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We study the capacity of activematter to rise in thin tubes against gravity and other related phenomena like
wetting of vertical plates and spontaneous imbibition, where awetting liquid is drawn into a porous medium.
This capillary action or capillarity is well known in classical fluids and originates from attractive interactions
between the liquid molecules and the container walls, and from the attraction of the liquid molecules among
each other. We observe capillarity in a minimal model for scalar active matter with purely repulsive
interactions, where an effective attraction emerges due to slowdown during collisions between active
particles and between active particles and walls. Simulations indicate that the capillary rise in thin tubes is
approximately proportional to the active sedimentation length λ and that thewetting height of a vertical plate
grows superlinear with λ. In a disordered porous medium the imbibition height scales as hhi ∝ λϕm, where
ϕm is its packing fraction. These predictions are highly relevant for suspensions of sedimenting active
colloids or motile bacteria in a porous medium under the influence of a constant force field.

DOI: 10.1103/PhysRevLett.124.048001

Introduction.—Recently, active matter, which consists of
particles (motile microorganism or active colloids) that
consume nutrients or fuel and convert it into a persistent
motion, has received a lot of attention due to its intrinsic
out-of-equilibrium character on the microscale [1–3]. The
simplest representatives of active matter are spherically
symmetric, active Brownian particles (ABPs) without align-
ment, however, with excluded volume interactions [4,5].
Further representatives of the same class, also called scalar
active matter, are, for example, run-and-tumble particles
[6,7] and active lattice gas [8–11]. Such systems, although far
from equilibrium, are in some sense reminiscent of a passive
fluid with attractive interactions [12,13], since ABPs slow
downduring collisions and effectively attract each other.As a
result, ABPs undergo a motility-induced phase separation
into a coexisting dense and dilute phase [4,5,14,15]. The
same mechanism is responsible for adhesion of ABPs to
repulsivewalls, an effect called wall accumulation [9,16,17].
The investigation of capillary action, the ability of

liquids to rise in thin tubes against gravity, has a long
history and goes back to Leonardo da Vinci [18]. Its origin
is attractive interactions between the liquid molecules and
the container walls and the attraction of the liquid mole-
cules among each other causing surface tension. The height
of the liquid column in the tube is governed by the balance
between the gain in surface energy and the cost in
gravitational energy [18,19]. The classical picture seems
to prohibit the appearance of capillarity in systems with
purely repulsive interactions, however, scalar active matter
displays in some sense an equilibrium behavior [20] of an
attractive fluid with an equation of state for the pressure and
equality of pressures in coexisting phases [21–23]. Still,

their interfacial properties are contradicting: despite stable
liquid-gas interfaces the surface tension was found to be
negative [24–26], which is also true for solid-liquid
interfaces [27]. Consequently, capillarity and imbibition,
which in passive systems are based on surface tension,
remain elusive for active systems and were not investigated
so far.
The natural habitat for many motile bacteria are porous

media, such as soil, tissue, or biofilm. So far the transport
properties of active particles in heterogeneousmedia [28–31]
have been studied. But, to our knowledge, the classical
experiment of spontaneous imbibition of a liquid into a
porous medium [32,33] has not been performed with active
fluids up to now.
Model.—Several minimal off-lattice models of isotropic

active particles without alignment interaction have been
proposed [4,7,13]. Here we use a lattice model of scalar
active matter, the so-called active lattice gas (ALG)
[8–11,34], which allows for simulation of large systems
and can be described by exact hydrodynamic equations on
macroscopic scales [11,35].
We consider N particles on a square lattice with

Nx × Ny ¼ ðnLxÞ × ðnLyÞ sites, where 1=n corresponds
to grid spacing, as explained below. Four types of particles
σix;iy ∈ fl; r; u; dg corresponding to particles in a left, right,
up, and down moving state can occupy a lattice site ðix; iyÞ
with maximum occupation number 1 (corresponding to a
hard core interaction), cf. Fig. 1(a). Four subprocesses
define the stochastic dynamics of the ALG: (i) Symmetric
diffusion: a nearest neighbor pair of sites exchange their
state with a rate D. (ii) Self-propulsion: particles jump by
one lattice spacing in the direction of their moving state
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with a rate V0=n. (iii) Sedimentation: particles in all
moving states jump downward by one lattice spacing with
a rate Vg=n. (iv) Tumbling: particles switch state with a rate
α=n2. Walls are represented as occupied lattice sites,
excluding transitions of particles to these sites. Further
details can be found in the Supplemental Material [36].
The stochastic process defined in this way generates

