
Active matter consists of particles, agents or constitu-
ents that consume energy, which they use to generate 
directed motion, forces and shape deformations, or even 
to proliferate and annihilate. Living systems — in which 
active units reproduce, adapt and dynamically respond 
to environmental changes — are paradigmatic examples 
of active matter. Active matter systems are out of equi-
librium, and the nature of the energy input distinguishes 
them from externally driven systems such as shear flow. 
Some of the basic features of active matter are broken 
time-​reversal symmetry, broken detailed balance and 
lack of an equation of state. New models, methods 
and computational techniques have been developed 
in the past two decades to understand and unravel the 
emerging physical principles governing active matter1–5. 
Of particular interest are emerging many-particle effects 
or collective phenomena, such as motility-induced 
phase separation (MIPS), spontaneous rotational sym-
metry breaking in two dimensions, pattern formation 
and self-​organization. The diversity of active agents and 
their wide range of behaviours are major challenges in 
developing a comprehensive theoretical description of 
living matter. Various numerical methods with different 
levels of resolution, ranging from microscale to macro-
scale, have been developed and used to model active 
matter1–5 (Fig. 1). The goal of this Technical Review is 
to summarize and compare currently available models 
and to elucidate challenges in computational modelling 
of active matter.

We first consider dry active matter, that is, systems for  
which hydrodynamic interactions are absent and momen
tum is not conserved. Next, approaches for modelling  
hydrodynamics of active suspensions are discussed.  

In these approaches, the dynamics of the solvent is incor-
porated in the model, ensuring local momentum conser-
vation. We also present an overview of the continuum 
models used for active fluids, and discuss the practical 
relevance of the numerical approaches. The degree of 
coarse-​graining determines the details of real systems 
that can be captured, which becomes most evident in 
the modelling of cells, tissues and animal groups. The 
different scales of living systems necessitate different 
model approaches, ranging from all-​atom molecular 
dynamics (MD) simulations for force-​generating protein 
machines, over coarse-​grained particle-​based models  
and continuum models, to agent-​based models with 
phenomenological interaction rules. Finally, we address 
the open challenges faced by researchers modelling active 
matter and present an outlook on model developments  
toward real-​world applications.

Dry active matter
Dry active systems are characterized by the absence of 
momentum conservation. This can be due to contact 
with a momentum-​absorbing medium, as in bacteria 
gliding or granular beads vibrating on frictional surfaces. 
The omission of momentum conservation may also 
originate from the minor relevance of hydrodynamic 
interactions in systems where other effects, such as fluc-
tuations, volume exclusion, and short-​range or metric-​
free interactions, dominate. Relevant examples include 
animal flocks and dense collections of swimming  
bacteria. We discuss two paradigmatic minimal models 
of dry active matter and their variants and extensions:  
active Brownian particles (ABPs) and Vicsek-type models  
with alignment interactions. We also briefly address 

Computational models for 
active matter
M. Reza Shaebani   1 ✉, Adam Wysocki1, Roland G. Winkler   2, Gerhard Gompper   2 ✉ 
and Heiko Rieger   1 ✉

Abstract | Active matter, which ranges from molecular motors to groups of animals, exists at 
different length scales and timescales, and various computational models have been proposed to 
describe and predict its behaviour. The diversity of the methods and the challenges in modelling 
active matter primarily originate from the out-​of-equilibrium character, lack of detailed balance 
and of time-​reversal symmetry , multiscale nature, nonlinearity and multibody interactions. Models 
exist for both dry active matter and active matter in fluids, and can be agent-​based or continuum-​
level descriptions. They can be generic, emphasizing universal features, or detailed, capturing 
specific features. We compare various modelling approaches and numerical techniques to 
illuminate the innovations and challenges in understanding active matter.

1Department of Theoretical 
Physics and Center for 
Biophysics, Saarland 
University, Saarbrücken, 
Germany.
2Theoretical Soft Matter  
and Biophysics, Institute  
of Complex Systems  
and Institute for  
Advanced Simulation, 
Forschungszentrum Jülich, 
Jülich, Germany.

