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Suppression of discontinuous phase transitions by particle diffusion
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We investigate the phase transitions of the q-state Brownian Potts model in two dimensions (2D) comprising
Potts spins that diffuse like Brownian particles and interact ferromagnetically with other spins within a fixed
distance. With extensive Monte Carlo simulations we find a continuous phase transition from a paramagnetic
to a ferromagnetic phase even for q > 4. This is in sharp contrast to the existence of a discontinuous phase
transition in the equilibrium q-state Potts model in 2D with q > 4. We present detailed numerical evidence for
a continuous phase transition and argue that diffusion generated dynamical positional disorder suppresses phase
coexistence leading to a continuous transition.
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I. INTRODUCTION

Phase transitions and critical phenomena have long been
studied in statistical physics. Owing to advances in theoreti-
cal and numerical methods, equilibrium phase transitions are
quite well understood. Microscopically different many-body
models can have the same critical exponents characterizing
the variation of certain physical properties near a critical point,
thus representing the same universality class, which depend
on but a few determinants like order parameter symmetry,
spatial dimensionality, presence of quenched disorder, etc. [1].
Recently, nonequilibrium phase transitions attracted growing
interest [2,3]. Broken detailed balance distinguishes nonequi-
librium from equilibrium systems. As the detailed balance can
be broken in many ways, nonequilibrium systems display a
larger variety of phase transition scenarios.

A now paradigmatic example is active matter, which
is characterized by energy consuming, self-propelled con-
stituents and therefore driven out of equilibrium. Self-
generated motility is responsible for various collective phe-
nomena, like flocking, motility induced phase separation,
active turbulence, etc. [4–6]. The seminal paper by Vicsek
et al. [7] demonstrated that motility stabilizes long-range
orientational order in two dimensions (2D), which would
be unstable in the corresponding 2D equilibrium systems
according to the Mermin-Wagner theorem [8]. Motility can
also induce phase separation of active particles with repulsive
interactions [9]. There are surging research activities to unveil
the role of the motility in many-body systems [5,10–13].

Many studies of ensembles of self-propelled particles focus
on the collective behavior of the spatial degrees of freedom
such as the velocity and the position of particles. Motivated
by collective effects that are induced by motility we focus in
this paper on spins which are not fixed but move in space and
search for an order-disorder phase transition. Concretely, we
study the q-state Brownian Potts model in 2D, represented by
Potts spins that diffuse like Brownian particles and interact

ferromagnetically with other spins within a fixed distance.
Whereas in the active Ising [10,11] or Potts [5,12,13] model
the spin of a particle determines its direction of motion such
that spin and spatial degrees of freedom are mutually coupled,
we focus here on a unidirectional coupling: Particles diffuse
freely irrespective of spin states while a spin interaction net-
work evolves in time as particles diffuse. Even this simplified
model displays interesting critical phenomena due to the fer-
romagnetic interactions.

The paper is organized as follows: In Sec. II, we introduce
the q-state Brownian Potts model and discuss its features
that are different from the equilibrium Potts model in 2D. In
Sec. III we present our results of extensive Monte Carlo simu-
lations, which show that the q-state Brownian Potts model has
a continuous phase transition for all values of q, and determine
the critical exponents. In Sec. IV we present an argument,
based on a comparison of the timescales for particle diffusion
and spin-spin correlation propagation, that diffusion impedes
phase coexistence, which renders the transition continuous.
We conclude the paper with summary and discussions in
Sec. V.

II. q-STATE BROWNIAN POTTS MODEL

The model consists of N = ρLd particles of density ρ on
a square of area L2 with periodic boundary conditions. The
position of particle i is denoted as ri ∈ R2 and its Potts spin
state by σi ∈ {1, . . . , q}. The spins interact ferromagnetically
with other particles j in a distance |r j − ri| � r0 ≡ 1. We
adopt parallel update dynamics in discrete time units: Given
{σi(t ), ri(t )} at time step t , the spin states of all particles are
updated according to the probability

P[σi(t + 1) = σ ] = 1

Z
exp

⎡
⎣K

∑
j∈Ni

δ(σ, σ j (t ))

