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Abstract
We study interacting active Brownian particles (ABPs) with a space-dependent swim velocity via
simulation and theory. We find that, although an equation of state exists, a mechanical equilibrium
does not apply to ABPs in activity landscapes. The pressure imbalance originates in the flux of
polar order and the gradient of swim velocity across the interface between regions of different
activity. An active–passive patch system is mainly controlled by the smallest global density for
which the passive patch can be close packed. Below this density a critical point does not exist and
the system splits continuously into a dense passive and a dilute active phase with increasing
activity. Above this density and for sufficiently high activity the active phase may start to phase
separate into a gas and a liquid phase caused by the same mechanism as motility-induced phase
separation of ABPs with a homogeneous swim velocity.

1. Introduction

Active particles, like motile microorganisms, live in a complex environment and are affected by various
external fields like gravity, fluid flows or walls [1]. Mostly it is assumed that their intrinsic properties, like
propulsion speed or tumbling rate, are constant in space [2]. This is generally not true because organisms
often respond to a spatially varying stimulus such as light intensity or chemical concentration. For example,
the bacteria E. coli are chemotactic: they sense concentration gradients and adjust their tumbling rate to
swim up or down a chemical gradient. Others do not respond to gradients but react in a non-directional
way to the local stimulus intensity, a behavior called kinesis. For instance, some cyanobacteria are
photokinetic and their swim speed depends on the local light intensity [3]. In this context, it has been
predicted theoretically that the local density of particles ρ(r) performing a run-and-tumble motion is
inversely proportional to their local propulsion speed v(r) [4]. This fact was used to arrange millions of
light-powered bacteria into a complex pattern, such as Leonardo da Vinci’s Mona Lisa, via light fields [5, 6].
Optical fields can also be used to create activity landscapes for synthetic microswimmers, such as
thermophoretic Janus particles [7]. An activity landscape can have a technological application, such as traps
[8] or rectifiers [9], but it can also be used to study fundamental questions of active matter [10, 11]. One
such question is whether there is a coexistence criterion for active matter. The introduction of an active
component of pressure [12, 13], often called ‘swim pressure’, allowed to formulate a mechanical
equilibrium condition of equal pressures in phase separating purely repulsive active Brownian particles
(ABPs) with a homogeneous propulsion speed [14]. The separation into a dense and a dilute phase is
triggered by a slowdown during collisions and is named motility-induced phase separation (MIPS) [15–17].
The behavior of ABPs in activity landscapes, like the aggregation of particles in slow regions, resembles in
some sense MIPS, however, the differences and similarities are not well studied. Here we show that an
activity pattern can still lead to pressure imbalance between regions of different activity even though an
equation of state exists for ABPs [14]. We show that, if the global density is low enough that all particles can
be packed in the passive region, a critical point does not exist for an active–passive patch system, which
continuously splits into a dense passive and a dilute active phase with increasing activity [18, 19]. However,
if the passive patch is close packed, in addition to the separation according to the activity regions, the active
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phase may also start to phase separate into a gas and a liquid phase caused by the same mechanism as MIPS
[15–17] and thus leading to three-phase coexistence (dense passive, dense active and dilute active phase).
The particles in the low activity region exhibit all states of matter of a two dimensional system: a liquid, a
hexatic phase and a crystal. The transition to a state with a high orientational order for a sufficiently dense
and active system can be predicted theoretically.

2. Model

We consider N ABPs in 2D with a space-dependent propulsion velocity v(r). The particles interact via a
repulsive pair potential V(r) = k

2 (σ − r)2 if r � σ, i.e., the inter-particle distance r is smaller then the
particle diameter σ, and V(r) = 0 otherwise [20]. The repulsion strength k is chosen such that the particle
overlap is 0.01σ during a head on collision. The positions ri = (xi, yi) and the orientations
ei = (cos θi, sin θi) evolve according to the overdamped Langevin equations:

ṙi = v(ri)ei + μt

∑
j�=i

fij +
√

2Dt ηi (1)

