukUk =

[(
~2k2

2m + nUk
)2
− ω2

k

]1/2

2ωk
= −nUk

2ωk
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We can now further calculate Ĥ

Ĥ = N2U0
2V +

∑
k 6=0

(
~2k2

2m + nUk

)u2
kα̂
†
kα̂k + v2

k

(
1 + α̂†kα̂k

)
︸ ︷︷ ︸

α̂kα̂
†
k



+ n

2Uk 2

−nUk
2ωk

(
α̂†kα̂k + 1 + α̂†kα̂k︸ ︷︷ ︸

α̂kα̂
†
k

)
= N2U0

2V +
∑
k 6=0

(
u2

k + v2
k

)
α̂†kα̂k +

(
~2k2

2m + nUk

)
v2

k −
n2V 2

k
ωk

α̂†kα̂k −
n2V 2

k
2ωk

= N2U0
2V +

∑
k 6=0

1
ωk


(
~2k2

2m + nUk

)2

− (nUk)2

︸ ︷︷ ︸
=ω2

k

 α̂†kα̂k −
1
2

(
~2k2

2m + nUk

)

+ 1
2ωk


(
~2k2

2m + nUk

)2

− n2V 2
k

ωk︸ ︷︷ ︸
=ω2

k



=⇒ Ĥ = N2U0
2V − 1

2
∑
k 6=0

(
~2k2

2m + nUk − ωk

)
︸ ︷︷ ︸

ground state energy E0

+
∑
k 6=0

ωkα̂
†
kα̂k︸ ︷︷ ︸

excitation of
“quasiparticles”

The ground state |N〉 of the system is fixed by the condition α̂k |N〉 = 0, i.e. no quasiparticles
are excited. It is now possible to calculate the number of real particles outside of the condensate

N ′ = 〈N |
∑
k 6=0

b̂†kb̂k|N〉 = 〈N |
∑
k 6=0

v2
kα̂kα̂

†
k|N〉 =

∑
k 6=0

v2
k

Choosing as example a contact potential U(r) = Uδ(r), one finds n′ = N ′/V = m3/2

3π2 (nU)3/2

(see exercise). n′ is small, when the expansion parameter nU ≡ (density × interacting strength)
is small, consistent with our assumption of a dilute, weakly interacting gas.

Remark: The dependence of n′ on nU is nonanalytic, i.e. it cannot be derived by pertur-
bation theory (starting from U = 0).

Exited states are generated by α̂†k |N〉. Their energy is ~ωk. One finds the dispersion relation
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ωk =

(~2k2

2m

)2

+ n~2k2Uk
m

1/2

=

 ck for k → 0 where c =
√

nU0
m

~2k2

2m + nUk for k →∞

k

k

2m

ω

ω

2

k

k

Notes: Uk=0 = U0 must be positive for the ground state to be stable without quasiparti-
cles, i.e. there is a repulsive interaction of the bosons.
Uk → 0 for a short range interaction potential of the bosons, i.e. for k →∞, ωk is identical to
Ekin of free bosons.

Distinctive feature: min
{ωk
k

}
=: vcrit 6= 0 leads to superfluidity.
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Superfluidity

3.1 Landau’s model Helium 4 superfluid

Quasiparticle excitation in superfluid He4

p/h (A �1)

0 1 2 3

10

20

RotonsPhonons

∆E
(K)

I
II

Area I:
Excitations: phonons
εp = cp, c = 238 m/s

Area II:
Minimum at p0 = 1.91 Å−1~
Excitations: rotons
εp = ∆ + (|p|−p0)2

2µ , µ = 0.16 mHe, ∆/k =
8.6 K

Consequences for the dynamical behaviour: Two-fluid model, superfluidity (Landau). Con-
sider T = 0, fluid in ground state (condensate), no excitations present. The condensate moves
through a pipe as an unit with drift velocity v:

He

static

He condensation

+v

v
Wall

Assertion:
There is no friction if v < vcrit. Consider Galilei-Transformation: condensate is at rest, walls
are moving. If the fluid would be viscous, the pipe would be decelerated, in which case energy
and momentum in the form of excitations (quasiparticles) would be transmitted in the fluid.

If there is no excitation present, then:

36



CHAPTER 3. SUPERFLUIDITY

Rest frame (of fluid):

P0 = 0, E = Egs

Lab frame (fluid moving, vel. v):

P = Mv, E = Egs + Mv2

2

Assuming now there exist excitations with (total) momentum p and energy ε(p).
Rest frame:

P0 = p, E = Egs + ε(p)

Lab frame:

P = Mv + p, E = Mv2

2 + v · p + Egs + ε(p)

⇒ ∆E = ε(p) + v · p

Is it energetically beneficial to excite quasiparticles, i.e. ∆E < 0?
Because ε(p) > 0, the energy difference assumes it smallest value when p and v are antiparallel.
For an excitation to have an energetic benefit the following inequality must be satisfied:

ε(p)− |v||p| < 0 ⇔ v >
ε(p)
|p|

The critical velocity is therefore given by

vcrit = min
p

{
ε(p)
|p|

}
 vcrit

= ε / p
~ ~

Slope:

p~ p

ε
~

ε

Implication: For |v| < vcrit there is no excitation possible and the fluid flows frictionless
 superfluidity.
T > 0: There already exist some excitations which can collide with the wall and can interchange
energy and momentum  friction caused by the noncondensated particles. But up to TU there
is a macroscopic condensate present.
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3.2 Field theory for interacting Bose gas

Start with evolution equation for the field operators Ψ̂(r, t) (Heisenberg equation):

ı~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
with Ĥ = Ĥ(1) + Ĥ(2)

Ĥ(1) =
∫
d3r Ψ̂†(r)

{
− ~2

2m∆
}

Ψ̂(r),

Ĥ(2) = 1
2

∫
d3r1d

3r2 U(r1 − r2)Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r2)Ψ̂(r1).

The commutators give:

[
Ψ̂(r), Ĥ(1)

]
= − ~2

2m

∫
d3r′

[
Ψ̂(r), Ψ̂†(r′)∆Ψ̂(r′)

]
︸ ︷︷ ︸

= Ψ̂†(r′)
[
Ψ̂(r),∆Ψ̂(r′)

]
+
[
Ψ̂(r), Ψ̂†(r′)

]
∆Ψ̂(r′)

= 0 + δ(r − r′)∆Ψ̂(r′)

= − ~2

2m

∫
d3r′ δ(r− r′)∆Ψ̂(r′) = − ~2

2m∆Ψ̂(r),

and [
Ψ̂(r), Ĥ(2)

]
= 1

2

∫
d3r1d

3r2 U(r1 − r2)
[
Ψ̂(r), Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r2)Ψ̂(r1)

]
︸ ︷︷ ︸

=δ(r−r2)Ψ̂†(r1)Ψ̂(r2)Ψ̂(r1)+δ(r−r1)Ψ̂†(r2)Ψ̂(r2)Ψ̂(r1)

=
∫
d3r1U(r− r1)Ψ̂†(r1)Ψ̂(r1)Ψ̂(r).

Assume (for simplicity: model) contact potential: U(r) = Uδ(r), we have:[
Ψ̂(r), Ĥ(2)

]
= UΨ̂†(r)Ψ̂(r)Ψ̂(r),

and the evolution equation (or Heisenberg Equation) becomes

ı~
∂

∂t
Ψ̂ = − ~2

2m∆Ψ̂ + UΨ̂†Ψ̂Ψ̂ . (3.1)

Consider a set of NIB ground state |N〉 with N � 1. Then

〈N | b̂†0b̂0 |N〉 = N and 〈N | b̂0b̂†0 |N〉 = N + 1.

Since N � 1 we have:
〈b̂†0b̂0〉 ' 〈b̂0b̂

†
0〉 � 〈[b̂0, b̂

†
0]〉.

We can neglect the commutators of the field operators b̂0 and b̂†0, i.e. b̂0 and b̂†0 are simple,
complex numbers:

Ψ̂(r, t) = b0︸︷︷︸
number

ψ(r, t) +
∑
k 6=0

b̂k︸︷︷︸
operator!

ψk(r, t). (3.2)
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Simplest solution of Eq. (3.1):
The condensate (ground state) is

Ψ̂(r, t) = b0ψ(r, t) ≡ ψ(t). (classical field)

This corresponds to the state ψ(r, t) with momentum k = 0, and it does not depend on r.
Eq. (3.1) then becomes:

ı~
∂ψ

∂t
(t) = U |ψ(t)|2ψ(t). (3.3)

The solution of Eq. (3.3) with time-independent modulus is:

ψ(t) = ψ0e
− ı

~µt, |ψ(t)|2 = |ψ0|2

Remember that Ψ̂†Ψ̂ is the density operator hence the solution describes the Bose condensate
with density ρ(r) = |ψ0|2. The parameter µ is related to the density via Eq. (3.3):

µ = Uρ.

It is the chemical potential of the condensate: adding one more particle to the condensate
absorbs the interaction energy U multiplied by the local density of bosons ρ.

3.3 Oscillatory excitations

Linearize equations of motion around the simplest (homogeneous) solution.

Ansatz : Ψ̂(r, t) = ψ(r, t) + δΨ̂(r, t)e−
ı
~µt.

Inserting this expression of Ψ̂ in Eq. (3.1) (Heisenberg equation) and keeping only the terms to
first order in δΨ̂, we obtain:

ı~
∂

∂t
δΨ̂ + µδΨ̂ = − ~2

2m∆δΨ̂ + Uψ2
0δΨ̂† + 2U |ψ0|2δΨ̂.

To simplify, we assume that ψ0 is real:

Uψ2
0 = U |ψ0|2 = Uρ = µ.

Therefore,

ı~
∂

∂t
δΨ̂ = − ~2

2m∆δΨ̂ + µ
(
δΨ̂† + δΨ̂

)
. (3.4)

Obviously plane waves satisfy this equation. Expressing the corrections to the condensate op-
erators as in Eq. (3.2), we can search for a solution of the form

δΨ̂(r, t) = 1√
V

∑
k
b̂k(t)eık·r.

Inserting in Eq. (3.4) we obtain:

1√
V

∑
k
eık·r

(
ı~
∂

∂t
b̂k

)
= 1√

V

∑
k
eık·r [E(k) + µ] b̂k + 1√

V

∑
k
e−ık·rµb̂†k
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Multiply both sides with 1√
V
e−ıq·r and then sum over r:∑

k

1
V

∑
r
eı(k−q)·r

︸ ︷︷ ︸
=δk,q

(
ı~
∂

∂t
b̂k

)
=
∑

k

1
V

∑
r
eı(k−q)·r

︸ ︷︷ ︸
=δk,q

[E(k) + µ] b̂k +
∑

k

1
V

∑
r
e−ı(k+q)·r

︸ ︷︷ ︸
=δk,−q

µb̂†k

which gives:

ı~
∂

∂t
b̂q = [E(q) + µ] b̂q + µb̂†−q. (3.5)

Without the last term ∝ b̂†−q, one would recover the usual equation of motion for non-interacting
boson - like particles with energies E(q) + µ. The presence of the b̂†−q term indicate that b̂k’s
are not the right operators to work with (i.e. do not diagonalize the Hamiltonian).
Bogoliubov introduced the following new Bose-operators:

b̂k = ukα̂k + vkα̂−k

b̂†k = ukα̂
†
k + vkα̂

†
−k

(3.6)

such that Eq. (3.5) transforms into:

ı~
∂

∂t
α̂k = εkα̂k . (3.7)

where uk and vk are real coefficients and u2
k − v2

k = 1 due to Bose operator α̂k.
The “wrong” creation/annihilation-operators b̂k, b̂†k describe particles and the “right” c/a oper-
ators α̂k, α̂†k describe quasi-particles.
To find the quasiparticle energies εk along with the coefficients uk and vk, one substitutes
Eq. (3.6) into Eq. (3.5) and requires that it can be written as Eq. (3.7) (see exercise). One then
obtains a linear algebra problem for an unknown vector with eigenvalues εk.
The quasi particles energies, the energies of the elementary excitations of the interacting Bose
condensate, are given by:

εk =
√
E(k)[E(k) + 2µ] =

√
~2k2

2m

(~2k2

2m + 2µ
)

= ~k
√
µ

m

√
1 + ~2k2

4µm = ~k
√
µ

m
+O(k2).

Hence

εk
µ

= k

kB

√
1 + k2

2k2
B
, kB =

√
2µm
~

Small-k behavior:

εk = ~vpk +O(k2),
ωk = vpk +O(k2),

vp =
√
µ

m
= 1

~
lim
k→0

∂εk
∂k

.

For small k the excitations are density waves (sound waves) and vp is the sound velocity. The
feature min{ωk/k} = vp > 0 leads to superfluidity: two-fluid model of superfluidity.

40



CHAPTER 3. SUPERFLUIDITY

3.4 Topological excitations

It turns out that many field theories possess excitations not captured by a Taylor expansion:
topological excitations. Configurations of quantum fields in such theories can be separated into
classes such that no infinitesimally small change of the field configuration would cause a change
from one class to the other.
In superfluidity the relevant configurations of the complex field 〈Ψ̂(r, t)〉 have constant modulus
(related to the particle density) while the phase can change rather freely. There exist topologi-
cally non-trivial configurations of the phase which are called vortices: emergent excitations.
Simplification: Resort to a closed equation for 〈Ψ̂(r, t)〉 = ψ(r, t): “quasiclassical approxima-
tions”.
From Heisenberg equation (3.1), with mean field approximation:

ı~
∂

∂t
〈Ψ̂〉 = − ~2

2m∆〈Ψ̂〉+ U 〈Ψ̂†Ψ̂Ψ̂〉︸ ︷︷ ︸
'〈Ψ̂†〉〈Ψ̂〉〈Ψ̂〉

.

Including factor e ı~µt into ψ(r, t), one obtains the time-dependent Gross-Pitaevskii (GP) equa-
tion:

ı~
∂ψ

∂t
(r, t) =

[
− ~2

2m∆− µ+ U |ψ(r, t)|2
]
ψ(r, t). (3.8)

Quasiclassical approximation requires a large number of bosons: average interatomic distance
∼ ρ−1/3. Characteristic length scale (healing length) of GP:

ξ ≡
√

~2

2m
1
Uρ

= ~√
2mUρ.

If ξ � ρ−1/2 is consistent, i.e. for mU � ~2ρ−1/2 (weak interaction). For superfluid Helium:
ξ ∼ 0.1nm ' ρ−1/2.
GP is a classical Hamiltonian equation, can be obtained from Hamiltonian:

HCl =
∫
d3r

(
~2

2m |∇ψ(r)|2 − µ|ψ(r)|2 + U

2 |ψ(r)|4
)

by variation with respect to ψ∗(r) and ψ(r). It is

HCl = 〈Ĥ − µN̂〉.

=⇒ Total energy E = HCl is conserved.

How to relate ψ(r, t) to more classical quantities characterizing a liquid?
It is clear that density ρ(r, t) = 〈Ψ̂†(r, t)Ψ̂(r, t)〉 ' |ψ(r, t)|2 ⇔ modulus of ψ!
What about the phase? With Eq. (3.8) one finds:

∂ρ

∂t
(r, t) = ı~

2m∇ · [ψ
∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] ,

since ψ∆ψ∗ − ψ∗∆ψ = ∇ · [ψ∇ψ∗ − ψ∗∇ψ], we define the current density

j(r, t) = − ı~
2m [ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] ,
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then the particle density satisfy the continuity equation

∂ρ

∂t
(r, t) +∇ · j(r, t) = 0 .

Since j is on one hand a particle current density, j = ρvs, with vs the local velocity field and on
the other hand with ψ = √ρeıφ:

j(r, t) = − ı~
2m

[√
ρe−ıφ (∇√ρ+ ı

√
ρ∇φ) eıφ −√ρeıφ (∇√ρ− ı√ρ∇φ) e−ıφ

]
= ~
m
ρ∇φ.

Hence the velocity is

vs(r, t) = ~
m
∇φ(r, t) ,

i.e. the gradient of the phase φ of ψ is proportional to the local vector of the fluid. Note that if
ψ(r, t) is a plane wave, the phase is φ = k · r and the velocity is trivially

vs = ~
m

k = p
m
.

Now we illustrate the existence of topological excitations:
Consider one-dimensional field theory first, and confine the superfluid to a thin ring of cross
section s and radius R with φ(0) = φ(2πR):∮

dx
∂φ

∂x
= 2πn, n ∈ Z.

The integer n is a topological number, it cannot be changed by a small variation of ψ.

GP in 1d with ρ = const and stationary φ(x) (no time dependence):

0 =

− ~2

2mφ′′−µ+ Uρ︸ ︷︷ ︸
=0

√ρeıφ
=⇒ φ′′ = m

~
v′s = 0

=⇒ vs = const.

The condensate moves with a constant velocity vs along the ring.
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Each field configuration with a non-zero constant density in all points of the ring is characterized
by a certain n, and those that differ in n belong to different sectors. For ψ = √ρeınx/R

E = s

∮
dx

[
~2

2mφ′2ρ− µρ+ U

2 ρ
2
]

= E0 + n2π~ρs
mR

.

True ground state is n = 0.
The relation

∮
dx ∂xφ = 2πn implies a quantization of the velocity of the condensate:

vn = ~
m
φ′ = n

~
mR

.

To understand this: compute total angular momentum Ln of the superfluid with respect to the
symmetry axis of the ring:
Momentum of an infinitesimal element of the fluid: dl = vnmρsdx

Ln = R

∮
dl = R

∫ 2πR

0
dxvnmρs = 2πRn~ρs = n~Np

with Np = 2πRsρ, the number of particles in the condensate.
In a topological sector n, each particle of the superfluid acquires a quantized value of the angular
momentum ~n. It is different from the angular momentum quantization of non-interacting
bosons: clear manifestation of the collective nature of topological excitations.

3.4.1 Vortices

Consider 2d, use polar coordinates (x, y)→ (r cos θ, r sin θ).

φ(r, θ) = nθ

⇒ vs(r, θ) = n~
mr

eθ.

Note that the phase accumulation along
any close loop around the origin yields the
same amount

∆φ =
∮
dr · ∇φ = 2πn.

n is also called the winding number of the vortex. Note that vs diverges for r → 0 and the
phase becomes undefined at r = 0: something special goes on close to the center of the vortex
(i.e. tornado, whirl-pool sink, ...).
Go back to GP and seek for cylindrically symmetric solutions of the form

ψ(r) = √ρ0f(r)eınθ

when ρ0 is the equilibrium density of the superfluid that is reached far away from the vortex
center, and f(r) is a dimensionless function. The continuity of ψ gives f(r) ' rn for r → 0, i.e.
the density of the condensate must reach zero precisely in the vortex center!
From the stationary form of the Eq. (3.8):

0 =
[
− ~2

2m∆− µ+ U |ψ|2
]
ψ
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with the Laplace operator in polar coordinates

∆ = ∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂θ2 .

Hence
0 =

[
− ~2

2m

(
f ′′(r) + 1

r
f ′(r)− n2

r2 f(r)
)
− µf(r) + uρ0f(r)3

]
√
ρ0e

ınθ.

We substitute u = r/ξ with ξ = ~/
√

2mUρ0, dr = ξdu.

0 = − ~2

2m
1
ξ2︸ ︷︷ ︸

=Uρ0=µ

(
f ′′(u) + 1

u
f ′(u)︸ ︷︷ ︸

1
u
d
du(u dfdu)

−n
2

u2 f(u)
)
− µf(u) + Uρ0f(u)3

⇒ 1
u

d

du

(
u
df

du

)
+
(

1− n2

u2

)
f − f3 = 0.

This equation indeed has a solution satisfying f ' un for u→ 0:

1
u

d

du

(
u
dun

du

)
= n2un−2,

(
1− n2

u2

)
f = −n2un−2 +O(un)

and f ' 1 for u→∞:

df

du
= 0, n2

u2 f → 0, and f − f3 → 0.

Estimate the (kinetic) energy stored in a single vortex in a 3d slab of height b:

En =
∫
d3rmv(r)2

2 ρ(r) =
∫ b

0
dz

∫
drr

∫ 2π

0
dθ
m

2
~2n2

m2r2 ρ0 = n2bπ
~2ρ0
m

∫
dr

r︸ ︷︷ ︸
I

.

I diverges at the upper and lower bounds: cut-off. Lower limit is naturally set by size of the
vortex core where the density is suppressed (see above): ξ. Upper limit is nothing but the typical
size of the superfluid: L.

I =
∫ L

ξ

dr

r
= ln L

ξ
⇒ En = n2b

dE

dl
ln L
ξ
,

dE

dl
= π

~2ρ0
m

.

where dE
dl denotes energy per unit thickness. Note that En scales with n2: vortices with lowest

winding numbers n = ±1 are preferred.
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Multi-vertex configurations:

Total velocity:
vtot(r) = v1(r) + v2(r) + · · · .

Total kinetic energy of the fluid is prop. to vtot
2: pairwise vortex-vortex interactions.

(a) Assume we have Nv vortices of winding number n = +1 (or n = −1). They all carry sepa-
rately the same energy E1, since all circulate in the same way. Full energy including interactions:

E = b
dE

dl

Nv ln L
ξ

+ 1
2
∑
i 6=j

ln L

|ri − rj|

 ,
with ri are the vortex coordinates. Interaction energy is lowest when the vortices are far apart.
Hence for fixed concentration of vortices, they form a regular lattice.

(b) Pair of vortices with opposite winding number. Energy:

E ∝ bdE
dl

ln d
ξ
,

with d the distance between the two vortex centers. attraction, independent of the system size
L: zero topological charge. Then topologically connected to the ground state. Hence it can be
seen as a superposition of elementary excitations (sound quanta) of the ground state.

(c) Several vortex arrangement.

3.4.2 Vortex lines (in 3d)

In a realistic 3d liquid, the vortex cores are long lines
that must start and end at the boundaries of the su-
perfluid and penetrate the whole volume of the fluid:

E1 = L
dE

dl
ln L
ξ
.

These vortex lines can be simply produced by setting
the superfluid into rotation.
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Rotating a normal rigid body: v = ω0 × r.
Given v(x, y, z), consider surface Ω:∫

Ω
(∇× v) · dS =

∮
∂Ω

v · dr = Γ.

Clearly this contour integral is a measure of the circulation Γ of the field v along the contour
∂Ω. For a normal rotating rigid body, the vorticity is:

ω ≡ ∇× v = ∇× (ω0 × r) = (∇ · r)ω0 − (ω0 · ∇)r
= 3ω0 − ω0 = 2ω0.

The vorticity is thus simply twice the angular frequency of the rotation.

Superflow:
The vorticity is

ω = 2πNv
~
m
,

with Nv is the number of vortices penetrating the surface.
Remember: for one vortex:

v = ~
m
∇φ,

∮
v · dr = 2π ~

m
.

=⇒ Superflow without vortices: zero vorticity, zero angular momentum, non-rotating.
=⇒ Superfluid in a rotating vessel just slips along the vessel walls.

Enforce rotation: rotate in normal state, cool
below superfluid-transition temperature.
=⇒ angular momentum cannot disappear
=⇒ lattice of vortices forms. The number of

vortex lines is equal to the initial angular mo-
mentum. O. V. Lounasmaa and E. Thuneberg,

Vortices in rotating superfluid 3He,
PNAS 96, 7760-7767 (1999).

Note: The picture is the same for 4He and 3He.
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Chapter 4

Quantization of the classical
radiation field

4.1 Classical Fields

Chain of coupled oscillators

For a system of coupled oscillators, the Hamiltonian can be written as:

H =
∑
n

[
p2
n

2m + 1
2K(xn+1 − xn)2

]
,

where the Hamilton’s equations of motion read:

ẋn = ∂H

∂pn
, ṗn = − ∂H

∂xn
.

which further implies:
d2xn
dt2

= K

m
(xn+1 − 2xn + xn−1) . (4.1)

Solution: Assume the solution of Eq. (4.1) in the form of plane waves:

xn(t) = un exp{ı(kn− ωkt)}+ u∗n exp{−ı(kn− ωkt)} (4.2)

Inserting Eq. (4.2) in Eq. (4.1), we obtain:

−ω2
k = 2K

m
(cos k − 1) ,

=⇒ ωk = 2
√
K

m

∣∣∣∣sin k2
∣∣∣∣ ' |k|

√
K

m
. (4.3)

It is the dispersion relation.
Note: Eq. (4.2) and Eq. (4.3) are periodic in k with period 2π ⇒ k ∈ [−π, π].
Boundary condition: allowed k-values are discrete.
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Periodic boundary condition (for N oscillators):

k = 2πl
N

; l = −N2 ,−
N

2 + 1, · · · , N2 .

Hence, the general solution of Eq. (4.1) can be written as:

xn(t) =
∑
k

[
uke

ı(kn−ωt) + u∗ke
−ı(kn−ωt)

]
. (4.4)

Continuous elastic string

Let us consider u(x, t) as the deformation field.

Hamiltonian:
Let us first discretize:

∆x = xn+1 − xn = d,

∆u = un+1 − un,

∆m is the mass of the piece of string
between xn and xn+1: ∆m = ρd where
ρ is the mass density.
Momentum:

pn = ∆udun
dt

= ρd
dun
dt

.

From the sketch, deformation of the string piece (length):

` =
√
d2 + ∆u2.

Potential energy:
1
2κ`

2 = 1
2κ∆u2 + const.

The Hamiltonian then takes the form:

H =
∑
n

[
p2
n

2∆m + 1
2κ∆u2

]
=
∑
n

d

[
1
2
p2
n

ρd2 + 1
2κd

(
un+1 − un

d

)2
]
.

It gives the equation of motion:

d2un
dt2

= κd

ρ

un+1 − 2un + un−1
d2 .

Continuum limit: d→ 0
κd = K = const. is the string tension.
Definition of momentum density:

p(x) = pn
d

for d→ 0.

48
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Hamiltonian for the continuous elastic string:

H =
∫
dx

[
p2(x)

2ρ + K

2

(
∂u

∂x

)2]
︸ ︷︷ ︸

Hamiltonian (or energy) density

. (4.5)

Equation of motion:

∂u

∂t
= δH

δp(x) = p(x)
ρ

∂p

∂t
= − δH

δu(x) = K
d2u(x, t)
dx2

These set of equations implies a wave equation (linear):

d2u(x, t)
dt2

= K

ρ

d2u(x, t)
dx2 . (4.6)

Eq. (4.6) is similar to sound waves in solids, spin waves in ferromagnets, etc.

Solution:
Consider

uk(x, t) = uke
ı(kx−ωkt) + u∗ke

−ı(kx−ωkt). (4.7)

Inserting Eq. (4.7) in Eq. (4.6), we get the dispersion relation

ωk = |k|
√
K

ρ
.

Impose periodic boundary conditions (string length L): u(x, t) = u(x + L, t) =⇒ discrete
k-values:

k = 2πl
L
, l = 0,±1,±2, · · · .

General solution:
u(x, t) =

∑
k

[
uke

ı(kx−ωkt) + u∗ke
−ı(kx−ωkt)

]
.

Express Hamiltonian in terms of the Fourier-components uk of u(x, t):
Definition:

uk(t) = uke
−ıωkt, u∗k(t) = u∗ke

ıωkt.

Then,
u(x, t) =

∑
k

[
uk(t)eıkx − u∗k(t)e−ıkx

]

⇒ ∂u

∂x
=
∑
k

ık
[
uk(t)eıkx − u∗k(t)e−ıkx

]
,

⇒ ∂u

∂t
=
∑
k

ıωk
[
uk(t)eıkx − u∗k(t)e−ıkx

]
.
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And, (
∂u

∂x

)2
=
∑
k,k′

(−kk′)
[
uk(t)eıkx − u∗k(t)e−ıkx

] [
uk′(t)eık

′x − u∗k′(t)e−ık
′x
]
,

(
∂u

∂t

)2
=
∑
k,k′

(−ωkωk′)
[
uk(t)eıkx − u∗k(t)e−ıkx

] [
uk′(t)eık

′x − u∗k′(t)e−ık
′x
]
.

Now use:
1
L

∫ L

0
dx ei(k−k

′) = δk,k′ ,
1
L

∫ L

0
dx ei(k+k′) = δ−k,k′ ,

and from Eq. (4.5), we obtain

H =
∫ L

0
dx

[
ρ2

2ρ

(
∂u

∂t

)2
+ K

2

(
∂u

∂x

)2]
=ρ

2L
∑
k

ω2
k

[
−uk(t)u−k(t) + uk(t)u∗k(t) + u∗k(t)uk(t)− u∗k(t)u∗−k(t)

]
+ K

2 L
∑
k

k2 [uk(t)u−k(t) + uk(t)u∗k(t) + u∗k(t)uk(t) + u∗k(t)u∗−k(t)
]

=
∑
k

2Lρω2
k (uku∗k + u∗kuk) ,

where we use the dispersion relation Kk2 = ρω2
k.

Definition:

dk = uk
√

4Lρωk ⇒ uk = dk√
4Lρωk

Then, H could be written as:

H = 1
2
∑
k

ωk (d∗kdk + dkd
∗
k) .

As long as dk and d∗k are complex numbers:

H =
∑
k

ωkd
∗
kdk.

dk = normal coordinates of the field u(x, t).
Time dependence of the field can be assigned to the dk

dk(t) = dke
−ıωkt, d̈k(t) = −ω2

kdk(t)

One can introduce real variables:

Qk = 1√
2ωk

(dk + d∗k) , and Pk = −ı
√
ωk
2 (dk − d∗k) .

Then, for a set of oscillators

H =
∑
k

1
2
(
P 2
k + ω2

kQ
2
k

)
(4.8)
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Pk, Qk = generalized coordinates/momenta of the displacement field u(x, t).
Note: All oscillators in nature (electromagnetic wave, sound, pendula, skee ball hanging on a
spring) are very similar and can be regarded in a unified way.
Eq. (4.8) is a classical Hamiltonian function, so the equation of motions are:

Q̇k = ∂H

∂Pk
, Ṗk = − ∂H

∂Qk
,

fully equivalent to Eq. (4.6).

Quantization rules:
Qk, Pk → Q̂k, P̂k

with the commutation rules:

[Q̂k, Q̂l] = [P̂k, P̂l] = 0, and [P̂k, Q̂l] = 1
ı
δkl (~ = 1).

Equivalent to:
dk, d

∗
k → d̂k, d̂

†
k

with bosonic commutation rules:

[d̂k, d̂l] = [d̂†k, d̂
†
l ] = 0, and [d̂k, d̂†l ] = δkl.

4.2 Quantization of the free electromagnetic field

Free electromagnetic fields:
Expressed in the Coulomb gauge (∇ · A = 0), Maxwell’s equations for the vector potential
A(x, t) and the scalar potential φ(x, t) in vacuum (without sources) are reduced to

∇2φ = 0, ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ,

�A = 0, � ≡ 1
c2
∂2

∂t2
−∇2.

(4.9)

The corresponding fields are obtained through

B = ∇×A and E = −1
c

∂A
∂t
−∇φ. (4.10)

The solution of the free Maxwell’s equations (4.9) can be choosen as φ = 0, because the potential
is vanishing at infinite distance.

Transversal electromagnetic fields:
The fields E and B are transversal fields like A, because for a plane wave

A = A0e
ı(k·x−ωt)

results ∇ ·A = 0 in k ·A = 0. Hence the Coulomb gauge is also called transversal gauge. It
proved favorable to use the Coulomb gauge in the quantization process.
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Field energy:
No quantization without Hamilton operator, and for this we need the expression for the total
energy

Ecl = 1
8π

∫
(E2 + B2)d3r

of the radiation field. We are now looking for an operator Âop for the vector potential so that

i~
d

dt
Âop = [Âop, Ĥ] ⇐⇒ �Âop = 0 (4.11)

where Ĥ = Ecl applies.

Periodic boundary conditions:
The quantization is easier to do if there are only countable many degrees of freedom. But the
vector field is continuous and have uncountable many degrees of freedom. Therefore we use
periodic boundary conditions

A(x+ L, y, z, t) = A(x, y, z, t)

for a finite volume V = L3. At the end of the calculations, we will expand it to infinity.

Fourier Series:
Fields which exist on a finite hypercube can be expanded in a Fourier series. The general solution
of (4.9) then reads

A(r, t) =
∑

k

∑
λ

√
2π~c
k

1√
V

(
Aλ(k, t)eık·r +A∗λ(k, t)e−ık·r

)
uλ(k)

The k sum runs over all valid k vectors. In the case of periodic boundary conditions they are
given by

k = 2π
L

(n1, n2, n3), with ni ∈ Z.

The index λ runs over 1 and 2 and accounts for the polarization. The prefactor under the
root will be usefull later but has no further physical meaning. The unit vectors u1 and u2 are
orthogonal to each other and together with the wave vector k they form an orthogonal trihedron
(transversal gauge):

k · uλ(k) = 0, and uλ(k) · uµ(k) = δµλ.

Additionally we chose without loss of generality uλ(k) = uλ(−k).

Harmonic Oscillator:
It is important to note that due to (4.9) every Fourier coefficient Aλ(k, t) satisfies the equation

�A = 0 ⇒ ∂2Aλ
∂t2

(k, t) = −c2k2Aλ(k, t) (4.12)

which corresponds to the differential equation of a harmonic oscillator. This fact will later on
provide the basis for the quantization of the light field.
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General solution of the Wave Equation:
To satisfy (4.12), we set

Aλ(k, t) = Aλ(k)e−ıωkt, ωk = c|k|

The general solution of the wave equation (4.9) is then given by

A(r, t) =
∑

k

∑
λ

√
2π~c
k

1√
V

(
Aλ(k)eı(k·r−ωkt) +A∗λ(k)e−ı(k·r−ωkt)

)
uλ(k) (4.13)

The time-independent field amplitudes Aλ(k) will become operators in the Schrödinger picture
when the quantization is carried out.

Energy of the light field:
With the help of (4.13) we want to express the total energy of the radiation field through the
Aλ(k) only. With (4.10) and φ = 0 follows

Ecl = 1
8π

∫
(E2 + B2)dr = 1

8π

∫ [ 1
c2

(
∂A
∂t

)2
+ (∇×A)2

]
d3r (4.14)

We will calculate both parts of the integrals in separate steps.

The ∂tA-term of the field energy:
It is

1
8πc2

∫ (
∂A
∂t

)2
d3r = 1

8πc2

∫ 2π~c2

V

∑
k,k′

∑
λ,λ′

[
− ωkωk′√

ωkωk′
uλ(k) · uλ′(k′)

×(Aλ(k, t)eık·r −A∗λ(k, t)e−ık·r)(Aλ′(k′, t)eık
′·r −A∗λ′(k′, t)e−ık

′·r)
]
d3r

(4.15)

One can make use of the relation
1
V

∫
eı(k−k′)rd3r = δk,k′ and 1

V

∫
eı(k+k′)rd3r = δk,−k′ . (4.16)

Furthermore ∑
λ,λ′

uλ(k) · uλ′(k) =
∑
λ

because uλ(k) · uλ′(k) = δλ,λ′ . After this (4.15) transforms to

1
8πc2

∫
(∂tA)2 d3r = 1

4
∑
k,λ

~ωk[Aλ(k, t)A∗λ(k, t) +A∗λ(k, t)Aλ(k, t)

−Aλ(k, t)Aλ(−k, t)−A∗λ(−k, t)A∗λ(k, t)].

The ∇×A-term of the field energy:
The second integral provides the same result (except for the sign) as the first

1
8π

∫
(∇×A)2d3r = 1

4
∑
k,λ

~ωk[Aλ(k, t)A∗λ(k, t) +A∗λ(k, t)Aλ(k, t)

+Aλ(k, t)Aλ(−k, t) +A∗λ(−k, t)A∗λ(k, t)].
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The last two terms will therefore cancel out and we find

Ecl = 1
2
∑

k

∑
λ

~ωk [Aλ(k)A∗λ(k) +A∗λ(k)Aλ(k)] ωk = c|k| (4.17)

Time dependence was already neglected because it will drop out. In the present case, Aλ and A∗λ
are still numbers, so one could summarize the bracket. But the goal is to perform a quantization.
Therefore the order of quantities that will become operators is of importance and needs to be
respected.

4.3 Quantization of the light field

The classical expression (4.17) for the electrmagnetic field energy is represented by a sum over
harmonic oscillators. We can adopt this quantization template.

Photons are Bosons:
Now follows the decisive step to quantization. We take in the classical total energy (4.17) the
substitutions

Aλ(k)→ âλ(k),
A∗λ(k)→ â†λ(k)

(4.18)

where the ladder operators satisfy the bosonic commutation relation

[âλ(k), â†λ′(k
′)] = δk,k′δλ,λ′ . (4.19)

The vector potential now becomes an operator. For simplification, we will merge the index of
the polarization λ into the index k, so that (4.19) now shortens to:

[âk, â
†
k′ ] = δk,k′ .

Hamiltonian:
The Hamiltonian operator of the electromagnetic field results from the classical field energy
(4.17) by using (4.18):

Ĥem =
∑

k
~ωk

(
â†kâk + 1

2

)
=
∑

k
~ωk

(
N̂k + 1

2

)
. (4.20)

This completes the analogy of the electromagnetic field with a harmonic oscillator: the field can
be described as an infinite number of harmonic oscillators, which are distinguished by the wave
vector k.

Operator of the vector potential:
With the canonical substitutions (4.18), the vector potential transform into an Hermitian oper-
ator, which is given by a linear combination of ladder operators

Âop(r, t) =
∑

k

√
2π~c2

V ωk

(
âke

ı(k·r−ωkt) + â†ke
−ı(k·r−ωkt)

)
uk, ωk = c|k| (4.21)
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all properties of the quantized light field can be derived directly from this representation.

Equation of motion in the Heisenberg picture:
The Heisenberg equation

ı~
∂Âop
∂t

= [Âop, Ĥ], (4.22)

for the above operator is equivalent to the wave equation (4.9), i.e. with

�Âop(r, t) = 0, �e±ı(k·r−ωkt) = 0

which is already satisfied for every single wave.
Considering every separate term and using [â†â, â] = −â:

ı~(−ıωk)âk − ~ω[âk, N̂k] = ~ωkâk − ~ωkâk = 0.

Therefore the equation of motion is satisfied too.

Time dependence:
The ladder operators appearing in (4.21) are completely time independent, i.e. in the Schrödinger
picture. The time dependence can be transferred back onto them via

âk(t) = eıĤt/~âke
−ıĤt/~.

Then is
d

dt
âk(t) = 1

ı~
eıĤt/~[âk, Ĥ]e−ıĤt/~ = 1

ı~
eıĤt/~(~ωkak)e−ıĤt/~ = −ıωkâk,

which leads to
âk(t) = e−ıωktâk and â†k(t) = eıωktâ†k .

This is obviously consistent with (4.21).

Field operators:
The operators for the electric and the magnetic fields are, according to Eq. (4.10), given by
B = ∇×A and E = −1

c∂tA in Coulomb gauge. This leads to

Êop(r, t) = ı
∑

k

√
2π~ωk
V

(
âke

ı(k·r−ωkt) − h.c.
)
uk, (4.23)

B̂op(r, t) = ı
∑

k
k×

√
2π~c2

V ωk

(
âke

ı(k·r−ωkt) − h.c.
)
uk. (4.24)

The abbreviation “h.c.” describes the Hermitic conjugate of the first expression in brackets, in
this case â†ke−ı(k·r−ωkt).

Momentum:
The expression of the momentum of the quantized light field will be mentioned. Classically, the
momentum density of the electromagnetic field reads

P = 1
4πc

∫
E×B d3r.
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From (4.23) and (4.24)
P̂op =

∑
k

~kâ†kâk =
∑

k
~kN̂k.

The momentum of a single photon is given by ~k.

Summary: The following rules for the quantum mechanical description of the light field can
be stated:

a) Vacuum: There exists a vacuum state |0〉 with

âk |0〉 = 0 ∀k and 〈0|0〉 = 1. (4.25)

b) Photons: A photon with a fixed momentum ~k is described by â†k |0〉.

c) General state: A general state of photons with nki photons per momentum ~ki (one also
says “in the mode ki”) is described by

(â†k1
)nk1√
nk1 !

(â†k2
)nk2√
nk2 !

· · · |0〉 =
∞∏
i=0

(â†ki
)nki√
nki !

|0〉 . (4.26)

Or in short |nk1 , nk2 , · · ·〉 or |{nk}〉.

d) Occupation number operator: The occupation number operator N̂ki has the property

N̂ki |· · · , nki , · · ·〉 = nki |· · · , nki , · · ·〉 . (4.27)

The Hamiltonian (4.20) separates in the contributions of the different modes. Therefore
the general state |{nk}〉 can be written as direct product

|nk1〉 ⊗ |nk2〉 ⊗ · · · = |nk1〉 |nk2〉 · · · (4.28)

For every mode k the {|nk〉} ∀nk form a complete set of orthonormal states. If one is
interested in a single mode, one writes for the considered state only |nk〉.

e) Photons are Bosons: Because the occupation numbers nk can take on arbitrary values
of the set N0, one deals with bosons: An energy level (here a mode) can be arbitrary
strong populated. Therefore coherent state and lasers exists, what will be seen in the next
section.

Zero Point Energy:
Forming the expectation value of the Hamiltonian (4.20) with the vacuum state, one finds a
surprising result:

〈0|Ĥem|0〉 = 1
2
∑

k
~ωk →∞. (4.29)

The energy of the vacuum seems to be divergent!

• In general we only consider energy differences where an infinite vacuum energy is of no
concern.

• The vacuum energy is dependent of the boundary conditions and changes within restricted
geometries, e.g. the intermediate space between two conducting plates, which can be
experimentally seen in the Casimir effect.
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4.4 Properties of the radiation field : Coherent states

Vanishing fields:
Following (4.23) the operator of the electric field has the complete representation

Êop(r, t) = −1
c

∂Âop
∂t

= ı
∑

k

√
2π~ωk
V

(
âke

ı(k·r−ωkt) − h.c.
)
uk.

We are now only interested in a single mode k. For this mode the above equation simply reads

Êop(k, t) = ı

√
2π~ωk
V

(
âke

ı(k·r−ωkt) − h.c
)
uk.

The expectation value of this operator in a state |nk〉 with fixed population nk of photons is

〈nk|Êop(k, t)|nk〉 = 0

since Êop(k, t) is linear in creation and annihilation operators and the {|nk〉} forms a complete
set of orthonormal states.

Non-classical fields:
The expectation value of the electromagnetic field in
states of fixed population vanishes.
States with fixed photon numbers are non-classical.

Finite energy density:
On the other hand, the energy density in the same states holds

〈nk|
1

8π (Ê2
op + B̂2

op)|nk〉 = 〈nk|
1

4π Ê2
op|nk〉 = 1

V
~ωk

(
nk + 1

2

)
,

as was expected. This hints, there is something special with the photon number.

We will show now, that the occupation operator does not commute with the phase operator. In
an eigenstate of Nk, the phase of the fields is completely uncertain and therefore the classical
expectation values vanish. To describe a correct transition to the classical field theory, one has
to consider coherent superpositions of states with different photon populations.