⎤
⎦, (1)
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FIG. 1. Sketch illustrating the Brownian Potts model. The filled
symbols represent the Brownian particles whose Potts spin states are
color coded. Each particle interacts ferromagnetically with all parti-
cles within the distance r0. The dashed circle denotes the interaction
range of the particle i. After spin flips, particles perform a random
jump of length v0 to the position denoted by open symbols.

where δ(a, b) is the Kronecker-δ symbol, Ni denotes the set
of particles within the distance r0 from particle i, K > 0
the ferromagnetic spin-spin interaction strength, and Z is
a normalization constant. Subsequently, each particle per-
forms a jump of length v0 in a random direction, ri(t + 1) =
ri(t ) + v0(cos θi, sin θi ), where θi ∈ (−π, π ] are uniformly
distributed independent random variables, generated anew in
each time step (see Fig. 1). Note that the heat bath algorithm
for the ferromagnetic q-state Potts model [14] has the same
spin flip probability as in Eq. (1). Thus, when v0 = 0, our
model becomes the equilibrium q-state Potts model on a ran-
dom lattice [15].

Particle diffusion introduces interesting features. It breaks
the detailed balance and drives the system out of equilibrium.
Since particles diffuse freely the system can be seen as being
in contact with two thermal heat baths: a finite-temperature
heat bath for the spin degrees of freedom with temperature
T ∝ 1/K and an infinite temperature heat bath for the spatial
degree of freedom. Nonequilibrium phase transitions of sys-
tems in thermal contact with two heat baths were investigated,
for instance, in the context of the random q-neighbor Ising
model [16,17].

Particle diffusion leads to particle density fluctuations,
which acts like time-dependent disorder in the spin-spin in-
teractions. Due to hopping, spin-spin interactions are spatially
heterogeneous and each spin interacts with a fluctuating num-
ber of neighboring spins. Particle hoppings and spin flips
occur simultaneously. Thus, the microscopic timescales for
the particle hopping τp and for the spin flip τs are comparable.
One can predict the consequence of the time-dependent disor-
der if the two timescales are well separated. For instance, in
the limit τs/τp → 0 or v0 → 0, the time-dependent disorder
becomes quenched. There are rigorous results predicting the
“rounding” of a discontinuous phase transition by quenched
disorder for low-dimensional systems [18–21]. Thus, in the
limit v0 → 0, we expect that our model belongs to the uni-
versality class of the Potts model with quenched disorder and
undergoes a continuous phase transition at all values of q [22].
In the opposite limit, τs/τp → ∞ or v0 → ∞, we expect that
the mean-field theory is valid because spins are well mixed.
The universality class of the transition in the intermediate
case, 0 < v0 < ∞, remains elusive, which is what we intend

to clarify in this paper. Since the two microscopic timescales
are comparable, the macroscopic timescales at which particle
density fluctuations and spin fluctuations propagate should be
compared, which we will do in Sec. IV.

It is worth mentioning that the active Ising and the active
Potts model introduced in Refs. [10–13]. In these models,
particles with spin move on a 2D lattice and interact ferromag-
netically with other particles on the same site. Their motion
is biased toward a direction determined by their spin state.
These models are discretized versions of the flocking model
of Ref. [7]. Due to the bias and the ferromagnetic interaction,
particles tend to move persistently together with neighboring
particles, which stabilizes collective motion denoted as flock-
ing. In contrast to the active Ising and Potts models, particles
in the Brownian Potts model diffuse freely irrespective of the
spin states. Thus, our model may be regarded as a passive
Potts model.

III. NUMERICAL RESULTS

We have performed extensive Monte Carlo simulations for
the Brownian Potts model with q = 2, . . . , 8. Starting from a
random initial state, Monte Carlo simulations are performed
up to Tmax time steps and a time series of the fraction nσ of
particles in the spin state σ (= 1, . . . , q) is obtained. The Potts
order parameter [14], quantifying ferromagnetic order, is

ms = (
q max

σ
{nσ } − 1

)
/(q − 1). (2)

Potts spin states can be represented by unit vectors {eσ } in
the (q − 1)-dimensional space [14]. Using this representation,
one can also define a vector order parameter

mv = 1

N

N∑
i=1

eσi =
∑

σ

nσ eσ . (3)