interacting persistent random walks [10,37] that exhibit a
motility-induced phase separation at a critical activity and
density as a result of excluded volume interactions [10,11].
We analyze this ALG model numerically by using
Monte Carlo (MC) simulations and by the corresponding
hydrodynamic equations. Here we only present MC results,
which agree quantitatively with the predictions of the hydro-
dynamic theory as demonstrated in the Supplemental
Material [36]. The system has two important dimensionless
scaling variables: the active Pea ¼ V0=

ffiffiffiffiffiffiffi

Dα
p

and gravita-
tional Péclet number Peg¼ Vg=

ffiffiffiffiffiffiffi

Dα
p

, which compare either
active swimming or gravitation-induced drift motion to
thermal diffusion. We use l ¼ ffiffiffiffiffiffiffiffiffi

D=α
p

as a length scale.
Our basic setup to study capillarity consists of an ALG

confined between horizontal walls at y ¼ 0 and y ¼ Ly; we
apply periodic boundary conditions along the x direction
and gravity acts along the negative y direction. As a
consequence, a dense phase covers the lower wall with a
dilute phase on top of it. The density profile of the dilute
phase decays exponentially as ρðyÞ ∝ exp ð−y=λÞ, where λ
is the active sedimentation length, which scales as

λ ∝ V2
0=αVg ð1Þ

for large activity Pea [7,38–40], as has been confirmed
by our simulations. In the absence of gravity active particles
would accumulate symmetrically at both walls and in
the case of an ideal ALG at large Pea the density profile,
for instance, at the lower wall y ¼ 0 would decay as

ρðyÞ ∝ C1 exp ð−y=λ1Þ þC2 exp ð−y=λ2Þ with λ1 ¼ D=V0

and λ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

D=2α
p

, which can be calculated exactly using
the corresponding hydrodynamic equations [36].
We insert a capillary or a porous matrix into the dense

phase (or confine the system along the x direction by vertical
walls), let the system evolve until steady state is reached and
adjust simultaneously the number of particles in order to fix
the height of the interface between the dense and the dilute
phase in the bulk region (far away from perturbations due to
vertical walls or porous matrix). We define the position of
the interface as the isodensity curve ρðx; yÞ ¼ 0.6, where
ρ ¼ ρl þ ρr þ ρu þ ρd is the total density, and fix the height
of the interface in the bulk region in all simulations to
ybulk=l ¼ 4. In the following, we measure heights, e.g., the
height of the meniscus Δh in case of capillary rise, relative
to ybulk. We choose the size of the system, such that Lx and
Ly are much larger than any other length scale in system,
like swimming persistence length V0=α or active sedimen-
tation length λ. A bulk ALG (no walls) does not phase
separate below a critical value Peca ¼ 8 [41].
Capillary rise.—A typical result for a thin tube and at

sufficiently high Pea and small Peg is shown in Fig. 1 with
the mean total density ρðx; yÞ ∈ ½0; 1� in Fig. 1(b), the
absolute value of the mean normalized polarization field

m ¼
�

mx

my

�

¼ 1

ρ

�

ρr − ρl

ρu − ρd

�

ð2Þ

in Fig. 1(c) and the phase φðx; yÞ ∈ ½−π; π� of m ¼
jmj · ðcosφ; sinφÞ in Fig. 1(d), which indicates the direc-
tion of the polarization m. The ALG wets the walls of the
tube accompanied by a strong polarization in the direction
antiparallel to the surface normal, the dense phase fills the
tube about the level of the bulk and a concave meniscus
develops within the tube. Accumulation at boundaries
[9,17,42] and capillary condensation in slit pores [43,44]
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FIG. 1. (a) Sketch of the four subprocesses defining the stochastic dynamics of the ALG: symmetric diffusion, self-propulsion,
sedimentation, and tumbling with rates D, V0=n, Vg=n, and α=n2, respectively. (b)–(c) Capillary rise of active lattice gas at active Péclet
number Pea ¼ 10, gravitational Péclet number Peg ¼ 0.2, capillary width δx=l ¼ 1 and capillary height δy=l ¼ 12.5. The total size of
the system is Lx=l ¼ 60 and Ly=l ¼ 120, which corresponds to Nx × Ny ¼ 1200 × 2400 lattice sites used in the Monte Carlo
simulation. (b) Mean total density ρðx; yÞ ∈ ½0; 1�. (c) Absolute value jmjðx; yÞ of the mean normalized polarization fieldm, see Eq. (2).
(d) Phase φðx; yÞ ∈ ½−π; π� of m ¼ jmj · ðcosφ; sinφÞ. A phase ϕ ¼ f0; π=2; fπ;−πg;−π=2g corresponds to a polarization along
fx̂; ŷ;−x̂;−ŷg or fright; up; left; downg, respectively.
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are a well-known effect in scalar active matter; what is new
is the rise of the dense phase inside the tube against gravity.
Figures 2(a) and 2(b) illustrate the dependence of the