θ̇i =
√

2Dr ξi, (2)

where 1/μt = γt is the translational friction coefficient, fij = f(ri − rj) = −∇ri V(|ri − rj|) is the force on
ith particle due to jth particle, Dt and Dr are the translational and rotational diffusion constant and ηi, ξi

are zero-mean unit-variance Gaussian white noises. For a spherical Brownian particle it is Dr = 3Dt/σ
2. We

use a simulation box of size Lx/σ = 320 and Ly/σ = 40 (if not stated otherwise) with periodic boundary
conditions in both directions and consider mainly a step-like activity landscape

v(x) = va Θ
(
αLx/2 − |x|

)
, (3)

where Θ denotes the unit step function and α controls the extent of the active region (α = 0.5 means that a
half of the box is active). A dimensionless measure of activity is the normalized persistence length
Pe = va/(σDr) sometimes also called Péclet number, however, other definitions are also possible [12, 21].
The global packing fraction is defined as φ0 = π(σ/2)2N/(LxLy).

3. Theory

First we ask whether a mechanical equilibrium exists or in other words: are pressures equal in neighbouring
regions of different mobility?

Starting from (1) and (2) one obtains the full Smoluchowski equation [14, 22–24]

∂tψ = Dt∇2ψ + Dr∂
2
θψ −∇ ·

[
v(r)eψ +

∫
dr′ μtf(r′ − r)

〈
ρ̂(r′)ψ̂(r, θ)

〉]
(4)

for the time evolution of the noise-averaged probability density ψ(r, θ) = 〈ψ̂〉 = 〈
∑N

i=1δ(r− ri) δ(θ − θi)〉,
where 〈· · ·〉 denotes noise averages and ρ̂ =

∫
dθ ψ̂ the fluctuating particle density. In the following we

assume that the system is in the steady state, ∂tψ = 0, and is only inhomogeneous along the x-direction.
Integrating (4) over θ gives

0 = ∂xJρ(x) (5)

with the particle flux
Jρ(x) = v(x)m(x) + I1(x) − Dt∂xρ(x), (6)

where m =
∫

dθ cos(θ)ψ is the polarisation and I1 =
∫

dr′ μt fx(r′ − r)〈ρ̂(r′)ρ̂(r)〉 is a contribution due to
the pair-potential. Similarly, multiplying (4) by cos(θ) and integrating over θ gives

Drm(x) = −∂xJm(x) (7)

with the flux of polar order

Jm(x) = v(x)

{
ρ(x)

2
+ Q(x)

}
+ I2(x) − Dt∂xm(x), (8)

where Q = 1
2

∫
dθ cos(2θ)ψ encodes nematic order along x-direction and I2 =

∫
dr′ μt fx(r′ − r)

〈ρ̂(r′)m̂(r)〉 contains the effect of interactions. All setups considered here are flux-free steady states, i.e.,
Jρ(x) = 0. Thus inserting (7) into the vanishing particle flux Jρ in (6) yields
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0 = − v

Dr
∂xJm + I1 − Dt∂xρ. (9)

Let us next consider two neighbouring domains A and B (ordered from left to right) with constant activity
vA and vB, respectively. Then multiplying (9) with γt = kBT/Dt, integrating from the bulk of region A to
the bulk of region B and using integration by parts gives

∫ B

A
dx (kBT∂xρ− γtI1) = −

[
γt

Dr
vJm

]B

A

+
γt

Dr

∫ B

A
dx Jm∂xv. (10)

We define the ideal passive pressure as pid = ρkBT, the interaction or ‘direct’ pressure as ∂x pD = −γtI1

[22, 25] and the ‘swim’ pressure as pS = γtv
2ρ/2Dr + γtvI2/Dr [12, 22, 26]. For a homogeneous bulk phase

in region A and B we can set Q = m = 0 and obtain finally

[
pid(x) + pD(x) + pS(x)

]B

A
=

γt

Dr

∫ B

A
dx Jm(x)∂xv(x), (11)

which is the main result of our study.
Especially, for an activity step, where an ABP swims with vA for x < xif and abruptly propels with vB

when crossing the interface at x = xif , we get ∂xv = (vB − vA)δ(x − xif ) and

[
pid(x) + pD(x) + pS(x)

]B

A
=

γt

Dr
Jm(xif)(vB − vA). (12)