Using the time series {nσ }, we can calculate the steady-state
average of ms and |mv| and their moments and probability
distributions. Both quantities display a qualitatively similar
behavior. We investigate the phase transition by varying the
coupling strength K with fixed interaction range r0 = 1, hop-
ping length v0 = 1/2, and particle density ρ = 1. We also
performed simulations for ρ = 2 and 4 and reached the same
conclusion. Thus we only present the numerical results at
ρ = 1. The largest system size we considered is L = 512 with
Tmax = 4 × 108, which is sufficiently long to reach a steady
state. Data in the time interval from Tmax/10 to Tmax steps
are used for the steady-state average. In order to estimate
the statistical uncertainty of the numerical results, we used
the bootstrap or resampling method [23]: Given a steady-state
time series {nσ }, we resample S subsets each of which consists
of randomly chosen Tmax/S data points. A statistical error of
a quantity is measured by the standard deviation of S sampled
averages. We chose S = 100.

Figure 2 shows the order parameter m = 〈|mv|〉 and the
Binder cumulant U4 ≡ 1 − 〈|mv|4〉/(3〈|mv|2〉2) for q = 3 and
6. The order parameter shows that the system has a phase tran-
sition from a paramagnetic to a ferromagnetic phase. When K
is smaller than a critical value Kc, the order parameter decays
to zero as L increases. On the other hand, when K > Kc, it
converges to a finite value. The critical interaction strength
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FIG. 2. Order parameter (top) and the Binder cumulant (bottom)
of the Brownian Potts model for q = 3 [(a) and (c)] and q = 6
[(b) and (d)].

Kc can be estimated from the intersection of the curves of the
Binder cumulants U4 for different system sizes [see Figs. 2(c)
and 2(d)]. We obtain Kc(q = 3) = 3.33(3) and Kc(q = 6) =
4.08(3). We will discuss the critical exponents below.

A. Order of the transition

The Binder cumulant U4 shown in Figs. 2(c) and 2(d) has
a dip in the paramagnetic phase. The dip becomes more pro-
nounced at larger values of q. The Binder cumulant diverges
(to −∞) at a discontinuous phase transition point [24]. Recall-
ing that the equilibrium Potts model in 2D has a discontinuous
phase transition for q > 4, we need to examine whether the
dip is an indication of the discontinuous phase transition.

FIG. 3. Histograms of the order parameter x = |mv| (blue, filled
curves) and spin fractions x = nσ with σ = 1, 2, . . . , q (solid lines).
Top row [(a), (b), and (c)] shows the histograms for the equilibrium
Potts model and the bottom row [(d), (e), and (f)] for the Brownian
Potts model. Data are for q = 6, L = 128, and K 	 Kc. Note that
Kc = ln(1 + √

6) 	 1.2382 for the equilibrium six-state Potts model
and Kc ∼ 4.08(3) for the Brownian Potts model. The dotted vertical
lines indicate the value x = 1/q.

In Fig. 3, we compare the order parameter histograms of
the equilibrium Potts model and the Brownian Potts model
with q = 6. The equilibrium Potts model displays a behavior
characteristic for a discontinuous phase transition: The his-
togram has a single peak corresponding to a paramagnetic
phase at small K [Fig. 3(a)], double peaks indicating phase
coexistence [Fig. 3(b)] for intermediate values of K , and a
single peak corresponding to a ferromagnetic phase at large K
[Fig. 3(c)]. The order parameter histogram for the Brownian
Potts model also has double peaks, but they are much less
pronounced than those observed in the equilibrium model.

The order parameter histograms, P(|mv|), alone do not
provide a conclusive evidence for phase coexistence. Thus, we
further investigate the histograms, P(nσ ), of the fraction nσ of
particles in the spin state σ (= 1, . . . , q). In the disordered
paramagnetic phase, all spin states are equally populated with
statistical fluctuations. Namely, all histograms of nσ should
have a peak around x = 1/q. In the ordered ferromagnetic
phase, one spin state, say, σm, dominates. Thus, the histogram
of nσm should have a peak at x > 1/q while the other (q − 1)
histograms at x < 1/q. In Fig. 3(b) for the equilibrium Potts
model, we find the peaks corresponding to both phases. The
central peak at x 	 1/q corresponds to the disordered phase,
which is well separated from the other two peaks correspond-
ing to the ordered phase. Our simulation time Tmax is so long
that the system alternates between the disordered state and the
ordered states with different σm. This three-peak structure is
an evidence for phase coexistence in the equilibrium six-state
Potts model.