Phase Operator:
For the reminder of this section we will deal with a single mode of the radiation field and will
therefore omit the k-dependence of all operators.
In a first step we define the phase operator as

â =
√
N̂ + 1eıφ̂, â† = e−ıφ̂

†
√
N̂ + 1, N̂ = â†â (4.30)

which corresponds to a separation of the creation and annihilation operators in amplitude and
phase. N̂ = â†â is verified even if not obvious. This procedure can be in general performed in
a bosonic system. We will further see, that the phase operator is almost self-adjoint, φ̂ ' φ̂†,
special care has only to be taken when looking at the vacuum state |0〉.
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First we have to show that the representation (4.30) is unitary. We face the task to find such
commutation relations, so that

[N̂ , φ̂] =? ⇔ [â, â†] = 1. (4.31)

Properties of Phase Operator:
Under consideration of the operation order, one can invert Eq. (4.30):(√

N̂ + 1
)−1

â = eıφ̂ â†
(√

N̂ + 1
)−1

= e−ıφ̂
†
. (4.32)

Reminder:
â |n〉 =

√
n |n− 1〉 â† |n〉 =

√
n+ 1 |n+ 1〉

This gives:

eıφ̂ |n〉 =
(√

N̂ + 1
)−1

â |n〉 = (1− δn,0)
(√

(n− 1) + 1
)−1√

n |n− 1〉 =
{
|n− 1〉 ;n > 0
0 ;n = 0

,

and
e−ıφ̂

† |n〉 = â†
(√

N̂ + 1
)−1
|n〉 = (n+ 1)−1/2â† |n〉 = |n+ 1〉 .

From these two relations follows the matrix representation of the phase operators

〈n|eıφ̂|m〉 = δn,m−1,

〈n|e−ıφ̂† |m〉 = δn−1,m,

and therefore
〈m|eıφ̂e−ıφ̂† |n〉 = δm,n 〈m|e−ıφ̂†eıφ̂|n〉 = (1− δn,0)δm,n. (4.33)

If φ̂ would be self-adjoint, e±ıφ̂ would permute. Eq. (4.33) shows, that this is almost the case –
except for n = 0 – especially for large particle numbers.

Observable Phases:
The operators are non Hermitian, because from the above relations it follows that (eıφ̂)† = e−ıφ̂

† .
Therefore, they do not represent physical observables in this form. However it is possible to
combine the phase operators to Hermitian operators:

sin φ̂ ≡ eıφ̂ − e−ıφ̂†

2ı , cos φ̂ ≡ eıφ̂ + e−ıφ̂
†

2 . (4.34)

In the case of self-adjoint φ̂, this definition would correspond to the real and imaginary part.
For the general operator φ̂, one defines via (4.34) new operators sin φ̂ and cos φ̂.

Commutation Relations:
In the following we will make the approximation φ̂ ' φ̂†, which is exact except for the vacuum.
The commutation relations for φ̂ and N̂ are obtained as follows:

1 = ââ† − â†â =
√
N̂ + 1eıφ̂e−ıφ̂

√
N̂ + 1− e−ıφ̂(N̂ + 1)eıφ̂ = N̂ − e−ıφ̂N̂eıφ̂
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Multiplying both sides with eıφ̂ yields:

eıφ̂ = eıφ̂N̂ − N̂eıφ̂ = [eıφ̂, N̂ ].

Therefore:
[N̂ , eıφ̂] = −eıφ̂, [N̂ , e−ıφ̂] = e−ıφ̂.

With this we obtain

[N̂ , cos φ̂] =
[
N̂ ,

eıφ̂ + e−ıφ̂

2

]
= −e

ıφ̂ + e−ıφ̂

2 = −ie
ıφ̂ − e−ıφ̂

2ı = −ı sin φ̂,

and

[N̂ , sin φ̂] =
[
N̂ ,

eıφ̂ − e−iφ̂

2ı

]
= −e

ıφ̂ − e−ıφ̂

2ı = ı
eıφ̂ + e−ıφ̂

2 = ı cos φ̂.

Obviously N̂ acts on φ̂ like a derivative with respect to φ̂, meaning N̂ ≡ ı ∂
∂φ̂

like the momentum
operator p̂ and the position operator x̂. Therefore

[N̂ , φ̂] = ı (4.35)

which express, that is in principle impossible to exactly measure phase and particle number at
the same time, both measurements are incompatible.

Uncertainty Relation:
The phase φ̂ and the particle number operator N̂ = â†â
are for bosons canonically conjugated variables.

One brings to mind the Heisenberg uncertainty principle

(∆Â)(∆B̂) > 1
2 |〈[Â, B̂]〉| = 1

2 , [Â, B̂] = ı,

where the last relation is valid for canonical conjugated operators Â and B̂.

Digression: Superconductivity:
This result is essential for superfluidity (see chapter 3, where we discussed the meaning of the
phase of the condensate wave function) and for superconductivity. Superconductivity comes
into being through singlet pairing of electrons and one can – in a very crude approximation –
view this pairs as bosons, because following the spin statistics theorem, this particles possess
integer spin – like bosons.
The superconductive condensate is characterized by a fixed phase, one also speaks of a sponta-
neous breaking of the global gauge invariance.
But when the phase is fixed, then the particle number cannot be according to (4.35). Therefore
the BCS wave function is

|ψBCS〉 =
∏
k

(uk + vk ĉ†k,↑ĉ
†
−k,↓︸ ︷︷ ︸

Electron Pair

) |0〉

given by a coherent superposition of states with a different number of singlet pairs.

59



CHAPTER 4. QUANTIZATION OF THE CLASSICAL RADIATION FIELD

Variance:
In a pure state |n〉 with fixed photon number, the natural fluctuation of the occupation number
operator vanishes:

∆N =
√
〈n|N̂2|n〉 − 〈n|N̂ |n〉2 = 0

In contrast, cosφ has a finite fluctuation. It is 〈cosφ〉 = 0 and

〈cos2 φ̂〉 = 1
4 〈e

ıφ̂e−ıφ̂
† + e−ıφ̂

†
eıφ̂〉 = 2− δn,0

4
in a pure state |n〉, and therefore ∆ cosφ = ∆ sinφ:

∆ cosφ =
√
〈cos2 φ̂〉 − 〈cos φ̂〉2 =

{
1/
√

2 ;n > 0,
1/2 ;n = 0,

.

Coherent States:
One can do a linear combination of states with different particle numbers to achieve a transition
to macroscopic electrodynamics. One defines a coherent state |c〉 (also called a Glauber state,
Nobel price 2005) through

|c〉 ≡ e−|c|2/2
∞∑
n=0

cn√
n!
|n〉 with c ∈ C, c = |c|eıθ

By using the representation (4.26) for the state |n〉, one can write in a more compact fashion:

|c〉 = e−|c|
2/2

∞∑
n=0

cn√
n!

(â†)n√
n!
|0〉 = exp

(
− |c|

2

2 + câ†
)
|0〉

A Glauber state |c〉 only contains the {|n〉} of a single mode, so k is still sharply defined.

Properties of a Glauber state:
The coherent states are eigenstates of â. Proof:

â |c〉 = e−|c|
2/2

∞∑
n=0

cn√
n!
â |n〉 = e−|c|

2/2
∞∑
n=1

cn√
(n− 1)!

|n− 1〉

= e−|c|
2/2

∞∑
n=0

cn+1
√
n!
|n〉 = c|c〉.

The Glauber state is thus an eigenstate of the annihilation operator. We summarize the relations:

â |c〉 = c |c〉 , 〈c|â|c〉 = c, 〈c|â†|c〉 = c∗, 〈c|c〉 = 1 (4.36)

We notice that the coherent states do not build an orthogonal basis, because in general 〈c|c′〉 6= 0.

Electric field of a coherent state:
The expectation value

〈c|Êop|c〉 = ı

√
2π~ωk
V

(
ceı(k·r−ωkt) − c.c.

)
uk = ı

√
2π~ωk
V
|c|
(
eı(k·r−ωkt+θ) − c.c.

)
uk

= −2
√

2π~ωk
V
|c| sin(k · r− ωkt+ θ)uk. (4.37)
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of the electrical field in a coherent state is equivalent to the classical value.
Hence there exists a one-to-one relation between the plane waves of classical electrodynamics
and the coherent states |c〉, because through c = |c|eıθ the amplitude as well as the phase of the
plane wave can be determined by use of Eq. (4.37).

Fluctuation of the photon number:
From relation (4.36) and N̂2 = â†ââ†â = â†â+ â†â†ââ results

〈c| N̂ |c〉 = 〈c| â†â |c〉 = 〈c| c∗c |c〉 = |c|2 〈c|c〉 = |c|2

and

〈c| N̂2 |c〉 = 〈c| â†ââ†â |c〉 = 〈c| â†(1 + â†â)â |c〉 = 〈c| â†â |c〉+ 〈c| â†â†ââ |c〉 = |c|2 + |c|4,

so that
∆N =

√
〈N̂2〉 − 〈N̂〉2 = |c|. (4.38)

The relative fluctuation of the photon number is therefore

∆N
〈N̂〉

= 1
|c|

= 1√
〈N̂〉

. (4.39)

The bigger the particle number, the smaller the fluctuations. The probability of finding exactly
m photons in a measurement is

| 〈m|c〉 |2 =
∣∣∣∣ cm√
m!
e−|c|

2/2
∣∣∣∣2 = e−|c|

2 |c|2m

m! ,

which matches a Poisson distribution.
One can show that for large N the expectation value of the phase operator in the coherent states
is identical to the phase of c, meaning 〈c| cos φ̂ |c〉 = cos θ, where c = |c|eiθ.
Proof:

eıφ̂ = 1√
N̂ + 1

â and e−ıφ̂ = â†
1√
N̂ + 1

,

hence

cos φ̂ = 1
2

 1√
N̂ + 1

â+ â†
1√
N̂ + 1

 .
Since〈

c

∣∣∣∣∣∣ 1√
N̂ + 1

â

∣∣∣∣∣∣ c
〉

= c

〈
c

∣∣∣∣∣∣ 1√
N̂ + 1

∣∣∣∣∣∣ c
〉

and
〈
c

∣∣∣∣∣∣â† 1√
N̂ + 1

∣∣∣∣∣∣ c
〉

= c∗
〈
c

∣∣∣∣∣∣ 1√
N̂ + 1

∣∣∣∣∣∣ c
〉

one has

〈c| cos φ̂ |c〉 = 1
2(c+ c∗)

〈
c

∣∣∣∣∣∣ 1√
N̂ + 1

∣∣∣∣∣∣ c
〉

In the limit N →∞ one has〈
1√
N̂ + 1

〉
c

→ 1√
〈N̂ + 1〉c

≈ 1√
〈N̂〉c

= 1
|c|
.
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Therefore
〈c| cos φ̂ |c〉 = c+ c∗

2|c| = cos θ.

Fluctuations of the phase:
We assume the uncertainty relation of to general Hermitian operators A and B:

∆Â∆B̂ ≥ 1
2
∣∣∣〈[Â, B̂]〉

∣∣∣.
Through (4.35) for the commutation relation [N̂ , sin φ̂] = ı cos φ̂ we find for the fluctuations
∆ sin φ̂ of sin φ̂:

∆N̂∆ sin φ̂ ≥ 1
2
∣∣∣〈cos φ̂〉

∣∣∣
and through (4.38) for ∆N = |c| and ∆ sin φ̂ = ∆ cos φ̂ one calculates

∆ cos φ̂
|〈cos φ̂〉|

≥ 1
2|c| . (4.40)

This estimate provides strictly speaking only a lower bound of the relative fluctuations of the
phase, but saves the need of costly calculations. In general, the actual fluctuations are deter-
mined by two operators of the same magnitude as the corresponding uncertainty relation.
The relative fluctuations of the phase thus vanish in the limit of large photon numbers 〈N̂〉 = |c|2,
just as the relative fluctuations of the photon numbers itself, see Eq. (4.39).

Classical Limit:
The definition of phase and particle number of a light field
becomes sharper and sharper, the more photons it con-
tains. In the limiting case of a large number of photons,
we arrive at the classical description.

By intuition, this seems comprehensible. For a small amount of photons, their quantum me-
chanical properties will manifest themselves. But in the limit of large numbers, they will average
out.
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4.5 Interaction of radiation and matter

Here only emission and absorption of photons by matter (bound electrons) is studied.

Minimal coupling:
The total Hamiltonian of matter and radiation reads

Ĥ = Ĥem + Ĥmat + ĤI , (4.41)

where Ĥem describes the radiation field alone, Ĥmat the matter and ĤI the interaction between
both:

Ĥem =
∑

k
~ωk

(
N̂k + 1

2

)
, Ĥmat =

∑
i

p̂2
i

2mi
+ V̂ (r1, r2, · · · ).

We will neglect spin effects. The index i runs over all particles. After the introduction of
electromagnetic field, the interaction HI results from minimal coupling in Coulomb gauge via:

p̂i → p̂i −
e

c
Âop(ri, t) ,

where e describes the elementary charge. Take note, that the vector potential is given by the
operator (4.21), which describes the vector potential at location ri of the ith particle.

Light-Matter Interaction:
By using Âi

op ≡ Âop(ri, t), one arrives at

ĤI =
∑
i

[
− e

2mic

(
p̂i · Âi

op + Âi
op · p̂i

)
+ e2

2mic2

(
Âi

op

)2
]

= −
∑
i

e

mic
Âi

op · p̂i︸ ︷︷ ︸
paramagnetic

+
∑
i

e2

2mic2

(
Âi

op

)2

︸ ︷︷ ︸
diamagnetic

≡ Ĥ ′I + Ĥ ′′I . (4.42)

for the interaction between light and matter. Due to ∇ · Â = 0, it is possible to set

p̂ · Â = ~
i
∇ · Â + Â · p̂ = Â · p̂.

Both terms in (4.42) are called paramagnetic and diamagnetic part, respectively. The diamag-
netic term ∼ Â2 couples with the matter only via the position operator r̂i in the argument of
the vector potential Âi

op(r̂i, t).

State Space:
The whole Hamiltonian (4.41) acts on a state, which contains light field as well as matter:

|state of matter〉 ⊗ |state of light field〉

Perturbation operator for a single electron:
In the following we will consider a special case: we ask for the transition rates of a single bound
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electron in an atom (e.g. the hydrogen atom) which are introduced through the presence of a
radiation field. The Hamiltonian of the interaction reads now:

Ĥ ′I = − e

mc

∑
k

√
2π~c2

V ωk

(
âke

ık·̂r + h.c.
)

uk · p̂.

Two simplifications were made: first, the A2-term was neglected. Second, ĤI is time indepen-
dent, because every exponential factors would disappear anyway. One can also transform the
operator Âop(r̂, t) in the Schrödinger picture and would arrive at the same result. In this case,
the appearing states in the following calculation would be time dependent, what would not be
of any consequence.

Fermi’s Golden Rule:
We will treat ĤI as a perturbation. The Golden Rule for a transition rate from an initial state
|i〉 to a final state |f〉 then reads:

Γi→f = 2π
~
δ(Ei − Ef )| 〈f | Ĥ ′I |i〉 |2.

Total energies:
The energies Ei and Ef are the total energy of the radiation field and matter before and after a
transition, just like |i〉 and |f〉 describe the states in both Hilbert spaces. We will assume, that
initial and final state respectively are eigenstates of Ĥ0 = Ĥem + Ĥmat:

Ĥmat |εi〉 = εi |εi〉 , Ĥmat |εf 〉 = εf |εf 〉 ,

Ĥem |{nik}〉 =
∑

k
~ωk

(
nik + 1

2

)
|{nik}〉 , Ĥem |{nfk}〉 =

∑
k

~ωk

(
nfk + 1

2

)
|{nfk}〉 .

The states then read

|i〉 = |εi〉 ⊗ |{nik}〉 , |f〉 = |εf 〉 ⊗ |{nfk}〉 .

We will successively consider now the emission and the absorption of a photon.

Emission of a photon ~k:
The energies of initial and final state are given by

Ei = εi +
∑
k′

~ωk′

(
nk′ +

1
2

)
,

Ef = εf +
∑
k′

~ωk′

(
nk′ +

1
2

)
+ ~ωk,

because exactly one photon of energy ~ωk should be emitted. The state vectors read:

|i〉 = |εi〉 ⊗ |· · · , nk, · · ·〉 ,
|f〉 = |εf 〉 ⊗ |· · · , nk + 1, · · ·〉 .

The Golden Rule states, that a corresponding transition must satisfy

Ei − Ef = εi − (εf + ~ωk) = 0.
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This is exactly the conservation of energy. Further applies

〈f | Ĥ ′I |i〉 = − e

mc

∑
k′

√
2π~c2

V ωk′
〈εf | e−ık

′ ·̂ruk′ · p̂ |εi〉 〈· · · , nk + 1, · · ·| â†k′ |· · · , nk, · · ·〉 .

The annihilators do not appear anymore, because the corresponding matrix elements will dis-
appear (more photons appear on the left hand side than on the right hand side). Only the
summand with k = k′ survives. Only then is a photon in the right state created and the inner
product will not vanish. The second term in the brakets reads therefore

〈· · · , nk + 1, · · ·| â†k′ |· · · , nk, · · ·〉 =
√
nk + 1δk,k′

and the transition rate of the emission is given by:

Γei→f = 4π2e2

m2V ωk
δ(εi − εf − ~ωk)(nk + 1)| 〈εf | e−ık·̂ruk · p̂ |εi〉 |2. (4.43)

Absorption of a photon ~k:
The energies of initial and final states are

Ei = εi +
∑
k′

~ωk′

(
nk′ +

1
2

)
,

Ef = εf +
∑
k′

~ωk′

(
nk′ +

1
2

)
− ~ωk,

because now a photon will be “extracted” from the light field. The state vectors are given by

|i〉 = |εi〉 ⊗ |· · · , nk, · · ·〉 ,
|f〉 = |εf 〉 ⊗ |· · · , nk − 1, · · ·〉 .

In this case, the creation operators do not contribute to the calculation of the matrix elements
〈f | Ĥ ′I |i〉. Furthermore, only the annihilation operator with k = k′ remains. Analogous to the
emission one finds:

Γai→f = 4π2e2

m2V ωk
δ(εi − εf + ~ωk)nk| 〈εf | eık·̂ruk · p̂ |εi〉 |2. (4.44)

Discussion: Absorption vs Emission
Both expressions for emission and absorption processes are identical, except for the factors of
the occupation numbers.

• Spontaneous emission: One speaks of a spontaneous emission if a photon is emitted in
absence of other photons. Spontaneous emission is possible, because the factor nk + 1 in
Eq. (4.43) will not disappear if a external photon field is missing (nk = 0).

• Stimulated emission: The factor nk +1 in Eq. (4.43) implies, that in presence of a external
field with the same quantum numbers, the emission probability is increased, proportional
to the intensity of the external light field. One speaks of stimulated emission – which is
essential for the laser – because a mode ~k can only stimulate an emission of a photon of
the same wave length λ = 2π/|k|. One obtains coherent radiation.
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• Absorption: The interpretation of the occupation factor nk in Eq. (4.44) of the absorption
process is relatively trivial. Photons can only be absorbed, if any are present.

Electric dipole transition:
We consider the electric dipole transition, which occurs if the exponential function eık·̂r in the
matrix elements can be presumed equal to 1. This is possible if

k · r̂ ' 2πa0
λ
� 1,

which is the case if the wavelength λ of the participating radiation is big compare to the charac-
teristic scales of the system (here the Bohr radius a0). It is called electric dipole approximation,
if the matrix element is further rearranged. We use

~2

2m

[
∂2

∂x2 , x

]
= ~2

2m

(
∂2

∂x2x− x
∂2

∂x2

)
= ~2

m

∂

∂x
= i~
m
px

and find

〈εf | p̂ |εi〉 = 〈εf |
im

~
[Ĥmat, r̂] |εi〉 = im

~
〈εf | Ĥmatr̂− r̂Ĥmat |εi〉

= im

~
〈εf | r̂ |εi〉 (εf − εi). (4.45)

This is exactly the dipole matrix element, which also results if one directly uses the electric
dipole moment in a field

Êdip = −er̂ · Êop

as interaction term.

Selection rules:
The matrix elements appearing in Eqs. (4.43) and (4.44) determine if a transition ever takes
place and if it does, the probability of it. They govern the section rules.
In the case of the electric dipole transition, the matrix element (4.45) states, that initial and
final state in any case need different parity, if the considered transition should be permitted,
because r̂ is odd under parity transformations.
In an atom, this means that electric dipole transition are permitted from the s-level to the p-level
or f -level, but not to the d-level.

Transition of higher orders:
Transition which are forbidden in zeroth order can nonetheless occur if higher orders are con-
sidered, i.e. the exponential function is further expanded:

e±ık·̂r ' 1± ık · r̂ + . . . .

The next order (linear in k · r̂) describes magnetic dipole and electric quadrupole transitions.
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4.6 Lifetime of an excited state

It seems surprising, that the periodic volume V still occurs in Eqs. (4.43) and (4.44). Rather the
transition rates should not depend on this auxiliary variable. In the following calculations, we
will build the limit V → +∞. To guarantee meaningful results, one has to consider transition
to a group of final states and sum up all final states as well as all k vectors of the photon.
The δ-distribution ensures the energy conservation. As an first example we will look at the
spontaneous emission from an arbitrary initial state to a set of final states.

Lifetime of an excited state:
We define the lifetime τ of an excited state about the spontaneous emission in a target level
|εf 〉:

1
τ
≡
∑
f,k

Γi→f =
∑
f,k,λ

4π2e2

~2V ωk
δ(εf − εi + ~ωk)(εi − εf )2| 〈εf |uλ(k) · r̂ |εi〉 |2. (4.46)

where the expression (4.45) for the dipole moment is used.

• The expression (4.46) consists of the portion of spontaneous emission in Eq. (4.43), summed
up over all target levels f of the atoms and all wave vectors k of the photons.

• The δ-distribution ensures, that only summands remain, for which the released energy
merges into the radiation field.

• The polarization λ explicitly shows up again, where uλ(k) describes the unity polarization
vector of the light field.

Thermodynamic limit:
V will now approach infinity. This is done by the substitution

1
V

∑
k
→ 1

(2π)3

∫
d3k

because the volume of a mode in the reciprocal k-space is given by (2π)3/V under periodic
boundary conditions. For continuous k it is given by d3k instead.

Summation over different polarizations:
First we will perform the λ-summation. We have to calculate:

2∑
λ=1

∣∣∣∣∣∣∣uλ(k) · 〈εf | r̂ |εi〉︸ ︷︷ ︸
≡d

∣∣∣∣∣∣∣
2

Other than building an orthogonal trihedron with k, uλ can be chosen freely. E.g. one can
choose u2 to be perpendicular to the dipole matrix element d, which will result in a dependence
of the sum on u1 alone. Let the angle between d and u1 be ξ, the angle between d and k reads
θ = π/2− ξ. The above sum then yields

| 〈εf | r̂ |εi〉 |2 sin2 θ.
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The orthogonal trihedron consisting of the two
polarization vectors u1, u2 and the wave vector
of the photon k can be arranged in such a way,
so that the dipole matrix element d lies within
the plane spanned by u1 and k.

u2

k

u1

d

ϑ
ξ

Photon momentum integration:
Favorably one places the coordinate system in such a way, that d point in the kz-direction.
Under this condition, the appearing sin2 θ of an integration in spherical coordinates comes in
handy:

1
τ

=
∑
f

4π2e2

~2 (εf − εi)2| 〈εf | r̂ |εi〉 |2
1

(2π)3

∫
k2 sin θ sin2 θ

δ(εf − εi + ~ωk)
ωk

dkdθdϕ

=
∑
f

e2

2π~4c3 (εf − εi)2| 〈εf | r̂ |εi〉 |2
∫

sin3 θdθdϕ︸ ︷︷ ︸
=8π/3

∫
εδ(εf − εi + ε)dε︸ ︷︷ ︸

=εi−εf

In the last step the k-integration was shifted to the variable ε = ~ωk. The angle integration
results in 8π/3, which leads to the final result

1
τ

= 4e2

3~c3

∑
f

(
εi − εf

~

)3
| 〈εf | r̂ |εi〉 |2.

As one can see, spontaneous emission and absorption rules are “antagonists”:

• If a system is in a state from which only forbidden transition lead to a lower level, then
this excited state will be durable.

• If one manages to populate such a level in a “top-down fashion”, one can achieve a popu-
lation inversion.

This principle is applied in every laser.
The matrix element rif = | 〈εf | r̂ |εi〉 |2 contains selection rules for electric dipole transitions →
cf. Stark effect.
Hydrogen atom: τ(2p → 1s) = 1.6 · 10−9 s, lifetime of magnetic dipole or electric quadrupole
transitions is four times longer. Interestingly 2s → 1s: forbidden in every multipole expansion
⇒ long lifetime of 1/7 s, multi-photon process.
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Light scattering on atoms:
In such a process the photon number is conserved

|i〉 = |(k, ε, ω)︸ ︷︷ ︸
1 photon

, A︸︷︷︸
atomic state

〉 ,

|f〉 = |(k′, ε′, ω′), B〉 .

Term A2 in HI causes such processes in first order perturbation theory.
Term A · p in HI causes such processes in second order perturbation theory.
Both processes are in general important.
Kramer-Heisenberg (KH) formula (ξ � a0):

dσ

dΩ = r2
0
ω′

ω

∣∣∣∣∣(ε∗ · ε′)δAB −
1
m

∑
I

{(ε′∗ · pBI)(ε · pIA)
EI − EA − ~ω

+ (ε · pBI)(ε′∗ · pIA)
EI − EA + ~ω

}∣∣∣∣∣
2

where r0 = 2.8 · 10−13 cm is the classical electron radius, pBI = 〈B|p |I〉, and ∑I is the sum
over intermediate states of the atom I.

Elastic scattering: ω′ = ω, B = A.
Limiting case ω � ωIA ≡ (EI − EA)/~: Rayleigh scattering. Expansion in powers of ω/ωIA:

(
dσ

dΩ

)
Rayl

=
(
r0m

~

)2
ω4
∣∣∣∣∣∑
I

1
ωIA

[
(ε′∗ · rAI)(ε · rIA) + (ε · rAI)(ε′∗ · rIA)

]∣∣∣∣∣
2

Limiting case ω � ωIA: Thomson scattering(
dσ

dΩ

)
Thom

= r2
0
∣∣ε · ε′∗∣∣

also applies when ωIA = 0, i.e. for free electrons, the Compton scattering.

Inelastic scattering:
Raman scattering: EA + ~ω = EB + ~ω′, only the process of second order contributes. In
general: (

dσ

dΩ

)
Raman

≈ r2
0.

Special situation: EI = EA + ~ω → resonant Raman squattering, KH-formula fails. Energy
uncertainty has to be considered.
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4.7 Interaction between light and matter in Second Quantiza-
tion

Our goal is now, in association with the first part of the lesson, to examine the interaction of
light and matter. The representation of matter states in the second quantization formalism will
allow us to introduce the concept of Feynman diagrams, which play an important role in the
theory of many particles as well as the theory of fundamental particles.
Because everything will be expressed as an operator now, we will neglect emphasis of operators
via bold letters.

Light-matter Hamiltonian in second quantization:
We describe the interaction of photons and electrons completely in second quantization. The
Hamiltonian reads

Ĥ = Ĥmat + ĤI + Ĥem ,

where Ĥmat describes the electrons alone, ĤI the interaction with the radiation field (4.41) and
Ĥem the electromanetic field alone.

Ĥmat =
∫
dr ψ̂†(r)

(
− ~2

2m∆ + V (r)
)
ψ̂(r)

ĤI =
∫
dr ψ̂†(r)

[
e

mc
Âop · p + e2

2mc2

(
Âop

)2
]
ψ̂(r)

Ĥem =
∑

q
~ωq

(
â†qâq + 1

2

)
,

where

Âop =
∑

q

√
2π~c2

V ωq

(
âqe

ıq·r + â†qe
−ıq·r

)
uq .

• The operators ψ̂†(r) and ψ̂(r) are the creation and annihilation operators of electrons at
position r.

• The summation over the polarisation index is incorporated in the sum over q.

• the ladder operators â†q and âq of the radiations field are given in the Heisenberg picture,
i.e. time independent.

• The total Hamiltonian acts on a product states consisting of both Fock spaces of electrons
and photons: Hmatter ⊗Hphotons.

Field operators:
First we want to investigate the case of free electrons, thus it is V (r) = 0. Plane waves pose a
good candidate for a complete orthonormal system to express the field operators:

ψ̂k(r) = 1√
V

∑
k
eık·rĉk ψ̂†k(r) = 1√

V

∑
k
e−ık·rĉ†k
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where the following (anti-)commutation rules apply:{
ψ̂†(r), ψ̂†(r′)

}
= 0 ,

{
ψ̂(r), ψ̂(r′)

}
= 0 ,

{
ψ̂(r), ψ̂†(r′)

}
= δ(r− r′)

{
ĉ†k, ĉ

†
k′
}

= 0 , {ĉk, ĉk′} = 0 ,
{
ĉk, ĉ

†
k′
}

= δk,k′ .

Dispersion relation:
Thus we are able to express Ĥmat completely in terms of ladder operators:

Ĥmat =
∑
k,k′

1
V

∫
dre−ık·r

(
− ~2

2m∆
)
eık
′·r

︸ ︷︷ ︸
=δk,k′

~2k2
2m

ĉ†kĉk′

where εk = ~2k2/2m is called dispersion relation.

Ĥmat =
∑

k

~2k2

2m ĉ†kĉk =
∑

k
εkn̂k (4.47)

when using the occupation number operator n̂k. The interpretation of (4.47) is intuitive: The
energy of a many particle state (without interaction) is simply given by the sum over the different
single particle levels. But one has to note that this simple form breaks down as soon as the
Coulomb interaction between electrons is considered.

H ′I = 1
V

∫
dr
∑
k1

e−ık1·rĉ†k1

(
− e~
ımc

∑
q

√
2π~c2

V ωq

(
âqe

ıq·r + â†qe
−ıq·r

)
uq · ∇

)∑
k2

eık2·rĉk2

=
∑

k1,k2,q

(
M1(k1,k2,q)ĉ†k1

ĉk2 âq +M1(k1,k2,−q)ĉ†k1
ĉk2 â

†
q

)
(4.48)

where again the polarization index is contained in q. One calculates

M1(k1,k2,q) = 1
V

∫
dr e−ık1·r

(
− e~
ımc

√
2π~c2

V ωq
eıq·ruq · (ık2) eık2·r

)

= − e~
V mc

√
2π~c2

V ωq
(uq · k2)

∫
dr eı(q+k2−k1)·r

= − e~
mc

√
2π~c2

V ωq
(uq · k2) δk1,q+k2 . (4.49)

The last expression in (4.49) represents the conservation of momentum. The partial Hamiltonian
Ĥ ′I describes two kinds of processes via its two terms in (4.48):

• The first term destroys a photon q and an electron k2 and creates on the other hand an
electron k1. The total momentum is thereby conserved: k1 = q + k2.

• The second term creates a photon q and an electron k1 but destroys on the other hand
an electron k2. Again the total momentum is conserved via k2 = q + k1.

71



CHAPTER 4. QUANTIZATION OF THE CLASSICAL RADIATION FIELD

Simplification:
It is easy to show that the second term in (4.48) is the Hermitian conjugate of the first term.
This is because the first term reads

uq · k2 = uq · (k1 − q) = uq · k1 ,

so one can instead of q → −q do the substitution k1 ↔ k2 when doing the transition to the
second term. The Hermitian conjugate of the second term satisfies then

( ∑
k1,k2,q

M1(k2,k1,q)ĉ†k1
ĉk2 â

†
q

)†
=

∑
k1,k2,q

M1(k2,k1,q)ĉ†k2
ĉk1 âq

=
∑

k1,k2,q
M1(k1,k2,q)ĉ†k1

ĉk2 âq

and this corresponds to the first term. The paramagnetic part of Ĥ ′I of the light-matter inter-
action can therefore be written as

Ĥ ′I =
∑

k1,k2,q

(
M1(k1,k2,q)ĉ†k1

ĉk2 âq + h.c.
)
. (4.50)

Feynman diagrams:
Both processes described by Ĥ ′I can be visualized by simple diagrams. Fig. 4.1 shows on the left
the first process: the annihilation of a photon q while scattering an electron from the state k2
to k1. The diagram on the right hand side represents the hermetic conjugated process, namely
the creation of a photon under scattering of an electron.

ĉ†k1
ĉk2

âq
k1 = k2 + q

k2 q

k1

ĉ†k1
ĉk2

â†q
k2 = k1 + q

k2

qk1

Figure 4.1: Processes resulting from first order perturbation theory in Ĥ ′I. The right process
corresponds to the Hermitian conjugate of the left one.

Feynman diagrams:
Feynman diagrams are a graphical representation of per-
turbation theoretical processes. Lines represent partic-
ipating incoming or outgoing particles and the vertices
correspond to the matrix elements of the interaction.
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Feynman diagrams do not only serve the purpose of visualisation. In many body theory and
the theory of fundamental particles every Feynman diagram represents a precise mathematical
expression of perturbation theory.

Conservation of momentum at the vertices:
A point were different particle lines meet is called a vertex. The Kronecker delta in M1 demands
at a vertex that the total momentum of annihilated particles is equal to the total momentum of
created particles.

Diamagnetic perturbation term:
Ĥ ′′I as part of the whole Hamiltonian contains four terms which arise from the product Â2:

Ĥ ′′I =
∑

k1,k2

∑
q1,q2

(
M2(k1,k2,q1,q2)ĉ†k1

ĉk2 âq1 âq2 +M2(k1,k2,−q1,q2)ĉ†k1
ĉk2 â

†
q1 âq2

+M2(k1,k2,q1,−q2)ĉ†k1
ĉk2 âq1 â

†
q2 +M2(k1,k2,−q1,−q2)ĉ†k1

ĉk2 â
†
q1 â
†
q2

)
=
∑

k1,k2

∑
q1,q2

(
M2(k1,k2,q1,q2)ĉ†k1

ĉk2 âq1 âq2 +M2(k1,k2,−q1,q2)ĉ†k1
ĉk2 â

†
q1 âq2 + h.c.

)
(4.51)

Where

M2(k1,k2,q1,q2) = 2π~c2

V

1
√
ωq1ωq2

1
V

e2

2mc2

∫
dr eık1·reı(q1+q2)·reık2·r (uq1 · uq2)

= 2π~c2

V

1
√
ωq1ωq2

e2

2mc2 (uq1 · uq2) δk1,k2+q1+q2 (4.52)

The four terms in (4.51) describe vertices, at which two electrons and two photons are involved
each. Fig. 4.2 shows the corresponding Feynman graphs. The quantities M1 and M2 determine
the probability of the occurrence of these processes.

ĉ†k1
ĉk2

âq1
âq2

k1 = q1 + q2 + k2

k2

q2

q1

k1

ĉ†k1
ĉk2

â†q1
âq2

k1 + q1 = q2 + k2

k2

q2

q1

k1

ĉ†k1
ĉk2

âq1
â†q2

k2 + q1 = q2 + k1

k2

q2

q1

k1

ĉ†k1
ĉk2

â†q1
â†q2

k2 = q1 + q2 + k1

k2

q2

q1

k1

Figure 4.2: Processes associated with first order perturbation theory in Ĥ ′′I . Both graphs in the
middle describe contributions to Compton scattering. The two diagrams to the right are the
Hermitian conjugate of the left ones.

Compton Scattering:
Both graphs in the middle of the Fig. 4.2 show the scattering of a photon on a (free) electron,
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what is called Compton scattering (note that basically we are not looking at one “single photon”,
a photon gets annihilated while another is created - at least this is a good visualisation). The
other diagrams describe emission and absorption processes involving two photons: Always two
photon lines are involved at a vertex created via H ′′I .

4.8 Non-relativistic Bremsstrahlung

In the following we will examine the scattering of an electron at a potential, e.g. at a static
(because much heavier compared to the electron) nucleus. The charged particle will be hereby ac-
celerated and will radiate energy in the form of photons. This effect is known as Bremsstrahlung
and is for example used in a dentist’s office to produce the appropriate radiation for a X-ray
scan. We will assume that v/c� 1, namely we are looking at the non-relativistic limiting case.

Perturbation terms:
We are interested in the emission of a single photon, therefore the interaction term is given
by H ′I. Furthermore we will consider the potential VNuc(r) of a nucleus from the target as a
perturbation. The complete operator of the perturbation then reads

V̂0 = Ĥ ′I + VNuc(r).

We note that Ĥ ′′I is not appearing, because the diamagnetic term of lowest order describes the
Rutherford scattering process. We find in second quantization:

H ′I =
∑

k1,k2,q

(
M1(k1,k2,q)ĉ†k1

ĉk2 âq + h.c.
)

(4.53)

and

VNuc =
∫
dr ψ̂†(r)VNuc(r)ψ̂(r), with ψ̂(r) = 1√

V

∑
k
eık·rĉk.

No conservation of momentum:
The explicit for of the perturbation potential reads

VNuc = 1
V

∑
k1,k2

∫
dr eı(k1−k2)·rVNuc(r)ĉ†k1

ĉk2 = 1
V

∑
k1,k2

ṼNuc(k1 − k2)ĉ†k1
ĉk2

with ṼNuc(k) =
∫
drVNuc(r)e−ık·r.

The potential VNuc is real, therefore the Fourier transform ṼNuc is Hermitian symmetric, i.e.
ṼNuc(−k) = ṼNuc(k). We notice, that the total momentum is not conserved, because the
Hamiltonian has no translation invariance. Momentum can be transferred to the lattice when
scattering at VNuc.

Golden rule:
Using the perturbation operator V0, we want to induce transitions. Fermi’s golden rule for
transitions reads:

Γi→f = 2π
~
δ(Ei − Ef )|Mif | (4.54)
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with

Mif = M
(1)
if +M

(2)
if .

The energies Ei and Ef stand for the total energies of electrons and radiation field before and
after the transition. Initial and final states are:

|i〉 = ĉ†k |0〉 : no photon, one electron ~k , Ei = ~2k2

2m (4.55)

|f〉 = ĉ†k′ â
†
q |0〉 : one photon ~q, one electron ~k′ , EF = ~2k′2

2m + ~c|q| (4.56)

Differential cross-section

Figure 4.3: Geometry of the elastic scattering. The area ∆σ of the incoming ray reads ∆σ =
2πb∆b. Also shown the solid angle ∆Ω.

Suppose a particle stream of density ji (describes particle number per area and time, “i” means
“initial”) is hitting a scattering potential. In this event, a detector counting the scattered
particles at the solid angle dΩ and in the momentum range between k′ and k′+dk′ will measure
a certain counting rate (events per second). This rate is given by

V

(2π)3k
′2dk′ dΩ Γi→f = jidσ , (4.57)

where dσ is a differential area element perpendicular to the incoming particle stream ji. Γi→f
describes the transition rate to the final state k′, see Fig. 4.3.

General scattering cross-section:
In the following we have to specify more precisely what a detector will be measuring. In the
case of a wavelength-dispersive detector, the interesting quantity is

d2σ

dk′dΩ(k′,Ω) = 1
ji

V

(2π)3k
′2Γi→f .
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The scattering cross-section is a measure for the magnitude of scattering coming from a centre
of diffraction inside a solid angle dΩ and into the momentum range between k′ and k′ + dk′.

Differential cross-section:
Assuming the detector is not sensitive in a certain momentum range dk′ around k′ alone but
is just counting all scattered particles in dΩ, without regard for their energy. Then we have to
integrate over the left hand side of (4.57) with respect to dk′ and we are calling

dσ

dΩ(Ω) := 1
ji

V

(2π)3

∫
dk′ k′2 Γi→f

differential cross-section with regard to a scattering into the solid angle Ω.

Final states regarding Bremsstrahlung:
In the case of Bremsstrahlung one is confronted with one obstacle: After the scattering one has to
deal with two particles, the electron ~k′ and the photon ~q. The energy of the photon is not fixed
but follows a certain distribution. A detector for photons should work wavelength-dispersive, a
detector for the scattered electrons however should not. In the case of Bremsstrahlung we are
mainly concerned with the wavelength of the generated photons (important for application like
X-ray scans), but we are not interested in the energy of the scattered electrons.

Therefore we are asking for the differential cross-section of the scattering of an electron into the
solid angle dΩk′ under emission of a photon carrying a momentum between ~q and ~(q + ∆q)
into the solid angle dΩq. This quantity is written as

d3σ

dΩk′dΩqdq
(Ωk′ , q,Ωq).

Velocities: ν := ~k
m

and ν ′ = ~k′

m
⇒ particle stream: ji = ν

V

⇒ cross-section: d3σ

dΩk′dΩqdq
(Ωk′ , q,Ωq) = V

ν

(
V

(2π)3

)2
q2
∫
dk′ k′2 Γi→f . (4.58)

Perturbation theory of first order:
The part VNuc is not containing any creators of photons which is why it cannot cause transitions
between (4.55) and (4.56) in first order. The only contribution will come from the Hermitian
conjugate inside of H ′I. The terms concerned are proportional to ĉ†k1

ĉk2 â
†
q and the corresponding

Feynman diagram is shown on the right of Fig 4.1. However conservation of momentum and
energy apply and both requirements can’t be satisfied simultaneously. This can be seen via the
following:

Let be pµ and (p′)µ the four-momentum of the arriving respectively emitting electron. Fur-
thermore let qµ be the four-momentum of the photon (we will set ~ = 1). Then we find

m2c2 = pµpµ = ((p′)µ + qµ)((p′)µ + qµ) .

The right hand side gives, considering qµqµ = 0 (photons own no mass):

m2c2 + 0 + (p′)µqµ + qµ(p′)µ = m2c2 + 2(p′)µqµ .
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This leads to (p′)µqµ = 0. In the resting frame of the escaping electron is

(p′)µ = (mc, 0) and qµ = (~ωq/c,q) ,

which gives

(p′)µqµ = mc ~ωq = 0 .

The energy of the photon vanishes, the considered process does not exist. Bremsstrahlung is an
effect of second order perturbation theory in V0.

Second order perturbation theory:
The matrix element M (2)

if reads

M
(2)
if =

∑
m

〈f |V0|m〉 〈m|V0|i〉
Ei − Em + ıη~

, where V0 = Ĥ ′I + VNuc , (4.59)

which we already know from Quantum Mechanics I (with η � 1). It needs a little bit of
bookkeeping to not lose track of the calculations. For an intermediate state |m〉 exist two
possibilities, so that the numerator of the sum is not vanishing.

a) Intermediate state without photon:
The intermediate state has no photon in it, but only an “intermediate” electron carrying mo-
mentum ~kz,

|ma〉 = ĉ†kz |0〉 , Eam = ~2k2
z

2m .

The numerator of (4.59) then reads

〈f |H ′I + VNuc|ma〉 〈ma|H ′I + VNuc|i〉 = 〈f |H ′I|ma〉 〈ma|VNuc|i〉 (4.60)

becauseH ′I generates exactly the required photon of the final state
(via its h.c. part), VNuc on the other hand generates none. The
corresponding Feynman graph is shown on the right.

a)

k VNuc

kz = k′ + q

k′
q

b) Intermediate state with photon:
The intermediate state contains a photon carrying momentum ~q and an electron carrying
momentum ~kz:

|mb〉 = ĉ†kz â
†
q |0〉 , Ebm = ~2k2

z

2m + ~cq .

The numerator of (4.59) reads

〈f |VNuc|mb〉 〈mb|H ′I|i〉 , (4.61)
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and the Feynman graph is shown in figure 4.4 on the right hand side. Only the Hermitian
conjugate part of H ′I plays a role again in the calculations of the matrix elements, the other part
is not contributing. The sum appearing in M (2)

if is running over all kz of intermediate electrons
and over the cases a) and b).

a)

k VNuc

kz = k′ + q

k′
q

b)

k
q

kz = k− q

k′

VNuc

Figure 4.4: Feynman diagrams for the breaking radiation process.