height of the meniscusΔh on activity Pea and gravity Peg at
fixed capillary width δx=l ¼ 1. As intuitively expected,
Δh increases with activity and decreases with gravity.
Moreover, Δh increases strongly with the tube height δy
until some critical value and saturates above it. In the latter
regime we observe an approximate scaling Δh ∝ V1.8

0

and Δh ∝ V−0.85
g . For every parameter pair ðPea; PegÞ we

estimate the corresponding active gravitational length λ
from a fit of the density profile ρðyÞ in the bulk (far away
from the tube) to ρðyÞ ∝ exp ð−y=λÞ. Using this, we obtain
a master curve from data shown in Figs. 2(a) and 2(b) by
plotting Δh as a function of λ and rescaling Δh for different
tube heights by δy0.24. As indicated in Fig. 2(c) we obtain a
simple scaling relation as a result:

Δh ∝ λ0.9: ð3Þ
The meniscus heightΔh decreases strongly with increas-

ing capillary width δx, see Fig. 2(d), and the curves for
different pairs ðPea; PegÞ collapse after rescaling ofΔhwith
λ0.9, which is consistent with the master curve Δh ∝ λ0.9 in
Fig. 2(c). For large Pea and δx the data collapse is not
perfect, where Δh even becomes negative.

Wetting of a vertical plate.—As mentioned above, the
dense phase of the ALG not only rises inside a capillary but
also wets the outside walls of the capillary. In order to study
the latter effect separately we consider a setup of a
rectangular container with horizontal walls at y ¼ 0 and
y ¼ Ly and vertical walls at x ¼ 0 and x ¼ Lx. Again we
adjust the number of particles in order to fix the height of
the interface far away from walls (x ¼ Lx=2). A typical
total density field ρðx; yÞ ∈ ½0; 1� together with the isoline
at ρ ¼ 0.6 (definition of the interface) is shown in Fig. 3(a),
where a pronounced wetting of the vertical wall is visible.
We estimate the height of the wetting layerΔH for different
parameter pairs ðPea; PegÞ together with the corresponding
active gravitational lengths λ and obtain a master curve,
which suggests a superlinear growth,

ΔH ∝ λ1.3; ð4Þ

of thewetting height. Phenomenologically, wetting can here
be understood as follows: activity leads to an accumulation
of particles at the container walls and gravity forces particles
to sediment to the bottom. However, excluded volume effect
prevents a collapse of the wetting layer. A zero-order
approximation for the interface profile in a capillary tube
of a width δx is a superposition of wetting profiles of two
independent walls at distance δx.
Imbibition of a porous matrix.—Motivated by the above

results we probe now how the ALG penetrates a porous
medium. We construct a porous matrix from randomly
placed nonoverlapping hard discs with uniformly distrib-
uted diameters in the range σ=l ∈ ½0.5; 2� and a minimum
gap size of 0.325l. As in the previous setups, we adjust the
number of particles in order to fix the interface far away
from the matrix. An example of a spontaneous imbibition is
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FIG. 2. (a)–(c) The height of the meniscus Δh for different tube
heights δy and at a fixed capillarywidthδx=l ¼ 1. (a)Δh vs activity
Pea at fixed Peg ¼ 1 and (b) Δh vs gravity Peg at fixed Pea ¼ 10.
(c) Amaster curvemerging data from (a) and (b).Δh is plotted as a
function of active gravitational length λ andΔh is scaled by δy0.24.
For every parameter pair ðPea;PegÞwe estimate the corresponding
λ from a fit of the density profile in the bulk. Note that, at finite
activity λ is larger than the gravitational length in equilibrium
λeq ¼ D=Vg. (d) Δh as a function of the capillary width δx for
different parameter pairs ðPea; PegÞ and at fixed tube height
δy=l ¼ 17.5. The height of the meniscus Δh is scaled by λ0.9.
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FIG. 3. Wetting of a vertical plate. (a) Total density ρðx; yÞ ∈
½0; 1� for Pea ¼ 10 and Peg ¼ 1. A cutout of a larger system
(Lx=l ¼ 60 and Ly=l ¼ 120) is shown. Black line indicates the
isodensity at ρ ¼ 0.6, which is our definition of the interface
between the dense and the dilute phase. The height of the wetting
layer ΔH is marked by a circle. (b) Height of the wetting
layer ΔH as a function of the active gravitational length λ. Two
datasets are shown: 2 ≤ Pea ≤ 20 at fixed Peg ¼ 1 and 0.1 ≤
Peg ≤ 2 at fixed Pea ¼ 10.
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shown in Fig. 4 for a matrix packing fraction of ϕm ¼ 0.8
(i.e., porosity 0.2). After an initial rise the invasion front
reaches a final height and width, and the interface fluctuates
slightly in the steady state.
An obvious question is: What is the effect of the porosity