On the other hand, the histograms of nσ for the Brownian
Potts model do not have a peak at x 	 1/q representing the
paramagnetic phase [see Figs. 3(d), 3(e) and 3(f)]. This is a
clear and decisive evidence for the absence of phase coexis-
tence. We also performed the same analysis for other values
of q = 2, . . . , 8, which lead to the same conclusion that the
Brownian Potts model has a continuous phase transition irre-
spective of the value q. We will substantiate this conclusion
with a theoretical argument later.

The apparent double peaks in the order parameter his-
togram is attributed to the discrete symmetry of the Potts
spin. The Potts order parameter mv lies within a (q − 1)-
dimensional polyhedron [14]. For instance, it lies inside an
equilateral triangle for q = 3. As the coupling constant ap-
proaches Kc from below, the order parameter deviates from
the center of the polyhedron and moves toward a vertex de-
veloping a peak in the order parameter histogram. Due to
fluctuations at finite L, it does not stay near a single vertex but
keeps diffusing to the other vertices. In the transient period,
the order parameter magnitude shrinks because it is limited
by the faces of the polyhedron. This effect can result in an
additional bump in the order parameter histogram. The broad
double peaks observed in Figs. 3(d) and 3(e) and the apparent
dips in the Binder cumulant shown in Fig. 2(d) are plausibly a
consequence of this effect.

We also confirmed numerically that the equilibrium (q =
3)-state Potts model in 2D has a similar bump in the or-
der parameter histogram and a dip in the Binder parameter.
The equilibrium three-state Potts model is known to have a
continuous phase transition. Therefore, the unusual behavior
of the order parameter histogram and the Binder parameter
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FIG. 4. (a) Order parameter of the Brownian Potts model as
function of L for q = 3 at different coupling constants K . [(b)–(h)]
Effective exponent � as a function of 1/L near the critical points for
different values of q.

should not be taken as an evidence for a discontinuous phase
transition.

B. Critical scaling of the order parameter

After establishing that the phase transitions are continuous
ones, we will estimate the critical exponents via finite-size
scaling. Near the critical point, the order parameter is assumed
to have the scaling form

m(K, L) = L−β/νFm(tL1/ν ), (4)

where t ≡ (K − Kc)/Kc is the reduced coupling strength (akin
to a reduced temperature), ν is the correlation length ex-
ponent describing the divergence of the correlation length
ξ ∼ |t |−ν , β is the order parameter exponent, and Fm(x) is
a scaling function. At the critical point, the order parame-
ter follows the power law m(Kc, L) ∼ L−β/ν . The exponent
β/ν can be estimated from the effective exponent �(K, L) ≡
− log[m(K, 2L)/m(K, L)]/ log 2. It converges to β/ν at K =
Kc and crosses over to the trivial value 0 for K > Kc and d/2
for K < Kc. Figure 4(a) demonstrates the power-law scaling at
the critical point and the crossover in the off-critical regime.
In Figs. 4(b)–4(h), we present the effective exponent � as a
function of 1/L near critical points at q = 2, . . . , 8. An overall
curvature in the plot � vs. 1/L indicates a deviation from the
critical point, which allows us to estimate the critical point
and the exponent β/ν and their numerical uncertainty. They
are summarized in Table I. The exponent β/ν falls within the
range β/ν = 0.10 ± 0.05 for all values of 2 � q � 8. From
our data with L � 512, it is hard to draw a conclusion whether
the exponent has a q dependence.