The emission of Bremsstrahlung is carried out in two phases: the scattering at a nucleus and
the emission of a photon (or vice versa). The calculation of the matrix elements is following:

a) Matrix elements - Intermediate state without photon:
One has to calculate (4.60). It is

〈ma|VNuc|i〉 = 〈0|ĉkz
∑

k1,k2

ĉ†k1
ṼNuc(k1 − k2)ĉk2 ĉ

†
k|0〉

=
∑

k1,k2

〈0|
(
ĉkz ĉ

†
k1

)
ṼNuc(k1 − k2)

(
ĉk2 ĉ

†
k

)
|0〉

=
∑

k1,k2

δkz ,k1 ṼNuc(k1 − k2)δk2,k

= ṼNuc(kz − k)

and

〈f |H ′I|ma〉 = 〈0|ĉk′ âq
∑

k1,k2,q1

M1(k1,k2,−q1)ĉ†k1
ĉk2 â

†
q1 ĉ
†
kz |0〉

=
∑

k1,k2,q1

〈0|
(
ĉk′ ĉ

†
k1

)(
âqâ

†
q1

)(
ĉk2 ĉ

†
kz

)
|0〉 M1(k1,k2,−q1)

=
∑

k1,k2,q1

δk′,k1δq,q1δk2,kz M1(k1,k2,−q1)

= − e~
mc

√
2π~c2

V ωq
δkz ,q+k′

(
uq · kz

)
.
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The first contribution to M (2)
if is therefore, taking into account that uq · q = 0, given by:

M
(2,a)
if =

∑
kz

〈f |H ′I|ma〉 〈ma|VNuc|i〉
Ei − Eam + ıη~

η→0= − e~
mc

√
2π~c2

V ωq

ṼNuc(q + k′ − k)(uq · k′)
~2

2m

(
k2 − (q + k′)2

) .

Because of energy conservation,

Ef = ~2k′2

2m + ~c|q| = Ei = ~k2

2m ,

the denominator also writes

Na = ~c|q| − ~q2

2m −
~2

m
q · k′ = ~c|q|

(
1− ~q · k′

mc|q| −
~q2

2mc|q|

)
. (4.62)

But the second term in brackets gives

~k′

m
· q
c|q| ≤

p′

m

1
c

|q|
|q| ≈

ν ′

c
,

where ν ′ is the velocity of the electron after the collision. The third term of (4.62) is again
one magnitude smaller in ν/c, because |q| is assumed far smaller then the electron momentum.
Therefore the non-relativistic case is approximated by Na ≈ ~c|q| = ~ωq. Hence

M
(2,a)
if = − e~

mc

√
2π~c2

V ωq

ṼNuc(q + k′ − k)(uq · k′)
~ωq

.

b) Matrix elements - Intermediate state containing a photon:
The calculation is carried out analogous to case a) and the result for the second contribution of
M

(2)
if reads

M
(2,b)
if =

∑
kz

〈f |VNuc|ma〉 〈ma|H ′I|i〉
Ei − Ebm + ıη~

η→0= − e~
mc

√
2π~c2

V ωq

ṼNuc(q + k′ − k)(uq · k)
~2

2m

(
k2 − (q − k)2

)
− ~c|q|

.

The denominator one finds then:

Nb = ~k2

2m −
(
~q2

2m + ~k2

2m −
~q · k
m

)
− ~c|q| = −~c|q|

(
1 + ~q2

2mc|q| −
~q · k
mc|q|

)
≈ −~ωq .

Hence

M
(2,b)
if = − e~

mc

√
2π~c2

V ωq

ṼNuc(q + k′ − k)(uq · k)
−~ωq

.

Sum of the matrix elements - Nucleus potential:

Both intermediate states (with and without photon) together result in:

M
(2)
if = M

(2,a)
if +M

(2,b)
if = − e~

mc

√
2π~c2

V ωq

(
k′ − k

)
· uq

~ωq
ṼNuc(q + k′ − k) . (4.63)
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Until now we didn’t specify the nucleus potential. From now on we choose

VNuc(r) = −Z e
2

r
.

The Fourier transform ṼNuc(k) gives

ṼNuc(k) = −Z e
2

V

∫
V
dr e

ık·r

r
= −Z e

2

V

∫
V
dr
(
− 1
k2

) ∆ eık·r

r
.

Two times partial integration and the substitution

∆ 1
r

= −4πδ(r)

results in

ṼNuc(k) = −Z e
2

V k2

∫
V
dr
(

∆ 1
r

)
eık·r = −4πZ e2

V k2 . (4.64)

Finally we arrive at

M
(2)
if = 4πZ e3~

mc

√
2π~c2

V ωq

(
k′ − k

)
· uq

V ~ωq
(
q + k′ − k

)2 .
Low energy scattering:
We will now assume that the energy of the photon ω := ωq is much smaller compared to the
electron’s and we set

(q + k′ − k)2 ≈ (k′ − k)2 := (∆k)2 = m2

~2 (∆ν)2 .

Simultaneously we find that |ν| = |ν ′| because when the photon is neglected we are confronted
with elastic scattering of the electrons. For the transition rate we find

Γi→f = 2π
~
δ(Ef − Ei)

∣∣∣M (2)
if

∣∣∣2 = 64π2Z2 e6~2(u ·∆ν)2

V 3 ω3m4(∆ν)4 δ(Ei − Ef ) .

If θ is the angle between the velocities ν and ν ′ before respectively after the collision, we also
find

|∆ν| = 2|ν| sin θ2 .

Differential cross-section of Bremsstrahlung:
The differential cross-section (4.58) can now be calculated:

d3σ

dΩk′dΩqdq
(Ωk′ , q,Ωq) = V

ν

(
V

(2π)3

)2
q2
∫
dk′ k′2 Γi→f

= 64π4Z2~2 e6 q2

(2π)6 ω3m4

∫
dk′

(u ·∆ν)2 k′2

16ν5 sin4(θ/2) δ(Ei − Ef ).
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We see a Rutherford cross-section is already looming in this result. The integrand is only
dependent on k′2, and the δ-distribution only of k′. Further it is

δ(Ei − Ef ) = δ

(
~2k′2

2m − ~2k2

2m

)
= 2m

~2 δ(k′2 − k2) .

Now it is easy to calculate the integral:∫
dk′ k′2 δ(k′2 − k2) =

∫
dξ

ξ

2
√
ξ
δ(ξ − k2) = k

2 = mν

2~ .

Along with q = ω/c we arrive at

d3σ

dΩk′dΩqdω
= Z2 e4

m2ν4 sin4(θ/2)
(u ·∆ν)2 e2

16π2 c2 ~ω
. (4.65)

In the first factor, one recognizes the Rutherford cross-section. The second factor represents
the probability density of observing an additional photon carrying energy ~ωq at the solid angle
dΩq.
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Chapter 5

Relativistic quantum mechanics

5.1 Invariances of the Schrödinger equation

Consider a free particle:

Ĥ = p̂2

2m = − ~2

2m∇
2 = − ~2

2m∆

Coordinate transformations:

a) Translation: x′ = x− a, y′ = y, z′ = z, t′ = t.

b) Rotation: x′j = ∑
l ajlxl.

Rotations do not change the length:∑
j

x′2j =
∑
j

∑
k,l

ajkajlxkxl
!=
∑
j

x2
j .

Thus ∑
j

ajkajl = δkl and
∑
k

aikajk = δij

or more compact
A ·AT = AT ·A = 1 with A = (ajl) .

c) Galilean transformation: The primed coordinate system moves with a constant speed v
relative to the unprimed system: x′ = x− vt, y′ = y, z′ = z, t′ = t.

Schrödinger equation

ı~
∂

∂t
ψ(r, t) = − ~2

2m∆ψ(r, t)

is covariant under the transformations mentioned above, i.e. it is form-invariant during a change
of coordinates:

ı~
∂

∂t′
ψ′(r′, t′) = − ~2

2m∆′ψ′(r′, t′) .

Proof:

a) Translation: Use the chain rule:
∂

∂x′
= ∂x

∂x′
∂

∂x
= ∂

∂x
.

and analogous for y, z and t. With ψ′(x′) = ψ′(x − a) = ψ(x) the covariance under
translation becomes obvious.
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b) Rotation: Use the chain rule:
∂

∂xk
=
∑
j

∂x′j
∂xk

∂

∂x′j
=
∑
j

ajk
∂

∂x′j
.

Thus the Laplacian transforms as

∆ =
∑
k

∂2

∂x2
k

=
∑
k

∑
j,l

ajkalk
∂

∂x′j

∂

∂x′l
=
∑
j,l

δjl
∂

∂x′j

∂

∂x′l
=
∑
j

∂2

∂x′2j
= ∆′ .

With ψ′(r′, t′) = ψ(r, t) the covariance under rotation is clear.

c) Galilean transformation: The momenta in both systems satisfy
p′x = px −mv, p′y = py, p′z = pz .

The momentum operators in both systems reads as

p̂x = ~
ı

∂

∂x
, p̂′x = ~

ı

∂

∂x′
.

Below, we will show that the Schrödinger equation is covariant under Galilean transfor-
mation if the following transformation of the wave function is used

ψ(r, t) = e−
ı
~mvx

′
ψ′(r′, t′) . (5.1)

It is

p̂xψ(r, t) =
(
p′x +mv

)
ψ(r, t) =

[~
ı

∂

∂x′
+mv

]
e−

ı
~mvx

′
ψ′(r′, t′)

= e−
ı
~mvx

′ ~
ı

∂

∂x′
ψ′(r′, t′) = e−

ı
~mvx

′
p̂′xψ

′(r′, t′)

and thus
p̂2
xψ(r, t) = e−

ı
~mvx

′
p̂′2x ψ

′(r′, t′) .
Inserting this into the the Schrödinger equation leads to

0 =
[
ı~
∂

∂t
− 1

2m
(
p̂2
x + p̂2

y + p̂2
z

)]
ψ(r, t)

= e−
ı
~mvx

′
[
ı~
∂

∂t′
− 1

2m
(
p̂′2x + p̂′2y + p̂′2z

)]
ψ′(r′, t′) .

This equation is fulfilled if

ı~
∂

∂t′
ψ′(r′, t′) = 1

2m
[
p̂′2x + p̂′2y + p̂′2z

]
ψ′(r′, t′) .

Importantly, it follows from Eq. (5.1) that

|ψ(r, t)|2 =
∣∣ψ′(r′, t′)∣∣2 ,

i.e. the probability densities of the original and transformed wave functions are the same
and thus also the physics they describe.

We have shown that the Schrödinger equation is form-invariant under the transformations men-
tioned above. In particular, it fulfills the classical principle of relativity: two persons, that move
with a speed v relative to each other, observe physical processes in the same way.

However, we know from classical mechanics that Galilean transformations are only valid for
v � c. A correct formulation of the principle of relativity must account for the equality of the
speed of light c in all reference frames.
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5.2 Recap of special relativity

Before combining special relativity and quantum mechanics we recap the required formalism of
relativity. This enables us to generalize Galilean invariance to Lorentz invariance.

Please note, that we have to use Lorentz transformations

x′ = x− vt√
1− v2

c2

= γ(x− βct), y′ = y, z′ = z, ct′ =
ct− v

cx√
1− v2

c2

= γ(ct− βx) (5.2)

instead of Galilean transformations.

γ = 1√
1− v2

c2

= 1√
1− β2

is the so-called Lorentz factor.

It turns out that the Schrödinger equation is not invariant under Lorentz transformations and
thus a relativistic generalization of this equation is needed.

Lets repeat the formalism of relativity. We define a (contravariant) four-vector as

xµ = (x0, x1, x2, x3) = (x0, xk) = (x0, r) ,

where
x0 = ct, x1 = x, x2 = y, x3 = z .

Later we will introduce a (covariant) four-vector xµ which is distinct from xµ.

We define a metric in this four-dimensional Minkowski space via a squared distance

s2 = c2t2 − x2 − y2 − z2 = c2t2 − r = gµνx
µxν (5.3)

with the Minkowski metric tensor

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

More precisely, it is a pseudo-Euclidean metric, because it is not positive-definite. Distances
with s2 < 0 are called spacelike. Events with a spacelike distance are causally independent. On
the other hand, events with a timelike distance, s2 > 0, can influence each other. For events
with a lightlike distance, s2 = 0, a communication is only possible via signals that propagate at
the speed of light.

Note that, in Eq. (5.3) we have used the so-called Einstein summation convention: we sum (from
0 to 3) over indices occurring twice, one of which is a upper and the other a lower index.

In analogy to rotations, we want to describe Lorentz transformations via a real matrix Λµν as

x′µ = Λµνxν . (5.4)
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The Lorentz transformation should leave the distance s2 unchanged. Just like for rotations, the
condition for the matrix Λµν reads as

s′2 = gµνx
′µx′ν = gµνΛµρxρΛνλxλ

!= gρλx
ρxλ = s2 .

Thus

gµνΛµρΛνλ = gρλ (5.5)

or in matrix representation
ΛT gΛ = g .

All Lorentz transformations form a group, the so-called Lorentz group.

In particular, the matrix representation of the basic Lorentz transformation (5.2) reads as

Λµν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 =


cosh ξ − sinh ξ 0 0
− sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1


with rapidity ξ defined via tanh ξ = β.

In addition to a contravariant vector xµ we introduce a covariant vector xµ as

xµ = gµνx
ν = (ct,−r) (5.6)

with the inverse operation

xµ = gµνxν . (5.7)

Thus a multiplication with gµν or gµν allows raising or lowering of indices. One of the advantages
of this is an integration of the metric into a vector and thus a more compact notation. For the
Euclidean metric it is gµν = δµν , where δµν is the Kronecker delta, and thus there is no difference
between contravariant and covariant vectors.
The consistency of Eq. (5.6) and (5.7) is guaranteed via

gµρg
ρν = δ ν

µ .

For the Lorentz transformation Λ we define in the same way:

Λ ν
µ = gµλΛλρgρν = Λµρgρν = gµλΛλν , (5.8)

which is generally true for order-2 tensors.

The term “contravariant” and “covariant” reflects the different transformation behavior of the
corresponding vectors under Lorentz transformation. Contravariant vectors transform according
to Eq. (5.4). On the contrary, covariant vectors transform as

Λ ν
µ xν = gµλΛλρgρνxν = gµλΛλρxρ = gµλx

′λ = x′µ ,

where we have used Eqs. (5.8), (5.6) and (5.4).
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We became familiar with the behaviour of position vectors under Lorentz transformations. All
other four-vectors behave in the same way. Thus we define:
A contravariant four-vector aµ transforms as

a′µ = Λµνaν (5.9)

and a covariant four-vector aµ transforms as

a′µ = Λ ν
µ aν . (5.10)

How do four-gradients transform? We define four-gradients as

∂

∂xµ
=
(1
c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=
(
∂

∂ct
,∇
)

= ∂µ

and
∂

∂xµ
=
(1
c

∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
=
(
∂

∂ct
,−∇

)
= ∂µ .

As indicated by the notation, the vectors ∂µ and ∂µ transform covariantly and contravariantly,
respectively, just oppositely to the position vectors used in the derivative.

Proof: We multiply Eq. (5.4) with gµλΛλρ:

gµλΛλρx′µ = gµλΛλρΛµνxν

and obtain

xρ = Λλρx′λ (5.11)

using Eq. (5.5). Using the chain rule we get

∂

∂x′µ
= ∂xν
∂x′µ

∂

∂xν
= Λµν

∂

∂xν

and thus the contravariance of ∂µ is evident. The covariance of ∂µ can be shown in an analogous
way.

Multiplying Eq. (5.11) with Λ ρ
µ we get

x′µ = Λ ρ
µ xρ = Λ ρ

µ Λλρx′λ

and thus
Λ ρ
µ Λλρ = δλµ .

This means that the transformation matrices of covariant and contravariant vectors are essen-
tially inverse to one another. In matrix representation:

Contravariant : x′ = Λx
Covariant : x′ =

(
Λ−1

)T
x .
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It useful to know that the scalar product

aµb
µ = gµνa

νbµ = aµbµ

of two four-vectors aµ and bµ is invariant under Lorentz transformations and thus the d’Alembertian

� = ∂µ∂µ = 1
c2
∂2

∂t2
−∇2

is also an invariant scalar.

We consider an electromagnetic field with a scalar potential ϕ(r, t) and a vector potential A(r, t)
and combine them into a single four-vector

Aµ = (ϕ,A) .

The electric and magnetic fields associated with these four-potentials are

E = −∇ϕ− 1
c

∂A
∂t

and B = ∇×A .

Next, we consider a particle with a rest mass m0 and an electric charge e.
The contravariant four-momentum of a particle with a relativistic energyE and a three-momentum
P = γm0v, where v is the particle’s three-velocity and γ the Lorentz factor, is

Pµ =
(
E

c
,P
)

= (γm0c, γm0v) .

The squared length of Pµ is a Lorentz invariant quantity:

PµP
µ = E2

c2 −P2 = γ2m2
0c

2 − γ2m2
0v2 = m2

0c
2

If the particle is exposed to an electromagnetic field with a four-potential Aµ the canonical
four-momentum pµ reads as

pµ = Pµ + e

c
Aµ =

(
E

c
,p
)

with
E = γm0c

2 + eϕ and p = P + e

c
A .

In lowest order (v � c) the energy yields the non-relativistic expression:

E = m0c
2 + m0

2 v2 + eϕ+O
(
v2

c2

)
.

The dynamics of the classical relativistic mechanics follows from the Hamiltonian

H (r,p) = eϕ+
√
m2

0c
4 + c2

(
p− e

c
A
)2
. (5.12)

From Hamilton’s equations
dr
dt = ∂H

∂p
,

dp
dt = −∂H

∂r
one can derive the Lorentz force

dr
dt = v , dP

dt = e

(
E + v

c
×B

)
.
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5.3 Klein-Gordon equation

We try to derive a relativistic analogue to the Schrödinger equation.
Correspondence principle reads as

E → ı~
∂

∂t
, p→ −ı~∇

or as a four-vector
pµ =

(
E

c
,p
)
→ ı~

(
∂

∂ct
,−∇

)
= ı~∂µ .

This leads in case of a non-relativistic free particle with an energy E = H = p2

2m to the
Schrödinger equation.

As a first try we apply the correspondence principle to the Hamiltonian (5.12) of a relativistic
charged particle in an electromagnetic field and obtain

ı~
∂

∂t
ψ(r, t) =

eϕ+

√
m2

0c
4 + c2

(~
ı
∇− e

c
A
)2
ψ(r, t) . (5.13)

An expansion in 1
c2 leads to√
m2

0c
4 + c2

(~
ı
∇− e

c
A
)2
≈ m0c

2 + 1
2m0

(~
ı
∇− e

c
A
)2

+O
( 1
c4

)
and the contribution due to the rest energy m0c

2 vanish using the transformation

ψ(r, t) = e−
ı
~m0c2tφ(r, t) . (5.14)

Thus we end up with a classical Schrödinger equation for φ

ı~
∂

∂t
φ(r, t) =

[
eϕ+ 1

2m0

(~
ı
∇− e

c
A
)2
]
φ(r, t) .

Problems with the relativistic equation (5.13):

a) The asymmetry of space and time derivatives masks the relativistic invariance.

b) The square root of a differential operator can be defined via a series expansion. This may
lead to problems with the convergence. Moreover, in an expansion, arbitrary powers of the
differential operator occur. This corresponds to a nonlocal theory since the whole shape
of the wave function gets important.

A possible way out is to start with the square of the energy:

(E − eϕ)2 = m2
0c

4 + c2
(

p− e

c
A
)2

. (5.15)

As a consequence, two solutions

E = eϕ±

√
m2

0c
4 + c2

(
p− e

c
A
)2

are possible. In particular, a solution with a negative energy exists.
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Quantization of Eq. (5.15) gives the Klein-Gordon equation:
[(
ı~
∂

∂t
− eϕ

)2
− c2

(~
ı
∇− e

c
A
)2
]
ψ(r, t) = m2

0c
4ψ(r, t)

or using four-vectors[(
∂µ + ie

~c
Aµ

)(
∂µ + ie

~c
Aµ
)

+ m2
0c

2

~2

]
ψ(r, t) =

(
DµD

µ + m2
0c

2

~2

)
ψ(r, t) = 0 (5.16)

The Klein-Gordon equation is relativistically invariant, because the scalar product DµD
µ is in-

variant under Lorentz transformations.

The Klein-Gordon equation for a free particle(
∂µ∂

µ + m2
0c

2

~2

)
ψ(r, t) = 0 (5.17)

corresponds to a classical wave equation with an additional mass term.
Their solutions are plane waves

ψ(r, t) = ψ0 exp
[
− ı
~
pµx

µ
]

= ψ0 exp
[
− ı
~

(Et− p · r)
]
,

with a dispersion relation
E2

c2 − p2 = m2
0c

2 .

As expected, there are solutions with positive and negative energy

E = ±c
√
m2

0c
2 + p2

separated by an energy gap, i.e. states with energies between m0c
2 and −m0c

2 do not exist.
Furthermore, the energy spectrum is not bounded from below, which leads to stability problems.
A way out is to interpret states of negative energy as antiparticles.

5.3.1 Continuity equation and interpretation of the wave function

How to interpret the wave functions that evolve according to the Klein-Gordon equation?
The Schrödinger equation obeys a continuity equation

∂ρ

∂t
+∇ · j = 0 ,

where

ρ(r, t) = |ψ(r, t)|2 ≥ 0 (5.18)

can be interpreted as a probability density. The corresponding probability current is given by

j = ~
2mi (ψ∗∇ψ − ψ∇ψ∗) . (5.19)
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For a relativistic theory we expect a similar continuity equation to hold. Written in a covariant
form

∂µj
µ = 0 (5.20)

with a four-current
jµ = (cρ, j) .

We multiply Eq. (5.17) with ψ∗ and subtract the complex conjugate:

0 = ψ∗
(
∂µ∂

µ + m2
0c

2

~2

)
ψ − ψ

(
∂µ∂

µ + m2
0c

2

~2

)
ψ∗

= ∂µ (ψ∗∂µψ − ψ∂µψ∗) .

Thus the continuity equation (5.20) with the four-current

jµ = ı~
2m0

(ψ∗∂µψ − ψ∂µψ∗)

is fulfilled.
The current-component j of jµ = (cρ, j),

j = ~
2m0i

(ψ∗∇ψ − ψ∇ψ∗) ,

equals the expression (5.19) of the non-relativistic quantum mechanics.
In contrast to (5.18), the density-component

ρ = ı~
2m0c2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
is not positive definite and therefore cannot be interpreted as a probability density. That’s
because Klein-Gordon equation is second-order in time.

Let’s consider the non-relativistic limit. Using the transformation (5.14) one obtains

∂ψ

∂t
≈ −ım0c

2

~
ψ

and thus a probability density
ρ ≈ |ψ|2 .

5.3.2 Problems of the Klein-Gordon equation

Problems of the Klein-Gordon (KG) equation:

a) Solutions with negative energy exists and the energy spectrum of free particles is not
bounded from below.

b) The wave function ψ cannot be interpreted as a probability amplitude.

c) ψ depends only on r and t, and it is not possible to incorporate internal degrees of freedom,
e.g. a spin.
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Problem c) makes a further search for a relativistic equation, that could describe electrons (spin-
1
2), necessary. At the date of the discovery (1926) the physical relevance of the KG equation
was unclear, because at that time only particles with spin-1

2 (electrons, protons and neutrons)
were known. Later it turned our that KG equation can describe spinless scalar particles, like
pions (or pi mesons) discovered in 1947. The fact that KG equation is a field equation for spin-0
particles can be seen from its non-relativistic limit, which is the spinless Schrödinger equation,
and from the behavior of the wave function under Lorentz transformations.

With regard to problem b), the question arises: Can we interpret ρ and j in a different way?
Yes, for that we switch to the charge density

j′µ = ejµ =
(
cρ′, j′

)
= ie~

2m0
(ψ∗∂µψ − ψ∂µψ∗) , (5.21)

where e is an electric charge. ρ′ is now a charge density and can have either positive or negative
values. j′ is the corresponding current density. Below we will see that this interpretation of jµ
is compatible with the interpretation of states with E < 0 as antiparticles.

We illustrate this with the free particle. Inserting an ansatz

ψ = A exp
[
ı

~
(p · r− Et)

]
into KG equation leads to the condition

E2 = c2
(
p2 +m2

0c
2
)

and thus to two solutions
ψ± = A± exp

[
ı

~
(p · r∓ Ept)

]
,

with energies
Ep = c

√
p2 +m2

0c
2 .

The corresponding charge density (5.21) reads as

ρ′± = ± eEp
m0c2 |ψ±|

2 .

This suggests the following interpretation of ψ: ψ+ describes a particle with charge +e and ψ−
a particle with the same mass m0, however, with an opposite charge −e.

In order to obtain a normalized wave function we consider a particle in a box with an edge
length L. From periodic boundary conditions we get

ψ
(n)
± = A

(n)
± exp

[
ı

~
(pn · r∓ Ent)

]
with the momentum

pn = 2π
L

n with n = (nx, ny, nz) ∈ N3

and the corresponding energy En = Epn .
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The normalization condition

±e =
∫
L3

dr3 ρ′±(r) = ± eEn
m0c2

∣∣∣A(n)
±

∣∣∣2 L3

yields the normalized wave function

ψ
(n)
± =

√
m0c2

EnL3 exp
[
ı

~
(pn · r∓ Ent)

]
.

Both solutions have the same normalization constant and they differ only in the time factor
exp

(
∓ ı

~Ent
)
. Thus the general solution for positive and negative spin-0 particles, respectively,

reads as

ψ+ =
∑
n

Anψ
(n)
+ =

∑
n

An

√
m0c2

EnL3 exp
[
ı

~
(pn · r− Ent)

]

ψ− =
∑
n

Bnψ
(n)
− =

∑
n

Bn

√
m0c2

EnL3 exp
[
ı

~
(pn · r + Ent)

]
.

Is it possible to describe a neutral particle? From

ρ′ = ie~
2m0c2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
= − e~

m0c2 Im
(
ψ∗
∂ψ

∂t

)
(5.22)

it follows that ψ must be real in this case. Thus we obtain the general wave function of a neutral
particle as

ψ
(n)
0 = 1√

2

[
ψ

(n)
+ (pn) + ψ

(n)
− (−pn)

]
=

√
m0c2

EnL3 2 cos
(pn · r− Ent

~

)
.

Note that ψ(n)
− contributes with an opposite momentum −pn, therefore

(
ψ

(n)
0

)∗
= ψ

(n)
0 and the

charge density (5.22) vanishes, i.e. ρ′ = 0. However, the current density also disappears, j′ = 0,
and the continuity equation becomes a trivial identity.

In summary, for the relativistic motion of a free spinless particle there are three solutions of
the Klein Gordon equation corresponding to the electric charges (+,−, 0) at each momentum
p. Moreover, wave functions ψ and ψ∗ describe opposite charges.
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Chapter 6

The Dirac equation

6.1 The Dirac equation

The Dirac equation, in contrast to the Klein-Gordon equation, is of first order and only valid in
the case of spin-1

2 particles. Due to the fact that the Klein-Gordon equation (KGE) expresses
nothing more than the relativistic relation between energy, momentum and mass, it must be
valid for particles of arbitrary spin.
The Dirac equation has a completely different origin and can be derived from the transformation
properties of a spinor under the Lorentz group. We will address this later on – first we want to
understand Dirac’s original line of thinking.
The KGE suffers from two flaws: The probability density is not positive definite and states with
an negative energy appear. For these reasons, the KGE was (historically) initially discarded
and Dirac was looking for a replacement of it, namely a relativistic invariant equation of a field
function ψ(x), which should describe free electrons.
In the case of non-relativistic electrons, Pauli (1927) found the correct description: Within
the framework of the Schrödinger picture, an non-relativistic electron is described by a wave
function with two components:

ψ(x, t) =
(
ψ1(x, t)
ψ2(x, t)

)
.

Here |ψi(x, t)|2 dx, (i = 1, 2) are the probability densities of finding the electron with a spin
in positive (i = 1) or negative (i = 2) 2-direction within the volume element dx around the
position x.
Total angular momentum operator:

Ĵ = L̂ + ~
2σ ,

where

L̂ = x× ~
ı
∇

and

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −ı
ı 0

)
, σ3 =

(
1 0
0 −1

)
︸ ︷︷ ︸

Pauli spin-matrices
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ψ(x, t) (respectively every component of it) should satisfy the Schrödinger equation

ı~
∂

∂t
ψ(x, t) = − ~2

2m∆ψ(x, t)

This equation is certainly not relativistic invariant, because only one temporal but two spatial
derivations appear.

For reasons which would not seem mandatory today, Dirac was looking for a field equation that
would be linear in temporal and spatial derivations. We will view this as a heuristic principle
and make the general linear ansatz

(ı~γµ∂µ − a)ψ(x) = 0 , (6.1)

where the number of components of ψ, the nature of the coefficients γµ and the constant a are
still completely undefined.

Applying the operator (ı~γµ∂µ) again to (6.1) gives[
− ~2(γµ∂µ)(γν∂ν)− ı~(γµ∂µ)a

]
ψ = 0

resp.
(
− ~2γµγν∂µ∂ν + a2

)
ψ = 0

Because of ∂µ∂ν = ∂ν∂µ one can replace γµγν with the symmetric combination

1
2
(
γµγν + γνγµ

)
=: 1

2
{
γµ, γν

}
and arrives at (

1
2
{
γµ, γν

}
∂µ∂ν + a2

~2

)
ψ = 0 (6.2)

On the other hand the principle of relativity demands that the energy-momentum-mass relation
is satisfied, i.e. that every component of ψ satisfies the KGE(

�+ m2c2

~2

)
ψ(x) = 0

From this we derive that a = mc and that the coefficient of ∂µ∂ν in (6.2) has to be gµν

a = mc and
{
γµ, γν

}
= 2gµν (6.3)

This relation must be satisfied for the coefficients.
With µ = ν = 0, µ = ν = i and µ 6= ν follows successively(

γ0
)2

= 1 ,
(
γi
)2

= −1 , γµγν = −γνγµ (µ 6= ν) .
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CHAPTER 6. THE DIRAC EQUATION

These conditions can neither be satisfies by complex numbers nor 2× 2-matrices as a choice for
γµ. However it is possible with 4× 4-matrices, e.g.:

γ0 =
(

+1 0
0 −1

)
; γj =

(
0 +σj
−σj 0

)
, j = 1, 2, 3 .

Obviously this is not the only possible choice: γ′µ = SγµS−1 with an arbitrary unitary 4 × 4-
matrix S will also satisfy (6.2). The Dirac equation is then satisfied with ψ′ = Sψ.

The 1928 postulated equation of Dirac was

(
ı~γµ∂µ −mc

)
ψ(x) = 0 , (6.4)

with

ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 ,

where ψ(x) is a 4-component field function, a so called Dirac spinor.

Our goal now is to construct a (probability-)current µ (like in the KGE case) and check if the
density is positive. Proceeding from the Dirac equation(

ı~γ0∂0 + ı~γj∂j −mc
)
ψ = 0 , (6.4)

we will consider now the adjoint (or Hermitian transpose) of the Dirac equation (6.4), given by
a complex conjugation and subsequent transposition. This gives:

−ı~∂µψ†γµ† −mcψ† = 0 , (6.5)

where

γµ† =
{

γ0, µ = 0
−γµ, µ = 1, 2, 3

Definition: ψ̄ = ψ†γ0 represents the adjoint spinor of ψ and with this, the current density
and other quantities can be written in a more compact form.
Now, from (6.5), we have

−ı~∂0ψ
†γ0 + ı~∂jψ†γj −mcψ† = 0 ,

Multiplying from the right with γ0 (and using γjγ0 = −γ0γj) leads to

−ı~(∂0ψ
†γ0)γ0 − ı~∂jψ†γ0γj −mcψ†γ0 = 0

=⇒ +ı~(∂µψ̄)γµ +mcψ̄ = 0 (6.6)
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With (6.6) and the Dirac equation (6.4) one can show now that the 4-current density

µ := cψ̄γµψ

is conserved:
1
c
∂µ

µ =
(
∂µψ̄

)
γµψ + ψ̄γµ

(
∂µψ

)
= −mc

ı~
ψ̄ ψ + ψ̄

mc

ı~
ψ (6.7)

= 0

⇒ ∂0
0 = ∇ ·  , continuity equation. (6.8)

Now, writing out the left hand term of the above equation explicitly, we have

1
c

∂

∂t

(
cψ†γ0γ0ψ

)
= ∂

∂t

(
ψ†ψ

)
,

and because

ρ := 1
c
0 = ψ†ψ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 (6.9)

is positive, ρ can serve as probability density for the particles described by the Dirac equation.
This brings the continuity equation (6.8) to the form

∂

∂t
ρ = ∇ ·  , (6.10)

with the current density

 = cψ̄γψ = cψ† γ0γ︸︷︷︸
=:α

ψ = cψ†αψ ,

where α := γ0γ.
Each component of ψ satisfies the Klein–Gordon Equation. Multiplying the Dirac Equation
(6.4) by ı~γν∂ν from the left:

−~2γν∂νγ
µ∂µψ − ı~mcγν∂νψ︸ ︷︷ ︸

=m2c2ψ Dirac eq.

= 0

⇒ −~2 1
2 (γνγµ + γµγν)︸ ︷︷ ︸

gµν

∂ν∂µψ = m2c2ψ

⇒ ∂µ∂
µ︸ ︷︷ ︸

1
c2
∂2

0−∇2

ψ + m2c2

~2 ψ = 0 (6.11)
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We will solve this with the Ansatz:

ψ = Ae−ı(ωt−k·x) .

After applying Eq. (6.11), we get

−ω
2

c2 + k2 + m2c2

~2 = 0

⇒ (~ω)2 = c2(~k)2 +m2c4

or, E2 = c2p2 +m2c4

Special case:
Particle at rest, p = 0 and ψ = Ae−

ı
~Et. Then,

ı~γ0 1
c
∂0ψ = γ0E

c
ψ

!= mcψ

or, Eγ0A = mc2A
or, E = ±mc2

The eigenvalues of γ0 are +1 (doubly degenerated) and −1 (doubly degenerated), therefore there
exist two solutions with positive energy +mc2 and two solutions with negative energy −mc2.
Actually it is easy to see (by writing out the four components of the Dirac equation in full), that
the eigenvalues are given by

E = +
(
m2c2 + p2

)1/2
(2 times)

E = −
(
m2c2 + p2

)1/2
(2 times)

For every p exist two solutions with E > 0, corresponding to the two states of a spin-1
2 particle,

and two solutions with E < 0.
An electron in a state with E > 0 can therefore (by interacting with other particles or fields)
jump in a state with E < 0 and then cascade downwards to E = −∞ while emitting an infinite
amount of radiation.
Dirac’s solution of this problem: The electrons possess spin-1

2 , therefore they satisfy the Pauli
exclusion principle. Dirac assumed, that states with negative energy are already completely
occupied, the Pauli principle prohibits that further electrons fall in the sea with E < 0.
Remark:
This “Dirac sea” is the vacuum. The vacuum is therefore by no means “empty”. Important
postulate of this theory: antiparticles.
Assuming there exists a vacancy (“blank position”) within the electron sea – a “hole” with
energy −|E|.
Then an electron with energy E is able to fill this hole by emitting the energy 2E and only
leaving a vacuum :

e− + hole→ energy

Thus the “hole” possesses an effective charge +e and a positive energy. Dirac’s theory postulated
the existence of antiparticles for all particles with spin-1

2 , and over time e+, p̄, n̄, γ̄ and others

97



CHAPTER 6. THE DIRAC EQUATION

were all found. It became apparent that bosons also possess antiparticles (see quantized complex
Klein-Gordon field).

Remark:
Despite the successful resolution of the negative energy problem, the Dirac equation does no
longer represent a single particle equation! It describes particles and antiparticles. The only
consistent philosophy is to treat the spinor ψ as a field and |ψ|2 as a measure of the amount of
particles present at a certain point. This field is naturally a quantum field.

6.2 Solution of the Dirac equation

We choose plane waves as an ansatz for a solution:

ψ(x) = e−
ı
~px u(p) = e−

ı
~ (p0t−p·x) u(p) .

Furthermore ψ(x) must satisfy the KGE, which demands p0 = E/c =
√

p2 +m2c2 and p =
(px, py, pz)T. Therefore, from Dirac Equation (6.4), we get,(

ı~γµ
(
− ı

~

)
pµ −mc

)
u(p) = 0

⇒ (γµpµ −mc)u(p) = 0 , (6.12)

where u(p) is a spinor to be determined.

First we want to consider the case p = 0, i.e. a particle at rest where p = (E/c︸︷︷︸
p0

, 0, 0, 0)T =: pR,

with p0 = E/c = mc or E = mc2 respectively. Calculating the zeroth component from
Eq. (6.12), we obtain

(γ0p0 −mc)u = 0

or written out in matrix form
p0 −mc

p0 −mc
−p0 −mc

−p0 −mc

u =


0

0
−2mc

−2mc

u = 0 .

Therefore (γ0p0 −mc)us(pR) = 0 has two linear independent solutions

us(pR) =
(
χs
0

)
,

where s = ±1
2 and

χ 1
2

=
(

1
0

)
χ− 1

2
=
(

0
1

)

are two-spinors.
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Now we want to consider p 6= 0. We combine the two upper as well as the two lower components
of the Dirac spinor to a two-spinor respectively. For an arbitrary four-vector we make the ansatz

u(p) =
(
ξ
η

)
,

where ξ and η represent the aforementioned two-spinors. Let us also take, ψ(x) = u(p)e− ı
~p
µxµ =

u(p)e− ı
~ (Et−p·r).

From the Dirac equation (6.12) follows(
p0 −mc −p · σ
+p · σ −p0 −mc

)(
ξ
η

)
= 0 ,

where we used the definition of the Dirac matrices

γ0 =
(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)

and defined

σ =

σ1

σ2

σ3


as a vector with 2× 2-matrices as entries. From the above equation, we get:

(p0 −mc) ξ − (p · σ) η = 0 (a)
(p · σ) ξ − (p0 +mc) η = 0 (b)

Rearranging of (b) gives us:

η = p · σ
p0 +mc

ξ .

Substituting the above expression of η in (a):(
p0 −mc−

(p · σ)2

p0 +mc

)
ξ = 0 . (6.13)

The appearing numerator results in

(p · σ)2 = (p1 σ1)2 + (p2 σ2)2 + (p3 σ3)2

+ p1p2 (σ1σ2 + σ2σ1)︸ ︷︷ ︸
=0

+p1p3 (σ1σ3 + σ3σ1)︸ ︷︷ ︸
=0

+p2p3 (σ2σ3 + σ3σ2)︸ ︷︷ ︸
=0

= p2

where we used {σi, σj} = 2δi,j and (σi)2 = 1. Therefore, from (6.13), we get

(p0)2 −m2c2 − p2

(p0 +mc) ξ = 0 .

99



CHAPTER 6. THE DIRAC EQUATION

Since (p0)2 = (p0)2 = E2

c2 = p2 +m2c2, ξ is arbitrary and we choose ξ = χs and find for us:

us(p) = N

 χs

p · σ
p0 +mc

χs

 ,

where N handles the normalization. To determine it, we need the conjugated spinor ūs(p) given
by

ūs(p) = u†(p)γ0 = N
(
χ†s ,

−p · σ
p0 +mc

χ†s

)
.

Then,

ūr(p)ur(p) = N 2
(

1− (p · σ)2

(p0 +mc)2

)
, (6.14)

where we write the numerator as

(p · σ)2 = p2 = E2

c2 −m
2c2

= p2
0 −m2c2

= (p0 +mc)(p0 −mc) .

Now, from (6.14), we calculate further

ūr(p)ur(p) = N 2
(

1− (p0 +mc)(p0 −mc)
(p0 +mc)2

)
= N 2 p0 +mc− p0 +mc

p0 +mc

= N 2 2mc
p0 +mc

!= 1 ,

what results in a normalization constant

N =
√
p0 +mc

2mc =

√
E +mc2

2mc2 . (6.15)

For different indices we find using (6.15)

ūr(p)us(p) = N 2

χT
r χs︸ ︷︷ ︸
δrs

− p2

(p0 +mc)2 χ
T
r χs︸ ︷︷ ︸
δrs


= N 2

(
1− (p0 +mc)(p0 −mc)

(p0 +mc)2

)
δrs

= δrs . (6.16)

Analogously, for the solutions with negative energies, we choose the ansatz ψ(x) = e+ ı
~px v(p),

where v(p) is again a spinor to be determined.

100



CHAPTER 6. THE DIRAC EQUATION

Substitution in the Dirac equation (6.4) gives:(
ı~γµ

(
+ ı

~

)
pµ −mc

)
v(p) = 0

⇒ (γµpµ +mc) v(p) = 0 . (6.17)

For a particle at rest, p = 0, we have(
γ0p0 +mc

)
v(pR) = 0

and with p0 = mc

γ0p0 +mc =


p0 +mc

p0 +mc
−p0 +mc

−p0 +mc

 =


2mc

2mc
0

0

 .

We therefore choose

vs(pR) =
(

0
χs

)
.

For arbitrary and finite p 6= 0, we take ψ(x) = e+ ı
~p
µxµ v(p), with v(p) =

(
ξ
η

)
.

From the Dirac equation (6.4), we get(
p0 +mc −p · σ
+p · σ −p0 +mc

) (
ξ
η

)
= 0 ,

and arrive at the two equations:

(p0 +mc) ξ − (p · σ) η = 0 (c)
(p · σ) ξ − (p0 −mc) η = 0 (d)

From (c) follows ξ = p·σ
p0+mc η, what substituted in (d) gives:(

(p · σ)2

p0 +mc
− (p0 −mc)

)
︸ ︷︷ ︸

= 0, as before

η = 0 .

Therefore, η is arbitrary. We again choose two linear independent solutions ∀ p and in summary
find the two spinors:

us(p) =
√
p0 +mc

2mc

 χsp · σ
p0 +mc

χs

 , vs(p) =
√
p0 +mc

2mc

 p · σ
p0 +mc

χs

χs


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We have following orthogonality relations for the above determined solutions:

ūr(p)us(p) = δrs

v̄r(p)vs(p) = −δrs
ūr(p)vs(p) = 0
v̄r(p)us(p) = 0 .

Remarks:

a) This normalization is invariant under orthochronous Lorentz transformations. Proof: see
next section in “Transformations of bilinear forms”.

b) The density ρ = j0 = cψ̄γ0ψ is not Lorentz invariant since it is the zeroth component of
a 4-vector:
E.g. for ψr,s = eıkx ur,s one has

ψ̄rγ
0ψs = ūr(k)γ0us(k)

= u†r(k)γ0γ0us(k)
= u†rus(k)

= p0 +mc

2mc

(
p2

(p0 +mc)2 + 1
)
δr,s

= p0
m
δr,s

(Note that p2 = p2
0 −m2c2 = (p0 +mc)(p0 −mc).) This is plausible since the spinors are

normalized such that the density is one in the rest system of the particles. For a Lorentz
transformation the product of density times volume must stay constant. Since the volume
is reduced by a factor γ =

√
1− (v/c)2 (note that only lengths parallel to the velocity

vector are contracted) the density must be increased by a factor 1/γ = E/mc2 (note that
E = γmc2, where m the rest mass of the particle).
Analogously for states with negative energy, ψr,s = e+ıkx vr,s.

Due to the linearity of the Dirac equation, the general solution is given by a superposition in
the form of a Fourier integral:

ψ(x) =
∫

dp
(2π)3

∑
s=± 1

2

{
e
ı
~pxvs(p)β∗s (p) + e−

ı
~pxus(p)αs(p)

}

Here αs(p) and β∗s (p) represent two arbitrary complex valued functions.