on the imbibition? In Fig. 5(a) we present the average
density profiles ρðyÞ of the active lattice gas within the
porousmatrix for different porosities 1 − ϕm at ðPea; PegÞ ¼
ð15; 1Þ and indicate the position of the interface by circles;
the horizontal average was performed over the void region
only and over 10 independent realizations of the matrix. As
expected, the smaller the porosity the higher the rise of the
dense phase within the porous matrix. Interestingly, the
density of the dilute phase above the invasion front within
the matrix is significantly larger then the bulk density at the
same height, see dashed line in Fig. 5(a).
We perform similar simulations for different ðPea; PegÞ

and estimate the mean interface height hhi and the corre-
sponding active gravitational length λ. A scaling of hhiwith
λ leads to a reasonable data collapse and indicates a simple
growth relation

hhi ∝ λϕm ð5Þ

of the interface height; see Fig. 5(b). A rough comparison
between imbibition and capillary rise can be done by
plotting together the mean interface height hhi vs mean
gaps size of the porous matrix, obtained with Delaunay
triangulation, and the height of the meniscusΔh vs capillary
width δx, see Fig. 2(d). Although the shape of the curves is
similar, the capacity of ALG to rise in porous media against

the action of gravity is twice as strong as in thin tubes and the
reason for this is that the porous matrix contains also gap
sizes much smaller than the average.
Conclusions and outlook.—We have shown that scalar

active matter with purely repulsive interactions can rise in
thin tubes or invade porous matrix against gravity. As a
proof of concept we have used one of the simplest active
matter models and there are several obvious extensions in
the study of active capillarity and related phenomena using
more realistic and elaborated models. It is obvious to
consider next off-lattice models, such as active Brownian
particles (ABPs), in order to test the universality of the
scaling relations; preliminary simulations clearly demon-
strate capillary action in ABPs and confirm the robustness
of the effect in active matter systems [45]. Hydrodynamic
interactions [46,47] or, in the case of anisotropic active
particles, alignment interactions can have a dramatic effect
on the behavior near boundaries as compared to scalar
active matter and should be taken into account in future
studies. It would be very interesting to investigate the
modification of classical capillary rise [48] by activity
using active colloids with attraction [49], where it is
predicted that wall attraction may cause capillary drying
[44]. Also the study of capillary action and wetting in active
multiphase systems, such as suspensions of motile bacteria
[50], algae [51], or synthetic self-propelled particles [52,53]
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FIG. 4. Imbibition of a porous media by the active lattice gas.
The porous media consists of nonoverlapping hard discs with
uniformly distributed diameters in the range σ=l ∈ ½0.5; 2�; the
minimum gap size is 0.325 in units of l. The total density
ρðx; yÞ ∈ ½0; 1� is shown for Pea ¼ 15, Peg ¼ 1 and a system size
Lx=l ¼ 60 and Ly=l ¼ 100. The porosity is 1 − ϕm ¼ 0.2, where
ϕm is the packing fraction of the porous matrix.
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FIG. 5. (a) Density profiles ρðyÞ of the active lattice gas within
the porous matrix (the horizontal average was performed over the
void region only) for different porosities 1 − ϕm (solid lines) and
the corresponding ρðyÞ in the bulk region (dashed line) are shown.
The position of the interface is defined as the height, where ρ ¼ 0.6
and is indicated by circles for the porous matrix and by a square in
the bulk. The parameters are ðPea; PegÞ ¼ ð15; 1Þ. (b) Mean
interface height hhi scaled by the active gravitational length λ
as a function of the packing fraction of the porous matrix ϕm for
different parameter pairs ðPea;PegÞ.
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is very promising and could be a possible experimental test
for our predictions.
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