✉e-​mail: shaebani@ 
lusi.uni-sb.de; g.gompper@
fz-juelich.de; h.rieger@
physik.uni-​saarland.de

https://doi.org/10.1038/ 
s42254-020-0152-1

NATure RevieWS | PhySICS

Technical
REVIEWS

	  volume 2 | April 2020 | 181

http://orcid.org/0000-0001-8587-6949
http://orcid.org/0000-0002-7513-0796
http://orcid.org/0000-0002-8904-0986
http://orcid.org/0000-0003-0205-3678
mailto:shaebani@
lusi.uni-sb.de
mailto:shaebani@
lusi.uni-sb.de
mailto:g.gompper@fz-juelich.de
mailto:g.gompper@fz-juelich.de
mailto:h.rieger@physik.uni- saarland.de
mailto:h.rieger@physik.uni- saarland.de
https://doi.org/10.1038/s42254-020-0152-1
https://doi.org/10.1038/s42254-020-0152-1
http://crossmark.crossref.org/dialog/?doi=10.1038/s42254-020-0152-1&domain=pdf


continuum-​modelling approaches. Neglecting birth, 
division and death processes, we consider only systems 
in which the number of particles is conserved.

Active Brownian particles
A rather generic model of an active agent is the ABP, 
a self-​propelled spherical particle with dynamics 
described by the overdamped Langevin equations6,7
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for the position r t( ) and the unit orientation vector ̂e t( ).  
D is the translational diffusion coefficient, Dr is the  
rotational diffusion coefficient, rU( ) is either the interac-
tion energy with other particles or an external potential, 
and Factive is a self-​propulsion force (usually along the 
current direction of motion, that is, ̂F eF=active 0 , where 
F0 is a constant). kB is the Boltzmann constant and  
T  is temperature. The uncorrelated white noises ξ and ξr  
follow a unit normal distribution. The overdamped 
limit of equation 1 is suitable for modelling motion 
in low-Reynolds-number fluids, such as in biological 
environments.

Active particles, even with purely repulsive interac-
tions, exhibit features not seen in ordinary particles, such 
as MIPS4,5,8–15, wall accumulation16–18, capillary action in 
spite of wall–particle repulsion19, and an active pressure 
(denoted as swim pressure)6,18,20–22. An intuitive expla-
nation for the separation into dense and dilute regions 
of ABPs is that there is positive feedback between the 
blocking of persistent particle motion by steric inter-
actions, and an enhanced probability of collisions with 
additional particles at sufficiently large concentrations. 
The reduction in speed by collisions leads to a local 
increase in density, which further increases the collision 
frequency in those regions. This mechanism eventually 
leads to particle accumulation and phase separation. 
During MIPS, the phase-​separated domains grow self-​
similarly in time and their size is limited only by the 
system dimensions10,11. Remarkably, in 3D, ABPs exhibit 

collective motion in the high-​density phase-​separated 
state even in the absence of an alignment rule10. Similarly, 
wall accumulation emerges by the (slow) orientational 
diffusion of adsorbed ABPs, which are only able to 
escape when their propulsion direction points away 
from the wall4,16. The strength of the effects depends 
on the rotational diffusion coefficient, the propulsion 
velocity and the curvature of the surface. Simulations 
show that ABPs accumulate preferentially in regions of 
highest curvature17,23. Although non-​equilibrium active 
systems usually lack a free energy and equations of state, 
spherical ABPs are a notable exception. Analytical con-
siderations and simulations yield a pressure equation of 
state in this case6,18,20–22; however, such an equation does 
not exist for non-​spherical, elongated ABPs6.

Extensions of the ABP model include models with 
additional active torques, models of particles with asym-
metric shapes, such as rods and L-​shaped microswim-
mers, and assemblies of several active particles, for 
instance in a polymer-​like manner24–31. Such assemblies 
exhibit unusual emerging effects such as suppression of 
MIPS and appearance of large-​scale coherent motion, 
chiral motion patterns, and an intimate coupling of 
activity and polymer conformations and dynamics. 
Other approaches to simulate self-​propelled particle 
systems include active lattice gas model and (kinetic) 
Monte Carlo approaches32–38.

Active motion with alignment interactions
Intriguing common features — such as swirling patterns 
and swarming — are shared by the collective motion in 
various systems of living organisms (examples being 
flocks of birds and animal herds) and ensembles of 
synthetic elongated active particles. These features 
are related to the alignment of motion with their 
neighbours39.