6.3 Non-relativistic limiting case and the magnetic moment of
the electron

Particles with a spin possess an “inner” magnetic moment. A charge e, which is moving on an
closed circular orbit, interacts with a magnetic field and possesses an effective magnetic moment,

µ = e

2m L .
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Would nature be “simple”, the proportionality between electron spin S = 1
2~σ and it’s magnetic

moment e/2m would be such, that the inner magnetic moment would assume the value (e/2m) ·
|S| = e~/4m.
The resulting shift in frequencies of the spectral lines would correspond to the “normal” Zeeman
effect. However experiments show an “anomalous” Zeeman effect – the proportionality constant
is 2 times the one of the circular orbit motion, i.e. the magnetic moment of the electron is −µ
where

µ = 2 e

2mS = e

m
S = e~

2mσ

The factor 2 is often called Landé factor, gs = 2. This is an immediate result of the Dirac
equation. To derive this we have to consider the equation in the case of an electron in presence
of an electromagnetic field.

6.3.1 Dirac equation with electromagnetic field

We use the scheme of “minimal coupling” (The reason will later on become clear when looking
at gauge theories, but is in this case analogous to classical mechanics and electrodynamics):

p→ p− e

c
A or −ı~ ∂

∂xi
→ −ı~ ∂

∂xi
− e

c
Ai

E → E + eφ or ı~
∂

∂t
→ ı~

∂

∂t
+ eφ .

Using the co- and contravariant definitions of the momentum operator,

pµ = ı~∂µ pµ = ı~∂µ ,

where ∂µ = ∂
∂xµ or ∂µ = ∂

∂xµ
, we have as temporal and spatial components:

p0 = p0 = ı~
∂

∂ ct
pi = −pi = ı~

∂

∂xi
= −ı~ ∂

∂xi

In this formulation, the minimal coupling scheme becomes

pµ → pµ −
e

c
Aµ ,

where Aµ = (φ, −A) the (covariant) four-vectorpotential – with φ the electric potential and A
the usual vector potential. Expressed as derivations we find:

ı~∂µ =
(
ı~

∂

∂(ct) , ı~∇
)
−→

ı~
∂

∂(ct) −
e

c
φ︸ ︷︷ ︸

1
c (ı~ ∂∂t−eφ)

, ı~∇− e

c
A


Therefore, the Dirac equation under minimal coupling becomes

ı~γµ∂µψ −mcψ = 0 −→ γµ
(
ı~∂µ −

e

c
Aµ

)
ψ −mcψ = 0 (6.18)
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We then get: {
γ0
(
ı~

∂

∂(ct) −
e

c
φ

)
ψ + γi(pi −

e

c
Ai)−mc

}
ψ = 0

⇒ ı~
∂ψ

∂t
=

c γ0γi︸︷︷︸
=:αi

(−pi)︸ ︷︷ ︸
=pi

−e
c

(−Ai)︸ ︷︷ ︸
=Ai

+ γ0︸︷︷︸
=:β

mc2 + eφ

ψ
⇒ ı~

∂ψ

∂t
=
{
cα ·

(
p− e

c
A
)

+ βmc2 + eφ

}
︸ ︷︷ ︸

=:HDirac (Dirac Hamiltonian)

ψ = 0 , (6.19)

where the introduced matrices are defined as

β =
(
1 0
0 −1

)
, αi =

(
0 σi

σi 0

)
and α =

α1

α2

α3

 .

6.3.2 Non-relativistic limit

In a first step, we partition the 4-spinor ψ into two 2-spinors ϕ̃ and χ̃:

ψ =
(
ϕ̃
χ̃

)

Using this in (6.19) we get

ı~
∂

∂t

(
ϕ̃
χ̃

)
= c

(
0 σ
σ 0

)
· (p− e

c
A)︸ ︷︷ ︸

π

(
ϕ̃
χ̃

)
+mc2

(
1 0
0 −1

)(
ϕ̃
χ̃

)
+ eφ

(
ϕ̃
χ̃

)

=⇒ ı~
∂

∂t

(
ϕ̃
χ̃

)
= c

(
σ · πχ̃
σ · πϕ̃

)
+mc2

(
ϕ̃
−χ̃

)
+ eφ

(
ϕ̃
χ̃

)
(6.20)

In the non-relativistic limit the rest energy mc2 is the largest energy and we define:(
ϕ̃
χ̃

)
= e−

ımc2t
~

(
ϕ
χ

)

Then from Eq. (6.20), we obtain

ı~
(
ϕ̇
χ̇

)
= c

(
σ · πχ
σ · πϕ

)
+ eφ

(
ϕ
χ

)
− 2mc2

(
0
χ

)
(6.21)

In the second equation, ı~χ̇ = cσ · πϕ+ eφχ− 2mc2χ, the last term is much larger than χ̇ and
eφχ. So, neglecting those two terms we get,

0 = c(σ · π)ϕ− 2mc2χ

⇒ χ = σ · π
2mc ϕ
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Note that π/m ∼ v, i.e. of the same order as the velocity, and therefore χ ∝ v
cϕ � ϕ (in the

non-relativistic limit). Therefore one denotes ϕ as the “large” component and χ as the “small”
component.

Inserting the expression of χ in the first line of (6.21), ı~ϕ̇ = cσ · πχ+ eφϕ, leads to

ı~
∂ϕ

∂t
=
{ 1

2m(σ · π)(σ · π) + eφ

}
ϕ . (6.22)

To evaluate (σ · π)(σ · π), we use that for general a, b

(σ · a)(σ · b) = σiaiσjbj = σiσj︸ ︷︷ ︸
=δij+ıεijkσk

aibj

= aibi + ı (εijkaibj)︸ ︷︷ ︸
(a×b)k

σk

Therefore,

(σ · a)(σ · b) = a · b + ıσ · (a × b)

and

(σ · π)(σ · π) = π · π + ıσ · (π × π)

= (p− e

c
A)2 + ıσ · (p− e

c
A)× (p− e

c
A)︸ ︷︷ ︸

= −e
c

(A× p + p×A)

.

It is

(A× p + p×A)x = (Aypz −Azpy) + (pyAz − pzAy)
= (pyAz −Azpy)− (pzAy −Aypz)
= [py, Az]− [pz, Ay]

= ~
ı

(
∂

∂y
Az −

∂

∂z
Ay

)
= ~
ı
(∇×A)x

and the other components are obtained by cyclic permutation. Therefore, the whole expressions
results in

A× p + A× p = ~
ı
(∇×A) = ~

ı
B

From (6.22), we finally obtain

ı~
∂ϕ

∂t
=
{ 1

2m(p− e

c
A)2 − e~

2mcσ ·B + eφ

}
︸ ︷︷ ︸

=:HPauli

ϕ .
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The newly defined

HPauli = 1
2m(p− e

c
A)2 − e~

2mcσ ·B + eφ (6.23)

is the Hamiltonian of the Pauli equation, the non-relativistic equation for an electron (spin
1/2) described by a 2-spinor ϕ.

Proof:
Let B = ∇ × A be a homogeneous magnetic field, i.e. B(x) ≡ B = const. Furthermore, we
choose A = 1

2(B× r).

We make the control calculation

rot A = ∇×A = 1
2∇× (B× r)

= 1
2∇×

Byz −BzyBzx−Bxz
Bxy −Byx


= 1

2

∂y(Bxy −Byx)− ∂z(Bzx−Bxz)
∂z(Byz −Bzy)− ∂x(Bxy −Byx)
∂x(Bzx−Bxz)− ∂y(Byz −Bzy)


= 1

2

2Bx
2By
2Bz

 =

BxBy
Bz

 = B .

Considering the quadratic term of (6.23), we have

1
2m

(
p− e

c
A
)2

= p2

2m −
e

2mc (p ·A + A · p) + e2

2mc2 A2

where for the middle term we find

(p ·A + A · p)ϕ = p · (Aϕ) + A · (pϕ)
= (p ·A)︸ ︷︷ ︸

= ~
ı
∇·A=0,

Coulomb gauge

ϕ+ A · (pϕ) + A · (pϕ)

= 2A · pϕ .

Therefore we can calculate further

p ·A + A · p = 2A · p = (B× r) · p
= εijkBixjpk

= εjkixjpkBi

= (r× p) ·B
= L ·B ,

where we introduced the orbital angular momentum

L = r× p .
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By also introducing the spin angular momentum

S = ~
2σ ,

Eq. (6.23) takes the form

HPauli = p2

2m −
e

2mc(L + 2S)︸ ︷︷ ︸
=:µ, magnetic moment

of the electron

·B + e2

2mc2A
2 + eφ .

So the magnetic moment consists of two parts

µ = µorbit + µspin

where

µspin = g
e

2mcS ,

with the gyromagnetic ratio (or Landé factor)

g = 2 .

QED finds g slightly larger than 2, and can predict a precise value of g with high precision (10
digits).

6.3.3 Relativistic corrections to the Pauli equation

To derive the relativistic correction of the Pauli equation, we again consider the Dirac
Equation (6.19) in the formulation with the Dirac Hamiltonian:

ı~
∂ψ

∂t
= HDiracψ ,

with

HDirac = cα · π + βmc2 + eφ , and π = p− e

c
A .

Taking the stationary equation, HDiracψ = Eψ , we choose the ansatz: ψ =
(
ϕ
χ

)
.

Then,

E

(
ϕ
χ

)
= c

(
0 σ · π

σ · π 0

)(
ϕ
χ

)
+
(
mc2 + eφ 0

0 −mc2 + eφ

)(
ϕ
χ

)
or,

(E − eφ)ϕ− cσ · πχ = mc2ϕ (6.24a)
(E − eφ)χ− cσ · πϕ = −mc2χ (6.24b)
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For simplicity consider the case A = 0, i.e. π = p. Then (6.24b) yields:

χ = (E +mc2 − eφ)−1c(σ · p)ϕ

=
(
σ · p
2mc −

1
2mc(E −mc2 − eφ)σ · p2mc2

)
ϕ(

b.c. 1
E+mc2−eφ

= 1
2mc2+(E−mc2−eφ)

= 1
2mc2

1

1+E−mc2−eφ
2mc2

≈ 1
2mc2

(
1−E−mc

2−eφ
2mc2

))

Inserting this in (6.24a) gives

E ϕ = (eφ+mc2)ϕ+ c(σ · p)
(
σ · p
2mc −

1
2mc(E −mc2 − eφ)σ · p2mc2

)
ϕ

=


(σ · p)2

2m︸ ︷︷ ︸
=p2/2m

+eφ+mc2 − (σ · p)
2mc

E −mc2 − eφ
2mc σ · p

 ϕ

=: H2 ϕ (6.25)

To leading order χ = σ·p
2mc ϕ = O(v/c), therefore neglecting smaller terms, we find that the

Dirac spinor ψ =
(
ϕ
χ

)
is correctly normalized to 1, if we instead of ϕ choose the rescaled spinor

ϕ̄ = (1 + p2/8m2c2)ϕ.

Proof:

1 =
∫
dr ψ̄ψ =

∫
dr
(
ϕ† χ†

)
γ0
(
ϕ
χ

)
=
∫
dr
(
ϕ†ϕ− χ†χ

)
=
∫
drϕ†

(
1−

(
σ · p
2mc

)2
)
ϕ ,

i.e. with

ϕ̄ =
(

1− p2

4m2c2

)−1/2

ϕ ≈
(

1 + p2

8m2c2

)
︸ ︷︷ ︸

=:Ω

ϕ

ψ =
(
ϕ̄
χ

)
is correctly normalized.

We will now rewrite (6.25), H2 ϕ = E ϕ, using ϕ̄:

ϕ = Ω−1ϕ̄ =
(

1 + p2

8m2c2

)−1

ϕ ≈
(

1− p2

8m2c2

)
ϕ̄ .

Therefore (6.25) becomes

(E −mc2)Ω−1ϕ̄ = (H2 −mc2)Ω−1 ϕ̄

Ω−1·...⇒ Ω−2E′ ϕ̄ = Ω−1(H2 −mc2)Ω−1ϕ̄ where E′ := E −mc2 .
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Inserting the definition of Ω yields(
1− p2

4m2c2

)
E′ ϕ̄ =

{(
1− p2

8m2c2

)(
p2

2m + eφ− σ · p2mc
E′ − eφ

2mc σ · p
)(

1− p2

8m2c2

)}
ϕ̄

≈
{
p2

2m + eφ− σ · p2mc
E′ − eφ

2mc σ · p− p2

8m2c2

(
p2

2m + eφ

)
−
(
p2

2m + eφ

)
p2

8m2c2

}
ϕ̄

⇒ E′ ϕ̄ =


p2

2m + eφ− p4

8m3c2 + p2

4m2c2E
′ − p2

8m2c2 eφ− eφ
p2

8m2c2︸ ︷︷ ︸
= p2

8m2c2
(
E′ − eφ

)
+
(
E′ − eφ

) p2

8m2c2

−σ · p2mc
E′ − eφ

2mc σ · p


ϕ̄

Because (σ · p)2 = p2 one is able to write

E′ ϕ̄ =


p2

2m + eφ− p4

8m3c2 +
(
σ · p
2mc

)2 E′ − eφ
2 + E′ − eφ

2

(
σ · p
2mc

)2
− 2

=:A︷ ︸︸ ︷
σ · p
2mc

=:B︷ ︸︸ ︷
E′ − eφ

2
σ · p
2mc︸ ︷︷ ︸

(∗∗∗)

 ϕ̄

(∗ ∗ ∗) = A2B +BA2 − 2ABA
= A(AB −BA)− (AB −BA)A = [A, [A,B]]

= 1
8m2c2

[
σ · p,

[
σ · p, E′ − eφ

]︸ ︷︷ ︸
= ıe~σ · ∇φ

]

= ıe~
8m2c2 [σ · p, σ · ∇φ]︸ ︷︷ ︸

= σiσj [pi, ∇φj ] + σi����[pi, σj ]∇φj
+σj�����[σi, ∇φj ]pi + [σi, σj ]∇φjpi
= −ı~∆φ− 2ıσ · (∇φ× p)

where on the left side, following
relations were used:

[pi,∇φj ] = ~
ı

[∂i, ∂jφ]

=~
ı
∂i∂jφ = ~

ı
∂j∂iφ

σiσj =
{
−σjσi , for i 6= j

1 , for i = j

[σi, σj ] = 2ıεijkσk

E′ ϕ̄ =


p2

2m + eφ− p4

8m3c2︸ ︷︷ ︸
p4-term

+ e~2

8m2c2 ∆φ︸ ︷︷ ︸
Darwin-term

+ e~
4m2c2σ · (∇φ× p)︸ ︷︷ ︸

LS coupling

 ϕ̄

These are the leading relativistic corrections of the Pauli equation. Corrections of higher order
in v/c can systematically be calculated by using the Foldy-Wouthuysen transformation.
If A 6= 0 one has to replace p through p− eA as well as adding the additional term gs

e
2mcS to

the Hamiltonian.
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The meanings and implications of each of the additional terms have already been discussed in
Quantum Mechanics I:

• The Darwin term only has an effect for s-states when considering a Coulomb potential,
because ∆1

r = 4πδ(r).

• The p4-term follows from

E = mc2

√
1 + p2

m2c2 ≈ mc
2

1 + p2

2m2 −
1
8

(
p2

m2c2

)2
 = mc2 + p2

2m −
p4

8m3c2

• LS coupling refers to spin-orbit coupling: For a central potential we have ∇φ = r
rφ
′,

therefore:

e~
4m2c2σ · (∇φ× p) = ~

4m2c2
1
r
eφ′(r)σ · (r× p)

= ~
4m2c2

eφ′

r
σ · L , L : Orbital angular momentum

6.4 Lorentz covariance of the Dirac equation

Lorentz covariance and the transformation of spinors

The principle of relativity states that the laws of nature are identical in every inertial reference
frame.
We consider two inertial frames I and I ′ with the space-time coordinates x and x′. Let the
wave function of a particle in these two frames be ψ and ψ′, respectively. We write the Poincaré
transformation between I and I ′ as

x′ = Λx+ a . (6.26)

It must be possible to construct the wave function ψ′ from ψ. This means that there must be a
local relationship between ψ′ and ψ:

ψ′(x′) = F (ψ(x)) = F (ψ(Λ−1(x′ − a))) . (6.27)

The principle of relativity together with the functional relation (6.27) necessarily leads to the
requirement of Lorentz covariance: The Dirac equation in I is transformed by (6.26) and (6.27)
into a Dirac equation in I ′. (The Dirac equation is form invariant with respect to Poincaré
transformations.) In order that both ψ and ψ′ may satisfy the linear Dirac equation, their
functional relationship must be linear, i.e.

ψ′(x′) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1(x′ − a)) . (6.28a)

Here, S(Λ) is a 4 × 4-matrix, with which the spinor ψ is to be multiplied. We will determine
S(Λ) below. In components, the transformation reads:

ψ′α(x′) =
4∑

β=1
Sαβ(Λ)ψβ(Λ−1(x′ − a)) . (6.28b)
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The Lorentz covariance of the Dirac equation requires that ψ′ obey the equation

(−ıγµ∂′µ +m)ψ′(x′) = 0 , (c = 1, ~ = 1) (6.29)

where

∂′µ = ∂

∂x′µ
.

The γ-matrices are unchanged under the Lorentz transformations. In order to determine S,
we need to convert the Dirac equation in the primed and unprimed coordinate system into one
another. The Dirac equation in the unprimed coordinate system

(−ıγµ∂µ +m)ψ(x) = 0 (6.30)

can by means of the relation

∂

∂xµ
= ∂x′ν

∂xµ
∂

∂x′ν
= Λνµ∂′ν

and

S−1ψ′(x′) = ψ(x) ,

be brought into the form

(−ıγµΛνµ∂′ν +m)S−1(Λ)ψ′(x′) = 0 . (6.31a)

After multiplying from the left by S, one obtains

−ıSΛνµγµS−1∂′νψ
′(x′) +mψ′(x′) = 0 . (6.31b)

From a comparison of (6.31b) with (6.29), it follows that the Dirac equation is form invariant
under Lorentz transformations, provided S(Λ) satisfies the following condition:

S(Λ)−1γνS(Λ) = Λνµγµ . (6.32)

It is possible to show (see next section) that this equation has nonsingular solutions for S(Λ). A
wave function that transforms under a Lorentz transformation according to ψ′ = Sψ is known
as a four-component Lorentz spinor.
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Determination of the representation S(Λ)
Infinitesimal Lorentz transformations
We first consider infinitesimal (proper, orthochronous) Lorentz transformations

Λνµ = gνµ + ∆ωνµ (6.33a)

with infinitesimal and antisymmetric ∆ωνµ

∆ωνµ = −∆ωµν . (6.33b)

This equation implies that ∆ωνµ can have only 6 independent nonvanishing elements.
These transformations satisfy the defining relation for Lorentz transformations

ΛλµgµνΛρν = gλρ , (6.34)

as can be seen by inserting (6.33) into this equation:

gλµg
µνgρν + ∆ωλρ + ∆ωρλ +O((∆ω)2) = gλρ . (6.35)

Each of the 6 independent elements of ∆ωµν generates an infinitesimal Lorentz transformation.
First we consider two typical special cases – rotations and Lorentz boosts:

∆ω0
1 = −∆ω01 = −∆ξ : Transformation to a coordinate

system moving with velocity c∆ξ
in the x direction

(6.36)

∆ω1
2 = −∆ω12 = ∆ϑ : Transformation to a coordinate

system that is rotated by an angle
∆ϑ about the z axis (see Fig. 6.1).

(6.37)

Rotation around the z axis
The spatial components transform like (note that only the x and y coordinates are transformed):

Λ =


1

cos ϑ sin ϑ
− sin ϑ cos ϑ

1



= 1 + ϑ


0

0 1
−1 0

0

+O(ϑ2)

for infinitesimal ϑ. Expressed as single components one finds

Λνµ = δνµ + ϑ∆ν
µ , where ∆1

2 = −∆2
1 = 1, all other 0 .

It must be possible to expand S as a power series in ∆ν
µ. We write

S = 1 + τ , S−1 = 1− τ , (6.38)
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x1

x2

x′1

x′2

x

∆ϕ

Figure 6.1: Infinitesimal rotation, pas-
sive transformation

where τ ≡ τ(ϑ) is likewise infinitesimal. We insert (6.38) into the equation for S, namely
S−1γνS = Λνµγµ, and get

(1− τ)γν(1 + τ) = γν + γντ − τγν +O(τ2)
!= γµ(δνµ + ϑ∆ν

µ) +O(ϑ2) ,

from which the equation determining τ follows as

⇒ γντ − τγν != ϑγµ∆ν
µ .

or γ1τ − τγ1 = ϑγ2∆1
2 = ϑγ2

γ2τ − τγ2 = ϑγ1∆2
1 = −ϑγ1

what yields the solution

τ = ı
ϑ

2

(
σ3 0
0 σ3

)
.

Proof:

γ1τ − τγ1 = ı
ϑ

2

{(
0 σ1

−σ1 0

)(
σ3 0
0 σ3

)
−
(
σ3 0
0 σ3

)(
0 σ1

−σ1 0

)}

= ı
ϑ

2

(
0 σ1σ3 − σ3σ1

−σ1σ3 + σ3σ1 0

)
σ1σ3=−ıσ2

= ı
ϑ

2

(
0 −2ıσ2

2ıσ2 0

)
= ϑγ2
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γ2τ − τγ2 = ı
ϑ

2

{(
0 σ2

−σ2 0

)(
σ3 0
0 σ3

)
−
(
σ3 0
0 σ3

)(
0 σ2

−σ2 0

)}

= ı
ϑ

2

(
0 σ2σ3 − σ3σ2

−σ2σ3 + σ3σ2 0

)
σ2σ3=ıσ1

= ı
ϑ

2

(
0 2ıσ1

−2ıσ1 0

)
= −ϑγ1

To within an additive multiple of 1, this unambiguously determines τ . If there were two solutions,
then the difference between them would commute with all γµ, and thus be proportional to 1.

By a succession of infinitesimal rotations we can construct the transformation matrix S for a
finite rotation through an angle ϑ. This is achieved by decomposing the finite rotation into a
sequence of N steps ϑ/N :

S = lim
N→∞

(1 + τ(ϑ/N))N

= lim
N→∞

(
1 + ı

ϑ

2N

(
σ3 0
0 σ3

))N

= exp
(
ı
ϑ

2

(
σ3 0
0 σ3

))

= cos ϑ2 1 + ı sin ϑ

2

(
σ3 0
0 σ3

)
. (6.39)

Note that in the arguments of cos and sin we find ϑ/2, which results in

S(2π) = −1 and S(4π) = +1 .

This means that spinors do not regain their initial value after a rotation through 2π, but only
after a rotation through 4π, a fact that is also confirmed by neutron scattering experiments.
Also note that S(ϑ) does not mix the upper and lower components of a 4-spinor ψ. Therefore
the upper two components transform exactly like Pauli (2-)spinors with respect to rotations:

ϕ =
(
a
b

)
ϕ′(x′) = eı

ϑ
2 σ

3
ϕ(x) .

For a rotation through an angle ϑ about an arbitrary axis n = (n1, n2, n3)T , one has:

S = exp
{
ı
ϑ

2 n ·
(
σ 0
0 σ

)}

= exp
{
ı
ϑ

2

[
n1

(
σ1 0
0 σ1

)
+ n2

(
σ2 0
0 σ2

)
+ n3

(
σ3 0
0 σ3

)]}
. (6.40)
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Boost in x direction

As second example we want to consider a Lorentz boost in x direction. With the definition
tanh ξ = v/c we find the matrix representation of Λ is given by (see Sec. B.2):

Λ =


cosh ξ − sinh ξ 0 0
− sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1



= 1+ ξ


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

+O(ξ2) ,

where to derive the second representation we assumed ξ as infinitesimal. This yields the equation

Λνµ = 1 + ξ∆ν
µ , where ∆0

1 = ∆1
0 = −1 , all other 0

for the single components of the transformation matrix. Analogous to the previous example of
a rotation, we take

S = 1 + τ , S−1 = 1− τ ,

where τ ≡ τ(ξ) is assumed infinitesimal. τ is determined through

S−1γνS = (1− τ)γν(1 + τ)
= γν + γντ − τγν +O(τ2)
!= γµ(δνµ + ξ∆ν

µ) +O(ξ2) ,

which leads to the equations

⇒ γντ − τγν != ξγµ∆ν
µ

or γ0τ − τγ0 = ξγ1∆0
1 = −ξγ1

γ1τ − τγ1 = ξγ0∆1
0 = −ξγ0 ,

which are solved by

τ = −1
2ξγ

0γ1 = −1
2ξα

1 = −1
2

(
0 σ1

σ1 0

)
.

Proof:

γ0τ − τγ0 = −1
2ξ(γ

0γ0︸ ︷︷ ︸
=1

γ1 − γ0γ1γ0︸ ︷︷ ︸
=−γ1

) = −ξγ1

γ1τ − τγ1 = −1
2ξ(γ

1γ0γ1︸ ︷︷ ︸
=−γ1γ1γ0

=−(−1)γ0=γ0

−γ0 γ1γ1︸ ︷︷ ︸
=−1

) = −ξγ0
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By a sequence of infinitesimal boosts, we can construct the transformation matrix S of a finite
boost with the parameter ξ = N · (ξ/N), where we assume N →∞, so that ξ/N is infinitesimal.
This yields

S = lim
N→∞

(
1− 1

2
ξ

N

(
0 σ1

σ1 0

))N

= exp
{
−ξ2

(
0 σ1

σ1 0

)}

= cosh ξ

2 1− sinh ξ

2

(
0 σ1

σ1 0

)

We want to consider now a general infinitesimal Lorentz transformation

Λνµ = δνµ + ∆ωνµ and (Λ−1)νµ = δνµ −∆ωνµ .

To first order the transformation S has the form

S(Λ) = 1− ı

4σµν∆ωµν

resp. S(Λ)−1 = 1 + ı

4σµν∆ωµν ,

where the matrix σµν needs to be determined. Condition (6.32), γµΛνµ = S−1γνS implies

(
1− ı

4σαβ∆ωαβ
)
γµ
(

1 + ı

4σαβ∆ωαβ
)

=γµ + ı

4[γµ, σαβ]∆ωαβ

!=γµ + ∆ωµνγν

⇒ ı

4[γµ, σαβ]∆ωαβ = ∆ωµνγν . (6.41)

The equation (6.41) has the solution

σαβ = 1
2[γα, γβ] . (6.42)

116



CHAPTER 6. THE DIRAC EQUATION

Proof:

[γµ, γαγβ] = γµγαγβ − γα γβγµ︸ ︷︷ ︸
=2gβµ−γµγβ

= γµγα︸ ︷︷ ︸
2gαµ−γαγµ

γβ − 2γαgβµ + γαγµγβ

= 2gαµγβ − 2gβµγα

⇒ ı

2[γµ, γαγβ] = ı(gµαγβ − gµβγα)

(6.42)⇒ [γµ, σαβ] = [γµ, 1
2(γαγβ − γβγα)]

= ı(gµαγβ − gµβγα)− ı(gµβγα − gµαγβ)
= 2ı(gµαγβ − gµβγα)

ı

4[γµ. σαβ]∆ωαβ = −1
2(gµαγβ − gµβγα) ∆ωαβ

= −1
2(∆ωµβγβ − ∆ωαµ︸ ︷︷ ︸

=−∆ωµα(∗)

γα)

= −∆ωµνγν
= ∆ωµνγν

(*) Note that we will address the antisymmetry of ∆ωνµ later.

To arrive at a finite Lorentz transformation, we again use a sequence of infinitesimal transfor-
mations:

S(Λ(ωµν)) = lim
N→∞

(
1− ı

4
ωµν

N
σµν

)N
= exp

{
− ı4σµνω

µν
}

As a conclusion, we will test our result on the concrete example of a rotation about the z axis.
We have

S = 1 + τ , with τ = − ı4σµν∆ωµν

= − ı4(σ12∆ω12 + σ21∆ω21)

= − ı2σ12∆ω12 ,

where the antisymmetry of ∆ω12 = −∆ω21 and σ12 = −σ21 were used. With the reminder
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γµ = (γ0,−γ1,−γ2,−γ3), we further find:

σ12 = ı

2[γ1, γ2]

= ı

2(γ1γ2 − γ2γ1︸ ︷︷ ︸
=−γ1γ2

)

= ıγ1γ2

= ı

(
0 −σ1
σ1 0

)(
0 −σ2

σ2 0

)

= ı

 =−ıσ3︷ ︸︸ ︷
−σ1σ2 0

0 −σ1σ2


=
(
σ3 0
0 σ3

)

Combining the previous results and using ∆ω12 = −∆ω1
2 = −ϑ∆1

2 = −ϑ, we finally arrive at

S = 1− ı

2σ12

=−ϑ︷ ︸︸ ︷
∆ω12

= 1 + ı
ϑ

2

(
σ3 0
0 σ3

)
X

which corresponds to the expected result. The remaining example of a boost in x direction
remains as an exercise for the reader.

Antisymmetry of ∆ωλρ

From a group theoretical standpoint we know that a Lorentz transformation L ∈ SO(3, 1), which
implies

ΛgΛT = g (6.43a)

or ΛλµgµνΛρν = gλρ (6.43b)

For an infinitesimal transformation Λ we find

Λλµ = δλµ + ∆ωλµ , (6.44)

what inserted in (6.43) leads to:

(δλµ + ∆ωλµ)gµν(δρν + ∆ωρν) = gλρ

⇒ gλρ + ∆ωλρ + ∆ωρλ = gλρ

⇒ ∆ωλρ = −∆ωρλ

Note that for mixed indices, ∆ωλρ is in general not antisymmetric, e.g.:

∆ω1
2 = −∆ω12 = +∆ω21 = −∆ω2

1 (cf. rotation around z axis)
∆ω0

1 = −∆ω01 = +∆ω10 = +∆ω1
0 (cf. boost in x direction)
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Spatial Reflection, Parity

The Lorentz transformation corresponding to a spatial reflection is represented by

Λµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (6.45)

The associated S is determined, according to (6.32), from

S−1γµS = Λµνγν =
4∑

ν=1
gµνγν = gµµγµ , (6.46)

where no summation over µ is implied. One immediately sees that the solution of (6.46), which
we shall denote in this case by P , is given by

S = P ≡ eıϕγ0 . (6.47)

Here, eıϕ is an unobservable phase factor. This is conventionally taken to have one of the four
values ±1, ±ı; four reflections then yield the identity 1. The spinors transform under a spatial
reflection according to

ψ′(x′) ≡ ψ′(x′, t) = ψ′(−x, t) = eıϕγ0ψ(x) = eıϕγ0ψ(−x′, t) . (6.48)

The complete spatial reflection (parity) transformation for spinors is denoted by

P = eıϕγ0P(0) , (6.48′)

where P(0) causes the spatial reflection x→ −x.

From the relationship γ0 ≡ β =
(
1 0
0 −1

)
one sees in the rest frame of the particle, spinors of

positive and negative energy that are eigenstates of P – with opposite eigenvalues, i.e., opposite
parity. This means that the intrinsic parities of particles and antiparticles are opposite.

Charge conjugation

We revisit the Dirac equation with an electromagnetic field given by (6.18){
γµ
(
ı~∂µ −

e

c
Aµ
)
−mc

}
ψ = 0 (6.18)

If we take the adjoint (complex conjugation and transposition) of this equation, we find

ψ†

 γµ†︸︷︷︸
=γ0γµγ0

(
− ı~
←−
∂ µ
)
− e

c
γµ†Aµ −mc

 = 0

⇒ ψ†γ0︸ ︷︷ ︸
=ψ̄

(
γµ
(
− ı~
←−
∂ µ
)
− e

c
γµAµ −mc

)
γ0 = 0

119



CHAPTER 6. THE DIRAC EQUATION

After multiplying this result from the right with γ0 and taking the transpose, we get(
γµT

(
− ı~∂µ −

e

c
Aµ
)
−mc

)
ψ̄T = 0 (6.49)

We now define the operator

C := ıγ2γ0 =
(

0 −ıσ2

−ıσ2 0

)
, with C−1 = −C , (6.50)

which applied to the transposed Dirac matrices yields the effect

CγµTC−1 = −γµ . (6.51)

Examples:

γ0T = γ0 ⇒ Cγ0TC−1 = ıγ2γ0γ0(−ıγ2γ0)
= γ2γ2γ0 = −γ0

γ1T = −γ1 ⇒ Cγ1TC−1 = ıγ2γ0(−γ1)(−ıγ2γ0)
= −γ2γ0γ1γ2γ0

= +γ0γ1γ0 = −γ1

etc.

Applying the operator C to the manipulated Dirac equation (6.49), one finds

C

{
γµT

(
− ı~∂µ −

e

c
Aµ
)
−mc

}
C−1Cψ̄T = 0{

−γµ
(
− ı~∂µ −

e

c
Aµ
)
−mc

}
Cψ̄T = 0

γµ(ı~∂µ +︸︷︷︸
note e→−e!

e

c
Aµ
)
−mc

 ψC = 0 , (6.52)

where we defined the charge conjugated solution

ψC := Cψ̄T , (6.53)

which represents a solution to the Dirac equation, where the sign of the charge has been flipped.
We consider the particle at rest as an example case. For negative energies and a spin down
(sz = −1/2), one possible solution of the Dirac equation is given by

ψ
(−)
↓ = eımc

2t/~


0
0
0
1

 .
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The charge conjugated solution is then

ψC = C
[
(ψ∗)Tγ0

]T
= ıγ2γ0γ0Tψ∗

= e−ımc
2t/~ (ıγ2)


0
0
0
1



= e−ımc
2t/~


1
0
0
0

 = ψ
(+)
↑

We find that starting with a solution ψ of negative energy and sz = −1/2, the charge conjugated
solution gives a solution with positive energy and sz = +1/2. Therefore we conclude that to
each particle with E > 0, sz = ±1/2 and charge e belongs a particle with E < 0, sZ = ∓1/2
and charge −e. These are linked via charge conjugation.

In 1930, Dirac postulated that
in the vacuum (ground state)
all states with negative energy
are occupied – these build the
so called “Dirac sea”.

p

E

electron

hole

An excitation of an electron in the Dirac sea (with energy E < 0) into a state with E > 0
leaves behind a “hole” in the Dirac sea with charge −e (e the charge of the electron), what
corresponds to the charge difference between the Dirac sea with hole and the Dirac sea without
hole. Respectively the energy E > 0 corresponds to the energy difference of the states of the
Dirac sea with hole and without hole.
The described “hole” is the positron – the charge conjugated particle of the electron – which
was observed in 1932.

Further Properties of S
For the calculation of the transformation of bilinear forms such as jµ(x), we need to establish a
relationship between the adjoint transformations S† and S−1.
Assertion:

S†γ0 = bγ0S−1 , (6.54a)
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where

b = ±1 for Λ00
{
≥ +1
≤ −1

. (6.54b)

Proof: We take as our starting point Eq. (6.32)

S−1γµS = Λµνγν , Λµν real, (6.55)

and write the adjoint relation

(Λµνγν)† = S†γµ†S†−1 . (6.56)

The hermitian adjoint matrix can be expressed most concisely as

γµ† = γ0γµγ0 . (6.57)

By means of the anticommutation relations, one easily checks that (6.57) is in accord with
γ0† = γ0, γk† = −γk. We insert this into the left- and the right-hand sides of (6.56) and then
multiply by γ0 from the left- and right-hand side to gain

γ0Λµνγ0γνγ0γ0 = γ0S†γ0γµγ0S†−1γ0

Λµνγν = S−1γµS = γ0S†γ0γµ(γ0S†γ0)−1 ,

since (γ0)−1 = γ0. Furthermore, on the left-hand side we have made the substitution Λµνγν =
S−1γµS. We now multiply by S and S−1:

γµ = Sγ0S†γ0γµ(γ0S†γ0)−1S−1 ≡ (Sγ0S†γ0)γµ(Sγ0S†γ0)−1 .

Thus, Sγ0S†γ0 commutes with all γµ and is therefore a multiple of the unit matrix

Sγ0S†γ0 = b1 , (6.58)

which also implies that

Sγ0S† = bγ0 (6.59)

and yields the relation we are seeking 1

S†γ0 = b(Sγ0)−1 = bγ0S−1 . (6.54a)

Since (γ0)† = γ0 and Sγ0S† are hermitian, by taking the adjoint of (6.59) one obtains Sγ0S† =
b∗γ0, from which it follows that

b∗ = b (6.60)

and thus b is real. Making use of the fact that the normalization of S is fixed by detS = 1, on
calculating the determinant of (6.59), one obtains b4 = 1. This, together with (6.60), yields:

b = ±1 . (6.61)
1Note: For the Lorentz transformation L↑+ (restricted L.T. and rotations) and for spatial reflections, one can

derive this relation with b = 1 from the explicit representations.
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The significance of the sign in (6.61) becomes apparent when one considers

S†S = S†γ0γ0S = bγ0S−1γ0S = bγ0Λ0
νγ

ν

= bΛ0
01 +

3∑
k=1

bΛ0
k γ

0γk︸ ︷︷ ︸
αk

.
(6.62)

S†S has positive definite eigenvalues, as can be seen from the following. Firstly, detS†S = 1 is
equal to the product of all the eigenvalues, and these must therefore all be nonzero. Furthermore,
S†S is hermitian and its eigenfunctions satisfy S†Sψa = aψa, whence

aψ†aψa = ψ†aS
†Sψa = (Sψa)†Sψa > 0

and thus a > 0. Since the trace of S†S is equal to the sum of all the eigenvalues, we have, in
view of (6.62) and using Trαk = 0,

0 < Tr(S†S) = 4bΛ0
0 .

Thus bΛ0
0 > 0. Hence, we have the following relationship between the signs of Λ00 and b:

Λ00 > 1 for b = 1
Λ00 6 −1 for b = −1 .

(6.54b)

For Lorentz transformations that do not change the direction of time, we have b = 1; while those
that do cause time reversal have b = −1.

Transformation of Bilinear Forms

The adjoint spinor is defined by

ψ̄ = ψ†γ0 . (6.63)

We recall that ψ† is referred to as a hermitian adjoint spinor. The additional introduction of ψ̄
is useful because it allows quantities such as the current density to be written in a concise form.
We obtain the following transformation behaviour under a Lorentz transformation:

ψ′ = Sψ =⇒ ψ′† = ψ†S† =⇒ ψ̄′ = ψ†S†γ0 = bψ†γ0S−1 , (6.64)

thus,

ψ̄′ = bψ̄S−1 . (6.65)

Given the above definition, the current density reads:

jµ = cψ†γ0γµψ = cψ̄γµψ (6.66)

and thus transforms as

jµ
′ = cbψ̄S−1γµSψ = cbψ̄Λµνγνψ = bΛµνjν . (6.67)

123



CHAPTER 6. THE DIRAC EQUATION

Hence, jµ transforms in the same way as a vector for Lorentz transformations without time
reflection. In the same way one immediately sees, using (6.28a) and (6.65), that ψ̄(x)ψ(x)
transforms as a scalar:

ψ̄′(x′)ψ′(x′) = bψ̄(x′)S−1Sψ(x′)
= bψ̄(x)ψ(x) .

(6.68a)

We now summarize the transformation behaviour of the most important bilinear quantities under
orthochronous Lorentz transformations, i.e., transformations that do not reverse the direction of
time:

ψ̄′(x′)ψ′(x′) = ψ̄(x)ψ(x) scalar (6.68a)
ψ̄′(x′)γµψ′(x′) = Λµνψ̄(x)γµψ(x) vector (6.68b)
ψ̄′(x′)σµνψ′(x′) = ΛµρΛνσψ̄(x)σρσψ(x) antisymmetric tensor (6.68c)
ψ̄′(x′)γ5γ

µψ′(x′) = (det Λ)Λµνψ̄(x)γ5γ
νψ(x) pseudovector (6.68d)

ψ̄′(x′)γ5ψ
′(x′) = (det Λ)ψ̄(x)γ5ψ(x) pseudoscalar , (6.68e)

where γ5 = ıγ0γ1γ2γ3. We recall that det Λ = ±1; for spatial reflections the sign is −1.
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Chapter 7

Quantization of the Klein-Gordon
and the Dirac fields

7.1 Canonical quantization of a scalar field

Important quantization procedures:

a) Canonical quantization: Canonical quantization is strongly oriented along the development
of quantum mechanics. Suitable canonically conjugated variables (of the fields) are sought
and then replaced by operators, where the Poisson bracket of classical physics turn into
the commutator. A problem with this method is that time is treated as a distinct coordi-
nate and so, inter alia, the Lorentz invariance of the quantized theory is not guaranteed.
However, it has the great advantage that only physical states exist, because only physical
modes are quantized. In addition, the procedure is simple, but its application can become
very complicated, as in the case of non-Abelian gauge theories, for example.

b) Path integral quantization: This procedure is very elegant and fairly general. It is a very
intuitive formulation that is also related to many other quantization methods. However, it
has the disadvantage that the occurring functional integrals can be mathematically tricky.

c) Gupta–Bleuler quantization: This method is also known as covariant quantization. In
contrast to canonical quantization, it preserves the Lorentz invariance of the classical
theory. However, unphysical states with a negative norm, so-called “ghosts”, are often
generated.

d) BRST quantization: This method is named after physicists Becchi, Rouet, Stora and
Tyupin. It is the most important quantization method for gauge theories, however, it also
generates “ghost” states. There is a close connection with the path integral quantization.

The most physically relevant example of a quantized field is surely the electromagnetic (EM)
field. However, as a preliminary we want to start with the quantization of the simple Klein-
Gordon field. The insights gained in this way will benefit us later. The EM field is a vector field
which satisfies the Klein-Gordon equation.

We consider a real scalar field φ satisfying the free Klein-Gordon (KG) equation(
�+ m2c2

~2

)
φ(x) = 0 , (7.1)
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with � = ∂µ∂
µ = 1

c2
∂2

∂t2 −∇
2 and four-position x. Equation (7.1) describes for a real-valued φ

a neutral particle with spin 0. The case of a complex wave function, describing charged parti-
cles, contains additional difficulties and will be considered elsewhere. Let’s remind the Lorentz
invariance of the KG equation: the wave function transforms according to φ′(x′) = φ(x) under
Lorentz transformations x′ = Λx.

In the following we set ~ = c = 1 and the free KG equation reads as(
�+m2

)
φ(x) = 0 .

In case of ∇2φ = 0, the KG equation reduces to the equation of a harmonic oscillator

∂2φ

∂t2
= −m2φ .

In the following, we interpret the field φ(x) = φ(r, t) as a displacement of a vibrating string at
a position r and a time t. In addition, we consider the field to be in a volume V = L3 with
periodic boundary conditions and perform a spatial Fourier expansion

φ(r, t) = 1√
V

∑
k
eık·rqk(t) (7.2)

with Fourier coefficients q∗k = q−k, because φ is real-valued, and wave vectors k = 2π
L (nx, ny, nz)

with nx,y,z = 0,±1,±2, . . . , due to periodicity of φ. We end up with an equation of motion for
the normal modes

q̈k +
(
k2 +m2

)
qk = 0

or
q̈k + ω2

kqk = 0

with the definition ωk =
√

k2 +m2.
We move on to the Hamiltonian formulation and set

q̇k = p−k and ṗ−k = −ω2
kqk .

Hamilton’s equations read as

q̇k = ∂H

∂pk
and ṗ−k = − ∂H

∂q−k

and we obtain the energy (Hamiltonian) of the scalar field

H =
∑
k

1
2
(
pkp−k + ω2

kqkq−k
)
.