What does this mean? It means that the bulk pressures in both activity regions are not equal and that the
pressure difference is governed by the activity profile v(xif ) and the flux of polar order Jm(xif ) at the
interface between this regions. Thus an inhomogeneous activity pattern can still lead to unequal pressures
in both phases even though an equation of state exists for ABPs [14]. The concept of pressure in active
systems requires a comment here. One can show that if the entire system is confined by walls the normal
force applied to the wall per unit area (wall pressure) equals the pressure far away from the wall (bulk
pressure) independent of the shape of the wall potential. This implies that the pressure is a state function
for ABPs and that the pressure is equal in coexisting phases in case of phase separation [14, 22]. A similar
expression as (11) have been obtained for underdamped quorum-sensing active particles undergoing MIPS
[27], which lack an equation of state for the pressure even for spatially uniform activity [14].

Next, we examine the case of non-interacting ABP’s, which can be solved exactly in all details [10, 28].
In particular, let us consider a setup where particles are inactive (vp = 0) for x < xif = 0 and are active
(va > 0) for x > 0. We non-dimensionalize (12) using πσ2/(4kBT). The left-hand side of (12) reads as

πσ2

4kBT

[
pid(x) + pS(x)

]a

p
= φa

(
1 +

v2
a

2DtDr

)
− φp =

(
λp

λa
− 1

)
φp (13)

using the bulk density ratio λa/λp = ρa/ρp [10, 18, 19, 28, 29], where ρα is the bulk density in region

α = {a, p}, respectively, λα =
(
Dr/Dt + v2

α/2D2
t

)−1/2
denotes the polarisation decay length and

φα = π(σ/2)2ρα the packing fraction. In the following we use the polarisation profile obtained in [10, 28],
which in the passive region (x < 0) takes the form m(x) = mmax exp(x/λp) with mmax = −vaρpλaλp/

2Dt(λa + λp) for our particular setup. In order to calculate the right-hand side of equation (12) we use

Jm(0) =

∫ 0

−∞
dx ∂xJm(x) = −Dr

∫ 0

−∞
dx m(x) = −Drmmaxλp, (14)

where Jm(−∞) = 0 because of v(−∞) = m(−∞) = 0, see (8) for the individual terms of Jm. In total we
get for the right-hand side of (12)

πσ2

4kBT

γt

Dr
Jm(0)va =

(
λp

λa
− 1

)
φp > 0, (15)

which equals (13) and thus proves the validity of (12) for the ideal system. Due to λp > λa, the pressure in
the active region is larger than the pressure in the passive region.

With (12) we want to estimate the packing fractions φa and φp of interacting particles in an
active–passive patch system. An approximate equation of state for interacting ABP’s in 2D [30] reads as
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pa(ρa, Pe) = pid + pD + pS = ρakBT

[
1 +

3

2π

Peφa

1 − φa
φmax

+
3

8
Pe2

(
1 − φa

φmax

)]
, (16)

where φmax = π/
√

12 is the packing fraction of a close-packing of monodisperse disks. The ‘swim’ pressure
vanishes while the interaction pressure diverges at φmax. For passive hard disks we use [31]

pp(ρp) = ρpkBT

(
1 − 2φp +

2φmax − 1

φ2
max

φ2
p

)−1

, (17)

which, however, does not capture the existence of a ‘hexatic’ phase at φ ∈ [0.7, 0.72], see [32]. We obtain
one equation by inserting (16) and (17) into (12) using the interface contribution of non-interacting
particles (15), however, with a density dependent activity v(φ) = va(1 − φ/φmax). And we get another
equation by assuming a rectangular density profile with constant values φa and φp such that
φ0 = αφa + (1 − α)φp. The numerical solution of these two equations give the densities φa and φp for each
Pe and φ0. The approximation of the interface term works only up to a moderate φ0 and the assumption of
a constant density fails if the active phase gets inhomogeneous as in the case of MIPS.