The Vicsek model is an agent-​based minimal model 
for flocking, accounting for the interplay between fluc-
tuations and simultaneous interactions of multiple 
agents40. Particles moving in a plane with constant veloc-
ity modulus v0 align with their neighbours by updating 
their velocity angle θ at each time step according to

θ t θ t ξ t( + 1) = ( ) + ( ) (2)i i R i

where θ t( )i R
 is the average velocity angle of par

ticles located in a circle of radius R surrounding  
particle i. ξ t( )i  is a random angle obtained from a 
uniform distribution σπ σπ[− , ], such that ∈σ [0, 1]  
defines the noise strength. The new position of par-
ticle i is then given by ̂x x et t v( + 1) = ( ) +i i i0 , where 
̂e θ t θ t= (cos ( + 1), sin ( + 1))i i i  is the new velocity direc-

tion. A continuous transition from disordered to an 
ordered state occurs on increasing the particle density 
or decreasing σ . The global mean normalized velo
city ̂em N= ∑ i

N
i

−1
=1  is an appropriate order parameter, 

characterizing the transition from random (m = 0) to 
coherent movement (m = 1). Despite this being a non-​
equilibrium phase transition, various notions of equi-
librium statistical mechanics can be applied to it, owing 
to spontaneous symmetry breaking and the emergence 
of well-​defined macroscopic states.

Key points

•	Active matter exhibits a wide range of emergent non-​equilibrium phenomena, 
theoretical studies of which often require computer simulations.

•	Active matter encompasses synthetic and living systems, including active gels and the 
cytoskeleton, cells and tissues, nanorobots and microrobots, synthetic and biological 
microswimmers, and animal herds.

•	Active matter is characterized by out-​of-equilibrium behaviour, nonlinearity, 
multibody interactions, lack of detailed balance or time-​reversal symmetry and, 
generically, absence of an equation of state.

•	The wide spectrum of systems and phenomena requires a multitude of models  
and simulation techniques, from agent-​based to continuum-​level approaches, and 
combinations thereof.

•	Active agents can interact in many ways, such as volume exclusion, contact 
attraction, visual information and hydrodynamics. Hydrodynamic interactions are 
ubiquitous for self-​propelled particles in an aqueous environment, which implies  
a classification into dry and wet active matter.
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The flocking transition in the Vicsek model is 
reminiscent of a liquid–gas transition, rather than an 
order–disorder transition, but with microphase separa-
tion in the coexistence region, where travelling ordered 
bands of finite width coexist with a disordered gas41. 
By contrast, the corresponding lattice model, called the 
active Ising model, exhibits full phase separation42. As 
established in many studies39, the patterns in a system 
described by the Vicsek model, such as band forma-
tion43,44, rotating chains45 and marching groups, and 
the essential characteristics of collective motion, such 
as the nature of the phase transition, are influenced by 
several factors. These factors include how noise and 
disorder are introduced into the system46–48, boundary 
conditions (which can be periodic or reflecting, and can 
take different shapes)49, the range50 and type of inter-
actions (including hard core, metric-​free, repulsive or 
attractive)44,51–53 and alignment rules (for example, polar 
or bipolar)54–56. For example, the order of the transition 
depends on whether the noise is intrinsic (perturb-
ing the final orientation) or extrinsic (perturbing the 
individual orientations before averaging)46,47; whether 
interactions are metric (occur over a fixed range) or 
topological (occur between a fixed number of part-
ners)52; and the magnitude of the particle displacement 
v tΔ0  during one time step compared with the radius 
of interaction (R)50. Furthermore, alignment can be 
introduced in several ways. In animal herds, agents 
sense the motion of their neighbours, resulting in polar 
alignment. However, an explicit (polar) alignment rule 
is not necessary for coherent motion: the alignment 
can be induced implicitly through purely physical local 
interactions such as inelastic49 or nematic collisions43, 
short-​range interactions45,57 or volume exclusion in 
combination with shape-​induced (particle elongation) 

effects58. An important question is the minimal require-
ments for emerging collective motion by solely physical 
interactions. Figure 2 lists some variants of the Vicsek 
model and a few systems that show collective motion 
without explicit alignment rules.