In addition to the order parameter, we also calculated the
order parameter fluctuation χ ≡ N (〈|mv|2〉 − 〈|mv|〉2). Anal-
ogously to the magnetic susceptibility in the equilibrium

TABLE I. Critical interaction strength and the exponents.

q Kc β/ν 1/ν γ /ν ZR

2 2.90(5) 0.10(5) 1.00(10) 1.70(20) 2.15(10)
3 3.33(3) 0.10(5) 1.03(10) 1.75(20) 2.25(10)
4 3.63(3) 0.10(5) 1.05(10) 1.80(20) 2.35(10)
5 3.87(5) 0.10(5) 1.08(10) 1.85(20) 2.35(10)
6 4.08(3) 0.10(5) 1.10(10) 1.90(20) 2.38(10)
7 4.24(3) 0.09(5) 1.13(10) 1.95(20) 2.40(10)
8 4.38(3) 0.09(5) 1.15(10) 1.95(30) 2.45(10)

system, it is expected to follow the finite-size scaling form,

χ (K, L) = Lγ /νFχ (tL1/ν ), (5)

where the exponent γ characterize the power-law scaling of
χ ∼ |t |−γ and Fχ is a scaling function. We have performed
the data collapse analyses of m and χ using the scaling forms
in Eqs. (4) and (5) to determine the critical exponents 1/ν and
γ /ν. Our estimates of the critical coupling constants and the
critical exponents at all values of q are summarized in Table I.
Figure 5 shows the scaling plots at q = 5 and 7. One observes
that χ suffers from strong finite-size effects.

Particles in the active Ising model [11] become passive
if one turns off the spin-dependent hopping bias. The phase
transition in that limit belongs to the universality class of
the 2D equilibrium Ising model [11]. Our result for β/ν is
comparable with (β/ν) = 1/8, 2/15 and 1/8 of the lattice
q-state Potts model with q = 2, 3, and 4, respectively, within
the numerical uncertainty. It may suggest that the Brown-
ian Potts model belong to the same universality class of the
equilibrium Potts model. However, the continuous phase tran-
sition in the Brownian Potts model for q > 4 excludes such a
possibility. The numerical results for 1/ν at q = 3 and 4 are
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FIG. 5. Scaling plots of m, χ , and U4 at q = 5 in (a), (c), and (e)
and at q = 7 in (b), (d), and (f) using the numerical estimates listed
in Table I.
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FIG. 6. (a) Spin-spin correlation function at t = 44, . . . , 48 eval-
uated at the critical point for q = 8. Data points are aligned along
a single curve, which indicates that the correlation function is
isotropic. (b) Scaling plots according to Eq. (7) at all values of
2 � q � 8. For a better visualization, we shift the data sets vertically
by multiplying 2q−6. All the data are obtained from the ensemble
average over 100 samples. The system size is L = 4096.

not consistent with those of the equilibrium 2D Potts model
[1/ν = 6/5 (q = 3) and 3/2 (q = 4)] either [14].

IV. TIMESCALES AND NATURE OF THE TRANSITION

Density fluctuations due to diffusion render a particle-
particle interaction network inhomogeneous. Particles in a
dense (dilute) region have more (fewer) neighbors. Moreover,
the interaction network evolves in time as particles diffuse. In
order to gain an insight on the influence of the time-dependent
disorder on the phase transition, we compare timescales for
relevant degrees of freedom.

Obviously, there is a diffusion timescale τD ∼ ξZD with
ZD = 2 characterizing the particle diffusion over the distance
ξ . In addition, there is a relaxation timescale τR which it takes
for the spins to reach the steady state. We characterize the
scaling behavior of τR from the equal-time spin-spin corre-
lation function. For the correlation function of the off-lattice
system, we divide the two-dimensional plane into L2 unit cells
{α = 1, . . . , L2} and define a cell spin S(rα, t ) = ∑

ri∈α eσi as
the sum of spins of particles in a cell located at rα ∈ Z2 at time
t . The equal-time correlation function is then defined as

Ce(r, t ) = 1

L2

∑
α

〈S(rα, t ) · S(rα + r, t )〉 (6)

with a random initial state at t = 0. Figure 6(a) shows the cor-
relation function, Ce(r, t ), for q = 8, L = 4096, and K = Kc.
It decays algebraically with an exponent η for small r and
exponentially for large r. The crossover defines the length-
scale-dependent relaxation time τR, which turns out to follow
a power law τR ∼ ξZR with the relaxation time exponent ZR.
Figure 6(b) shows that the correlation functions satisfy the
scaling form

Ce(r, t ) = r−ηFe(r/t1/ZR ) (7)

with ZR given in Table I. The correlation function exponent η

takes the value around 0.25 at all values of q.
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FIG. 7. (a) Two-time correlation functions at t = 41, . . . , 45

evaluated at the critical point for q = 3 and L = 512 averaged over
100 samples. (b) Scaling plot according to Eq. (9) with the correla-
tion time exponent ZC = 2.0 and η = 0.21.