Next, we introduce the transformation

bk = 1√
2ωk

[ωkqk + ıp−k] and b∗k = 1√
2ωk

[ωkq−k − ıpk]

and rewrite the canonical coordinates and impulses as

qk = 1√
2ωk

(
bk + b∗−k

)
and p−k = −ı

√
ωk
2
(
bk − b∗−k

)
. (7.3)
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Inserting this into the Hamiltonian leads to

H =
∑
k

1
2

[
−ωk2

(
bk − b∗−k

)
(b−k − b∗k) + ωk

2
(
bk + b∗−k

)
(b−k + b∗k)

]
=
∑
k

ωk
2
[
bkb
∗
k + b∗−kb−k

]
=
∑
k

ωkb
∗
kbk .

The quantization is carried out in analogy to the quantization of harmonic oscillator: canonically
conjugated variables qk and pk become operators q̂k and p̂k, and the Poisson bracket is replaced
by the commutator:

[q̂k, p̂k′ ] = ıδk,k′ , [q̂k, q̂k′ ] = [p̂k, p̂k′ ] = 0

and using the new coordinates bk and b∗k we obtain the following commutation relations:[
b̂k, b̂

†
k′

]
= δk,k′ ,

[
b̂k, b̂k′

]
=
[
b̂†k, b̂

†
k′

]
= 0 .

Thus, inserting the quantized version of (7.3) into (7.2) leads to the field operator

φ̂(r, t) = 1√
V

∑
k
eık·r

1√
2ωk

[
b̂k(t) + b̂†−k(t)

]
= 1√

V

∑
k

1√
2ωk

[
eık·rb̂k(t) + e−ık·rb̂†k(t)

]
.

The Heisenberg picture yields the time dependence of the operator

b̂k(t) = eıĤtb̂k(0)e−ıĤt ,

from which follows that
ı
∂b̂k
∂t

=
[
b̂k, Ĥ

]
= ωk

[
b̂k, b̂

†
k b̂k
]

= ωk b̂k .

The solution of this simple differential equation is

b̂k(t) = b̂k(0)e−ıωkt = b̂ke
−ıωkt

and analog to
b̂†k(t) = b̂†k(0)eıωkt = b̂†ke

ıωkt .

And the new representation of the field operator is

φ̂(r, t) = 1√
V

∑
k

1√
2ωk

[
eı(k·r−ωkt)b̂k + e−ı(k·r−ωkt)b̂†k

]
. (7.4)

Vacuum expectation values are:

〈0|φ̂|0〉 = 0

〈0|φ̂2|0〉 → 1
(2π)3

∫ d3k

2
√
k2 +m2

diverges!

When quantizing a classical Hamiltonian there is some freedom how to choose the operator
order, and different choices lead to different ground state energies. We have used the normal
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order, i.e., all creation operators are to the left of all annihilation operators in the product.
We denote :Ô: as the normal ordered form of Ô. It can be seen that when normally ordered
operators, such as

:b̂k b̂†k′ : = b̂†k′ b̂k , :b̂†k′ b̂k: = b̂†k′ b̂k , etc ,

are applied to the vacuum, many contributions of expectation values disappear.

About micro-causality:

[φ̂(r, t), φ̂(r′, t′)] = 1
V

∑
k,k′

1
2√ωkωk′

[b̂ke
ı(k·r−ωkt) + b̂†ke

−ı(k·r−ωkt), b̂k′e
ı(k′·r′−ωk′ t

′) + b̂†k′e
−ı(k′·r′−ωk′ t

′)]︸ ︷︷ ︸
=[b̂k, b̂

†
k′ ]︸ ︷︷ ︸

=δk,k′

eı(k·r−ωkt)e−ı(k′·r′−ωk′ t
′)+[b̂†k, b̂k′ ]︸ ︷︷ ︸

=−δk,k′

e−ı(k·r−ωkt)eı(k′·r′−ωk′ t
′)

= 1
V

∑
k

1
2ωk

(
eık·(r−r′)−ıωk(t−t′) − e−ık·(r−r′)+ıωk(t−t′)

)
︸ ︷︷ ︸

2ıIm(eık·(r−r′)−ıωk(t−t′))

= 2ı 1
(2π)3

∫
d3k 1

2ωk
Im
(
eık·R−ıωkT

)

with R = r− r′ and T = t− t′.

[φ̂(r, t), φ̂(r′, t′)] = 2ı
(2π)3 Im

∫ ∞
0

k2dk

2ωk
e−ıωkT

∫
dΩeık·R︸ ︷︷ ︸

= 2π
∫ π

0 dθ sin θeıkR cos θ = 2π
∫ 1
−1 dηe

ıkRη

= 2π eıkR−e−ıkRıKR = 4π
kR sin kR

= ı

2π2R

∫ ∞
0︸︷︷︸

= 1
2

∫ +∞
−∞

kdk

ωk
sin(kR) Ime−ıωkT︸ ︷︷ ︸

=− sin(ωkT )

= − ı

4π2R

∫ +∞

−∞

kdk

ωk
sin(kR) sin(ωkT )

= − 1
8π2R

∫ +∞

−∞

kdk√
k2 +m2

sin(
√
k2 +m2T )

(
eıkR − e−ıkR

)
. (7.5)

Close integration contour and use residue theorem. The first term goes to e±ıkT eıkR when
|k| → ∞. We get: e−Imk(±T+R)+ıRek(±T+R) which gives zero for R > |T | for Rek > 0. With
these conditions,

∣∣∣∣∣∣∣∣
∫
C
dke

ık(±T +R)︸ ︷︷ ︸
=ε>0

∣∣∣∣∣∣∣∣ =
∣∣∣∣∫ π

0
dϕeıερ(cosϕ+ı sinϕ)

∣∣∣∣ ≤ ∫ π

0
dϕ
∣∣∣e−ερ sinϕ

∣∣∣ |eıερ cosϕ| =
∫ π

0
dϕ e−ερ sinϕ︸ ︷︷ ︸
→0 when ρ→∞

.
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Re(k)

Im(k)

Re(k)

Im(k)
Re(k)

Im(k) exp(ikR)

exp(−ikR)

Thus [
φ̂(r, t), φ̂(r′, t′)

]
= 0 for |r− r′| > |t− t′|

and [
φ̂(r, t), φ̂(r′, t′)

]
6= 0 for |r− r′| ≤ |t− t′| .

This result can be interpreted as follows. The field amplitude φ̂(r, t) is a physical quantity.
If the commutator vanishes then both quantities are compatible with each other: if φ̂(r, t) is
precisely measurable then also φ̂(r′, t′). This is only possible for |r− r′| > |t− t′|, i.e., only for
distances |r− r′| which can not be connected via a signal within |t− t′|. Thus, the fact that the
commutator vanishes for spacelike distances between events (r, t) and (r′, t′) is closely related
to causality.
Now we can justify why we have choosen bosonic creation and annihilation operators during
quantization of the KG field. If we would consider fermions and thus use anti-commutation
relation

{
b̂k, b̂

†
k′

}
= δk,k′ etc., instead of

[
b̂k, b̂

†
k′

]
= δk,k′ etc., then

[
φ̂(r, t), φ̂(r′, t′)

]
6= 0 for all

(r, t) and (r′, t′), and causality would not be satisfied.
We see that Fermi statistics is incompatible with the causality requirement of the Klein-Gordon
equation. This is an essential building block for the spin-statistics theorem. In general one can
say that for Klein-Gordon-like equations for particles with integer spins (0, 1, 2, . . . ) the Bose
statistics is enforced by the causality.
Now we want to estimate the momentum p̂ of the quantized field φ̂(r). For that we have to
examine the behavior of φ under translation

T (a)φ̂(r)T−1(a) = φ̂(r + a) with T (a) = e−ıp̂·a .

If a is infinitesimal then T (a) = 1 − ıp̂ · a. With the Taylor expansion of φ̂(r + a) up to first
order we get

(1− ıp̂ · a) φ̂(r) (1 + ıp̂ · a) = φ̂(r) +∇φ̂(r) · a +O(a2)

and thus
−ı
[
p̂, φ̂(r)

]
= ∇φ̂(r) .

Using the expression for the quantized field (7.4) we obtain[
p̂, b̂k

]
= kb̂k .
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This determines the form of the momentum operator up to an additive constant

p̂ =
∑

k
kb̂†kb̂k .

7.2 Alternative quantization of a scalar field

A classical observable of a neutral meson wave is a real-valued scalar field

ψ(x) = ψ∗(x) ,

which obeys the Klein-Gordon equation

(�+m2)ψ(x) = 0 .

There are two types of solutions

ψ+(x) = eı(ωt−kx) and ψ−(x) = e−ı(ωt−kx)

with ω =
√
m2 + k2.

Ansatz for a general solution is

ψ(x) =
∫ d3k

(2π)3
1

2ω
(
eıkxα∗(k) + e−ıkxα(k)

)
(7.6)

with k = (ω, k) and kx = kµxµ = ωt− k · x.
Quantization: The meson field ψ(x) = 〈state|Φ̂(x)|state〉 is an observable corresponding to an
expectation value of a field operator Φ̂(x).

1st assumption

Φ̂(x) is Hermitian, thus Φ̂(x) = Φ̂†(x)

Φ̂(x) fulfills KG equation
(
�+m2

)
Φ̂(x) = 0

Momentum and energy are observables and thus correspond to Hermitian operators p̂ and Ĥ,
respectively. Due to relativistic invariance they are combined into a four-operator

p̂ = (p̂µ) = (Ĥ, p̂)

and p̂µ is time-independent because of energy-momentum conservation.
In the Heisenberg picture any operator Â(t,x) obeys

∂

∂t
Â(t,x) = ı

[
Ĥ, Â(t,x)

]
∂

∂xj
Â(t,x) = −ı

[
p̂j , Â(t,x)

]
for j = 1, 2, 3 .

2nd assumption

∂

∂xµ
Φ̂(x) = ı

[
p̂µ, Φ̂(x)

]
(7.7)
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1st and 2nd assumption lead to a particle interpretations of the meson field.
In analogy to (7.6) the general form of the field operator is

Φ̂(x) =
∫ d3k

(2π)3
1

2ω
(
eıkxâ†(k) + e−ıkxâ(k)

)
.

The operator â†(k) denotes the Hermitian conjugate of â(k).
From (7.7) follows that∫

d3k

(2π)3
1

2ω
(
eıkxıkµâ

†(k) + e−ıkx(−ıkµ)â(k)
)

= ı

∫
d3k

(2π)3
1

2ω
(
eıkx

[
p̂µ, â

†(k)
]

+ e−ıkx [p̂µ, â(k)]
)

and thus [
p̂µ, â

†(k)
]

= kµâ
†(k) and [p̂µ, â(k)] = −kµâ(k) . (7.8)

We define |0〉 as a vacuum state (no particle exists), which is normalized as 〈0|0〉 = 1.

It is p̂µ |0〉 = 0 and thus[
p̂µ, â

†(k)
]
|0〉 = kµâ

†(k) |0〉 ⇒ p̂µâ
†(k) |0〉 = kµâ

†(k) |0〉 .

Thus |k〉 = â+(k) |0〉 is the eigenstate of the energy and momentum operator with eigenvalue
kµ = (ω, k). We identify this state as a one-meson-state with a sharp energy ω and a sharp
momentum k.

Due to p̂µâ(k) |0〉 = −kµâ(k) |0〉 the state â(k) |0〉 would correspond to a state with negative
energy. Thus we demand

â(k) |0〉 = 0 ∀k .

Similarly, for a state |p〉 with p̂µ |p〉 = pµ |p〉, i.e., the eigenstate of the four-momentum, follows
with (7.8) that

p̂µâ†(k) |p〉 = (pµ + kµ) â†(k) |p〉
p̂µâ(k) |p〉 = (pµ − kµ) â(k) |p〉 .

And we obtain
p̂µâ†(k1)â†(k2) |0〉 = (kµ1 + kµ2 ) â†(k1)â†(k2) |0〉︸ ︷︷ ︸

two-meson-state

and in a similar way one constructs a n-meson-state.
We can interpret â† as creation operator and â as annihilation operator.

We do not know yet anything about the norm of states with one or more mesons. We need
an additional physical assumption. Consider a measurement of the meson field at two different
space-time points x = (t,x) and y = (t′,y). For (x−y)2 < 0, x is outside the future light cone of
y and vice versa. Thus, no signal from the measurement at point x can reach y and vice versa.

3rd assumption

Microcausality:
[
Φ̂(x), Φ̂(y)

]
= 0 for (x− y)2 < 0
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That means [
Φ̂(t,x), Φ̂(t′,y)

]
= 0 for |t′ − t| < |x− y| 6= 0

and, in particular, for x 6= y [
Φ̂(t,x), Φ̂(t,y)

]
= 0[

Φ̂(t,x), ∂
∂t

Φ̂(t,y)
]

= 0 .

In the following we want to show that the Bose character of mesons follows from microcausality.
The general form of the field operator and its time derivative reads as

Φ̂(t,x) =
∫ d3k

(2π)3
1

2ωe
−ık·x

(
eıωtâ†(k) + e−ıωtâ(−k)

)
∂

∂t
Φ̂(t,x) =

∫ d3k

(2π)3
ı

2e
−ık·x

(
eıωtâ†(k)− e−ıωtâ(−k)

)
.

The inverse Fourier transformation gives

eıωtâ†(k) + e−ıωtâ(−k) = 2ω
∫
d3x e−ık·xΦ̂(t,x) (7.9)

eıωtâ†(k)− e−ıωtâ(−k) = −2ı
∫
d3x e−ık·x ∂

∂t
Φ̂(t,x) . (7.10)

Thus from (7.9) follows that
[
eıω1tâ†(k1) + e−ıω1tâ(−k1), eıω2tâ†(k2) + e−ıω2tâ(−k2)

]
= 2ω12ω2

∫
d3xd3y e−ık1·xe−ık2·y

[
Φ̂(t,x), Φ̂(t,y)

]
︸ ︷︷ ︸

=0
microcausality

and

e+ı(ω1+ω2)t
[
â†(k1), â†(k2)

]
+ e−ı(ω1+ω2)t [â(−k1), â(−k2)]

+ e+ı(ω1−ω2)t
[
â†(k1), â(−k2)

]
+ e−ı(ω1−ω2)t

[
â(−k1), â†(k2)

]
= 0 .

To ensure that this is always true, the following must hold[
â†(k1), â†(k2)

]
= 0 and [â(k1), â(k2)] = 0 ∀ k1, k2 . (7.11)

This means that mesons have Bose character.

The relation between microcausality and the Bose character of mesons does not only apply to
free fields considered here. In general, microcausality determines the Bose-character of all par-
ticles with integer spin (Pauli 1936, 1940).

Next, we want to compute the commutator of â and â†. If we solve for â and â† from (7.9) and
(7.10) , respectively, we obtain the following:
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Eqs. (7.9)+(7.10) gives

â†(k)eıωt =
∫
d3xe−ık·x

[
ωΦ̂(t,x)− ı ∂

∂t
Φ̂(t,x)

]
,

and Eqs. (7.9)−(7.10) gives

â(k)e−ıωt =
∫
d3xeık·x

[
ωΦ̂(t,x) + ı

∂

∂t
Φ̂(t,x)

]
.

Therefore,

[â(k1), â†(k2)] =
[
e−ıω1t

∫
d3xeık1·x

[
ω1Φ̂(t,x) + ı∂tΦ̂(t,x)

]
, eıω2td3ye−ık2·y

[
ω2Φ̂(t,y)− ı∂tΦ̂(t,y)

]]
= eı(ω1−ω2)t

∫
d3x

∫
d3yeık1·x−ık2·y [ω1Φ̂(t,x) + ı∂tΦ̂(t,x), ω2Φ̂(t,y)− ı∂tΦ̂(t,y)]︸ ︷︷ ︸

ıω2 [∂tΦ̂(x, t), Φ̂(y, t)]︸ ︷︷ ︸
=0 for x6=y

−ıω1 [Φ̂(x, t), ∂tΦ̂(y, t)]︸ ︷︷ ︸
=0 for x 6=y

The integrand vanishes for x 6= y and contains a δ contribution for x = y, otherwise all creation
operators would commute with all annihilation operators and therefore all states obtained by
applying creation operators onto the vacuum state would equal the zero vector. Therefore, we
make an ansatz for the canonical commutation relation as[

Φ̂(t,x), ∂
∂t

Φ̂(t, y)
]

= ıδ3(x− y)

and obtain

[â(k1), â†(k2)] = eı(ω1−ω2)t
∫
d3xeı(k1−k2)·x︸ ︷︷ ︸

=(2π)3δ3(k1−k2)

(ω1 + ω2)

= 2ω1(2π)3δ3(k1 − k2),

since ω1 = ω2 if k1 = k2.

7.3 Lagrangian formalism and canonical quantization

Lagrangian density L(Φ, ∂µΦ) for scalar fields:

L = 1
2
[
∂µΦ∂µΦ−m2Φ2

]
(7.12)

which gives the Lagrange function:

L(x0) =
∫
d3xL(Φ, ∂µΦ).

The action is
S[Φ] =

∫
dxL(Φ, ∂µΦ) =

∫
dx0L(x0).

Hamiltion principle gives the Klein-Gordon equation

δS[Φ] = 0 ⇒ ∂ν∂
νΦ +m2Φ = 0.
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Proof:

δS =
∫

Ω
dx

∂L∂ΦδΦ + ∂L
∂(∂µΦ) δ(∂µΦ)︸ ︷︷ ︸

= ∂
∂xµ

δΦ


=
∫

Ω
dx

[
∂L
∂Φ −

∂

∂xµ
∂L

∂(∂µΦ)

]
δΦ +

∫
Ω
dx

∂

∂xµ

[
∂L

∂(∂µΦ)δΦ
]

︸ ︷︷ ︸
=
∫
∂Ω dσ

∂L
∂(∂µΦ) δΦ=0

δS = 0 then gives the Euler-Lagrange equation:

∂L
∂Φ −

∂

∂xµ
∂L

∂(∂µΦ) = 0 .

We have for Eq. (7.12)

∂L
∂Φ = −m2Φ and ∂L

∂(∂µΦ) = ∂µΦ,

which yields to the KG equation:

−m2Φ− ∂

∂xµ
∂µΦ = 0 ⇒ ∂µ∂

µΦ +m2Φ = 0.

Definition: canonical conjugate momentum:

Π = ∂L

∂Φ̇
= ∂L
∂Φ̇

= ∂L
∂(∂0Φ) .

Definition: Hamilton-function:

H(Φ,Π) =
∫
d3x

[
ΠΦ̇− L(Φ, ∂µΦ)

]
,

for the Hamilton-density
H(Φ,Π) = ΠΦ̇− L(Φ, ∂µΦ).

Since Π = Φ̇,

H(Φ,Π) = Π2 − 1
2

∂0Φ∂0Φ︸ ︷︷ ︸
=Π2

+ ∂iΦ∂iΦ︸ ︷︷ ︸
=(∇Φ)2

−m2Φ2


= 1

2
[
Π2 + (∇Φ)2 +m2Φ2

]
.

Canonical quantization:
Since Φ and Π are canaonical conjugate fields (due to the definition Π = ∂L

∂Φ̇), one postulates
“Canonical commutation relations” (as in basic quantum mechanics):

[Φ̂(r, t), Π̂(r′, t)] =ıδ(r− r′),
[Φ̂(r, t), Φ̂(r′, t)] =[Π̂(r, t), Π̂(r′, t)] = 0.
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This procedure is called canonical quantization. For KG-field: Π̂ = ∂tΦ̂,[
Φ̂(r, t), ∂

∂t
Φ̂(r′, t)

]
= ıδ(r− r′).

For the free scalar field with a Lagrangian density (7.12) the canonical quantization yields the
same quantized field as obtained in the previous chapters and the Hamiltonian reads as

Ĥ = 1
2

∫
d3x

[
(∂tΦ̂)2 + (∇Φ̂)2 +m2Φ̂2

]
.

Remark: For the gauge theories that dominate particle physics today, the canonical quantization
can only be carried out for special gauges (cf. quantization of the electromagnetic field).

7.4 Quantization of the Dirac Field

First we recapitulate the derivation of the calculation of the Dirac spinor. The Dirac equation
is

(−ıγµ∂µ +m)ψ = 0.

Ansatz (plane wave with positive energy):

ψ = ue−ıkx.

The equation for the spinor u is
(kµγµ −m)u = 0.

Since
(kµγµ −m)(kνγν +m) = kµkν γµγν︸ ︷︷ ︸

= 1
2{γµ,γν}=gµν

−m2 = kµk
µ −m2 = 0,

we have
ur(k) = N (kµγµ +m)ur(0).

Normalization:
ur(0) = (χr, 0) and ūrus = δrs.

⇒ ur(k) = 1√
2m(m+ E)

(kµγµ +m)ur(0) .

ur(k) = 1√
2m(m+ E)

(
E +m −k · σ
k · σ −E +m

)(
χr
0

)
=

 √
E+m
2m χr

k·σ√
2m(m+E)

χr

 =
√
E +m

2m

(
χr

k·σ
m+Eχr

)
.

Note γµ† = γ0γµγ0 and

ū = u†γ0 = N [(kµγµ +m)u(0)]† γ0

= Nu(0)T (kµγµ† +m)γ0 = Nu(0)Tγ0(kµγµ +m)

= 1√
2m(m+ E)

ū(0)(kµγµ +m).
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Analogously for plane wave with negative energy:

ψ = ve+ıkx,

the equation for the spinor v is
(kµγµ +m)v = 0.

We can write
vr(k) = − 1√

2m(m+ E)
(kµγµ −m)vr(0) .

vr(k) = 1√
2m(m+ E)

(
−E +m k · σ
−k · σ E +m

)(
0
χr

)
=

 k·σ√
2m(m+E)

χr√
E+m
2m χr

 =
√
E +m

2m

(
k·σ
m+Eχr
χr

)
,

and
v̄ = 1√

2m(m+ E)
v̄(0)(−kµγµ +m).

Definition:
wr(k) :=

{
v2(k) r = 1
−v1(k) r = 2

is the charge conjugate of ur. Since then, for C the charge conjugation operator,

Cur(k) = ıγ2u∗r(k) = wr(k),
Cwr(k) = ıγ2w∗r(k) = ur(k).

Orthogonality relations:

ūrus = δrs, w̄rws = −δrs, ūrws = 0, w̄rus = 0,

ūrγ
0us = E

m
δrs, w̄rγ

0ws = E

m
δrs.

The general solution is then now

ψ(x) =
∑
k,r

√
m

V Ek

(
brkur(k)e−ıkx + d∗rkwr(k)e+ıkx

)

with Ek =
√

k2 +m2.
Quantization: We consider the Dirac spinor as a field operator. As in the case of the meson field,
we expand the field operator in terms of plane waves, where the expansion coefficients become
operators, i.e., we replace the Fourier coefficients according to

ψ → ψ̂, brk → b̂rk and drk → d̂rk with
{b̂rk, b̂†r′k′} = δrr′δkk′ , {d̂rk, d̂†r′k′} = δrr′δkk′ ,

and all other commutators are zero. The solution of the Dirac equation in the quantized form
is thus

ψ̂(x) =
∑
k,r

√
m

V Ek

(
b̂rkur(k)e−ıkx + d̂†rkwr(k)e+ıkx

)
.
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The properties of the operators b̂ and d̂† will be investigated in the following.

We postulate again that the Heisenberg equation is fulfilled:

∂ψ̂(x)
∂xµ

= ı
[
p̂µ, ψ̂(x)

]
.

Thus [
p̂µ, b̂

†
sk

]
= pµb̂

†
sk,

[
p̂µ, d̂

†
sk

]
= pµd̂

†
sk,

[
p̂µ, b̂sk

]
= −pµb̂sk,

[
p̂µ, d̂sk

]
= −pµd̂sk

for s = ±1
2 .

Like for the meson field, we require that

b̂sk| 0 〉 = d̂sk| 0 〉 = 0 .

Instead of one set of creation operators, we have now four. Accordingly, for each fixed momentum
p, we can construct four one-particle states:

(a) b̂†sk| 0 〉, s = ±1
2

(b) d̂†sk| 0 〉, s = ±1
2

The states in (a) correspond to an electron with a fixed momentum p and two linearly inde-
pendent spin-states. If we take the theory seriously, then we have to postulate that an another
particle with exactly the same mass exists (Dirac 1930, Oppenheim 1930). This was confirmed
by the discovery of the positron (Andersson 1932, 1933). We identify (b) as positrons, and
will see that within Dirac’s theory electrons and positrons have by default an opposite charge.

Which algebra is valid for the creation and annihilation operators?
In case we would postulate the same commutation relations as for the meson field, namely,[

b̂rk, b̂
†
sk′

]
= δrsδkk′[

d̂rk, d̂
†
sk′

]
= δrsδkk′

and all other commutators equal zero, then we would find nonvanishing commutators for space-
like distances, for example, [

ψ̂(x, t), ¯̂
ψ(y, t)

]
6= 0 for x 6= y , (7.13)

which is in contradiction to microcausality.
One could argue that the Dirac spinor is not directly observable. But (7.13) also implies a
violation of the microcausality for bilinear expressions in the Dirac field operator, which we want
to identify as observable fields. Thus, electrons cannot be bosons (confirmed experimentally as
electrons satisfy the Pauli principle).
The proper commutation relations for the creation and annihilation operators of the Dirac field
are anticommutators (Jordan and Wigner 1927, 1928):{

b̂rk, b̂
†
sk′

}
= δrsδkk′ ,

{
d̂rk, d̂

†
sk′

}
= δrsδkk′{

b̂†rk, b̂
†
sk′

}
=
{
b̂rk, b̂sk′

}
=
{
d̂†rk, d̂

†
sk′

}
=
{
d̂rk, b̂sk′

}
=
{
b̂†rk, d̂sk′

}
=
{
b̂†rk, d̂

†
sk′

}
= 0 .
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With this we get {
ψ̂(x, t), ψ̂(y, t)

}
=
{ ¯̂
ψ(x, t), ¯̂

ψ(y, t)
}

= 0 (7.14){
ψ̂(x, t), ¯̂

ψ(y, t)
}

= γ0δ(x− y) . (7.15)

Proof:

{ψ̂(x), ¯̂
ψ(y)} = 1

V

∑
k,k′

√
m2

EkEk′

∑
r,r′

{
b̂rkur(k)e−ıkx + d̂†rkwr(k)eıkx, b̂†r′k′ ūr′(k

′)eık′y + d̂r′k′w̄r′(k′)e−ık
′y
}
.

Since {b̂rk, b̂†r′k′} = {d̂rk, d̂†r′k′} = δrr′δkk′ and all other commutators are zero, we obtain

{ψ̂(x), ¯̂
ψ(y)} = 1

V

∑
k

m

Ek

{
e−ık(x−y)∑

r

ur(k)ūr(k) + eık(x−y)∑
r

wr(k)w̄r(k)
}
.

We have: ∑
r

ur(k)ūr(k) =
∑
r

N 2(kµγµ +m)ur(0)ūr(0)(kµγµ +m)

= N 2(kµγµ +m)
∑
r

ur(0)ūr(0)︸ ︷︷ ︸
=

(
1 0
0 0

)
(kµγµ +m)

= N 2
(
E +m −k · σ
k · σ −E +m

)(
1 0
0 0

)(
E +m −k · σ
k · σ −E +m

)

= N 2
(
E +m 0
k · σ 0

)(
E +m −k · σ
k · σ −E +m

)

= 1
2m(E +m)

(
(E +m)2 −k · σ(E +m)

(E +m)k · σ −k2

)

= 1
2m

(
E +m −k · σ
k · σ − k2

E+m

)

= 1
2m(kµγµ +m),

since k2 = (E +m)(E −m), and analogously:∑
r

wr(k)w̄r(k) = 1
2m(kµγµ −m).

Then

{ψ̂(x), ¯̂
ψ(y)} = 1

V

∑
k

m

Ek

{
e−ık(x−y) 1

2m(kµγµ +m) + eık(x−y) 1
2m(kµγµ −m)

}
= 1
V

∑
k

1
2Ek

{
(ıγµ∂µ +m)e−ık(x−y) − (ıγµ∂µ +m)eık(x−y)

}
= (ıγµ∂µ +m) 1

V

∑
k

1
2Ek

{
e−ık(x−y) − eık(x−y)

}
︸ ︷︷ ︸

=ı∆(x−y)≡ 1
V

∑
k

1
2ωk

(eık·(x−y)−ıωk(t−t′)+c.c.)
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As appeared in the proof of the microcausality for the Klein-Gordon field (with Eq. (7.5)),
∆(x−y) = 0 for (x−y)2 < 0, i.e. for space-like distances. Then {ψ̂(x), ¯̂

ψ(y)} = 0 for (x−y)2 < 0.

Anti-commutator for equal times (note that k0(x0 − y0) = Ek(t− t) = 0):

{ψ̂(t,x), ¯̂
ψ(t,y)} = 1

V

∑
k

1
2Ek

{
eık·(x−y)(kµγµ +m) + e−ık·(x−y)(kµγµ −m)

}
= 1
V

∑
k

1
2Ek

{
eık·(x−y)(Ekγ0 − k · γ +m) + e−ık·(x−y)(Ekγ0 − k · γ −m)

}
= 1
V

∑
k

1
2Ek

{
eık·(x−y)(Ekγ0 − k · γ +m) + eık·(x−y)(Ekγ0 + k · γ −m)

}
= 1
V

∑
k

γ0eık·(x−y)

= γ0
∫

d3k
(2π)3 e

ık·(x−y) = γ0δ3(x− y).

Spin-statistic theorem (for fermions):
Consider an observable like ¯̂

ψ(x)ψ̂(x) and compute the commutator for two space-time coordi-
nates x and y:

[ ¯̂
ψα(x)ψ̂α(x), ¯̂

ψβ(y)ψ̂β(y)] = ¯̂
ψα(x)[ψ̂α(x), ¯̂

ψβ(y)ψ̂β(y)] + [ ¯̂
ψα(x), ¯̂

ψβ(y)ψ̂β(y)]ψ̂α(x)

= ¯̂
ψα(x){ψ̂α(x), ¯̂

ψβ(y)}ψ̂β(y)− ¯̂
ψα(x) ¯̂

ψβ(y){ψ̂α(x), ψ̂β(y)}

− ¯̂
ψβ(y){ ¯̂

ψα(x), ψ̂β(y)}ψ̂α(x) + { ¯̂
ψβ(y), ¯̂

ψα(x)}ψ̂β(y)ψ̂α(x)

since
[
ÂB̂, ĈD̂

]
= Â

{
B̂, Ĉ

}
D̂ − ÂĈ

{
B̂, D̂

}
− Ĉ

{
Â, D̂

}
B̂ +

{
Ĉ, Â

}
D̂B̂.

[ ¯̂
ψα(x)ψ̂α(x), ¯̂

ψβ(y)ψ̂β(y)] = ¯̂
ψα(x){ψ̂α(x), ¯̂

ψβ(y)}ψ̂β(y)− ¯̂
ψβ(y){ ¯̂

ψα(x), ψ̂β(y)}ψ̂α(x)

= ¯̂
ψα(x) [(−ıγµ∂µ +m)αβı∆(x− y)] ψ̂β(y)

+ ¯̂
ψβ(y) [(−ıγµ∂µ +m)αβı∆(x− y)] ψ̂α(x)

= 0

for (x− y)2 < 0.
That implies for observable fields ¯̂

ψ(x)uψ̂(x), where u = ū are 4 × 4 matrices, commutation
relations, which are consistent with microcausality. For example, for arbitrary 4× 4 matrices u1
and u2 we get [ ¯̂

ψ(x, t)u1ψ̂(x, t)), ¯̂
ψ(y, t)u2ψ̂(y, t)

]
= 0 for x 6= y ,

which follows directly from (7.14) and (7.15).
Single-electron- (or positron) state with a sharp momentum:∣∣e−(k, s)

〉
= b̂†sk | 0 〉∣∣∣e+(k, s)

〉
= d̂†sk | 0 〉
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Normalization: 〈
e−(k′, r)

∣∣e−(k, s)
〉

= 〈 0 |
{
b̂rk′ , b̂

†
sk

}
| 0 〉 = δrsδkk′〈

e+(k′, r)
∣∣e+(k, s)

〉
= 〈 0 |

{
d̂rk′ , d̂

†
sk

}
| 0 〉 = δrsδkk′

Two-electron-state:∣∣e−(k, r), e−(k′, s)
〉

= b̂†rk b̂
†
sk′ | 0 〉 = −b̂†sk′ b̂

†
rk | 0 〉 = −

∣∣e−(k′, s), e−(k, r)
〉
,

thus the Pauli principle applies.

What if we would have chosen commutation rules, [b̂rk, b̂†r′k′ ] = [d̂rk, d̂†r′k′ ] = δrr′δkk′ instead of
anti-commutation rules?
Remark that now [d̂†rk, d̂r′k′ ] = −δrr′δkk′ . Then

[ψ̂(x), ¯̂
ψ(y)] = 1

V

∑
k,k′

√
m2

EkEk′

∑
r,r′

[
b̂rkur(k)e−ıkx + d̂†rkwr(k)e+ıkx, b̂†r′k′ ūr′(k

′)eık′y + d̂r′k′w̄r′(k′)e−ık
′y
]

= 1
V

∑
k

m

Ek

{
e−ık(x−y)∑

r

ur(k)ūr(k)− eık(x−y)∑
r

wr(k)w̄r(k)
}

= (ıγµ∂µ +m) 1
V

∑
k

1
2Ek

{
e−ık(x−y) + eık(x−y)

}
= (ıγµ∂µ +m)∆1(x− y)

with

∆1(x− y) = 1
V

∑
k

1
2Ek

{
e−ık(x−y) + eık(x−y)

}
= − ı

2π2R

∫ ∞
0

kdk√
k2 +m2

cos(
√
k2 +m2T ) cos(kR)

with R = |x− y| and T = x0 − y0, from Eq. (7.5).
Now this integrand is an odd function of k for which reason

∫ 0
−∞ = −

∫∞
0 and therefore the

integration cannot be performed from −∞ to +∞ and the residue theorem cannot be applied.
Then ∆1(x− y) 6= 0 also for (x− y)2 < 0 which leads to a contradiction to microcausality.
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Chapter 8

Quantum electrodynamics

8.1 Quantization of the electromagnetic field – Lorentz covari-
ant formulation

The four-potential Aµ = (φ,A) in Lorenz gauge, ∂µAµ = 0, and in source-free case, jµ = 0,
obeys the wave equation

�Aµ = 0 .

As for mesons, the Fourier expansion of the field operators Aµ reads as

Aµ =
∫ d3k

(2π)32ω
{
eıkxa†µ(k) + e−ıkxaµ(k)

}
with

k =
(
ω
k

)
, ω = |k| , kx = kµxµ = ωt− k · x .

Microcausality leads to Bose commutation relations:[
a†µ(k), a†ν(k′)

]
= [aµ(k), aν(k)] = 0 ,[

aµ(k), a†ν(k′)
]

= Zµν(2π)32ω δ3(k− k′)

with initially unknown Zµν .

The operators aµ, a†µ act in the Fock space and its vacuum state is characterized by

aµ(k) |0〉 = 0 ∀µ,k .

For an explicit Lorentz covariance of the theory, Zµν must be a constant second order tensor.
The only possible candidate is the metric tensor gµν . We still have a freedom to choose the sign
Zµν = ±gµν . As it turns out later, the correct choice is[

aµ(k), a†ν(k′)
]

= −gµν(2π)32ω δ3(k− k′) ,

albeit applying the operator a†0 to the vacuum leads to states with a negative norm (is not a
probability density) and a†j with j = 1, 2, 3 leads to states with a positive norm.
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Consider a general state: | f 〉 =
∫ d3k

(2π)3
√

2ω
∑
µ fµ(k)a†µ(k) | 0 〉

Inner product:

〈 f | f 〉 =
∫ d3k d3k′

(2π)6
√

2ω2ω′
∑
µ,ν

f∗ν (k′)fµ(k) 〈0| aν(k′)a†µ(k) |0〉

=
∫ d3k

(2π)3

[
− |f0(k)|2 + |f1(k)|2 + |f2(k)|2 + |f3(k)|2

] {
≥ 0 for f0 = 0
< 0 for f0 > 0, f1,2,3 = 0

In addition to states with a negative norm there are states

|k, ε〉 = −εµa†µ(k) |0〉

with an arbitrary polarization four-vector of the photon εµ, such that at a fixed k we have four
linearly independent polarization directions instead of just two as observed experimentally.

The method of Gupta and Bleuler (1950) guarantees positive norm and gets rid of the two
unwanted polarization directions: states are constrained to the Lorenz gauge condition.

We declare only a part of the state vectors in the Fock space to be physical, namely those which
in a certain way satisfy the Lorenz gauge condition. We take the part of Aµ that just contains
annihilation operators:

A(−)
µ (x) :=

∫ d3k
(2π)32ω e

−ıkxaµ(k)

and postulate for physical state vectors

∂µA(−)
µ (x) |physical state〉 = 0

or
kµaµ(k) |physical state〉 = 0 ∀k .

Because of that
〈physical state| ∂µA(−)

µ (x) |physical state〉 = 0 ,
i.e., the expectation value of the divergence of the field Aµ vanishes for any physical state. The
subspace {|physical state〉} is obviously a linear space.

Claim:
〈physical state | physical state〉 ≥ 0 ,

i.e., the subspace {|physical state〉} has a positive semi-definite metric.
Proof:
We choose a new basis for creation and annihilation operators. We consider a†µ(k) at fixed k. We
choose two unit vectors e1, e2⊥k, such that e1, e2, e3 = k/|k| form an orthonormal trihedron,
i.e., ei · ej = δij .
We define operators αµ as

α†0(k) = 1√
2

(
a†0(k)− e3 · a†(k)

)
α†1(k) = e1 · a†(k)
α†2(k) = e2 · a†(k)

α†3(k) = 1√
2

(
a†0(k) + e3 · a†(k)

)
,
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where a† =
(
a†1, a

†
2, a

†
3

)
.

Commutation relations are[
α0(k), α†0(k′)

]
= 1

2
[
a0(k)− e3 · a(k), a†0(k′)− e3 · a†(k′)

]

= 1
2


[
a0(k), a†0(k′)

]
︸ ︷︷ ︸
−(2π)32ωδkk′

− e3 ·
[
a(k), a†0(k′)

]
︸ ︷︷ ︸

=0

−
[
a(k), e3 · a†(k′)

]
︸ ︷︷ ︸

=0

+
[
e3 · a(k), e3 · a†(k′)

]

Now, [
e3 · a(k), e3 · a†(k′)

]
=
[
ei3ai(k), ej3a

†
j(k′)

]
= ei3e

j
3δij

[
+(2π)32ωδkk′

]
= |e3|2︸ ︷︷ ︸

=1

(2π)32ωδkk′

= +(2π)32ωδkk′

So, [
α0(k), α†0(k′)

]
= 0 ,

Analogously, [
α3(k), α†3(k′)

]
= 0

Therefore, we obtain [
α0(k), α†0(k′)

]
=
[
α3(k), α†3(k′)

]
= 0 . (8.1)

Next, [
α0(k), α†3(k′)

]
= 1

2
[
a0(k)− e3 · a(k), a†0(k′) + e3 · a†(k′)

]
= 1

2
{
−(2π)32ωδkk′ − (2π)32ωδkk′

}
= −(2π)32ωδkk′

[
α3(k), α†0(k′)

]
= 1

2
[
a0(k) + e3 · a(k), a†0(k′)− e3 · a†(k′)

]
= −(2π)32ωδkk′

Therefore, we obtain [
α0(k), α†3(k′)

]
=
[
α3(k), α†0(k′)

]
= −(2π)32ω δkk′ . (8.2)
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And finally, [
α1(k), α†1(k′)

]
=
[
e1 · a(k), e1 · a†(k′)

]
= ei1e

j
1

[
ai(k), a†j(k′)

]
︸ ︷︷ ︸

+(2π)32ω δkk′

= |e1|2︸ ︷︷ ︸
=1

(2π)32ω δkk′

= +(2π)32ω δkk′

Analogously, [
α2(k), α†2(k′)

]
= +(2π)32ω δkk′ ,

and we obtain the final relation as[
α1(k), α†1(k′)

]
=
[
α2(k), α†2(k′)

]
= +(2π)32ω δkk′ (8.3)

For the other relations,[
α0(k), α†1(k′)

]
= 1√

2

[
a0(k)− e3 · a(k), e1 · a†(k)

]
= − 1√

2
ei3e

j
1

[
ai, a

†
j

]
︸ ︷︷ ︸
∝δij

∝ e3 · e1 = 0 ,

since e3⊥e1. Analogously,
[
α0(k), α†2(k′)

]
= 0.

Now,

α0(k)|physical state〉 = 1√
2

(a0(k)− e3 · a(k)) |physical state〉

= 1√
2

1
k0

(k0a0(k)− k · a(k)) |physical state〉

= 1
k0
√

2
kµaµ(k)|physical state〉

where

0 = kµkµ = k2
0 − k2  k2

0 = k2  k0 = |k| .

The constraint kµaµ(k)|physical state〉 = 0 reads now as

α0(k)|physical state〉 = 0 . (8.4)

Consider the following state vector in the Hilbert space

α†1(k1)α†1(k2) · · ·α†2 · · ·α
†
0 · · ·α

†
3 · · · | 0 〉 , (8.5)

i.e. an arbitrary product of creation operators applied to vacuum.
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Consider α†3|0〉:

α0α
†
3|0〉 =

[
α0, α

†
3

]
︸ ︷︷ ︸
6=0

|0〉+ α†3 α0|0〉︸ ︷︷ ︸
=0

,

which implies that due to commutation relations (8.1-8.3), the constraint (8.4) is only fulfilled
if no operator α†3 occurs or |physical state〉 cannot contain α†3 if (8.4) is fulfilled. For example,
from state vectors α†µ(k)| 0 〉 only α†0(k)| 0 〉, α†1(k)| 0 〉 and α†2(k)| 0 〉 are physical. These are
orthogonal and their squared lengths are greater than or equal to zero:

〈0|α0(k)α†0(k′) |0〉 = 0 (8.6)
〈0|α1(k)α†1(k′) |0〉 = (2π)32ω δ3(k− k′)
〈0|α2(k)α†2(k′) |0〉 = (2π)32ω δ3(k− k′)

An arbitrary physical state vector is a linear combination of state vectors of the form (8.5),
which do not contain α†3. For these it is then easy to show that their squared lengths are greater
than or equal to zero. �

From here it is easy to construct a Hilbert space with a positive-definite metric, which allows a
probability interpretation in the sense of quantum mechanics.

Definition: Equivalence relation of state vectors:

| 1 〉 ∼ | 2 〉 ⇐⇒ (〈 1 | − 〈 2 |) (| 1 〉 − | 2 〉) = 0

The linear Hilbert space of equivalence classes then has positive-definite metric.

Physical interpretation:
The state of a system of photons is described by a whole class of equivalent state vectors. One
can show that the expectation value of observable quantities (like field strength tensor, en-
ergy etc.) is identical for equivalent state vectors. In practice, for example, when calculating
matrix elements, one can always take any representative of an equivalence class as a state vector.

Due to (8.6) the state vector α+
0 (k)| 0 〉 is equivalent to the zero vector and only linear combi-

nations of

|k, ε1〉 = α†1(k) | 0 〉 = e1 · a†(k) | 0 〉
|k, ε2〉 = α†2(k) | 0 〉 = e2 · a†(k) | 0 〉

with
ε1,2 =

(
0

e1,2

)
correspond to physical one-photon-states. This is consistent with experimental findings of two
linearly independent one-photon-states for each k.