4. Results

Figures 1(a) and (b) shows snapshots of a system with a step-like activity pattern with α = 0.5, i.e., half of
the box, namely [−Lx/4, Lx/4], is active and passive otherwise. In figures 1(a), (c) and (e) the global
packing fraction is φ0 = 0.4 < (1 − α)φmax ≈ 0.4534 and the maximum possible packing fraction in the
passive patch is below close-packing. Figure 1(a) demonstrates the general behavior of a system with a
position dependent activity v(r), namely, that particles tend to accumulate in the less mobile region or in
other words, ρ ∝ 1/v [4, 33]. A strong positive polarization m (particles point toward the passive region)
appears solely at the active–passive interface and is zero otherwise, see figure 1(c). The mechanism
responsible for this polarization is similar to that of ABP’s near walls [34, 35], only the particles that point
toward the interface can also approach it and once they cross the interface they keep their orientation for a
time scale τ r = 1/Dr. In figure 1(e) we show the normal component of the local ‘swim’ pS(x) [36] and
interaction pressure tensor pD(x) [37]. Surprisingly, the total pressure is not equal in both regions, even
though an equation of state for ABPs exists [14], and is larger in the dilute active region, where the ‘swim’
pressure pS is the dominant contribution. What balances this pressure gradient? One can take two points of
view. If one argues that the ‘true’ pressure consists only of the ideal pid and the ‘direct’ pressure pD

(neglecting the ‘swim’ pressure pS) then the pressure gradient is balanced by the swim force density γtvm
created by the polarization of the active particles [38] or in other words

∂x

(
pid + pD

)
= γtv(x)m(x), (18)

which follows from Jρ(x) = 0 and is a local force density balance equation. For our case that means that the
dense passive phase is held together by the rim of polarized particles in the active region. If one also
considers pS then the pressure gradient is balanced by the term on the right-hand side of (11) consisting of
the flux of polar order Jm and the gradient in the activity ∂xv.

Our particles are hard disks and can only be packed till φmax. We expect two regimes based purely on
packing properties in the passive region. In the following we refer to φa and φp as the average values of φ(x)
over the active and the passive region, respectively. In the limit of high activity, Pe →∞, we expect

φa = 0 and φp =
φ0

1 − α
for φ0 < (1 − α)φmax, (19)

which is the regime discussed so far, and

φa =
φ0 − (1 − α)φmax

α
and φp = φmax for φ0 � (1 − α)φmax. (20)

A system above overcrowding, φ0 = 0.7 � (1 − α)φmax ≈ 0.4534, is shown in figures 1(b), (d) and (f). The
passive patch is nearly close-packed and the active patch consists of a dilute and a dense phase, the latter
localized near the passive one. We will discuss the link to MIPS of a purely active system below [20, 22, 30].
The polarized region is no longer located at the active–passive boundary but at the interface between the
dilute and the dense active phase, see figure 1(d). The pressure is equal in both active phases, however, there
is still a small but finite pressure jump across the active–passive boundary, see figure 1(f).

ABPs with a homogeneous propulsion speed separate only above a critical point Pecr ≈ 13.3,
φcr ≈ 0.597 into a dense and a dilute phase [21]. The densities of the coexisting phases are independent of
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Figure 1. (a) and (b) Snapshots of ABPs in an active–passive patch system for two different global packing fractions φ0 = 0.4
(left column) and φ0 = 0.7 (right column) but for the same activity Pe = 30. (c) and (d) The corresponding profiles of the
packing fraction φ(x) = π(σ/2)2ρ(x) (red) and polarization m(x)/ρ(x) (blue) and magnitude of the local bond-orientational
order parameter |Ψ|(x) (green). The horizontal dashed line indicates φmax = π/

√
12. (e) and (f) The local ‘swim’ pS(x) (red) and

‘direct’ pressure profiles pD(x) (blue). The red horizontal dashed line illustrates the pressure difference between the active and the
passive region. Only half of the simulation box is shown [0, Lx/2] and the dotted vertical line at x = Lx/4 indicates the interface
between the active (left) and the passive region (right), i.e., the fraction of the active region is α = 0.5. Lengths are scaled by the
particle diameter σ.