The relaxation time exponent ZR characterizes the growth
of the correlation length ξ ∼ t1/ZR in the transient regime. It
is noteworthy that ZR > ZD for all q. The particle diffusion
is a faster process than the spin ordering dynamics. This
result implies that the diffusion-induced spatial heterogeneity
is substantially different from quenched (time-independent)
disorder. Quenched disorder is known to suppress a discon-
tinuous phase transition [19–21]. For instance, the disordered
equilibrium q-state Potts model in 2D has a continuous phase
transition at all values of q [22]. The fact that ZR > ZD

provokes the question for the mechanism leading to the sup-
pression of the discontinuous phase transition in the Brownian
Potts model with time-dependent diffusion-induced disorder,
which will be addressed shortly.

The correlation time in the steady state can be character-
ized by the two-time correlation function

Ct (r, t ) = 1

L2

∑
α

〈S(rα, t0) · S(rα + r, t0 + t )〉 (8)

with t0 � LZR . The spatial correlation decays as the steady-
state fluctuation spreads. This dynamic critical behavior is
captured by the dynamic scaling form

Ct (r, t ) = t−η/ZC Ft (r/t1/ZC ) (9)

with the correlation time exponent ZC characterizing the cor-
relation timescale τC ∼ ξZC over a distance ξ .

The numerical data for the critical two-point correlation
function Ct for q = 3 and L = 512 are presented in Fig. 7
[25]. Our data for Ct show a good data collapse according to
the scaling form (9) with an exponent ZC 	 2.0. This value is
close to the dynamic exponent ZD of diffusion. We expect that
ZC is equal to ZD for all values of q because diffusion is the
dominant mechanism that propagates fluctuations.

Interestingly, the nonstationary relaxation time and the
stationary correlation timescale differently with ZR > ZC 	
ZD. This observation indicates a potential reason for the ab-
sence of phase coexistence in the Brownian Potts model.
To elaborate we propose a thought experiment that consists
of introducing a ferromagnetic domain into the system in
the steady state at K = Kc (see Fig. 8). The system is then
driven away from the steady state locally. Across the domain
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ξS ∼ t1/ZS

ξD ∼ t1/ZD

FIG. 8. Ferromagnetic domain (filled blue area) inside a steady-
state background. The length scales associated with particle diffusion
and spin ordering are represented with the black and red arrows,
respectively.

boundary, ordered spins diffuse into the bulk, in time t by a
distance of ξD ∼ t1/ZD . On the other hand, spin-order prop-
agates in this time only a distance ξR ∼ t1/ZR 
 ξD from
the boundary. Thus, the diffusing particles are absorbed into
the disordered bulk and the initially ordered domain keeps
shrinking and vanishes eventually. This argument indicates
that particle diffusion destabilizes phase coexistence as long
as ZR > ZD. It provides a self-consistent explanation why the
Brownian Potts model exhibits a continuous phase transition
without phase coexistence. We can phrase the same argument
in terms of the correlation length ξC ∼ t1/ZC : with ZC 	 ZD <

ZR, the propagation of critical fluctuations dominates the do-
main growth dynamics and sweep away ordered domains.

V. SUMMARY AND DISCUSSIONS

We have investigated the influence of passive diffusion on
the order-disorder phase transition and the critical behavior in
the Brownian q-state Potts model in two dimensions. Particle
diffusion introduces interesting aspects that are absent in the
equilibrium counterpart of immobile spins on a lattice: (i) It
breaks detailed balance and drives the system out of equilib-
rium. A weak breaking of detailed balance is irrelevant for
some systems. [26,27]. In the Brownian Potts model particle
diffusion turns out to be strong in the sense that it changes
the nature of the transition at least for q > 4. (ii) The particle
diffusion introduces time-dependent disorder in the spin-spin
interaction network. At the critical point, we find that density
and spin fluctuations are faster processes than the ordering
dynamics ZR > ZD 	 ZC . Thus, the diffusion-induced time-
dependent disorder is substantially different from quenched
disorder. We argued that time-dependent disorder suppresses
phase coexistence, which is consistent with our numerical
results that the Brownian Potts model displays a continuous
phase transition.