Physical one-photon-states for fixed k:

|k, ε〉 = −εµa†µ(k) | 0 〉 = ε · a†(k) | 0 〉 , (8.7)
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where
ε =

(
0
ε

)
satisfy ε0 = 0, ε · k = 0, |ε| = 1 and, as a consequence, εµkµ = 0.
This states satisfy the continuum normalization〈

k′, ε′|k, ε
〉

=
(
ε′∗ · ε

)
(2π)3 2ω δ3(k− k′)

Remember, linearly polarized photons are described by real polarization vectors ε = ε∗, right
and left circularly polarized photons by

ε± = ∓ 1√
2

(e1 ± ıe2) .

Why didn’t we just focus on state vectors (8.7)? Because the transversality condition on the
polarization vector ε is not Lorentz covariant. Consider a Lorentz transformation Λ:

k → k′ = Λk and ε =
(

0
ε

)
→ ε′ = Λε

From εµkµ = 0 follows that ε′µk′µ = 0, which implies

ε′0k′0 − e′ · k′ − ε′0 k′ · k′

|k′|
= 0

=⇒ e′ · k′ = 0
=⇒ e′⊥k′

and thus
ε′ =

(
ε′0

e′ + ε′0 k′
|k′|

)
.

It is e′ · k′
|k′| = 0 but in general ε′0 6= 0.

Comment: However, the corresponding state vector is equivalent to that of a purely transverse
photon:

−ε′µa†µ(k′) | 0 〉 =
{
−ε′0a†0 +

(
e′ + ε′0

k′

|k′|

)
a†(k′)

}
| 0 〉

=
{

e′ · a†(k′)− ε′0
[
a†0(k′)− k′

|k′| · a
†(k′)

]}
| 0 〉

∼ e′ · a†(k′) | 0 〉 .

8.2 Normal and time ordered products

We now want to give the expectation values of some physical observables – 〈. . .〉 means the
expectation values in any physical state.
Now,

Aµ =
∫ d3k

(2π)32ω
{
eıkxa†µ(k) + e−ıkxaµ(k)

}
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It is

a†0 = 1√
2

(
α†0 + α†3

)
, a†3 = 1√

2

(
α†0 − α

†
3

)
=⇒ a†0|physical state〉 = 0 , a†3|physical state〉 = 0 ,

since

α†0|physical state〉 = 0
α†3|physical state〉 = 0 .

This implies

a†(k)|physical state〉 =
(
e1α

†
1(k) + e2α

†
2(k)

)
|physical state〉 ,

since

e1a
†(k) = α†1(k)

e2a
†(k) = α†2(k) .

Therefore,

A|physical state〉 =
∫ d3k

(2π)32ω
{
eıkx

[
e1α

†
1(k) + e2α

†
2(k)

]
+ e−ıkx [e1α1(k) + e2α2(k)]

}
|physical state〉 .

Due to B = rotA it is

〈B(x)〉 =
∫ d3k

(2π)32ω

{
eıkx

〈
−ık×

[
e1α

†
1(k) + e2α

†
2(k)

]〉
+ e−ıkx 〈ık× [e1α1(k) + e2α2(k)]〉

}
. (8.8)

With E = −∇A0 − ∂0A follows 〈E〉 = −〈∂0A〉 since 〈∇A0〉 = 0 because

〈physical state| a†0(k) |physical state〉 =

〈physical state| 1√
2

(
α†0(k) + α†3(k)

)
|physical state〉 = 0 , (8.9)

since α†0 |physical state〉 = 0 and 〈physical state|α†3 = 0, because |physical state〉 does not con-
tain any α†3. Analogous arguments apply to 〈physical state| a0(k) |physical state〉 = 0. Thus

〈E〉 = −〈∂0A〉

=
∫ d3k

(2π)32ω
{
−ıωeıkx

〈
e1α

†
1(k) + e2α

†
2(k)

〉
+ ıωe−ıkx 〈e1α1(k) + e2α2(k)〉

}
In agreement with the experiment, only the transversal degrees of freedom of the photons con-
tribute.

Classical expressions for the energy p0 and the momentum p of the electromagnetic field are

p0 =
∫
t=const.

d3x
1
2
[
E(x)2 + B(x)2

]
p =

∫
t=const.

d3xE(x)×B(x) .
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If we consider E and B as field operator then we get for an arbitrary physical state:

〈
p′0
〉

= 1
2

∫ d3k
(2π)32ω ω ·

〈 2∑
i=1

{
α†i (k)αi(k) + αi(k)α†i (k)

}〉
〈
p′
〉

= 1
2

∫ d3k
(2π)32ω k ·

〈 2∑
i=1

{
α†i (k)αi(k) + αi(k)α†i (k)

}〉

Again only the physical degrees of freedom of the photons contribute.

There is a new difficulty. Consider vacuum expectation values:

〈0| p′0 |0〉 = 1
2

∫ d3k
(2π)32ω ω ·

2∑
l=1
〈0|αi(k)α†i (k) |0〉

= 1
2

∫
d3kω · 2 δ3(0)

= 1
2

∫
d3kω · 2 V

(2π)3 (8.10)

〈0|p′ |0〉 = 1
2

∫
d3k k · 2 δ3(0)

= 1
2

∫
d3k k · 2 V

(2π)3 , (8.11)

where we have used Fermi’s trick to replace (2π)3δ3(0) by the normalization volume V :

δ3(k− k′) =
∫ d3x

(2π)3 e
ı(k−k′)·x ⇒ (2π)3δ3(0) =

∫
d3x→ V ,

which is true for an integral over a finite volume V .

(8.11) is relatively harmless: symmetrical integration over all momenta gives zero.

(8.10) represents the zero-point energy of the electromagnetic field in a volume V . Only energy
differences can be measured and we choose vacuum as the zero point for the energy. The
present energy operator is replaced by

p0 = p′0 − 〈0| p′0 |0〉

and the expectation value for the new operator is

〈
p0
〉

=
∫ d3k

(2π)32ω ω
〈

1
2

2∑
i=1

{
α†i (k)αi(k) + αi(k)α†i (k)− 〈0|αi(k)α†i (k) |0〉

}〉

=
∫ d3k

(2π)32ω ω
〈

1
2

2∑
i=1

{
α†i (k)αi(k) + αi(k)α†i (k)−

[
αi(k), α†i (k)

]}〉

=
∫ d3k

(2π)32ω ω
〈 2∑
i=1

α†i (k)αi(k)
〉

Note that, all creation operators are to the left of the annihilation operators and that gives
a well-defined operator without divergences.
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Mathematically, the divergence problems are caused by products of field operators at the same
position such as E(x)2, which turned out to be too singular. We can achieve the subtraction of
the vacuum energy automatically if we introduce a new kind of product of field operators, the
so-called normal ordered product.
Definition: In the normal product, all creation operators act as if they were to the left to all
annihilation operators.

:a†a′†: = a†a′†

:a†a′: = a†a′

:aa′†: = a′†a

:aa′: = aa′

where a, a′ are arbitrary annihilation operators of Bose fields. In the case of fermions, an addi-
tional minus sign appears when exchanging operators.

Example:

E(x) ∼ a† + a =⇒ :E2(x): ∼ :
(
a† + a

) (
a† + a

)
:

= :
(
a†a† + a†a+ aa† + aa

)
:

= a†a† + 2a†a+ aa

The correct expressions for energy and momentum are

p0 =
∫
t=const

d3x 1
2:
(
E2(x) + B2(x)

)
:

p =
∫
t=const

d3x :E(x)×B(x):

The analogous problem occurs with the Dirac field and can also be solved by the normal prod-
uct. Note that the Dirac current ψ̄(x)γµψ(x) transforms like a four-current density. Originally,
the Dirac field was considered to be a relativistic probability amplitude of an electron. The zero
component of the Dirac current was interpreted as a probability density, because for a Dirac
spinor it is ψ̄(x)γ0ψ(x) = ψ+(x)ψ(x) > 0 for ψ(x) 6= 0. However, a one-particle interpretation
of the Dirac spinor is not tenable and the question arises: What role does the Dirac current play
in the theory of the free quantized Dirac field?

Charge and current distribution, i.e. the electromagnetic four-current density µ(x) of a system
of electrons and positrons is definitively an observable. We make the ansatz:

µ(x) = −eψ̄(x)γµψ(x) ,

where −e denotes a negative elementary charge.
Thus the total charge operator is

Q′ =
∫

d3x 0(x, t) = −e
∫

d3x ψ̄(x, t)γ0ψ(x, t) .

Reminder:
ψ(x) =

∫ d3p
(2π)3

1
2p0

∑
s=± 1

2

{
eıpxvs(p)b†s(p) + e−ıpxus(p)as(p)

}
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Thus
Q′ = −e

∫ d3p

(2π)32p0

∑
s=± 1

2

{
a†s(p)as(p) + bs(p)b†s(p)

}
and we get

〈0|Q′ |0〉 = −e
∫ d3p

(2π)32p0

∑
s=± 1

2

〈0| bs(p)b†s(p) |0〉

= −e
∫ d3p

(2π)32p0

∑
s=± 1

2

〈0|
{
bs(p), b†s(p)

}
|0〉

= −e
∫ d3p

(2π)32p0

∑
s=± 1

2

(2π)32p0δ(0)

= −e
∫

d3p 2δ3(0)

= ∞ for V →∞ ,

which is a similar problem as with the zero point of the energy. We obtain a “good” charge
operator Q, if we choose the total charge of the vacuum as the zero point.

Q = Q′ − 〈0|Q′ |0〉

= −e
∫ d3p

(2π)32p0

∑
s=± 1

2

(
a†s(p)as(p) + bs(p)b†s(p)−

{
bs(p), b†s(p)

})

= −e
∫ d3p

(2π)32p0

∑
s=± 1

2

(
a†s(p)as(p)− b†s(p)bs(p)

)

Q has positive and negative eigenvalues, electrons have charge −e and positrons +e. The infinite
self-charge of the vacuum is mathematically again caused by products of two field operators at
the same position and can be avoided by normal order of the fermionic field operators as in the
case bosons.

Definition:
:ar(p)a†s(p′): = −a†s(p′)ar(p) ,

i.e., for every interchange of fermionic field operators we get an additional factor −1 according
to anti-commutation relations of fermions.

Thus, we obtain a four-current density with a vanishing total charge of the vacuum as

µ(x) = −e :ψ̄(x)γµψ(x): .

Note that :ψ̄γ0ψ: is not anymore positive.
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8.3 Electromagnetic coupling and perturbation theory

Lagrangian of EM field:

In the framework of a deductive construction of QED one puts the Lagrangian L of the coupled
Maxwell-Dirac system at the top, namely first for the classical fields:

L =
∫

d3xL(x, t)

with the Lagrangian density
L(x) = L0(x) + Lint(x) ,

which consists of terms due to free fields, the electromagnetic and the Dirac field,

L0(x) = −1
4Fµν(x)Fµν(x) + ψ̄(x)(ıγµ∂µ −m)ψ(x)

and the interaction term

Lint(x) = −µ(x)Aµ(x)
= eψ̄(x)γµAµ(x)ψ(x) .

The Lagrangian density of the electromagnetic field is not unique. One can derive the Maxwell
equations from

L = −1
4FµνF

µν − µAµ , (8.12)

with

Fµν = Aµ,ν −Aν,µ , Aµ,ν = ∂Aµ
∂xν

where Fµν is the electromagnetic field tensor.

Euler-Lagrange Equation:

∂L
∂Aµ

= ∂ν
∂L
∂Aµ,ν

From the Lagrangian (8.12) we have

∂ν
∂L
∂Aµ,ν

= ∂ν

{
∂

∂Aµ,ν

(
−1

4 (Aα,β −Aβ,α)
(
Aα,β −Aβ,α

))}

= −1
4∂ν

{
∂

∂Aµ,ν

(
Aα,βA

α,β −Aβ,αAα,β −Aα,βAβ,α +Aβ,αA
β,α
)}

= −1
4∂ν {2 (Aµ,ν −Aν,µ +Aµ,ν −Aν,µ)}

= −1
2∂ν

Fµν − F νµ︸︷︷︸
=−Fµν


= −∂νFµν ,
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and
∂L
∂Aµ

= ∂

∂Aµ
(−µAµ) = ∂

∂Aµ
(−µAµ) = −µ .

The Euler-Lagrange equation yields

∂νF
µν = µ.

Now, applying ∂ν to (Aµ,ν −Aν,µ), we get

∂ν (Aµ,ν −Aν,µ) = ∂ν (∂νAµ − ∂µAν)
= �Aµ − ∂µ∂νAν

= µ.

For the Lorentz Gauge

∂νA
ν = 0 ,

we get,

�Aµ = µ ,

which is the Maxwell equation for 4-vector potential.

Question: What is µ in the presence of charged particles, e.g. electrons, described by the Dirac
field ψ?

Answer: µ = −eψ̄γµψ.

Dirac equation from the Lagrangian density of the Dirac field:

The Lagrangian density for a Dirac field is

L0 = ψ̄ (ıγµ∂µ −m)ψ

Proof:
∂L
∂ψ̄

= (ıγµ∂µ −m)ψ

∂µ
∂L

∂
(
∂µψ̄

) = 0.

The Euler-Lagrange equation reads

∂L
∂ψ̄
− ∂µ

∂L
∂
(
∂µψ̄

) = (ıγµ∂µ −m)ψ = 0︸ ︷︷ ︸
Dirac Equation

.
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Analogously,

∂L
∂ψ︸︷︷︸

=−mψ̄

−∂µ
∂L

∂ (∂µψ)︸ ︷︷ ︸
=∂µ(ıψ̄γµ)

= −
(
ı∂µψ̄γ

µ +mψ̄
)

= 0︸ ︷︷ ︸
Adjoint Dirac Equation

Dirac field in the presence of EM field:

We had already derived the form of the coupling term in the context of the interaction between
the quantized radiation field and matter. These so-called minimal coupling results from L0 by
the substitution

∂µ → ∂µ − ıeAµ ,

then,

L = ψ̄ (ıγµ (∂µ − ıeAµ)−m)ψ
= ψ̄ (ıγµ∂µ −m)ψ + eψ̄γµAµψ

= L0 − µAµ ,

with µ = −eψ̄γµψ. This makes the theory locally gauge invariant under U(1).

Why “minimal coupling”?
Dirac-Lagrangian is invariant under a “global” U(1) transformation:

ψ −→ eıeΛ(x)ψ =: ψ′ with Λ = Const.
 ψ̄ = e−ıeΛ(x)ψ̄ =: ψ̄′

Since

L′0 = ψ̄′ (ı∂µγµ −m)ψ′

= e−ıeΛψ̄ (ı∂µγµ −m) eıeΛψ
= ψ̄ (ı∂µγµ −m)ψ
= L0 .

From this global U(1) symmetry follows, in accordance with the Noether-theorem, the conser-
vation of charge

Q = −e
∫

d3xψ̄γ0ψ i.e. d
dtQ = 0 .

Proof. We assume the transformation as follows,

ψ(Λ) = exp(ıeΛ)ψ(0)
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Then we get,

0 = ∂L
∂Λ = ∂L

∂ψ

∂ψ

∂Λ + ∂L
∂ (∂µψ)

∂ (∂µψ)
∂Λ︸ ︷︷ ︸

=∂µ ∂ψ∂Λ

= ∂L
∂ψ

∂ψ

∂Λ + ∂µ

(
∂L

∂ (∂µψ)
∂ψ

∂Λ

)
−
(
∂µ

∂L
∂ (∂µψ)

)
∂ψ

∂Λ

=
(
∂L
∂ψ
− ∂µ

∂L
∂ (∂µψ)

)
︸ ︷︷ ︸
=0 due to Euler-Lagrange

∂ψ

∂Λ + ∂µ

(
∂L

∂ (∂µψ)
∂ψ

∂Λ

)

=⇒ ∂µ

(
∂L

∂ (∂µψ)
∂ψ

∂Λ

)
︸ ︷︷ ︸

=:µ

= 0 ,

which implies that µ is a conserved current, i.e.

∂0
0 = ∂i

i or, ∂
∂t
0 = ∇ · 

=⇒ d

dt

∫
d3r0︸ ︷︷ ︸

=:Q ,the conserved charge

= 0

Now,

µ = ∂L
∂ (∂µψ)

∂ψ

∂Λ =
(
ψ̄ıγµ

)
(ıeψ) = −eψ̄γµψ

�

L0 is invariant under ψ → eıeΛψ with Λ = const, i.e., the Lagrange function does not change
when the Dirac spinor is multiplied by a constant phase factor. This invariance of the Lagrangian
function under a global gauge transformation results, according to the Noether’s theorem, in a
conservation law and in this case charge is conserved (already proven). Since Λ is constant, the
gauge transformation must be the same at every point of space-time, i.e., it is a global gauge
transformation. This means that if we rotate the phase of the spinor at one point by the angle
Λ, we must perform the same rotation at all other points simultaneously.

If one takes this physical interpretation seriously, then one sees that it is impossible to fulfill,
since it violates the spirit of relativity, according to which there must be a minimal delay, which
corresponds to the time that the light needs to travel from one point in space to another.

To get around this problem, one gives up the requirement that Λ must be a constant and writes
the phase factor Λ(x) as an arbitrary function of space-time x. This is a local gauge transforma-
tion, it varies from point to point. It is also called the “gauge transformation of second kind”.

The principle of relativity requires that L should also be invariant under local U(1) transforma-
tion:

ψ −→ eıeΛ(x)ψ , (8.13)
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This can be achieved when the derivative ∂µ is replaced by:

∂µ → ∂µ − ıeAµ ,

and the vector potential is transformed as

Aµ −→ Aµ + ∂µΛ(x) , (8.14)

which is a gauge transformation.
Then, starting with L and with the following transformation of ψ as ψ′

L = ψ̄ [ı (∂µ − ıeAµ) γµ −m]ψ , ψ′ = eıeΛ(x)ψ ,

we get,

L′ = ψ̄′ [ı (∂µ − ıeAµ) γµ −m]ψ′

= e−ıeΛ(x)ψ̄ [ı (∂µ − ıe (Aµ + ∂µΛ(x))) γµ −m] eıeΛ(x)ψ

= ψ̄ [ı (∂µ − ıeAµ) γµ −m]ψ + eψ̄∂µΛ(x)γµψ − eψ̄∂µΛ(x)γµψ
= ψ̄ [ı (∂µ − ıeAµ) γµ −m]ψ = L .

which is invariant under the given gauge transformation.
Here, the Lagrangian density

L = ψ̄ (ı [∂µ − ıeAµ] γµ −m)ψ
= ψ̄ (ı∂µγµ −m)ψ + eψ̄γµAµψ︸ ︷︷ ︸

=−µAµ

= ψ̄ (ı∂µγµ −m)ψ − eµAµ .

In other words, L is invariant under the local gauge transformation (8.13) and (8.14). This
invariance of the coupled Maxwell-Dirac system, discovered by H. Weyl in 1929, is called
nowadays a U(1) gauge symmetry. Gauge symmetries are the cornerstone of modern theories of
elementary particles. Both the strong and weak interactions are governed by gauge symmetries,
which are a generalization of the gauge symmetry of QED.

If we neglect the coupling term in L, i.e. we set e = 0, then we get the free Maxwell and Dirac
equations as Euler-Lagrange equations. The quantization of the corresponding fields is done as
discussed already. The idea is now to perform a series expansion in e in order to account for the
coupling. Such a approach is called perturbation theory.

The interaction or Dirac representation:

H = H0 +Hint

The field operators obey

d
dtA(t) = ı [H0, A(t)] =⇒ A(t) = eıH0tAe−ıH0t

Time-evolution of states due to

ı
∂

∂t
|t〉 = Hint(t) |t〉 =⇒ |t〉 = T exp

(
−ı
∫ t

0
dτHint(τ)

)
|t = 0〉 (8.15)

155



CHAPTER 8. QUANTUM ELECTRODYNAMICS

where T is the time-ordering operator.
Since the coupling term Lint in the Lagrangian density does not contain any time derivatives,
the interaction energy Hint(t) equals Lint except for a sign:

Hint(t) = −
∫

d3rLint(r, t) =
∫

d3r µ(r, t)Aµ(r, t) ,

this means

Hint(t) = −e
∫

d3r : ψ̄(r, t)γµψ(r, t) : Aµ(r, t) . (8.16)

The equations (8.15) and (8.16) are the basis for the Feynman rules of QED.

We consider the following physical problem: At time t→ −∞, a certain number of electrons e−,
positrons e+, and photons γ are present, all widely separated from each other. These particles
can over time hit each other, scatter off each other, annihilate each other or create new particles.
We ask about the state at time t → +∞, in particular, about the transition amplitude into a
given state with a certain number of electrons, positrons and photons.

e−(p1) + . . .+ e+(q1) + . . .+ γ(k1) + . . . −→ e−(p′1) + . . .+ e+(q′1) + . . .+ γ(k′1) + . . .

8.4 Feynman rules

We start from equation (8.15) and expand in (8.16) ψ̄, ψ and Aµ in terms of creation and
annihilation operators, where we schematically set ψ̄ ∼ b + a†, ψ ∼ b† + a, Aµ ∼ α† + α.
Reminder:

ψ(x) =
∫ d3p

(2π)3
1

2p0

∑
s=±1/2

{
eıpxvs(p)b†s(p) + e−ıpxus(p)as(p)

}
We obtain the following structure for Hint:

Hint ∼ :
(
b+ a†

) (
b† + a

)
:
(
α† + α

)
∼ −b†b

(
α† + α

)
︸ ︷︷ ︸

(a)

+ a†b†
(
α† + α

)
︸ ︷︷ ︸

(b)

+ ba
(
α† + α

)
︸ ︷︷ ︸

(c)

+ a†a
(
α† + α

)
︸ ︷︷ ︸

(d)

If we apply Hint to any state then, for example, the term (d) causes the following: By a an
electron is annihilated, by a† an electron with a in general different momentum is re-created.
Thereby a photon is either emitted (α†) or absorbed (α).
Diagrammatic illustration:

(a) Emission or absorption of a photon by a positron.

(b) Creation of an electron-positron pair under emission or absorption of a photon.

(c) Annihilation of an electron-positron pair under emission or absorption of a photon.

(d) Emission or absorption of a photon by an electron.
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e

e
γ

(a)

(d)

(c)

(b)

Zeit

(***)

All processes can be represented by a single diagram, see (∗ ∗ ∗), if one defines to symbolize
positrons by electron lines running backwards in time.

At the time t → ∞ we have a certain number of electrons, positrons and photons, which we
indicate by corresponding lines. According to (8.15) there is a probability per unit time for a
transition to an other state, where one of the processes (a)-(d) is possible. This can repeat.
According to the rules of quantum mechanics, the transition amplitudes into a certain final
state must be added coherently, independent of the intermediate steps leading to this state. The
correct superposition results from the formal solution of (8.15):

|t〉 =
{

1 + (−ı)
∫ t

−∞
dt′Hint(t′) + (−ı)2

∫ t

−∞
dt′
∫ t′

−∞
dt′′Hint(t′)Hint(t′′) + . . .

}
|t = −∞〉

This results in the S operator, which describes the time evolution of the states from t → −∞

157



CHAPTER 8. QUANTUM ELECTRODYNAMICS

to t→ +∞:

|t = +∞〉 = S |t = −∞〉

=
{

1 + (−ı)
∫ ∞
−∞

dt′Hint(t′) + (−ı)2
∫ ∞
−∞

dt′
∫ t′

−∞
dt′′Hint(t′)Hint(t′′) + . . .

}
|t = −∞〉

Using the time ordered product, S can be written in a bit compact way:

S =
∞∑
n=0

(−ı)n
n!

∫ ∞
−∞

dt1 · · ·
∫ ∞
−∞

dtn T (Hint(t1) · · ·Hint(tn))

= T

{
exp

[
−ı
∫ ∞
−∞

dtHint(t)
]}

(8.17)

Since Hint is proportional to e, (8.17) is basically an expansion of the S operator in powers of
e =
√

4πα, where α is the fine-structure constant.

2nd order in e 4th order in e

Figure 8.1: Some diagrams for the electron-electron scattering.

158



CHAPTER 8. QUANTUM ELECTRODYNAMICS

8.5 Simple reaction: electron-electron scattering

e− (p1, r1) + e− (p2, r2)→ e− (p3, r3) + e− (p4 r4) (8.18)

Four-momenta in the center-of-mass system:

p1 =
(
E
p

)
, p2 =

(
E
−p

)
︸ ︷︷ ︸

Before scattering

, p3 =
(
E
p′

)
, p4 =

(
E
−p′

)
,︸ ︷︷ ︸

After scattering

where |p| = |p′|.

e(p) e(−p)

e(p′)

e(−p′)

co
un

te
r

θ

Figure 8.2: Electron-electron scattering in the center-of-mass system.

State before scattering:
|t→ −∞〉 = a+

r1(p1)a+
r2(p2)| 0 〉

Transition amplitudes for the reaction (8.18):

Sfi = 〈e (p3, r3) e (p4, r4)| S |e (p1, r1) e (p2, r2)〉
= 〈 0 | ar3(p3)ar4(p4)S a†r1(p1)a†r2(p2) | 0 〉 (8.19)

We truncate the expansion of S after terms of order e2:

S = 1 ←
{

does not contribute to (8.19) if
(p1,r1),(p2,r2) 6=(p3,r3),(p4,r4)

+ (−ı)
∫ ∞
−∞

dt′Hint(t′) ←
{

does not contribute to (8.19), contains only
one photon creation or annihilation operator

+ (−ı)2

2!

∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′ T (Hint(t′)Hint(t′′)) ← { relevant, is of order e2

Thus

Sfi = (−ı)2

2!

∫ ∞
−∞

dt′
∫ ∞
−∞

dt′′ 〈e(p3, r3)e(p4, r4)|T (H(t′)H(t′′)) |e(p1, r1)e(p2, r2)〉

Inserting the explicit form of the interaction energy Hint(t) from (8.16) leads to

Sfi = (ı)2

2! e
2
∫

dx′dx′′ 〈 0 | ar3(p3)ar4(p4)

T
{

: ψ̄(x′)γµψ(x′) : Aµ(x′) : ψ̄(x′′)γνψ(x′′) : Aν(x′′)
}

a†r1(p1)a†r2(p2) | 0 〉 (8.20)
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Structure of the matrix element:

〈 0 | aa : (b+ a†)(b† + a) : (α+ α†) : (b+ a†)(b† + a) : (α+ α†) a†a† | 0 〉

Evaluation is made easier by use of Wick’s theorem.
Reminder:

〈 0 | aia†j | 0 〉 = 〈 0 | {ai, a†j} − a
†
jai | 0 〉 = {ai, a†j}

thus

〈 0 | a1a
†
2a3a

†
4 | 0 〉 = 〈 0 |

({
a1, a

†
2

}
− a†2a1

) ({
a3, a

†
4

}
− a†3a4

)
| 0 〉

=
{
a1, a

†
2

}
·
{
a3, a

†
4

}
= 〈 0 | a1a

†
2 | 0 〉 〈 0 | a3a

†
4 | 0 〉

Definition: “Contraction”: 〈 0 |aia†j | 0 〉 = aia
†
j

That means: 〈 0 | a1a
†
2a3a

†
4 | 0 〉 = a1a

†
2 a3a

†
4

Consider

〈 0 | a1a2a
†
3a
†
4 | 0 〉 = 〈 0 | a1

({
a2, a

†
3

}
− a†3a2

)
a†4 | 0 〉

= 〈 0 | a1a
†
4 | 0 〉

{
a2, a

†
3

}
− 〈 0 | a1a

†
3a2a

†
4 | 0 〉

= 〈 0 | a1a
†
4 | 0 〉 〈 0 | a2a

†
3 | 0 〉 − 〈 0 | a1a

†
3 | 0 〉 〈 0 | a2a

†
4 | 0 〉

i.e.

〈 0 | a1a2a
†
3a
†
4 | 0 〉 = 〈 0 | a1a2a

†
3a
†
4 | 0 〉+ 〈 0 | a1a2a

†
3a
†
4 | 0 〉

= + a1a
†
4 a2a

†
3

For fermions!︷︸︸︷
− a1a

†
3 a2a

†
4

Wick’s theorem: Vacuum expectation value of a product of creation and annihilation operators
is equal to the sum of all contractions.

Regarding Sfi: The operators α, α† from Aµ(x′) can only be contracted with those from Aν(x′′).

In the case of contraction of Fermi operators, we do not get a contribution if an operator from
ψ(x′) is connected with one from ψ̄(x′′), because then also at least one contraction of an incom-
ing electron operator with an outgoing one occurs, which vanishes because of (p1, r1), (p2, r2) 6=
(p3, r3), (p4, r4).

Thus, there are only contributions from contraction of incoming and outgoing electrons with the
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field operators ψ and ψ̄, respectively. For example, a+
r1(p1) with ψ(x′) and ψ(x′′) etc.

〈 0 | a(p3)a(p4) : ψ(x′)γµψ(x′) : : ψ(x′′)γνψ(x′′) : a†(p1)a†(p2) | 0 〉
= a(p3)a(p4) :ψ(x′)γµψ(x′) : :ψ(x′′)γνψ(x′′) : a†(p1)a†(p2)

+ a(p3)a(p4) :ψ(x′)γµψ(x′) : :ψ(x′′)γνψ(x′′) : a†(p1)a†(p2)

+ a(p3)a(p4) :ψ(x′)γµψ(x′) : :ψ(x′′)γνψ(x′′) : a†(p1)a†(p2)

+ a(p3)a(p4) :ψ(x′)γµψ(x′) : :ψ(x′′)γνψ(x′′) : a†(p1)a†(p2)

=
{
ū(p4)eıp4x′γµu(p1)e−ıp1x′ · ū(p3)eıp3x′′γνu(p2)e−ıp2x′′

−(1↔ 2)− (3↔ 4) + (1↔ 2, 3↔ 4)} .

Because contractions of Fermi operators yield the same for x′0 > x′′0 and x′′0 > x′0, inserting this
result into (8.20) leads to thus

Sfi = (ıe)2

2

∫
dx′ dx′′

{
θ(x′0 − x′′0) 〈0|Aµ(x′)Aν(x′′) |0〉+ θ(x′′0 − x′0) 〈0|Aν(x′′)Aµ(x′) |0〉

}
·
{
ū(p4)γµu(p1)eı(p4−p1)x′ · ū(p3)γνu(p2)eı(p3−p2)x′′ − (1↔ 2)− (3↔ 4) + (1↔ 2, 3↔ 4)

}
.

Pooling of terms, which differ only by the name of the integration and summation variables,
gives

Sfi = (ıe)2
∫
dx′dx′′

Photon propagator︷ ︸︸ ︷
〈0|T (Aµ(x′)Aν(x′′)) |0〉

·
{
ū(p4)γµu(p1)ū(p3)γνu(p2)eı(p4−p1)x′eı(p3−p2)x′′

−ū(p3)γµu(p1)ū(p4)γνu(p2)eı(p3−p1)x′eı(p4−p2)x′′
}
.

With

〈0|T (Aµ(x′)Aν(x′′)) |0〉 =
∫

dk

(2π)4 e
−ık(x′−x′′) −ıgµν

k2 + ıε
(ε→ 0)

the integrals over x′ and x′′ can be easily performed and give δ-functions for the four-momenta.
The final result is

Sfi = ı(2π)4δ(p4 + p3 − p2 − p1)Tfi , (8.21)

where

Tfi = 1
ı

{
ū(p4)(ıeγµ)u(p1) −ıgµν

(p4 − p1)2 ū(p3)(ıeγν)u(p2)

−ū(p3)(ıeγµ)u(p1) −ıgµν
(p3 − p1)2 ū(p4)(ıeγν)u(p2)

}
.
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e−(p1)

e−(p4)

e−(p2)

e−(p3)

γ(p4−p1)
+

e−(p1)

e−(p3)

e−(p2)

e−(p4)

γ(p3−p1)

Figure 8.3: Four-momentum conservation applies to every vertex.

8.6 Photon propagator

Field operator of the four-potential Aµ reads as

Aµ =
∫ d3k

(2π)32ω
{
eıkxα†µ(k) + e−ıkxαµ(k)

}
(8.22)

with
k =

(
ω
k

)
, ω = |k|, kx = kµxµ = ωt− k · x .

Vacuum expectation value of an ordinary product of two four-potentials:

〈0|Aµ(x)Aν(y) |0〉 = −gµν
∫ d3k

(2π)32ω e
−ık(x−y)

Definition of a time-ordered product of two operators Aµ

T (Aµ(x)Aν(y)) = θ(x0 − y0)Aµ(x)Aν(y) + θ(y0 − x0)Aν(y)Aµ(x) . (8.23)

Time-ordered product independent of the reference system due to

[Aµ(x), Aν(y)] = 0 for (x− y)2 < 0 .

x1

x0

y

Aµ(x)Aν(y)

Aν(y)Aµ(x)

Figure 8.4: Illustration of the definition of the time-ordered product (8.23).
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Claim:

〈0|T (Aµ(x)Aν(y)) |0〉 = ıgµνDF (x− y) (8.24)

with
ıgµνDF (x− y) = lim

ε→0

∫ dk
(2π)4 e

−ık(x−y) −ıgµν
k2 + ıε

,

where
dk = dk0dk1dk2dk3 .

Proof:

ıgµνDF (x− y) = gµν

∫ d3k
(2π)3 e

ık·(x−y)
∫ ∞
−∞

dk0

2πı e
−ık0(x0−y0) · 1

(k0)2 − k2 + ıε
(8.25)

The poles of integration are at

k0 = ±
√

k2 − ıε −→ ±|k| ,

as indicated in the Figure 8.5.

Re(k0)

Im(k0)

|k|−ıε

−|k|+ıε

Figure 8.5: Position of the poles and the integration path in the k0-plane for the integral (8.25)

For x0 > y0 it is
e−ık

0(x0−y0) −→ 0 for Im k0 → −∞ .

We can then add a very large semicircle to the integration path in the lower half of the k0-plane
and apply the residual theorem. We obtain

ıgµνDF (x− y) = −gµν
∫ d3k

(2π)3
e−ı[|k|(x0−y0)−k·(x−y)]

2|k|

and by comparison with (8.22)

ıgµνDF (x− y) = 〈0|Aµ(x)Aν(y) |0〉 for x0 > y0 .
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For x0 < y0 we can close the integration path in the upper half-plane and we get

ıgµνDF (x− y) = −gµν
∫ d3k

(2π)3
e−ı[|k|(y0−x0)−k·(x−y)]

2|k|
= 〈0|Aν(y)Aµ(x) |0〉 for x0 < y0 .

With this (8.24) is proven. The function ıgµνDF (x− y) or its Fourier transform −ıgµν/(k2 + ıε)
is called Feynman propagator of the free photon field. It plays a crucial role in the framework
of the Feynman rules. The transition amplitude for a designated reaction is given by the sum
of all diagrams with predefined incoming and outgoing lines. Within a diagram an arbitrary
number of vertices is permitted. At every vertex, the four-momentum conservation is granted,
which implies a momentum conservation as a whole (∑ inc. p = ∑ outg. p).

Example: Photon-photon scattering, γ(k1) + γ(k2)→ γ(k3) + γ(k4)

k1
k2

k3k4

`+ k1

`+ k1 + k2

`+ k1 + k2 − k3

`

The loop momentum is `. One always has to integrate over it with measure
∫ d`

(2π)4 .

For the S-matrix element, a factor considering the energy momentum conservation has to be
added:

(2π)4δ

∑
f

pf −
∑
i

pi

 ,

where pi represent the momenta of the incoming particles and pf the momenta of the outgoing
particles respectively. There is also a factor of (−1) for every closed fermion loop. If a permu-
tation of outer momenta of fermions takes place, there is also an additional factor given by the
sign of the permutation, e.g.:
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p1

p3

p2

p4

(−1)

p1

p4

p2

p3

8.7 Electron propagator

The electron propagator is defined in terms of the expectation value of the time-ordered product

〈0|T(ψα(x)ψ̄′α(x′))|0〉 =: ıSαα′F (x− x′) ,

where the action of the time-ordering operator T is given by

T(ψα(x)ψ̄′α(x′)) =
{

ψα(x)ψ̄′α(x′) , for t > t′

−ψ̄′α(x′)ψα(x) , for t < t′
.

For convenience we will drop the spinor indices α and α′ in the following but will keep in mind
that ψ̄ψ=̂ψ̄α′ψα etc. We calculate

〈0|ψ(x)ψ̄(x′)|0〉 = 1
V

∑
k,k′

(
m2

Ek E
′
k

) 1
2 ∑
r, r′

〈0|
(
b̂r,kur(k)e−ıkx + d̂†r,kwr(k)eıkx

)
·
(
d̂r′,k′w̄r′(k′)e−ık

′x′ + b̂†r′,k′ ūr′(k
′)eıkx

)
|0〉

= 1
V

∑
k

(
m

Ek

){
e−ık(x−x′)∑

r

ur(k)ūr(k)︸ ︷︷ ︸
= 1

2m (kµγµ+m)

}

=
(
ı∂µγ

µ +m
) ∫ d3k

(2π)3
e−ık(x−x′)

2Ek︸ ︷︷ ︸
=: ı∆+(x− x′)

−〈0|ψ̄(x′)ψ(x)|0〉 = − 1
V

∑
k

(
m

Ek

){
eık(x−x′)∑

r

w̄r(k)wr(k)︸ ︷︷ ︸
= 1

2m (kµγµ−m)

}

= (ı∂µγµ +m)
∫ d3k

(2π)3
eık(x−x′)

2Ek︸ ︷︷ ︸
=: ı∆−(x− x′)

This yields

SF (x) = (ı∂µγµ +m)∆F (x) , with ∆F (x) =
{

∆+(x) , t > 0
∆−(x) , t < 0

.
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Claim:

∆F (x) = lim
ε→0

∫ d4k

(2π)4
eıkx

k2 −m2 + iε

Proof:
We rewrite k2 −m2 + ıε as

k2
0 − (ωk − ıη)2 = k2

0 − ω2
k︸ ︷︷ ︸

=k2−m2

+ 2ωkıη︸ ︷︷ ︸
=:ıε

+η2

and using this to express ∆F (x) as

∆F (x) = lim
η→0

∫ d3k
(2π)3 e

−ık·x × ı

2πı

∫ ∞
−∞

dk0
e−ık0x0

k2
0 − (ωk − ıη)2︸ ︷︷ ︸

evaluate with
residue theorem

.

To use the residue theorem we rewrite the denominator of the second integral as

1
k2

0 − (ωk − ıη)2 = 1
2k0

{
1

k0 − (ωk − ıη) + 1
k0 + (ωk − ıη)

}
,

which shows that there exists two poles, one at ωk − ıη, the other at −(ωk − ıη).

e−ık0x0 −→ 0

for t(= x0) > 0 if Im k0 < 0
|k0| → ∞

for t(= x0) < 0 if Im k0 > 0
|k0| → ∞

Re(k0)

Im(k0)

ωk−ıη

−ωk+ıη

t < 0

t > 0

C−

C+

⇒ 1
2πı

∫ ∞
−∞

dk0
e−ık0x0

k2
0 − (ωk − ıη)2

= 1
2πı

∫ ∞
−∞

dk0
2k0︸ ︷︷ ︸

=


∫
C+

dk0
2k0

for t > 0∫
C−

dk0
2k0

for t > 0

{
e−ık0x0

k0 − (ωk − ıη) + e−ık0x0

k0 + (ωk − ıη)

}

=


e−ıωkt

2ωk
, t > 0

e+ıωkt

2ωk
, t < 0
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Note: We used Cauchy’s integral formula 1
2πı
∮
dz f(z)

z−z0 = f(z0) to evaluate the integrals.

This yields the intermediate result

∆F (x) =
∫ d3k

(2π)3 e
ık·x × e∓ıωkt

2ωk
=
∫ d3k

(2π)3
e∓ıkx

2ωk
,

where in the exponent the “−” corresponds to t > 0 and the “+” to t < 0 respectively. Also
note that we made use of the fact that

∫
dk eık·x =

∫
d3k e−ık·x.

Coming back to the definition of the propagator, we further calculate

SF (x) = (ı∂µγµ +m)
∫ d4k

(2π)4
e−ıkx

k2 −m2 + ıε

=
∫ d4k

(2π)4
kµγ

µ +m

k2 −m2 + ıε
e−ıkx

and the corresponding Fourier transformation

S̃F (k) =
/k +m

k2 −m2 + ıε
= 1
/k −m+ ıε

,

since (/k −m)(/k +m) = k2 −m2.

Remark: He have

1
V

∑
k

1
2Ek

e−ıkx =
∫ d3k

(2π)3
1

2Ek
e−ıkx = 1

2

∫ d4k

(2π)3 δ(k
2 −m2)e−ıkx

is Lorentz invariant since d4p = det Λd4p′.

8.8 Feynman Rules of Quantum Electrodynamics

For given initial and final states |i〉 and |f〉, the S-matrix element has the form

〈f |S|i〉 = δf,i +

(2π)4 δ(4)(Pf − Pi)

 ∏
ext.

fermions

√
m

V E


 ∏

ext.
photons

√
1

2V |k|


M ,

where Pi and Pf are the total momenta of the initial and final states. In order to determineM,
one draws all topologically distinct diagrams up to the desired order in the interaction and sums
over the amplitudes of these diagrams. The amplitude associated with a particular Feynman
diagram is itself determined as follows:

1.) One assigns a factor of −ıeγµ to every vertex point.

2.) For every internal photon line one writes a factor ıDFµν (k) = ı−g
µν

k2+ıε .
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3.) For every internal fermion line one writes ıSF (p) = ı 1
/p−m+ıε .

4.) To the external lines one assigns the following free spinors and polarization vectors:
incoming electron: ur(p)
outgoing electron: ūr(p)
incoming positron: w̄r(p)
outgoing positron: wr(p)
incoming photon: ελµ(k)
outgoing photon: ελµ(k)

5.) The spinor factors (γ matrices, SF propagators, four-spinors) are ordered for each fermion
line such tat reading them from right to left amounts to following the arrows along the
fermion lines.

6.) For each closed fermion loop, multiply, multiply by a factor (−1) and take the trace over
the spinor indices.

7.) At every vertex, the four-momenta of the three lines that meet at this point satisfy energy
and momentum conservation.

8.) It is necessary to integrate over all free momenta (i.e., those not fixed by four-momentum
conservation):

∫ d4q
(2π)4 .

9.) One multiplies by a phase factor δp = 1 (or −1), depending on whether an even or odd
number of transpositions is necessary to bring the fermion operators into normal order.

The minus sign for a closed fermion loop has the following origin: proceeding from the T -product
part, which gives the closed loop, T (. . . ψ̄(x1) /A(x1)ψ(x1)ψ̄(x2) /A(x2)ψ(x2) . . . ψ̄(xf ) /A(xf )ψ(xf ) . . . ),
one has to permute the operator ψ(x1) with an uneven number of fermion fields and gets the
sequence of propagators ψ(x1)ψ(x2) . . . ψ(xf )ψ(x1) with a minus sign.

k

q + k

q

k

Figure 8.7: Example of a closed fermionic loop.
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ur(p)

incident electron

ūr(p)

outgoing electron

External lines

w̄r(p)

incident positron

wr(p)

outgoing positron

ελµ(k)

incident photon

ελµ(k)

outgoing photon

Aeµ(k)

external field

Internal lines

p

ıSF (p) = ı 1
p�−m+ıε

internal electron line

µ ν

k

ıDµν
F (k) = ı −g

µν

k2+ıε

internal photon line

p

p′

k

−ıeγµ

vertex

Figure 8.6: Feynman rules of quantum electrodynamics in momentum space.
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8.9 Scattering Cross Section

8.9.1 Electron-electron scattering

We come back to the electron-electron scattering process (see 8.5)

e−(p1, r1) + e−(p2, r2)→ e−(p3, r3) + e−(p4, r4) ,

where the momenta are given in the center of mass frame as

p1 =
(
E
p

)
, p2 =

(
E
−p

)
, p3 =

(
E
p′

)
, p4 =

(
E
−p′

)
,

with |p| = |p′|.

e(p) e(−p)

e(p′)

e(−p′)

co
un

te
r

θ

Figure 8.8: Sketch of the electron-electron scattering process.