Figure 2. (a) The average values of φ(x) over the active and the passive region, φa and φp, respectively, as a function of the
activity Pe for two different global packing fractions φ0 = 0.15 and φ0 = 0.45, below overcrowding, φ0 < (1 − α)φmax ≈ 0.4534
with α = 0.5, obtained from simulations (circles and dots) and theory (dashed and solid lines). (b) Circles and dots indicate φa

and φp versus Pe for φ0 = 0.65 � (1 − α)φmax. The heat map represents the distribution of the local density in the active region

φlocal
a . The maxima of this distribution, which represents the densities of coexisting phases in the active patch φgas

a and φliq
a , are

marked by × and +, respectively. (c) Comparison between phase separation in the active patch (same symbols × and + as in
(b)) and MIPS in an equivalent purely active system (φgas and φliq are marked by � and �). The purely active system is of the
same size as the active patch, [−αLx/2,αLx/2], and at the same average packing fraction φa. In addition, the critical point of
ABPs is shown [21].

the global density φ0 at fixed activity Pe. The situation is different for a system with a mobility pattern. In
figure 2(a) the mean packing fractions in the active and the passive patch, φa and φp, as a function of Pe
below overcrowding are show. No signs of a critical point are visible, i.e., the system splits continuously,
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Figure 3. (a) and (b) Density ratio φa/φp, (c) and (d) pressure ratio pp/pa and (e) and (f) the total interface polarization
mtot =

∫ p

a dx m(x) for varying activities Pe and global packing fractions φ0 are shown. In (a), (c) and (e) the solid black lines
indicate the exact results for the non-interacting case. The densities φa and φp and pressures pa and pp are averages over the
active and passive patch, respectively. If the phase in the active region becomes unstable it separates into a gas and a liquid phase
with densities φgas

a and φliq
a , respectively. The vertical dashed line in (b), (d) and (f) is drawn at φ0 = (1 − α)φmax ≈ 0.4534 with

α = 0.5 and indicates the global packing fractions φ0 above which the passive patch is closely packed in the limit of Pe →∞.

starting at Pe = 0, into a dense passive and a dilute active phase with increasing Pe. In the limit Pe →∞ all
particles occupy the passive patch, cf (19). Moreover, figure 2(a) demonstrates that the theory, based on
(12), agree very well with the simulation results for densities below overcrowding. Above overcrowding, as
was already visible in figure 1(b), the behaviour is more complex. Figure 2(b) shows in addition to φa and
φp also the distribution of the local density in the active region φlocal

a obtained from Gaussian coarse
graining [39]. Just as below overcrowding, the system first splits continuously into a dense passive and a
dilute active phase with increasing Pe. However, above some Pe the active phase becomes unstable and
separates in to a gas and a liquid phase with densities φgas

a and φ
liq
a , respectively. The active liquid phase is

localized near the dense passive phase, see φ(x) in figure 1(d), and their densities are different (φliq
a �= φp).

In order to check if this secondary instability appears as soon as φa(Pe) enters the coexistence region of
ABPs [20, 22, 30] we have simulated a purely active system of the same size as the active patch and at the
same mean packing fraction φa. In figure 2(c) we show the coexisting densities, φg

a and φl
a, of a

inhomogeneous and, φg and φ�, of a corresponding homogeneous system. We see that the inhomogeneous
system phase separates at lower Pe as compared to the homogeneous one. This difference is probably due to
the presence of the dense passive phase, which acts as a wall and thus leads to an accumulation of active
particles [34, 35]. We speculate that for an infinite system this effect should become negligible and the
coexisting densities in the active patch should match the binodal of ABPs. Furthermore, the question arises
whether the active phase can become unstable below overcrowding. Several papers [21, 22] indicate that the
gas branch of two-dimensional ABPs does not terminate at zero density for large Pe, i.e., limPe→∞ φg > 0. If
this is true then it is not possible for φa(Pe) to enter the MIPS region for φ0 < (1 − α)φmax due to
limPe→∞ φa = 0.

6
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Figure 4. (a) Interface position xif and (b) the interface width λ as function of the overall packing fraction φ0 for two activities
Pe. The vertical dashed line is drawn at φ0 = (1 − α)φmax ≈ 0.4534 with α = 0.5, which marks the border of overcrowding in
the limit of Pe →∞.