We remark that quenched disorder also suppresses the dis-
continuity of the phase transition [19]. The 2D random-bond
Potts models indeed undergo a continuous phase transition at
any values of q [22,28]. The correlation length exponent is
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FIG. 9. Log-log plots for the peak values of the specific heat.
At q = 2, Cmax ∼ ln L. On the other hand, the curvature for q > 3
indicates a crossover to a power-law scaling. For comparison, dashed
straight lines with slope 2/5 and 1 are shown, which are representa-
tive for the equilibrium Potts model with q = 3 and 4, respectively.

almost constant ν 	 1.0 and the correlation function displays
a multiscaling behavior. It is interesting to note that the corre-
lation length exponent of the Brownian Potts model also has a
weak dependence on q. On the other hand, we do not find any
evidence for the multiscaling behavior in the Brownian Potts
model.

The histograms, shown in Fig. 3, are the evidence for the
absence of phase coexistence in the Brownian Potts model
even for q > 4. However, the universality class for the Brow-
nian Potts model remains still elusive. Although the critical
exponents summarized in Table I vary slightly with q, the
numerical uncertainty is too large to draw a final conclusion
regarding the universality class. We also defined an energy-
like quantity E = − 1

2

∑
|ri−r j |<r0

δ(σi, σ j ) and measured its

second moment C ≡ (〈E2〉 − 〈E〉2)/L2 as an analogy to the
specific heat of the equilibrium Potts model. Near K = Kc,
it has a peak whose height increases as L. We present the
peak values in Fig. 9. For q = 2, it increases logarithmically
with the system size L, which is a characteristics of the Ising
universality class. The data for q � 3 deviate from the loga-
rithmic scaling. The crossover indicates a q-dependent critical
behavior. The curvature in the plot, however, indicates that the
asymptotic behavior can be accessed in much larger systems.

In the Brownian Potts model, particles interact on a time-
dependent disordered network whose edges correspond to
particle pairs that have a distance r � r0. Remarkably, these
instantaneous interaction networks do not percolate for the
particle density ρ = 1 and r0 = 1 considered here, which
means that they do not contain a single infinite cluster but
comprise only finite clusters of an average size. This can
be seen by recurring to random plane networks [29], which
are defined by overlapping objects of size a distributed ran-
domly in the plane with density ρ. For disks it is known
that those networks percolate for ρ · a � 1.127 [30,31], which
implies that for ρ = 1 the disk radius must be larger than
rc = 0.599. For our instantaneous interaction network this
means that the particle-particle interaction range r0 should
be larger than 2rc = 1.197 in order to form percolating
interaction clusters, which is not the case here. If the inter-
action network would be static, i.e., the particle would be
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immobile, long-range order could not emerge on the basis of
only finite interaction clusters. On the other hand, in the Brow-
nian Potts model long-range order emerges in spite of the
nonpercolating instantaneous interaction networks: Particle
diffusion propagates spin order with time beyond the instan-
taneous interaction clusters and thus generates an effective,
time-averaged global connectivity of the interaction network.
If the particle density is smaller than a certain threshold value
ρc, the interaction network fails to maintain a global connec-
tivity and long-range order ceases to exist for any coupling
constant. For the Ising case with q = 2, we numerically found
that this threshold density is given by ρc 	 0.93. It would be
interesting to study the nature of the dynamical percolation
transition, which we leave for a future study.

The coupling between the spin and spatial degrees of
freedom turns out to be an important aspect determining the
nature of phase transitions. The Brownian Potts model has a

unidirectional coupling: Particles diffuse freely irrespective of
spin states, but the particle diffusion modifies the interaction
network of spins. It would be interesting to study the order-
disorder transition and the flocking transition in a system
with a coupling in both directions. There were a few studies
along this line [32,33]. We hope that our work triggers further
systematic analysis of the phase transitions and the critical
phenomena in passively or actively moving spin systems.
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