We now want to calculate the scattering cross section from the amplitude of this process.

dσ = transition rate to p3, p4
flux of incoming particles = dwfi/T

φ

dwfi = 1
2p0

1 2p0
2

( 1
V

)2

︸ ︷︷ ︸
normalization

of the incoming
electron states

· dp3 dp4
(2π)6 2p0

3 2p0
4︸ ︷︷ ︸

Lorentz invariant
volume element
in (p3/p4)-space

∑
spins

′

︸ ︷︷ ︸
averaging/summation
over the spin direction

of electrons in
the initial/final state

[
(2π)4 δ(p1 + p2 − p3 − p4) |Tfi|

]2
(cf.(8.21))

The square of the δ-function can be interpreted with Fermi’s trick:[
(2π)4 δ(p1 + p2 − p3 − p4)

]2
=
∫
V, T︸ ︷︷ ︸

large but finite
volume V /time T

dx eı(p1+p2−p3−p4)x(2π)4 δ(p1 + p2 − p3 − p4)

= V · T (2π)4 δ(p1 + p2 − p3 − p4)
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⇒ dwfi
T

= 1
V

1
2p0

1 2p0
2

(2π)4δ(p1 + p2 − p3 − p4) dp3 dp4
(2π)6 2p0

3 2p0
4

∑
spins

′ |Tfi|2

We now have to consider the flux of incoming particles φ. We choose the rest frame of e2 as
reference frame (the final result will be Lorentz invariant). Then

φ = 1
V︸︷︷︸

normalization of
incoming state

|v1|︸︷︷︸
velocity of
particle 1

, where |v1| =
|p1|
p0

1
, p1 =

(
E1
p1

)
, p3 =

(
m2
m

)
,

since |p1| = γm|v1| and E1 = γmc2. We define the center of mass energy as

s : = (p1 + p2)2

= p2
1 + 2p1p2 + p2

2

= m2
1 + 2m2E1 +m2

2

⇒ E1 = s−m2
1 −m2

2
2m2

(∗)

Note that in the rest frame of e2 we have p1 =
(
E1
p1

)
and p2 =

(
m2
0

)
and therefore p1p2 = E1m2.

We then find for the absolute value of the momentum of particle 1

|p1| =
√
E2

1 −m2
1

(∗)= 1
2m2

[
(s−m2

1 −m2
2)2 − 4m2

1m
2
2

] 1
2

= 1
2m2

[
s2 +m4

1 +m4
2 − 2sm2

1 − 2sm2
2 − 2m2

1m
2
2

] 1
2

=: 1
2m2︸ ︷︷ ︸
=p0

2

w(s,m2
1,m

2
2) , where w(x, y, z) =

[
x2 + y2 + z2 − 2xy − 2xz − 2yz

] 1
2

Using above result we find for the flux the expression

⇒ φ = 1
V

1
p0

1

w(s,m2
1,m

2
2)

2p0
2

Combining our previous results yields a scattering cross section dσ of

⇒ dσ = 1
2w(s,m2

1,m
2
2)

dp3 dp4
(2π)6 2p0

3 2p0
4

(2π)4 δ(p1 + p2 − p3 − p4)
∑
spins

′|Tfi|2 (8.26)

171



CHAPTER 8. QUANTUM ELECTRODYNAMICS

Now it is for the sum over the matrix elements Tfi∑
spins

′|Tfi|2 =
∑
spins

′T ∗fiTfi

=
∑
spins

′
{ 1

(p4 − p1)2 ū(p2)γµu(p3)ū(p1)γµu(p4)− 1
(p3 − p1)2 ū(p1)γµu(p3)ū(p2)γµu(p4)

}

·
{ 1

(p4 − p1)2 ū(p4)γνu(p1)ū(p3)γνu(p2)− 1
(p3 − p1)2 ū(p4)γνu(p1)ū(p3)γνu(p1)

}
= e4

4

{ 1
u2 Tr

[
(/p2 +m)γµ(/p3 +m)γν

]
· Tr

[
(/p1 +m)γµ(/p4 +m)γν

]
− 1

t u
Tr
[
(/p2 +m)γµ(/p3 +m)γν/p1 +m)γµ(/p4 +m)γν

]
+ (3→ 4)

}
,

where in the last step we used∑
s=±1/2

us(p)ūs(p) = /p+m = pµγµ +m

and

u := (p4 − p1)2 , t := (p3 − p1)2 .

We further calculate

Tr
[
(/p2 +m)γµ(/p3 +m)γν

]
= 4

(
gµνm

2 + p2µp3ν + p2νp3µ − gµνp2 · p3
)

and

Tr
[
(/p2 +m)γµ(/p3 +m)γν(/p1 +m)γµ(/p4 +m)γν

]
=16

(
− 2p1p2p3p4 +m2p1 · p3 +m2(p1 + p3) · (p2 + p4) +m2p2 · p4 − 2m4

)
.

After a lengthy calculation one finds using the definitions of s, u and t

∑ ′|Tfi|2 = 64π2α2

t2 u2

{
(s− 2m2)2(t2 + u2) + ut(−4m2s+ 12m4 + ut)

}
.

Inserting in (8.26) yields in center of mass variables

dσ = dΩ
∫ ∞

0
d|p3| |p3|2

∫
dp4

1
2[s(s− 4m2)]1/2

1
(2π)2

1
2p0

3 2p0
4
δ(
√

5− p0
3 − p0

4)δ3(p3 + p4)
∑ ′|Tfi|2

and finally

dσ

dΩ = α2

st2u2

{
(s− 2m2)2(t2 + u2) + ut(−4m2s+ 12m4) + ut

}
(Møller 1932)

where we have

E =
√

2/2 , t = −4|p1|2 sin2 θ

2 , u = −4|p1|2 cos2 θ

2 .
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We will now determine the kinematic boundaries of θ, respectively t. Quantum mechanically,
both electrons have to be viewed as identical particles in their initial and final states. The
question of whether the particle coming from the right or the one coming from the left is hitting
a counter placed under an angle of θ is meaningless (see Fig. 8.8). We only can detect that
one electron leaves the point of interaction under an angle θ, the other electron under π − θ.
Therefore the angle range 0 ≤ θ ≤ π/2 already captures all distinct final states. This ensues

0 ≥ t ≥ −1
2(s− 4m2) .

We find in the non-relativistic limiting case, |p| � m:

dσ

dΩ = α2m2

16|p|4

[
1

sin4 θ
2

+ 1
cos4 θ

2︸ ︷︷ ︸
=̂ classical Rutherford

scattering

− 1
sin2 θ

2 cos2 θ
2︸ ︷︷ ︸

additional QM term
resulting from the

interference of
both electrons

]
(Mott 1930)

The additional term results from the quantum mechanical addition of the amplitudes – which
correspond to both of the Feynman diagrams – and the concluding formation of the modulus
when calculating the cross section. The minus sign in the interference term results from the
Fermi statistics; for bosons one obtains a plus sign.

We can also determine an ultra relativistic case, |p| � m:

dσ

dΩ = α2

s

{
1

sin4 θ
2

+ 1
cos4 θ

2
+ 1

}

= α2

s

(3 + cos2 θ)2

sin4 θ

n.b.: s · dσdΩ is no longer dependent of s. This scaling behaviour of the cross section is
interpreted as an indication of the point like nature of the electron. If the electron would
possess an finite “extent” v = 1/Λ, one would expect that s · dσdΩ is a nontrivial function of the
dimensionless variable s/Λ2, i.e. s · dσdΩ would not be independent of s. Predictions from the
theory of electron-electron scattering were throughout verified in experiments.
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8.9.2 Electron-positron scattering (Bhabha-Scattering)

We consider the process

e−(p1) + e+(p2)→ e−(p3) + e+(p4) ,

which possesses the same kinematic as the previous electron-electron scattering process. The
Feynman diagrams of lowest order are given by:

e−(p1)

e−(p3)

e+(p2)

e+(p4)

p1 − p3

e−(p1) e+(p2)

e−(p3) e+(p4)

p1 + p2

“Scattering”
(p1 − p3)2 ≤ 0

“Annihilation”
(p1 + p2)2 ≥ 4m2

For unpolarized electrons and positrons in the ultra relativistic limiting case, we find in center
of mass coordinates

dσ

dΩ = α2

2

{
1
2

1 + cos4 θ
2

sin4 θ
2

+ 1
4
(
1 + cos2 θ

)
−

cos4 θ
2

sin2 θ
2

}

= α2

16s
(3 + cos2 θ)2

sin4 θ
2

for s� 4m2 .

We are considering two distinguishable particles in the initial and final states, therefore we have
an kinematic range of 0 ≤ θ ≤ π.

Bhabha-scattering was studied at the collider PETRA in Hamburg, where the highest center-
of-mass energy was

√
s ≈ 45 GeV. A really good agreement of experiment and theory was

found.

If one assumes that quantum electrodynamics needs to be modified from an energy scale Λ on,
then for

s� Λ2 : dσ

dΩ

/
dσQED

dΩ = 1 +O(s/Λ2)

and with an experimental precision of s ≈ 103 GeV2 it follows
s

Λ2 . 0.05 , i.e. Λ & 150 GeV resp. 1.3 · 10−16 cm .

Deviations on this energy scale can thus be explained by the need to extent the QED through
the electroweak interaction.
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8.9.3 Compton scattering

γ(k′)

e−(p′)

γ(k) ϑ2
Figure 8.9: The Compton scattering process in
the laboratory frame, where the incoming elec-
tron rests.

We look at the process

γ(k) + e−(p)→ γ(k′) + e−(p′) ,

where the incoming electron rests in the laboratory frame. The momenta are therefore described
by

p =
(
m
0

)
, p′ =

(√
m2 + p′2

p′

)

k =
(
ω
k

)
, k′ =

(
ω′

k′

)
,

where ω = |k| and ω′ = |k′|. Energy conservation yields

m+ ω =
√
m2 + p′2 + ω′

=
√
m2 + (k− k′)2 + ω′

⇒ ω − ω′

ωω′
= 1
m

(
1− cos ϑ2

)
resp. λ′ − λ = 2π

m

(
1− cos ϑ2

)
,

where the corresponding wavelength is 3.86 · 10−11 cm. The Feynman diagram of lowest order
for the calculation of the scattering cross section are given below:

e−(p) γ(k)

e−(p′) γ(k′)

e−(p)

e−(p′)

γ(k)

γ(k′)

For unpolarized electrons and photons, we find the result

dσ

dΩ2
= α2

2
1

[m+ ω(1− cos ϑ2)]2 ·
{

ω2(1− cos ϑ2)2

m[m+ ω(1− cos ϑ2)] + 1 + cos2 ϑ2

}
(Klein, Nishina 1929)

In the non-relativistic limiting case, ω � m, we find

ω′ = ω ,
dσ

dΩ2
= α2

m2
1 + cos2 ϑ2

2 , σtot = 8π
3

α2

m2 .
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We also can determine an ultra relativistic case with ω � m, resp. λ� 1/m:

1− cos θ2 �
m

ω
⇒ λ′ ≈ λ , dσ

dΩ2
≈ α2

m2

1− cos θ2 �
m

ω
⇒ λ′ ≈ 2π

m
(1− cos θ2) , dσ

dΩ2
≈ α2

2mω(1− cos θ2) ∝
1
ω
,

where in the second case the scattered wavelength λ′ is independent of the incoming photon.

Note: Compton scattering is related by crossing symmetry to pair annihilation. Under
crossing symmetry one understands that, given a particle interaction, related interactions can
be anticipated from the fact that any of the particles can be replaced by its antiparticle on the
other side of the interaction. Looking at an arbitrary reaction

A+B → C +D ,

this implies the existence of the following reactions:

A→ B + C +D

A+C → B +D

C → A+B +D

C+D → A+B

Crossing symmetry applies to all known particles, including the photon, which is its own an-
tiparticle. Considering the Compton process, if the electron on the right side of the process is
replaced by its antiparticle – the positron – on the other side of the interaction, as well as the
photon on the left wanders to the right, the result represents a pair annihilation, as seen below.

e− + γ → e− + γ

e− + e+ → γ + γ

(Compton scattering)

(Pair annihilation)

It could be said that the observation of Compton scattering implies the existence of pair anni-
hilation and predicts that it will produce a pair of photons.

8.10 Problems with external fields

Until now we only considered reactions inside the vacuum, but in reality one often finds prede-
fined external fields (e.g. capacitors, electromagnets, nuclei).
Some examples are

(1) Scattering of an electron at a predefined charge distribution (e.g. a heavy nucleus)

(2) Emission of synchrotron radiation of an electron in an accelerator

(3) Emission of Bremsstrahlung from an electron, which is decelerated in the field of a nucleus
(→ generation of X-radiation in a X-ray tube)
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(4) Creation of an electron-positron pair via a photon in the field of a heavy nucleus (→ dis-
covery of the positron, Anderson 1932).
Today, this process is usually used in high-energy physics to detect electrons in experi-
ments.

Starting point:

Hint(t) =
∫

d3r µ(r, t)Aµ(r, t)

Aµ(r, t) = A′µ(r, t)︸ ︷︷ ︸
quantum

field

+Aext
µ (r, t)︸ ︷︷ ︸
external
potential

The sources of Aext
µ are the external charges and currents ext

µ , where the following Lorentz
conditions are satisfied:

�Aext
µ (x) = ext

µ (x)
∂µAext

µ (x) = 0 .

We again employ the Dirac- or interaction-picture: ı ∂∂t |t〉 = Hint(t) |t〉.
Let us take a closer look at the structure of Hint:

Hint ∼ (b̂+ â†)(b̂† + â)Aext

∼ −b̂†b̂ Aext︸ ︷︷ ︸
(4′)

+ â†b̂†Aext︸ ︷︷ ︸
(3′)

+ b̂â Aext︸ ︷︷ ︸
(2′)

+ â†â Aext︸ ︷︷ ︸
(1′)

,

where the appearing parts have the following interpretation:

(1’) Scattering of an electron at an external potential

(2’) Annihilation of an electron-positron pair through an external field

(3’) Creation of an electron-positron pair through an external field

(4’) Scattering of a potential at an external potential

Diagrammatic visualization:

e(p)

e(p′)

Feynman rules:
ıeγµ

∫
dx eı(p′−p)xAext

µ (x)

= −ıeγµ 1
(p− p′)2

∫
dx eı(p′−p)y · ext

µ (x)
If a vertex of the above kind appears in a diagram, one omits the δ-function of the energy-
momentum conservation in the S-matrix element.
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8.11 Radiative corrections / Renormalization

Until now, we considered reaction in the QED in lowest order, what gives finite results which
are in good accordance with experiments. But terms of higher order exist in theory and have to
be taken into account regarding precision measurements. When calculating higher orders, the
so called radiative corrections, infinities occur. The systematic procedure to calculate terms of
higher order with finite result is called renormalization.

Example: Scattering of an electron at an external potential

Lowest order

e(p)

e(p′)

ok X

Next higher order:
e−(p′)

e−(p)

Aext
µ

(a)

e−(p′)

e−(p)

Aext
µ

(b)

e−(p′)

e−(p)

Aext
µ

p′ − `

p+ `

`

(c)

e−(p′)

e−(p)

Aext
µ

(d)

When we look at diagram (c), the Feynman rules tell us that we have to integrate over the loop-
momentum (schematic for the amplitude):

A(c) ∼
∫

d4`
1
`2

/p+ /̀+me

p2 + 2p`+ `2 −m2
e

/p′ − /̀+me

p′2 − 2p′`+ `2 −m2
e

The above integral diverges for `→∞ logarithmically (
∫

d4` 1
`2

1
`

1
` , note that d4` contains a `3,

hence logarithmic), what leads to the so called “ultraviolet catastrophe”. Even for ` → 0 the
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integral diverges. Because of p2 = p′2 = m2
e follows A(c) ∼

`→0

∫
d4` 1

`2
1
p`

1
p′` and we have the so

called “infrared catastrophe”.
The infrared catastrophe can easily be fixed (“soft photons”).

Quantum mechanical considerations regarding the infrared divergence:
What do we observe, when we say a detector measured an electron? We only have a finite energy
resolution ∆E, so experimentally it can not be distinguished, if an electron comes in isolated or
accompanied by a “soft“ photon of energy ω ≤ ∆E.

⇒ σexp = σ(1 electron)
= σ(1 electron + 1 photon of energy ω ≤ ∆E)
= σ(1 electron + 2 photons of total energy ω ≤ ∆E)
= . . .

(∗)

Calculations yield

σ(1 electron + 1 photon of energy ωmin ≤ ω ≤ ∆E) ∝ σ ln ∆E
ωmin

−→
ωmin→0

∞ (∗∗)

The theory should give finite results for observable quantities. This would be the case, if the
scattering cross section summed over all final states in (∗) is finite. Further calculations show
that in every order of α, the infrared divergences of σ(1 electron) of the higher order diagrams
and the infrared divergences in (∗∗) cancel each other out.

To avoid problems with divergent integrals in intermediate steps, one introduces a small photon
mass which can be set to zero in the final result. This final result also reveals the resolution ∆E
of the apparatus.

To overcome the ultraviolet catastrophe is more difficult and subject of the renormalization
theory. The basic idea is that divergent integrals are useless and must be made finite by hand,
i.e. must be regularised. Different regularisation procedures were proposed, e.g. to abort all
divergent integral at a parameter Λ:∫

d` 1
`2

1
/p+ /̀−m

1
/p′ − /̀−m

−→
∫
|`|≤Λ

d` 1
`2

1
/p+ /̀−m

1
/p′ − /̀−m

.

The results then depend logarithmically on Λ. There exist different cutting-off procedures, like
the Pauli-Villars or dimensional regularisation, which are of better use for the QED.

After the regularisation one has a theory which is completely finite. The theory makes use of
the following parameters for the electron:

e0︸︷︷︸
charge

parameter

, m0︸︷︷︸
mass

parameter

, Λ

(similar to the Hamilton function resp. the Feynman rules).

Foundation of the renormalization theory is the assumption, that e0 and m0 are not identical
with the observable charge e and mass m of the electron.
How can one measure the charge of an electron? One possibility is to use a magnetic field and
the formula

K = (−e) (v×B) , (∗ ∗ ∗)

179



CHAPTER 8. QUANTUM ELECTRODYNAMICS

which, viewed in the context of the QED, corresponds to the scattering of a particle at an
external potential. Calculations using the renormalization theory actually result in a force in
the shape of (∗ ∗ ∗), but for the charge one finds e 6= e0. It is (with constants a1, a2, etc.):

e = e0

[
1 + a1e

2
0 ln Λ

m0
+ a2e

4
0

(
ln Λ
m0

)2
+ . . .

]
. (8.27)

Analogous one finds for the observable mass m (witch constants b1, b2, etc.):

m = m0

[
1 + b1e

2
0 ln Λ

m0
+ . . .

]
. (8.28)

Since in the limit Λ → ∞ e and m seem to diverge, they are still meaningless. One way out
of this problem is the assumption that e0 and m0 only have a mathematical existence. When
calculating the limit Λ → ∞, it is done in such a way that the observable quantities e and m
are fixed and the mathematical parameters e0 and m0 vary with Λ. The original quantities e0
and m0 then diverge for Λ→∞, which is irrelevant, because they cannot be observed.
This gives us the following program to follow: We calculate a transition amplitude A in the
regularised theory with the aid of the known techniques. A will be a function of the “bare”
parameters e0, m0 and Λ (cutting-off parameter):

A = F (e0,m0,Λ, . . .︸︷︷︸
�external momenta and polarisation

) (8.29)

By inversion of (8.27) and (8.28), we express the “bare” parameters via physical ones:

e0 ≡ e0(e,m,Λ)
m0 ≡ m0(e,m,Λ)

Substitution in (8.29) yields A as a function of the parameters e, m and Λ:

A = F
(
e0(e,m,Λ), m0(e,m,Λ), Λ, . . .

)
We then take Λ→∞, where e and m are now fixed.
Central theorem of the renormalization theory:

The limit of the expansion with respect to e exists in every order (and
after the separation of a suitable scale factor Z, which is not dependent
on external momenta).

We define the renormalised AmplitudeA′ as a function F ′ of the physical (observable) parameters
e and m and of the external variables:

A′ = lim
Λ→∞

Z(e,m,Λ)F
(
e0(e,m,Λ), m0(e,m,Λ), Λ, . . .

)
= F ′(e, m, . . . )

The renormalization theory gives an expansion in powers of e of the renormalised amplitudes:

F ′(e, m, . . . ) = F ′0(m, . . . ) + eF ′1(m, . . . ) + e2F ′2(m, . . . ) + . . . ,

where all F ′i are finite. The convergence of the series is not stated though (in most cases not
convergent but asymptotic).
The mathematical execution is in most cases tedious. The theory finds excellent confirmation
in experiments.
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8.12 Principles of Strong Interaction / Quantum Chromody-
namics

Hadrons (protons p, neutrons n, pions or π-mesons π+, π0 and π−, as well as Λ, Σ+,0,−, K, . . . )
are compound particles – the fundamental particles are quarks.

Thereby: mesons ∼ qq (quark-antiquark)
baryons ∼ qqq (3-quark states)

Initially 3 different types of quarks were postulated, so called quark flavours
name spin charge baryon number strangeness

u “up” 1/2 2/3 1/3 0
d “down” 1/2 −1/3 1/3 0
s “strange” 1/2 −1/3 1/3 −1

E.g. for π- and K-mesons resp. baryons:

mesons baryons

π+ ∼ ud p ∼ (uud)γ
π0 ∼ 1√

2(uu− dd) n ∼ (ddu)γ
π− ∼ du Λ ∼ (uds)γ
K+ ∼ us
K0 ∼ ds

The Ω−-particle (baryon) has spin −3/2 and a strangeness of s = −3

Ω−(3/2, 3/2) ∼ ↑
s
↑
s
↑
s︸︷︷︸

totally
symmetrical

ψ(r1, r2, r3)︸ ︷︷ ︸

�spatial wave function of the 3 quarks,
orbital angular momentum 0

⇒ totally sym.

This would give a totally symmetric wave function for a particle with half-integer spin, which
is prohibited by the Pauli principle. Therefore an additional quantum number, the color, is
introduced in 3 different versions,

u1, u2, u3 ; d1, d2, d3 ; s1, s2, s3 ,

which gives for the Ω−-particle

Ω−(3/2, 3/2) ∼ ↑
sα
↑
sβ
↑
sγ εαβγ︸ ︷︷ ︸

totally
anti-symmetrical

ψ(r1, r2, r3)︸ ︷︷ ︸
totally sym.

X

States are invariant under rotation inside the color space,

qα →
3∑

β=1
qβ︸︷︷︸

�∈{u,d,s}

Uβα ,

where U ∈ SU(3) (color-SU(3)) plays a fundamental role in QCD.
E.g. π+ ∼ u1d1 + u2d2 + u3d3 is invariant under SU(3).
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Experiments showed that, besides the quarks, other flavour-neutral constituents (“partonen”) of
the nucleons must be present (which carry a part of the total momentum of the nucleon). These
particles are responsible for the interaction of the quarks among themselves inside the nucleon.
These particles are called gluons and follow in a natural way from a SU(3)-gauge theory for
the strong interaction of the QCD.

8.12.1 Lagrange density of the QCD: SU(3)-gauge theory

Kinetic term for the quarks:

L0
q(x) =

f∑
j=1

qj(x)
(
ıγµ∂µ −mj

)
qj(x) ,

where j = 1, . . . , f are the quark flavours and mj the corresponding mass. We have

q1 = u , q2 = d , q3 = s , q4 = c , . . .

The quark fields qj have three color-components each qj =

q
j
1
qj2
qj3

.

Since the physical bonding states of the quarks (e.g. mesons, baryons) are invariant under
SU(3)-rotations in color-space, this should be a consequence of an invariance of the fundamental
Lagrange density.

L0
q(x) is indeed invariant under qj(x) → U · qj(x) , (j = 1, . . . , f), where UU† = 1, det U = 1

(i.e. U ∈ SU(3)) and U ≡ const.

The global invariance is – much like the global U(1)-invariance of the Dirac field in the QED –
not satisfying from a relativistic standpoint. Therefore one requires a local gauge invariance of
the theory:

qj(x)→ U(x) · qj(x) , U(x) ∈ SU(3) .

Inside the QED framework, this gauge principle is established by the photon. In the QCD it
will happen via the introduction of the gluon.

The physical postulate of the invariance under color transformations of the quark field can be
understood as the “reason” for the existence of gluons.

Apparently L0
q(x) is not invariant under qj(x)→ U(x) · qj(x), since

L0
q(x)→

f∑
j=1

qj(x)
(
ıγµ∂µ −mj + ıγµU†(x)∂µU

)
qj(x) .

In the QED, we needed a photon field Aµ to generate the local gauge invariance according to
the number of generators of the gauge group U(1). In the QCD we need 8 gluon fields according
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to the eight linear independent generators of the SU(3) color-group: Aaµ(x) (with a = 1, . . . , 8),
8 gluon four-potentials. We combine these into a 3× 3 Hermitian traceless matrix

Aµ(x) = Aaµ(x) λa2 = A†µ(x) , Tr Aµ(x) = 0 ,

where the λa represent the Gell-Mann-λ matrices, which operate in the color space

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −ı 0
ı 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −1
0 0 0
ı 0 0

 , λ6 =

0 0 0
0 1 0
0 0 −1

 , λ7 =

0 0 0
0 0 −ı
0 ı 0

 , λ8 = 1√
3

1 0 0
0 1 0
0 0 2


(

n.b.: infinitesimal transformations in the SU(3): U = 1 + ıδϕa
1
2λa ⇒ finite transformations:

U = exp(ıδϕa 1
2λa)

)
The gluons are coupled to the quarks via a minimal coupling scheme (analogous to the QED)

∂µ → Dµ︸︷︷︸
“covariant
derivative”

:= ∂µ + ı gs︸︷︷︸
dimensionless

coupling constant
(=̂charge in QED)

Aµ(x)

With this the Lagrangian becomes

Lq(x) :=
f∑
j=1

qj(x)
(
ıγµDµ −mj

)
qj(x) .

Lq is invariant under local gauge transformations qj(x) → U · qj(x) if we transform the gluon
potential in the following way:

Aµ(x)→ A′µ(x) = U(x)Aµ(x)U†(x)− ı

gs
U(x)∂µU†(x) (8.30)

A′µ(x) is again Hermitian with a trace of zero for arbitrary U(x) ∈ SU(3):

U(x)U†(x) = 1 ⇒ U(x)
(
∂µU†(x)

)
+
(
∂µU(x)

)
U†(x) = 0 ⇒ A†µ(x) = Aµ(x)

and Tr
(
U(x)∂µU†(x)

)
= 0 ⇒ Tr A′µ = Tr Aµ −

ı

gs
Tr
(
U∂µU†

)
= 0
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The gluon field Aµ(x) itself must be a dynamical variable. Construction of the part containing
the gluon dynamics of the Lagrange density is done analogous to the QED. One defines a gluon
field tensor Fµν(x):

Fµν(x) := ∂µAν(x)− ∂νAµ(x) + ıgs
[
Aµ(x), Aν(x)

]
(8.31)

For fixed x it represents a Hermitian, traceless matrix, where its components are defined by

Fµν(x) = F aµν(x) λa2 ,

where with (8.31) one finds

F aµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x)− gsfabcAbµ(x)Acν(x) ,

where fabc represents the structure constants of SU(3). These result from the algebra of the
generators by [λa, λb] = 2ıfabcλc.

The term quadratic in the gluon potentials has no analogue in the QED and is typical for
the non-abelian character of the color group SU(3). This term is necessary to archive a
simple transformation behaviour for Fµν under a gauge transformation, because according to the
transformation of the gluon potential (8.30) follows Fµν → UFµνU†. Then the gauge invariant
Lagrange density for quarks and gluons is given by

LQCD(x) = −1
2 Tr

(
FµνFµν

)
+

f∑
j=1

qj(x)
(
ıγµDµ −mj

)
qj(x)

= −1
4 F

a
µν(x)F a,µν +

f∑
j=1

qj(x)
[
ıγµ

(
∂µ + ıgsA

a
µ(x) λa2

)
−mj

]
qj(x)

Above equation defines the fundamental Lagrange density of the QCD with a similar structure
to the QED pendant.

Comparison of QED and QCD
QED QCD

quantum number electrical charge color
fermions electrons quarks (color triplet)
vector bosons photons (uncharged) gluons (color octet)
gauge group U(1) (abelian) SU(3) (non-abelian)
coupling constant e, α = e2/4π gs, αs = g2

s/4π

184



Appendix A

Correlation Functions, Scattering,
and Response

A.1 Scattering and Response

If a time-dependent field E eı(kr−ωt) is applied to many-particle system (solid, liquid, or gas),
this induces a “polarization”:

P (k, ω) e(ı(kr−ωt)︸ ︷︷ ︸
periodicity as the applied field

+P (k, 2ω) eı(kr−2ωt) + P (2k, ω) eı(2kr−ωt) + . . .︸ ︷︷ ︸
nonlinear effects

Linear susceptibility is a property of the unperturbed sample:

χ(k, ω) := lim
E→0

P (k, ω)
E

Scattering experiments with particles:
The wavelength of the particles must be similar to the scale of the structure that one wants to
resolve.
Energy must be comparable to the excitation energies of the quasiparticles.
For example, neutron scattering with thermal neutrons from nuclear reactors.
(λ ≈ 0.18nm for E = 25meV =̂ 290K).

Inelastic scattering cross-section
H0: Hamiltonian of a many-particle system (sample)
xα: Coordinates of the particles of the sample (position and other degrees of freedom)
m, r,ms: mass, position and spin of the incident particle.

H = H0 + p2

2m +W ({xα}, r)

with the kinetic energy of the incident particle p2/2m and the interaction between the sample
and the incident particle W ({xα}, r).
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In second quantization

H = H0 + p2

2m +
∑

k′k′′σ′σ′′
a†k′σ′ak′′σ′′

1
V

∫
d3r e−ı(k′−k′′)rW σ′σ′′ ({xα}, r)

= H0 + p2

2m +
∑

k′k′′σ′σ′′
a†k′σ′ak′′σ′′W

σ′σ′′
k′−k′′ ({xα})

a†k′σ′ creates a incident particle with k′, σ′
ak′′σ′′ annihilates a incident particle with k′′, σ′′

Eigenstates of H0: H0|n〉 = En|n〉

Inelastic scattering
Momentum transfer: k = k1 − k2
Energy transfer: ~ω = ~2

2m(k2
1 − k2

2)

Initial state |k1,ms1 , n1〉 (|n1〉 initial state of the sample)
Final state |k2,ms2 , n2〉 (|n2〉 final state of the sample)

The transition probability per unit time (Fermi’s golden rule):

Γ(k1,ms1 , n1 → k2,ms2 , n2)

= 2π
~
|〈k2,ms2 , n2|W |k2,ms1 , n1〉|2 δ(En1 − En2 + ~ω)

where 〈k2,ms2 , n2|W |k2,ms1 , n1〉 = W
ms1ms2
k2−k1

({xα}) and ~ω = ~2

2m(k2
1 − k2

2).

The distribution of initial states of the sample |n1〉 is p(n1) ≥ 0 with ∑
n1
p(n1) = 1

The distribution of the spin states of the incident particle ms1 is ps(ms1) with ∑
ms1

ps(ms1) = 1

If only k2 (and not ms1) is measured:

Γ(k1 → k2) =
∑
n2,n1

∑
ms1 ,ms2

p(n1) ps(ms1) Γ(k1,ms1 , n1 → k2,ms2 , n2)

The differential scattering cross-section per atom:

d2σ

dΩdε dΩdε = probablility of transition into dΩdε/s
number of scatterers× flux of incident particles

The element of the solid angle into which is scattered is dΩ, the flux of incident particles is equal
to the magnitude of their current density, the number of scatterers is N , the normalization
volume is L3.
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The states of the incident particles are ψk1(r) = 1
L3/2 e

ık1r, thus the current density is j(r) =

− ı~
2m(ψ?∇ψ − (∇ψ?)ψ) = ~k1

mL3 and d2σ
dΩdε dΩdε = 1

N
mL3

~k1
Γ(k1 → k2)

(
L
2π

)3
d3k2

The number of final states, i.e., the number of k2 values in the interval d3k2 is
(
L
2π

)3
d3k2

Remark: Systems in equilibrium: p(n1) = e−βEn1
Z (from density matrix ρ = e−βH0

Z ).

Due to δ(ω) =
∫ dt

2π e
ıωt the scattering cross-section contains the factor

1
~

∫
dt

2π e
ı(En1−En2+~ω)t/~ 〈n1|e−ıkxα |n2〉

= 1
2π~

∫
dt eıωt〈n1|eıH0t/~e−ikxαe−ıH0t/~|n2〉

= 1
2π~

∫
dt eiωt〈n1|e−ıkxα(t)|n2〉

⇒ S coh
inc

(k, ω) =
∫

dt

2π~ e
ıωt 1

N

∑
αβ

〈e−ıkxα(t)eıkxβ(0)〉
(

1
δαβ

)

where the index coh or inc refers to coherent or incoherent dynamical structure function, re-
spectively. Both contain an elastic (ω = 0) and an inelastic (ω 6= 0) component.
The thermal average of an operator O is defined by 〈O〉 = ∑

n

e−βEn
Z 〈n|O|n〉 = Tr(ρO).

Density operator of the target system (sample):

ρ(x, t) =
N∑
α=1

δ(x− xα(t))

and its Fourier transform:

ρk(t) = 1√
V

∫
d3x e−ıkxρ(x, t) = 1√

V

N∑
α=1

e−ıkxα(t)

⇒ Scoh(k, ω) =
∫

dt

2π~ e
ıωt V

N
〈ρk(t) ρ−k(0)〉

with the density-density correlation function 〈ρk(t) ρ−k(0)〉, the momentum ~k and the energy
transfer ~ω from the scattered particles to the target system.

Application: scattering from solids to determine the lattice dynamics.

The one-phonon scattering: resonances at ±ωt1(k) and ±ωt2(k) (two transverse phonons), and
at ±ωl(k) (longitudinal phonons)

The width of the resonances: lifetime of the phonons.
The background intensity is due to multiphonon scattering.
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The intensity of the resonances depends on the scattering geometry via the scalar product of k
with the polarization vector of the phonons and via the Debye-Waller factor.
Scattering cross-section ←→ correlation functions of the many-particle system
In the following: correlation functions ←→ response function

With ε = ~2k2
2

2m , it follows that dε = ~2k2
m dk2 and d3k2 = m

~2 k2 dε dΩ

⇒ d2σ

dΩdε =
(

m

2π~2

)2 k2
k1

L6

N

∑
n1,n2

ms1 ,ms2

p(n1)p(ms1)|〈k1,ms1 , n1|W |k2,ms2 , n2〉|2 δ(En1 − En2 + ~ω)

Special case: neutron scattering (neutral particle)
 Scattering solely by nuclei.
The range of the nuclear force: R ≈ 10−12 cm ⇒ k1R ≈ 10−4 � 1 ⇒ only s-wave scattering.

⇒ The interaction can be represented by an effective pseudopotential.

W (x) = 2π~2

m

N∑
α=1

aα δ(xα − x)

where aα is the scattering lengths of the nuclei (Born approximation).
 independent of the spin ms1 !

⇒ d2σ

dΩdε = k2
k1

1
N

∑
n1n2

p(n1)
∣∣∣∣∣
N∑
α=1

aα 〈n1|eıkxα |n2〉
∣∣∣∣∣
2

δ(En1 − En2 + ~ω)

We have used

〈k1|W |k2〉 = 2π~2

mL3

∫
d3x e−ık1x∑

α

aαδ(x− xα)eık2x

= 2π~2

mL3

∑
α

aαe
−ı(k1−k2)xα

and ∣∣∣∣∣
N∑
α=1

aα〈n1|eıkxα |n2〉
∣∣∣∣∣
2

=
∑
α,β

aαaβ〈n1|e−ıkxα |n2〉〈n2|eıkxβ |n1〉 δ(En1 − En2 + kω)

Averaging over the various isotopes with different scattering lengths.
Assumption: positions of the isotopes are randomly distributed:

aαaβ =
{
a2 for α 6= β

a2 for α = β
with a = 1

N

N∑
α=1

aα and a2 = 1
N

N∑
α=1

a2
α

⇒ Decomposition of the scattering cross-section into a coherent and an incoherent part

d2σ

dΩdε = Acoh Scohk, ω) +Ainc Sinc(k, ω)
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With

Acoh = a2k2
k1

, Ainc = (a2 − a2)k2
k1

Scoh = 1
N

∑
αβ

∑
n1n2

p(n1)

amplitudes superpose, interference︷ ︸︸ ︷
〈n1|e−ıkxα |n2〉〈n2|eıkxβ |n1〉 δ(En1 − En2 + ~ω)

Sinc = 1
N

∑
α

∑
n1n2

p(n1) |〈n1|e−ıkxα |n2〉|2︸ ︷︷ ︸
intensities superpose, no interference

δ(En1 − En2 + ~ω)

Scoh contains information about the correlations between different atoms.
Sinc contains information about the correlation of each atom with itself.

A.2 Correlation and response functions

H0: time independent Hamiltonian of a many-particle system
Schrodinger equation: ı~ ∂

∂t |ψ, t〉 = H0 |ψ, t〉
Formal solution:

|ψ, t〉 = e−ıH0(t−t0)/~︸ ︷︷ ︸
=:U(t,t0)

|ψ, t0〉

Heisenberg representation:

State |ψH〉 = |ψ, t0〉 is time-independent,
Operator A(t) = U †0(t, t0)AU0(t, t0) is time-dependent

Heisenberg equation of motion d

dt
A(t) = 1

~

[
H0, A(t)

]
Density matrix:

ρ = e−βĤ0

Z
with Z = Tr e−βH0

ρG = e−β(H0−µN)

ZG
with ZG = Tr e−β(H0−µN)

Mean values : 〈O〉 = Tr (ρO)

Correlation function:

CAB(t, t′) : = 〈A(t)B(t′)〉
= Tr (ρ eıH0t/~Ae−ıH0t/~eıH0t′/~Be−ıH0t′/~)
= Tr (ρ eıH0(t−t′)/~Ae−ıH0(t−t′)/~B)
= CAB(t− t′, 0) ⇒ temporal translational invariance
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Definition:
G>AB(t) := 〈A(t)B(0)〉
G<AB(t) := 〈B(0)A(t)〉

}
 Fourier transform: G

>
<

AB(ω) =
∫
dt eıωtG

>
<

AB(t)

 G>AB(ω) =
∫
dt eıωt Tr (ρeıH0t/~Ae−ıH0t/~B)

=
∫
dt eıωt

∑
n,m

〈n|e
−βH0

Z
eıH0t/~A|m〉〈m|e−ıH0t/~B|n〉

=
∫
dt eıωt

1
Z

∑
n,m

e−βEneıEnt/~〈n|A|m〉 e−ıEmt/~〈m|B|n〉

= 1
Z

∑
n,m

e−βEn〈n|A|m〉〈m|B|n〉
∫
dt eıt(

En−Em
~ +ω)

⇒ G>AB(ω) = 2π
Z

∑
n,m

e−βEn 〈n|A|m〉〈m|B|n〉 δ
(
En − Em

~
+ ω

)
(A.1)

and G<AB(ω) = 2π
Z

∑
n,m

e−βEn 〈n|B|m〉〈m|A|n〉 δ
(
Em − En

~
+ ω

)
(A.2)

⇒ G>AB(−ω) = G<BA(ω)
G<AB(ω) = G>AB(ω) e−β~ω (A.3)

(m↔ n)→ = 2π
Z

∑
n,m

e−βEm〈m|B|n〉〈n|A|m〉 δ
(
En − Em

~
+ ω

)
(A.4)

⇒ Em = En + ~ω (A.5)

For example:

A = ρk and B = ρ−k

with the Fourier transform ρk(r) = 1√
V

∫
d3r e−ıkr ρ(r, t) = 1√

V

N∑
α=1

e−ıkrα(t)

of the density operator ρ(r, t) =
N∑
α=1

δ(r− rα(r))

Density-density correlation function 〈ρk(t)ρ−k(t)〉
Coherent scattering cross-section

Scoh(k, ω) =
∫

dt

2π~ e
ıωt V

N
〈ρk(t)ρ−k(t)

Due to (A.3) follows:

Scoh(k,−ω) = e−β~ωScoh(−k, ω)
= e−β~ωScoh(k, ω) for systems with inversion symmetry

⇒ Anti-Stokes lines (energy loss by the sample) are weaker by a factor e−β~ω than the Stokeslines
(energy gain).
For T → 0 Scoh(k, ω < 0)→ 0
(system is then in the ground cannot transfer any energy to the scattered particle).
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A.3 Dynamical Susceptibility

Consider a many-particle system influenced by an external force F (t) which couples to the
operator B:

H = H0 +H ′(t) ; H ′(t) = −F (t)︸ ︷︷ ︸
C-number

·B (A.6)

For t ≤ t0: F (t) = 0 (the system is in equilibrium).

How does the system response to the perturbation (A.6)?

The mean value of A at time t:

A(t)︸︷︷︸
=〈A(t)〉

= Tr(ρS(t)A) = Tr(U(t, t0) ρS(t0)U †(t, t0)A)

= Tr(ρS(t0)U †(t, t0)AU(t, t0))

= Tr
(
e−βH0

Z
U †(t, t0)AU(t, t0)

)
= 〈U †(t, t0)AU(t, t0)〉0 = e−ıH(t−t0)/~

The system is in equilibrium at t0, thus ρS(t0) = e−βH0/Z.
U(t, t0) can be determined perturbation theoretically in the interaction representation.
Equation of motion: ı~ d

dt U(t, t0) = H U(t, t0)
Ansatz:

U(t, t0) = e−ıH0(t−t0)/~ U ′(t, t0)

⇒ ı~
d

dt
U ′(t, t0) = eıH0(t−t0)/~ (−H0 +H)︸ ︷︷ ︸

=H′(t)

U

Thus ı~
d

dt
U ′(t, t0) = H ′I(t)U ′(t, t0)

H ′I(t) = eıH0(t−t0)/~H ′(t) e−ıH0(t−t0)/~

“Interaction representation of H ′”.

⇒ U ′(t, t0) = 1 + 1
ı~

t∫
t0

dt′H ′I(t′)U ′(t′, t0)

= 1 + 1
ı~

t∫
t0

dt′H ′I(t′) + 1
(ı~)2

t∫
t0

dt′
t′∫
t0

dt′′H ′I(t′)H ′I(t′′) + . . . (A.7)

= T exp

 1
ı~

t∫
t0

dt′H ′I(t′)


with the time-ordering operator T .
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For the linear response, we need only the first two terms in (A.7).