Figure 5. Average magnitude of the local bond-orientational order parameter |Ψ| within the passive region as function of the
global packing fraction φ0 and activity Pe. For a perfect triangular lattice |Ψ| = 1. The isoline φp(φ0, Pe) = 0.716 (black dashed
line) indicates the transition to a pure hexatic phase [32] and is a numerical result of the theory based on (12).

Figure 3 indicates the interdependencies between the densities of the coexisting phases, the
corresponding pressures and the total polarisation. Below overcrowding, the density and the pressure ratio
decreases as in the ideal case, φa/φp ∝ pp/pa ∝ 1/Pe, see figures 3(a) and (c). However, above
overcrowding, φa/φp saturates at a finite value with increasing Pe, see figure 3(a), or increases linearly with
φ0, see figure 3(b), which in both cases is in line with (20). In addition, only above overcrowding, φa/φp

bifurcates above some Pe or φ0 into a gas and a liquid branch due to phase separation in the active patch
(cf discussion of figure 2), see figures 3(a) and (b), and the pressure in both regions is almost the same
(pp/pa ≈ 1), see figures 3(c) and (d). The total interface polarisation mtot =

∫ p
a dx m(x), which is

proportional to the difference of the bulk flux of polar order Jm in the active to the passive region [40],
saturates with increasing Pe, see figure 3(e). Besides the trivial dependency mtot ∝ φ0 there is a pronounced
change in growth of mtot as a function of φ0 at (1 − α)φmax for large Pe, see figure 3(f). Once the passive
patch is fully occupied active particles start to wet the dense passive phase, which means that the position of
the interface between the dense and the dilute phase xif does not coincide anymore with the active–passive
boundary αLx/2, see figure 4(a). The interface start to fluctuate strongly and its width λ increases
significantly once the phase separation sets in, see figure 4(b), resembling the behaviour of an interface
during MIPS [41]. We obtained xif and λ by fitting the density profile with a hyperbolic tangent.
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As clearly visible in figure 1(a), the less active patch has a much higher particle density than the other.
However, monodisperse disks can only be packed up to φmax = π/

√
12 arranged in a hexagonal lattice [42]

and thus a crystalline order in the less mobile region is expected for a sufficiently dense and active system.
Hexagonal packing has a long-range orientational (sixfold) order, which can be measured using the local

hexatic order parameter Ψ(rj) =
∑Nj

k=1 exp(i6θjk)/Nj, where θjk is the angle formed by the bond that
connects the jth disk and its kth (out of Nj) nearest neighbor (found with a Voronoi tessellation algorithm)
and the x axis [32]. For a perfect triangular lattice, all the angles 6θjk are the same and |Ψ(r j)| = 1. Because
of the polycrystalline character of the dense phase we use the average magnitude of the hexatic order
parameter |Ψ| =

∑N
i=1|Ψ(ri)|/N in order to get a global information on the order [43], which however

does not vanish in an isotropic fluid. In figure 5 the order parameter |Ψ| within the passive patch as
function of φ0 and Pe is shown. |Ψ| displays a sharp increase beyond the isoline φp(φ0, Pe) = 0.716 (dashed
line), which indicates the transition to a pure hexatic phase [32] and is a numerical result of the theory
based on (12). The minimum global packing fraction necessary for a crystalline patch is φ0 = (1 − α)0.716.

5. Summary

To summarize our main findings: we have theoretically justified the pressure imbalance in an activity
landscape. The pressure difference originates in the flux of polar order and the gradient of swim velocity
across the interface between regions of different activity. We found that although the density is lower in the
more active area the corresponding pressure is higher. For systems below overcrowding, φ0 < (1 − α)φmax,
the densities in the active and the passive patch can be predicted from the balance equation (11). Moreover,
we have studied the effect of interactions on ABPs in activity landscapes. Excluded volume effect become
significant above a global packing fraction φ0 = (1 − α)φmax, namely, when the passive patch is completely
filled with particles in the limit Pe →∞. In that case the active phase can enter the binodal of ABPs (the
coexistence region of a system with a homogeneous swim velocity) above some Pe and φ0, with the result
that the overall system consists of three phases: a dense passive, a dense active and a dilute active phase. The
dense phase in the less-active region exhibits a crystalline order for a sufficiently dense and active system,
and the transition line can also be predicted from the balance equation (11).
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