 〈A(t)〉 = 〈U ′†(t, t0) e+ıH0(t−t0)/~Ae−ıH0(t−t0)/~U ′(t, t0)〉0

=
〈1− 1

ı~

t∫
t0

dt′H ′I(t′)

 eıH0(t−t0)/~Ae−ıH0(t−t0)/~

1 + 1
ı~

t∫
t0

dt′H ′I(t′)

〉
0

= 〈eıH0(t−t0)/~Ae−ıH0(t−t0)/~〉0︸ ︷︷ ︸
=Tr
(
e−βH0
Z

eıH0(t−t0)/~ Ae−ıH0(t−t0)/~
)

=Tr
(
e−βH0
Z

A

)
=〈A〉0

+ 1
ı~

t∫
t0

dt′ 〈[eıH0(t−t0)/~Ae−ıH0(t−t0)/~ , H ′I(t′)︸ ︷︷ ︸
=eıH0(t−t′)/~H′ e−ıH0(t−t′)/~=−B(t′)·F (t′)

]〉0

⇒ 〈A(t)〉 = 〈A〉0 −
1
ı~

t∫
t0

dt′ 〈[A(t), B(t′)]〉0 F (t′)

Initially t0 → −∞ the system is in equilibrium and F (t′) is switched on at a later instant.

∆〈A(t)〉 = 〈A(t)〉 − 〈A〉0 =
∞∫
−∞

dt′ χAB(t− t′)F (t′)

with χAB(t− t′) = ı

~
Θ(t− t′)〈[A(t), B(t′)]〉0

with dynamical susceptibility or linear response function χAB and the step function

Θ(x) =
{

1 x ≥ 0
0 x < 0

,

which ensures causality.
Fourier transform of the dynamical susceptibility

χAB(z) =
∞∫
−∞

dt eıztχAB(t) with complex z

Consider a very slowly switched on periodic perturbation (ε→ 0, ε > 0)

H ′ = −
(
BFωe

−ıωt′ +B†F ?ω e
ıωt
)
eεt
′

⇒ ∆〈A(t)〉 =
∞∫
−∞

dt′
(
χAB(t− t′)Fωe−ıωt

′ + χAB†(t− t′)F ?ω eıωt
′)
eεt
′︸︷︷︸

−→1

= χAB(ω)Fω e−ıωt + χAB†(−ω)F ?ω e−ıωt
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The effect of the periodic perturbation on ∆〈A(t)〉 is proportional to the force.

Resonances in the susceptibility: strong reaction to forces at the corresponding frequency.

A.4 Dispersion Relations

Causality ⇒ χAB(t) = 0 for t < 0
⇒ χAB(z) is analytical in the upper half plane (due to e−Im zt in the Fourier transform)
⇒ χAB(z) = 1

2πı
∫
c
dz′ χAB(z′)

z′−z (Cauchy’s integral theorem)

← The semicircular part of the integration
path does not contribute if χAB(z′) is
sufficiently small at infinity.

⇒ χAB(z) = 1
2πı

∞∫
−∞

dx′
χAB(x′)
x′ − z

for real z−→ χAB(x) = lim
ε→0

χAB(x+ ıε) = lim
ε→0

∫
dx′

2πı
χAB(x′)
x′ − x− ıε

lim
ε→0

+∞∫
−∞

dx′

2πı
f(x′)

x′ − x− ıε
= lim

ε→0

 x−ε∫
−∞

dx′

2πı +
+∞∫
x+ε

dx′

2πı

 f(x′)
x′ − x

+ 1
2

∮
dz

2πı
f(z)
z − x︸ ︷︷ ︸

=f(x)

= P

∫
dx′

2πı
f(x′)
x′ − x

+
∫
dx′

2 f(x′) δ(x′ − x) ,

with the Cauchy principal value defined as

P

∫
dx′

f(x′)
x′ − x

= lim
ε→0

 x−ε∫
−∞

dx′ +
∞∫

x+ε

dx′

 f(x′)
x′ − x

Or formal:

1
x′ − x− ıε

= P

( 1
x′ − x

)
+ πı δ(x′ − x) ,

i.e.

χAB(x) = P

∫
dx′

2πı
χAB(x′)
x′ − x

+ 1
2χAB(x)

⇒ χAB(x) = 1
πı
P

∫
dx′

χAB(x′)
x′ − x
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i.e.

ReχAB(x) = Re
{ 1
πı
P

∫
dx′

ı ImχAB(x′) + ReχAB(x′)
x′ − x

}
= 1
π
P

∫
dx′

ImχAB(x′)
x′ − x

ImχAB(x) = − 1
π
P

∫
dx′

ReχAB(x′)
x′ − x

A.5 Spectral Representation

Definition: Dissipative response χ′′AB(t) = 1
2~〈[A(t), B(0)]〉,

Fourier transform: χ′′AB(ω) =
+∞∫
−∞

dt eıωt χ′′AB(t).

Due to Θ(t) = limε→0
+∞∫
−∞

dω
2π e

−ıωt ı
w+ıε we get

χAB(ω) =
+∞∫
−∞

dt eıωtΘ(t)2ı χ′′AB(t)

= 1
π

+∞∫
−∞

dω′
χ′′AB(w′)
ω′ − ω − ıε

(A.8)

= 1
π
P

∫
dω′

χ′′AB(ω′)
ω′ − ω︸ ︷︷ ︸

=:χ′AB(ω)

+ıχ′′AB(ω)

= χ′AB(ω) + ıχ′′AB(ω)

Decomposition into real and imaginary parts if χ′′AB(ω) is real.

A.6 Fluctuation-Dissipation Theorem

Due to

χ′′AB(t) = 1
2~ {〈A(t)B(0)〉 − 〈B(0)A(t)〉}

it is

χ′′AB(ω) = 1
2~ {G

>
AB(ω)− G<AB(ω)︸ ︷︷ ︸

=G>AB(ω) e−β~ω

}

thus

χ′′AB(ω) = 1
2~ G

>
AB(ω)(1− e−β~ω)
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is the so-called fluctuation-dissipation theorem or with (A.8)

χAB(ω) = 1
2π~

+∞∫
−∞

dω′
G>AB(ω′)(1− e−β~ω′)

ω′ − ω − ıε
(A.9)

Classical limit: β~ω � 1 (← frequency and temperature region)

⇒ χ′′AB(ω) = βω

2 G>AB(ω)

i.e.

χAB(ω = 0) = β

∫
dω′

2π G>AB(ω′) = βG>AB(t = 0) ,

where χAB(ω = 0) is the static susceptibility and G>AB(t = 0) is the equal-time correlation
function of A and B.
The name fluctuation-dissipation theorem is appropriate since GAB(ω) is a measure of the cor-
relation between fluctuations of A and B, whilst χ′′AB describes the dissipation.

That χ′′AB has to do with dissipation can be seen as follows: Consider a perturbation of the form
H ′ = Θ(t)(A†Fe−ıωt + AF ?eıωt), where F is complex. The golden rule gives a transition rate
per unit time from the state n into the state m:

Γn→m = 2π
~

{
δ(Em − En − ~ω) |〈m|A†F |n〉|2 + δ(Em − En + ~ω)|〈m|AF ?|n〉|2

}
⇒ The power of the external force (=̂ the energy absorbed per unit time)

W =
∑
n,m

e−βEn

Z
Γn→m(Em − En)

= 2π
Z


∑
n,m

e−βEn〈n|A|m〉〈m|A†|n〉|F |2 δ(Em − En − ~ω) ·

=ω︷ ︸︸ ︷
Em − En

~

+
∑
n,m

e−βEn〈n|A†|m〉〈m|A|n〉|F |2 δ(Em − En + ~ω) · Em − En
~︸ ︷︷ ︸

=−ω


= ω

~

{
G>
AA†(ω)−G<

A†A(ω)
}
|F |2 = 2ωχ′′AA†(ω) · |F |2

A.7 Example of Application: Harmonic crystal

Assumption: A Bravais lattice, i.e. a lattice with one atom per unit cell.

Index n =

 nx
ny
nz

 and equilibrium position of an atom an =

 nx · ax
ny · ay
nz · az


with nx,y,z = 1, . . . , Nx,y,z and the number of lattice points N = Nx ·Ny ·Nz.
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Displacement from the equilibrium position un = xn − an

Harmonic approximation of the Hamiltonian (Taylor expansion of the potential energy around
the equilibrium position):

Ĥ =
∑

n

p̂2
n

2M +
∑
n,n′

ûn Dn,n′ûn′ with p̂n = −ı~∇un

Normal coordinates Q diagonalize the potential energy in the harmonic approximation.

ûn = 1√
NM

∑
k,λ

eık·an ε(k, λ) Q̂k,λ , (A.10)

where ε(k, λ) are the three polarization vectors (λ = 1, 2, 3) and k is the wave vector with
components ki = ni

2π
Niai

due to periodic boundary conditions.
Thus

Ĥ = −
∑
k,λ

~2

2M∆Q +
∑
k,λ

ω2
k,λQ

2
k,λ

Define a creation and annihilation operators like for the harmonic oscillator:

Q̂k,λ =
√

~
2ωk,λ

(
ak,λ + a†k,λ

)
(A.11)

Thus

Ĥ =
∑
k,λ

~ωk,λ

(
a†k,λak,λ + 1

2

)

Commutation relations:
[
ak,λ, a

†
k′,λ

]
= δλλ′δkk′ and

[
ak,λ, ak′,λ′

]
=
[
a†k′,λ, a

†
k′,λ′

]
= 0.

Dynamical susceptibility for the displacements:

χij(n− n′, t) = ı

~
Θ(t)〈[uin(t), ujn′(0)]〉 (A.12)

or χ′′ij(n− n′, t) = 1
2~〈[u

i
n(t), ujn′(0)]〉 (A.13)

Thus

χij(n− n′, t) = 2ıΘ(t)χ′′ij(n− n′, t)
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Remark: (n− n′) instead of (n,n′) due to translational invariance.
Phonon correlation function:

Dij(n− n′, t) = 〈uin(t)ujn′(0)〉

Insert (A.11) into (A.10), and use this (û expressed in terms of a, a†) in (A.13):

χ′′ij(n− n′, t) = 1
2~

1
NM

∑
k,k′
λ,λ′

eıkan+ık′an′ εi(k, λ) εj(k′λ′)

× ~√
4ωk,λωk′,λ′

〈[(
ak,λ(t) + a†−k,λ(t)

)
,
(
ak′,λ′(0) + a†−k′,λ′(0)

)]〉
with ak,λ(t) = e−ıωk,λt ak,λ(0)

Auxiliary calculation: For H = ~ωa†a it is a(t) = e+ıωta†aa e−ıωta
†a, thus

〈n|a(t)|m〉 = e+ıω(n−m)t 〈n|a|m〉︸ ︷︷ ︸
∝ δn,m−1

= e−ıωt〈n|a|m〉

Thus [(
ak,λ(t) + a†−k,λ(t)

)
,
(
ak′,λ′(0) + a†−k′,λ′(0)

)]
=
[
a†−k,λ(t), ak′,λ′(0)

]
+
[
ak,λ(t), a†−k′,λ′(0)

]
=− e−ıωk,λtδ−k,k′ δλ,λ′ + eıωk,λtδk,−k′δλ,λ′

⇒ χ′′ij(n− n′, t) = 1
4NM

∑
k,λ

eık(an−an′ ) εi(k, λ) ε∗j(k, λ)︸ ︷︷ ︸
=εj(−k,λ)

1
ωk,λ

(e−ıωk,λt − eıωk,λt)

The polarization vectors for Bravais lattices are real, thus

χ′′ij(n− n′, t) = −ı
2NM

∑
k,λ

eık(an−an′ ) ε
i(k, λ)εj(k, λ)

ωk,λ
sin(ωk,λt)

It is χij(n− n′, t) = 2ıΘ(t)χ′′ij(n− n′, t), thus

χij(n− n′, t) = 1
NM

∑
k,λ

eık(an−an′ ) ε
i(k, λ)εj(k, λ)

ωk,λ
sin(ωk,λt) Θ(t)

or χij(n− n′, ω) = 1
NM

∑
k,λ

eık(an−an′ ) ε
i(k, λ)εj(k, λ)

ωk,λ

∞∫
0

dt eıωt sin(ωk,λt)

︸ ︷︷ ︸
=lim
ε→0

1
2

{
1

ω+ωk,λ+ıε−
1

ω−ωk,λ+ıε

}
Auxiliary calculation:

1
ı

∞∫
0

dt eıω̃t = lim
ε→0

1
ı

∞∫
0

dt eıω̃te−εt = lim
ε→0
−1
ı

1
ıω̃ − ε

= lim
ε→0

1
ω̃ + ıε

197



APPENDIX A. CORRELATION FUNCTIONS, SCATTERING, AND RESPONSE

Spatial Fourier transform:

χij(q, ω) =
∑

n
e−ıqanχij(n, ω)

= 1
2NM

∑
k,λ

∑
n
e−ıan(k−q)

︸ ︷︷ ︸
=N δk,q

εi(k, λ)εj(k, λ)
ωk,λ

{
1

ω + ωk,λ + ıε
− 1
ω − ωk,λ + ıε

}

= 1
2M

∑
λ

εi(q, λ)εj(q, λ)
ωq,λ

{
1

ω + ωq,λ + ıε
− 1
ω − ωq,λ + ıε

}
For the decompositions

χij(n− n′, ω) = χ′ij(n− n′, ω) + ı χ′′ij(n− n′, ω)

this leads to

χ′ij(n− n′, ω) = 1
2NM

∑
k,λ

eık(an−an′ ) ε
i(k, λ)εj(k, λ)

ωk,λ
×
{
P

(
1

ω + ωk,λ

)
− P

(
1

ω − ωk,λ

)}

χ′′ij(n− n′, ω) = π

2NM
∑
k,λ

eık(an−an′ ) ε
i(k, λ)εj(k, λ)

ωk,λ
×
{
δ(ω − ωk,λ)− δ(ω + ωk,λ)

}
or

χ′ij(q, ω) = 1
2M

∑
λ

εi(q, λ) epsilonj(q, λ)
ωq,λ

×
{
P

(
1

ω + ωq,λ

)
− P

(
1

ω − ωq,λ

)}

χ′′ij(q, ω) = π

2M
∑
λ

εi(q, λ)εj(q, λ)
ωq,λ

× {δ(ω − ωq,λ)− δ(ω + ωq,λ)}

The phonon correlation function can be either calculated directly, or determined with the help
of the fluctuation-dissipation theorem from χ′′ij(n− n′, ω):

Dij(n− n′, ω) = 2~ eβ~ω

eβ~ω − 1 χ
′′ij(n− n′, ω)

= 2~ (1 + n(ω))χ′′ij(n− n′, ω)

= π~
NM

∑
k,λ

eık(an−an′ ) ε
i(k, λ)εj(k, λ)

ωk,λ

×
{

(1 + nk,λ)δ(ω − ωk,λ)− nk,λδ(ω + ωk,λ)
}

or

Dij(q, ω) = 2~(1 + n(ω))χ′′ij(q, ω)

= π~
M

∑
λ

εi(q, λ)εj(q, λ)
ωq,λ

{
(1 + nq,λ)δ(ω − ωq,λ)− nq,λδ(ω + ωq,λ)

}

198



APPENDIX A. CORRELATION FUNCTIONS, SCATTERING, AND RESPONSE

with nq,λ = 〈a†q,λaq,λ〉 = 1
e
β~ωq,λ−1

the average thermal occupation number for phonons of wave
vector q and polarization λ.

The phonon resonances in Dij(q, ω) for a particular q are sharp δ-function-like peaks at the
positions ±ωq,λ.

The expansion of the density-density correlation function, which determines the inelastic neutron
scattering cross-section, contains the phonon correlation function Dij(q, ω).
 The excitations of the many-particle system (in this case the phonons) express themselves as
resonances in the scattering cross-section.

In reality, the phonons interact with one another and also with other excitations of the system,
e.g, with the electrons in a metal → Damping of the phonons.
Replace ε by a finite damping constant → The phonon resonances then acquire a finite width.
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Recap: Lorentz transformations

B.1 Infinitesimal Lorentz transformation

The subset L†+ where det(Λ) = +1 (proper) and Λ0
0 ≥ 1 (orthochronous) is called proper

orthochronous Lorentz group or simply restricted Lorentz group. It is a continuous
group – a so called Lie group. The easiest way of analysing a continuous group is through
infinitesimal transformations. Finite transformations are then obtained by repeated application
of the infinitesimal transformation – an exponentiation.
We write

Λµν = δµν + ∆ωµν
for the Lorentz transformation. Substitution in the constraint g = ΛT gΛ gives

gρσ = (δµρ + ∆ωµρ)gµν(δνσ + ∆ωνσ) = gρσ + gµσ∆ωµρ + gρν∆ωνσ +O(∆ω2) .

There following statements must be satisfied:

∆ωσρ = −∆ωρσ or ∆ω0
i = +∆ωi0

∆ωij = −∆ωj i
.

In other words, the infinitesimal 4×4-matrix ∆ωµν must be antisymmetrical. This leaves us with
6 free variables. The conditions det(Λ) = +1 ans Λ0

0 ≥ 1 are guaranteed by the assumption that
the transformation is an infinitesimal deviation from the identity matrix. Using the notation
∆ω0

i = −∆ηi and ∆ωij = εij
k∆θk = εijk∆θk, the matrix ∆ω with its elements ∆ωµν can be

written as

∆ω =


0 −∆η1 −∆η2 −∆η3

−∆η1 0 ∆θ3 −∆θ2

−∆η2 −∆θ3 0 ∆θ1

−∆η3 ∆θ2 ∆θ1 0

 = ı∆θiIi − ı∆ηiKi .

The matrices Ii and Ki can be directly be read off from the equation, but will be later later
explicitly represented after the meaning of this matrices is determined.
Example I: Rotations. An infinitesimal rotation about the x3-axis (∆θ3 = θ/N):

Λ = R3

(
θ

N

)
:


x′0

x′1

x′2

x′3

 =


1 0 0 0
0 1 θ

N 0
0 − θ

N 1 0
0 0 0 1



x0

x1

x2

x3

 , ⇒ ∆ω = ı
θ

N


0 0 0 0
0 0 −ı 0
0 ı 0 0
0 0 0 0

 = ı
θ

N
I3
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For θ/N � 1 we can approximate (1 + θ
N I

3) ≈ e θN I3 and we have a finite rotation by the angle
θ via

R3(θ) = lim
N→∞

RN3

(
θ

N

)
= lim

N→∞

(
1 + ı

θ

N
I3
)N

= lim
N→∞

(
eı

θ
N
I3)N

= eıθI
3 =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


We can identify I3 as the generatrix of the rotation about the x3-axis.

Rotation group

Rotations about the three axes x1, x2, x3 are described by

Ri(θ) = eıθD
i

where

D1 =


0 0 0 0
0 0 0 0
0 0 0 −ı
0 0 ı 0

 , D2 =


0 0 0 0
0 0 0 ı
0 0 0 0
0 −ı 0 0

 , D3 =


0 0 0 0
0 0 −ı 0
0 ı 0 0
0 0 0 0

 .

The generator Di satisfy the su(2)-algebra[
Di, Dj

]
= ıεijkDk = ıεijkDk .

Example II: Lorentz boosts. An infinitesimal boost along the x1-axis:

Λ = L1

(
η

N

)
:


x′0

x′1

x′2

x′3

 =


1 − η

N 0 0
− η
N 1 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3

 , ⇒ ∆ω = η

N


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 = −ı η
N
K1

For η/N � 1 we can approximate (1 − ı θNK1) ≈ e−ı
η
N
K1 and we have a finite rotation by the

boost via

L1(η) = lim
N→∞

LN1

(
η

N

)
= lim

N→∞

(
1− ı η

N
K1
)N

= lim
N→∞

(
e−ı

θ
N
K1)N

= e−ıηK
1 =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1



201



APPENDIX B. RECAP: LORENTZ TRANSFORMATIONS

Boosts

Boosts along the three axes x1, x2, x3 are described by

Li(η) = e−ıηI
i

where

I1 =


0 −ı 0 0
−ı 0 0 0
0 0 0 0
0 0 0 0

 , I2 =


0 0 −ı 0
0 0 0 0
−ı 0 0 0
0 0 0 0

 , I3 =


0 0 0 −ı
0 0 0 0
0 0 0 0
−ı 0 0 0

 .

The generators Ii do not form a closed algebra and the Lorentz boosts also do not form a
subset of the Lorentz group. Instead we have[

Ii, Ij
]

= −ıεijkDk = −ıεijkDk .

Lorentz algebra

A general infinitesimal Lorentz transformation in the restricted Lorentz group L†+

λµν = δµν + ∆ωµν

can be expressed via the generators of rotations and boosts

∆ω = ı∆θiDi − ı∆ηiIi .

The generators form an algebra with[
Di, Dj

]
= ıεijkDk ,

[
Ii, Ij

]
= −ıεijkDk ,

[
Di, Ij

]
= ıεijkIk .

One gets a finite transformations by exponentiation of the infinitesimal transformations

Ri(θ) = eıθD
i
, Li(η) = e−ıηI

i
.
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B.2 Matrix representation of a Lorentz boost

We want to look at a boost in x1 direction and define

β := v

c
= tanh ξ

⇒ γ := 1√
1− (v/c)2

= 1√
1− tanh2 ξ

= 1√
1− sinh2 ξ

cosh2 ξ

= 1
1

cosh ξ

√
cosh2 ξ − sinh2 ξ︸ ︷︷ ︸

=1

= cosh ξ

Then we have

βγ = v/c√
1− (v/c)2

= tanh ξ√
1− (v/c)2

= cosh ξ · tanh ξ

= sinh ξ .

With this, we can write the transformed x0 = ct and x1 component as

x′1 = x1 − vt√
1− (v/c)2

= 1√
1− (v/c)2 x

1 − ct v/c√
1− (v/c)2

= cosh ξ · x1 − sinh ξ · x0

x′0 = ct′ = ct− (v/c)x1√
1− (v/c)2

= cosh ξ · x0 − sinh ξ · x1 ,

while x2 and x3 remain unchanged. We can therefore write the transformation as a matrix
equation: 

x′0

x′1

x′2

x′3

 =


cosh ξ − sinh ξ 0 0
− sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3

 .
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Alternative derivation of the Dirac
equation

C.1 Derivation of the Dirac equation through the transforma-
tion behaviour of spinors

Rotation in R3: r′ = Rr with RT R = 1, i.e. R ∈ O(3)
Example:
Rotation about the x, y, z axis:

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


Rx(φ) =

1 0 0
0 cos φ sin φ
0 − sin φ cos φ


Ry(ψ) =

cos ψ 0 − sin ψ
0 1 0

sin ψ 0 cos ψ


O(3) is a non-abelian group, i.e. its elements do not commute in general.
O(3) is a Lie group, i.e. a continuous group with a non-finite number of elements.
A general rotation has three parameters, e.g. Euler angles.
⇒ There exist three (hermitian) generators:

Jz = 1
ı

dRz(θ)
dθ

∣∣∣∣
θ=0

=

0 −ı 0
ı 0 0
0 0 0


Jx = 1

ı

dRx(φ)
dφ

∣∣∣∣
φ=0

=

0 0 0
0 0 −i
0 i 0


Jy = 1

ı

dRy(ψ)
dψ

∣∣∣∣
ψ=0

=

 0 0 ı
0 0 0
−ı 0 0


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Infinitesimal rotation: e.g. Rz(δθ) ≈ 1 + ıJzδθ, Rx(δφ) ≈ 1 + ıJxδφ
E.g. the commutator is:

Rz(δθ)Rx(δφ)R−1
z (δθ)R−1

x (δφ)

=1−
(
δθ2 + δφ2

)
− 2 [Jz, Jx]︸ ︷︷ ︸

ıJy

δθ δφ+O(δ3)

⇒ J is the angular momentum operator with the commutation relation [Jx, Jy] = ıJz and
cyclic permutations.
Rotation by an finite angle:
e.g. θ = N · δθ (N →∞), δθ = θ/N

⇒ Rz(θ) =
[
Rz(δθ)

]N
=
(
1 + ıJzδθ

)N
=
(

1 + ıJz
θ

N

)N
−−−−→
N→∞

exp(ıJzθ)

In general: rotation about an axis n by an angle θ:

Rn(θ) = exp
(
ıJ · θ

)
= exp

(
ı(J · n) θ

)

Consider now SU(2): 2× 2 unitary matrices with determinants 1, UU† = 1, det U = 1. Every
element in SU(2) can be written as

U = exp
(
ı
σ · θ

2

)
, θ = (θx, θy, θz) = |θ| · n (∗)

with

σx =
(

0 1
1 0

)
, σy =

(
0 −ı
ı 0

)
, σz =

(
1 0
0 −1

)
the Pauli matrices. J = 1

2θ is the angular momentum operator (~ = 1).
One has the commutation relations

[
σx
2 ,

σy
2

]
= ı

σz
2 and cyclic permutations .

In other words: SU(2) is a 2-dimensional representation of the rotation group and acts on the

space of the double- (or Pauli-)spinors
(
ξ1
ξ2

)
.

SU(2) and O(3) have a similar structure, however two elements each of SU(2) correspond to one
element of O(3) due to the factor of 1/2 in the exponent of (∗).
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C.1.1 SL(2,C) and the Lorentz group

SL(2,C) = {U | U : complex 2× 2-matrix with det U = 1}
In analogy to the correspondence between SU(2) and the rotation group, there is a correspon-
dence between SL(2,C) and the Lorentz group.
Pure Lorentz boosts: e.g. movement along the x axis with velocity v:

x′ = x+ vt√
1− v2

c2

, y′ = y , z′ = z , t′ =
t+ v

c2x√
1− v2

c2

Definition:

γ = 1√
1− v2

c2

, β = v

c
, x0 = ct , x1 = x etc.

⇒ x′0 = γ(x0 + βx1) x′1 = γ(βx0 + x1) , x′2 = x2 , x′3 = x3

Because of γ2 − (γβ)2 = 1, we can set

γ =: cosh φ , γβ =: sinh φ ,
v

c
=: tanh φ .

This leads to the matrix representation

⇒


x′0

x′1

x′2

x′3

 =


cosh φ sinh φ 0 0
sinh φ cosh φ 0 0

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

=: B , Boost matrix


x0

x1

x2

x3



Generator of this boost transformation is

Kx = 1
ı

∂B
∂φ

∣∣∣∣
φ=0

= −ı


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


and analogous for the other spatial directions

Ky = −ı


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , Kz = −ı


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .

In this 4× 4-matrix notation the generators of the rotations are given by:

Jx = −ı


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , Jy = −ı


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , Jz = −ı


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 .
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General Lorentz transformation: consisting of boosts in 3 directions and rotations about 3 axis,
i.e. 6 generators (see above).

Commutation relations:

[Kx, Ky] = −ıJz
[Jx, Jy] = ıJz

[Jx, Ky] = ıKz

 and cyclic permutations

[Jx,Kx] = 0 etc.

n.b.: Pure Lorentz transformations do not form a group, because K does not represent a closed
algebra under the commutation relations. E.g. for 2 infinitesimal boosts, the term

eıKxδφ eıKyδψ e−ıKxδφ e−ıKyδψ = 1− [Kx, Ky]δφ δψ +K2
x(δφ)2K2

y (δψ)2 + . . .

contains a rotation about the z axis because of [Kx, Ky] = −ıJz ( Thomas precession).

C.1.2 Transformation behaviour of Pauli matrizen under
Lorentz transformations

Remark:
K = ±ıσ2 satisfies the above commutation relation two types of spinors related to + resp. −.

Definition:
The generators

A := 1
2 (J + ıK)

B := 1
2 (J− ıK)

}
=⇒

[Ax, Ay] = ıAz cycl.
[Bx, By] = ıBz cycl.
[Ai, Bj ] = 0 (i, j = x, y, z)

generate both a group SU(2) respectively and both groups commute, i.e. the Lorentz group is
in essence equivalent SU(2)⊗SU(2) and states that transform in a well-defined way are denoted
with two angular momenta: (j, j′), j corresponds to A, j′ corresponds to B.

In particular:

(j, 0) −→ J(j) = ıK(j) (B = 0)
(0, j) −→ J(j) = −ıK(j) (A = 0)

Definition: 2 types of spinors:

• Type I:
(1

2 , 0): J(1/2) = σ/2, K(1/2) = −ıσ/2, spinor ξ.
Let be θ and φ the parameters of a rotation and a pure Lorentz transformation respectively.
Then ξ transforms like

ξ −→ exp
(
ı
σ

2 · θ + σ

2 · φ
)
ξ = exp

(
ı
σ

2 · (θ − ıφ)
)

︸ ︷︷ ︸
=:U

ξ
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• Type II:
(0, 1

2): J(1/2) = σ/2, K(1/2) = ıσ/2, spinor η.

η −→ exp
(
ı
σ

2 · (θ + ıφ)
)

︸ ︷︷ ︸
=:N

η

n.b.: These are non-equivalent representations of the Lorentz group, i.e. there exists no matrix
S in such a way that N = SUS−1. Instead there are connected via N = ζU∗ζ−1 where ζ = −ıσ2.
Furthermore it is det U = det N = 1.
 U and N form group SL(2,C). 6 parameters

(
a b
c d

)
, ad− bc = 1

Therefore there are two different types of 2-component spinors, which transform differently
under Lorentz transformations, ξ and η. These correspond to the representations (1/2, 0) and
(0, 1/2) of the Lorentz group.
Essentially the Dirac equation is a relation between these spinors.

Parity operator: r→ r′

⇒ velocity in the Lorentz boost: v→ −v

⇒ generator K → −K (=̂ vector), but J → +J (angular momentum is an axial or pseudo
vector)

⇒ representations (j, 0) and (0, j) are exchanged under parity: (j, 0)→ (0, j) and therefore
ξ → η

If we consider the parity, we see it is no longer sufficient to view ξ and η separately, but the
4-spinor

ψ =
(
ξ
η

)

Under a Lorentz transformation:

(
ξ
η

)
−→

exp
(
ı
2σ · (θ − ıφ)

)
0

0 exp
(
ı
2σ · (θ + ıφ)

)
 (

ξ
η

)

=
(
D(Λ) 0

0 D̄(Λ)

) (
ξ
η

)
,

where D̄(Λ) = ζD∗(Λ)ζ−1 and Λ the Lorentz transformation: x′µ = Λµν xν .

Under parity transformation: (
ξ
η

)
=⇒

(
0 1
1 0

) (
ξ
η

)
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The 4-spinor ψ is a irreducible representation of the Lorentz group extended by parity (is not
unitary b.c. exp(θ · φ) ⇔ L group is not compact).

Consider now Lorentz boosts especially (θ = 0) and define ξ = φR and η = φL (R: right, L: left)

φR ⇒ e
1
2σ·φ φR =

cosh
(
φ

2

)
+ σ · n︸︷︷︸

direction of the

�

Lorentz boost

sinh
(
φ

2

)φR

Let φR(0) be the spinor for a particle at rest, φR(p) the spinor for a particle with momentum p
respectively.

Because of cos(φ/2) = [(r+1)/2]1/2 , sinh(φ/2) = [(r−1)/2]1/2 r = 1√
1−v2 , (where we set c = 1),

follows

φR(p) =
{(

r + 1
2

)1/2
+ σ · p

(
r − 1

2

)1/2
}
φR(0) .

Because for a particle with (total) energy E, mass m and momentum p holds E = γm (c = 1),
it follows

φR(p) = E +m+ σ · p
[2m (E +m)]1/2

φR(0) ,

or analogous

φL(p) = E +m− σ · p
[2m (E +m)]1/2

φL(0) ⇒ φL(0) = E +m+ σ · p
[2m (E +m)]1/2

φL(p)

The spin of a resting particle cannot be defined as left- or right-handed  φR(0) = φL(0).

⇒ φR(p) = E +m+ σ · p
[2m (E +m)]1/2

· E +m+ σ · p
[2m (E +m)]1/2

φR(p)

= (E +m)2 + 2σ · p(E +m) + p2

2m(E +m) φL(p)

= E + σ · p
m

φL(p) ,

respectively

φL(p) = E − σ · p
m

φL(p)

We find in matrix form:

(
−m p0 + σ · p

p0 − σ · p −m

) (
φR(p)
φL(p)

)
(C.1)

209



APPENDIX C. ALTERNATIVE DERIVATION OF THE DIRAC EQUATION

Definition: The 4-spinor

ψ(p) :=
(
φR(p)
φL(p)

)

and the 4× 4-matrices

γ0 =
(

0 1
1 0

)
, γi =

(
0 −σi
σi 0

)

let us write (C.1) write as (
γ0p0 + γipi −m

)
ψ(p) = 0 ,

respectively

(γµpµ −m)ψ(p) = 0

what corresponds to the Dirac equation.
n.b.: ψ and γµ are given here in the so called chiral representation (since φR and φL are
eigenstates of the chirality operator, what we will see later). The standard representation –
that we already get to know – results form a similarity transformation:

ψSR = SψCR , γµ = SγµCRS
−1 , where S = 1√

2

(
1 1
1 −1

)
= S−1

ψSR = 1√
2

(
φR + φL
φR − φL

)

γ0
SR = 1

2

(
1 1
1 −1

)(
0 1
1 0

)(
1 1
1 −1

)
=
(

1 0
0 −1

)

γiSR =
(

0 σi

−σi 0

)

For a particle at rest this surely yields the more adept representation:

ψSR = u(0)e−ımt positive energy
ψSR = v(0)e+ımt negative energy ,

with the already known 4-spinors:

u1(0) =


1
0
0
0

 , u2(0) =


0
1
0
0

 , v1(0) =


0
0
1
0

 , v2(0) =


0
0
0
1


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Lorentz boost in moving co-system (θ = 0) in chiral representation:(
φR
φL

)
→

(
φ′R
φ′L

)
=
(
e

1
2σ·φ 0
0 e−

1
2σ·φ

)
︸ ︷︷ ︸

uCR

(
φR
φL

)

⇒ Boos matrix in standard representation:

uSR = SuCRS−1 =
(

cosh φ
2 σ · n sinh φ

2
σ · n sinh φ

2 cosh φ
2

)

and through

cos φ2 =
(
E +m

2m

)1/2
, sin φ

2 =
(
E −m

2m

)1/2
, tanh φ

2 = p

E +m
,

where p =
√
E2 −m2, follows

uSR(p) =


1 0 pz

E+m
px−ıpy
E+m

0 1 px+ıpy
E+m

−pz
E+m

pz
E+m

px−ıpy
E+m 1 0

px+ıpy
E+m

−pz
E+m 0 1

 .

The corresponding spinors psi (which are identical with the ones we derived from the explicit
solution of the Dirac equation) are given by

ψα(x) = uα(p)e−ıpx , uα(p) = uSR(p)uα(0)
ψα(x) = vα(p)e+ıpx , vα(p) = uSR(p) vα(0)

where α = 1, 2, or explicitly written out

u1 = N


1
0
pz

E+m
px+ıpy
E+m

 , u2 = N


0
1

px−ıpy
E+m
−pz
E+m

 , v1 = N


pz

E+m
px+ıpy
E+m

1
0

 , v2 = N


px−ıpy
E+m
−pz
E+m

0
1

 ,

where the normalization is given by N =
√

E+m
2m , what gives ūαuα = 1.

It is

ūα(p)uα′(p) = δαα′

v̄α(p) vα′(p) = −δαα′
ūα(p) vα′(p) = 0

uα†(p)uα′(p) = vα†(p) vα′(p) = E

m
δαα′
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Furthermore u and v satisfy (insertion in the Dirac equation)

(γµpµ −m)u(p) = (/p−m)u(p) = 0
(γµpµ +m) v(p) = (/p+m) v(p) = 0 ,

and the adjoint spinors satisfy

ū(p) (γµpµ −m) = ū(p) (/p−m) = 0
v̄(p) (γµpµ +m) = v̄(p) (/p+m) = 0 .

The operator

P+ :=
∑
α

uα(p)ūα(p)

is a projection operator since

P 2
+ =

∑
α,β

uα(p) ūα(p)uβ(p)︸ ︷︷ ︸
=δαβ

ūβ(p)

=
∑
α

uα(p)ūα(p) = P+

and projects on states with positive energy. One can show that the operator P+ can be expressed
as

P+ = /p+m

2m .

Analogous one defines

P− := −
∑
α

vα(p)v̄α(p) =
−/p+m

2m

Obviously one has P+ + P− = 1.

C.1.3 Lorentz covariance of the Dirac equation

When performing a Lorentz transformation from one reference frame I to another reference
frame I ′, the coordinates transform like

x′ = Λx , i.e. x = Λ−1x

and the Dirac spinor according to

ψ′(x′) = S(Λ)ψ(Λ−1x′) ,
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where the transformation matrix, S(Λ), is blockdiagonal in chiral representation:

S(Λ) =
(
D(Λ) 0

0 D̄(Λ)

)
.

The Dirac equation should be form-invariant under this Lorentz transformation

(
ıγµ∂µ −m

)
ψ(x) = 0 (in I) ⇐⇒

(
ıγµ∂′µ −m

)
ψ′(x′) = 0 (in I ′)

For the derivation applies

∂µ = ∂

∂xµ
= ∂x′ν

∂xµ
∂

∂x′ν
= Λνµ

∂

∂x′ν
= Λνµ∂′ν

and with S−1ψ′(x′) = ψ(x) follows for the Dirac equation in the reference frame I:(
ıγµΛνµ∂′ν −m

)
S−1(Λ)ψ′(x′) = 0 .

Multiplying above equation from the left with S(Λ) gives(
ıS(Λ)γµS−1(Λ)Λνµ∂′ν −mBig)ψ′ = 0 .

If S(Λ)γµS−1(Λ) = (Λ−1)µτγτ , then S(Λ)γµS−1(Λ)Λνµ = (Λ−1)µτΛνµγτ = γν and we arrive
at the equation of the reference frame I ′.
It remains to show that for all Lorentz transformations Λ

S−1(Λ)γµS(Λ) = Λµνγν

(
Note that S−1(Λ) = S(Λ−1)

)
Reminder:

S(Λ) =

exp
(
ı
2σ · (θ − ıφ)

)
0

0 exp
(
ı
2σ · (θ + ıφ)

)


Due to the fact that every Lorentz transformation can be composed of 3 Lorentz boosts along the
x-, y- and z-axes and 3 rotations about the same 3 axes, we will look at these cases separately.
Lorentz boosts, i.e. θ = 0; w.l.o.g. φ = (φ, 0, 0) (boost along the x axis)

⇒ S(Λ) =
(
e+ 1

2φσ
x 0

0 e−
1
2φσ

x

)
and Λ =


cosh φ sinh φ 0 0
sinh φ cosh φ 0 0

0 0 1 0
0 0 0 1


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Now we have

S−1γ0S = S−1
(

0 1

1 0

)
S =

(
e−

1
2φσ

x 0
0 e+ 1

2φσ
x

)(
0 1

1 0

)(
e+ 1

2φσ
x 0

0 e−
1
2φσ

x

)

=
(

0 e−φσ
x

eφσ
x 0

)
=
(

0 cosh φ− σx sinh φ
cosh φ+ σx sinh φ 0

)

S−1γ1S = S−1
(

0 −σx
σx 0

)
S =

(
0 −σxeφσx

σxeφσ
x 0

)

=

 0 −σx
(

cosh φ− σx sinh φ
)

σx
(

cosh φ+ σx sinh φ
)

0



S−1γ2,3S = S−1
(

0 −σy,z
σy,z 0

)
S =

(
0 −e−

1
2φσ

x
σy,ze−

1
2φσ

x

e
1
2φσ

x
σy,ze

1
2φσ

x 0

)

=
(

0 −σy,z
σy,z 0

)
= γ2,3

Furthermore we find:

Λ0
νγ

ν = cosh φγ0 + sinh φγ1 =
(

0 cosh φ− σx sinh φ
cosh φ+ σx sinh φ 0

)
,

Λ1
νγ

ν = sinh φγ0 + cosh φγ1 =
(

0 sinh φ− σx coshφ
sinh φ+ σx cosh φ 0

)
,

Λ2,2
νγ

ν = γ2,3 .

By comparing the left and right side one finds the given identity.

Rotations, i.e. φ = 0, w.l.o.g. θ = (θ, 0, 0) (rotation about the x axis). Analogous to previous
case one finds

S(Λ) =
(
e
ı
2 θσ

x 0
0 e

ı
2 θσ

x

)

Λ =


1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ


C.1.4 Transformation behaviour of bilinear forms

We will again use the chiral representation

ψ =
(
φR
φL

)
,
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which transforms under Lorentz transformations like

φR −→ exp
[
ı

2σ · (θ − ıφ)
]
φR ; φL −→ exp

[
ı

2σ · (θ + ıφ)
]
φL

 φ†R −→ φ†R exp
[
− ı2σ · (θ + ıφ)

]
; φ†L −→ φ†L exp

[
− ı2σ · (θ − ıφ)

]
.

It is immediately clear that ψ†ψ = φ†RφR + φ†LφL is not invariant. However the adjoint spinor
has the components

ψ̄ = ψ†γ0 =
(
φ†R φ†L

)(0 1

1 0

)
=
(
φ†L φ†R

)
and therefore we have that

ψ̄ψ = φ†LφR + φ†RφL

is invariant under Lorentz transformations (i.e. is “scalar”).

Furthermore is under parity transformations φR ↔ φL, so that ψ̄ψ → ψ̄ψ, which means that
ψ̄ψ is a true scalar, i.e. it does not change it sign under parity transformations.

We now define the 4× 4-matrix

γ5 = ıγ0γ1γ2γ3 = =
in chiral repres.

(
1 0
0 −1

)
.

Then the expression is

ψ̄γ5ψ =
(
φ†R φ†L

)(1 0
0 −1

)(
φR
φL

)
= φ†LφR − φ†RφL

invariant under Lorentz transformations, but changes its sign under parity transformations, i.e.
ψ̄γ5ψ is a pseudo scalar .

We will now consider the quantity ψ̄γµψ and show that it behaves like 4-vector under Lorentz
transformations

ψ̄γ0ψ = φ†RφR + φ†LφL

ψ̄γiψ =
(
φ†R φ†L

)(0 −σ
σ 0

)(
φR
φL

)
= −φ†Lσ

iφL + φ†Rσ
iφR .

Under spatial rotations (θ 6= 0, φ = 0) we find

ψ̄γ0ψ −→ ψ̄γ0ψ (∗)
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and for infinitesimal θ

ψ̄γψ −→ − φ†Le
− ı

2σ·θσe
ı
2σ·θ + φ†Re

− ı
2σ·θσe

ı
2σ·θ

=− φ†L
(

1− ı

2σ · θ
)
σ

(
1 + ı

2σ · θ
)
φL + φ†R

(
1− ı

2σ · θ
)
σ

(
1 + ı

2σ · θ
)
φR

=− φ†L (σ − θ × σ)φL + φ†R (σ − θ × σ)φR

= ψ̄γψ − θ ×
(
ψ̄γψ

)
(∗)

The above equation (∗) describes the behaviour of a vector under rotations. Since the time-
component is invariant under rotations due to (∗∗), the expression ψ̄γµψ actually behaves like
a 4-vector under rotations.

In a similar fashion one can show that ψ̄γµψ behaves also like a 4-vector under Lorentz boosts.
Under parity transformations one has ψ̄γ0ψ → ψ̄γ0ψ, but ψ̄γψ → −ψ̄γψ, which means we have
a polar vector, i.e. ψ̄′(x′)γµψ′(x′) = Λµνψ̄(x)γνψ(x).

Analogous, ψ̄γµγ5ψ behaves like an axial vector, i.e. like a vector under Lorentz transforma-
tions, but under parity transformations one finds ψ̄γγ5ψ → ψ̄γγ5ψ, i.e. ψ̄′(x′)γµγ5ψ′(x′) →
Λµνψ̄(x)γνγ5ψ(x) · det(Λ).

We summarize:

• ψ̄ψ scalar
• ψ̄γ5ψ pseudo scalar
• ψ̄γµψ polar vector
• ψ̄γµγ5ψ axial vector
• ψ̄(γµγν − γνγµ)ψ antisym. tensor
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