Continuum models of dry active matter
The large-​scale behaviour of many-​particle systems can 
be captured by continuum models, which describe the 
evolution of continuous slow variables such as number-​
density rn t( , ) and velocity v r t( , ) fields. Macroscopic 
approaches capture the main features of active matter, 
such as collective motion, by considering the conserva-
tion laws and broken continuous symmetries. Continuum 
theories can be constructed by coarse-​graining a micro-
scopic model, adopting symmetry arguments or using 
out-​of-equilibrium thermodynamics close to equili
brium. Representative continuum models of dry active 
matter, which conserve the number of particles without 
conserving momentum, are provided in Table 1.

Dry polar flocks. The first continuum description of the 
Vicsek model, solely based on symmetry considerations, 
is the Toner–Tu model3,59–62. The theory describes active 
particles that have the front distinguished from the rear 
and, therefore, are characterized by a polarization field 
p r t( , ) corresponding to the vectorial orientation of 
active particles and their direction of swimming. The 
conservation of the number density, rn t( , ), results in a 
continuity equation that includes an active contribution 

pv n0  to the particle flux (see equation 6 in Table 1). The 
simplest form of the dynamical equation for p assumes 
a relaxation process toward the minimum of an effec-
tive free energy F pn[ , ], which includes terms respon-
sible for the spontaneous polarization and the energetic 
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Fig. 1 | Modelling active matter. a–d | Typical snapshots of numerical simulations of active systems in (dry–wet, micro–
macro) phase space. a | Bubbly phase separation in the density profile of a continuum dry active-​matter model. ‘Boiling 
liquid’ phase is indicated in yellow; ‘vapour’ phase is indicated in blue. b | Vorticity field in the turbulent regime of a 
continuum active fluid model. c | Ordering of vibrated polar disks in confinement. Colour denotes the relative alignment 
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single swimming bacterium. e | The main computational models and methods for active matter. GNSE, generalized 
Navier–Stokes equations. Panel a is adapted from ref.70, CC-BY-4.00 (https://creativecommons.org/licenses/by/4.0/). 
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cost of elastic distortions of the orientational field. As 
shown in equation 7, activity enters solely via an advec-
tive term ∇⋅p pλ( )  (λ is the coefficient of convective 
derivative), which accounts for the fact that distortions 
in p are advected by itself because p represents both 
the order parameter and the velocity. Flocks do not 
conserve momentum, and the system lacks Galilean 
invariance; therefore, λ v≠ 0, meaning that density and 
polarization inhomogeneities advect at different veloci-
ties. The model exhibits giant number fluctuations and 
long-​range order in 2D (forbidden in thermal equilib-
rium by the Mermin–Wagner theorem)3,59. By relax-
ing the constraint on number-​density conservation, 
the model can be generalized and applied to systems 

involving birth–division–death processes63 such as in dense  
bacterial colonies.

Dry active nematics. A system of apolar (that is, head–
tail symmetric) active particles can exhibit a state that 
has long-​range directional order, but with zero global 
drift velocity because of the nematic symmetry. Active 
nematics can be characterized by a symmetric second-​
rank tensor Q r t( , ), which represents the local alignment 
of neighbouring particles (equation 8). The overdamped 
dynamics of Q obeys equation 9, which reduces to the 
free energy F Qn[ , ] consisting of entirely quasi-​passive 
terms. The continuity equation 10 for the density 

rn t( , ) contains an active current ∇ ⋅J Qζ=active  (refs64,65), 
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originating from the force dipole of active particles (ζ  is 
the coefficient of active current). Jactive accounts for par-
ticle flux along or against the curvature ∇ ⋅ Q, thus vio-
lating time-​reversal symmetry. Despite the simplicity of  
the model, active nematics exhibit interesting behaviour, 
such as giant number fluctuations and self-​propulsion 
of topological defects1,64,65. An extension to a more 
complex environment, such as viscoelasticity by poly-
mers66, implies additional effects, such as drag reduction, 
spontaneous flows caused by an antagonistic coupling 
between polymer and nematic orientations, and active 
turbulence in a sufficiently soft elastomeric solid67.

Dry scalar active matter. Anisotropic interactions are 
responsible for orientational order–disorder transitions 
in active nematics or polar matter. In contrast, active 
particles with spherical symmetry (that is, without align-
ment interactions) do not display a global directional 
order (p Q= = 0), and the only remaining slow variable 
is the scalar number density n. To explore the physics of 
MIPS in scalar active matter, the passive model B68 —  

a field-​theoretical model for diffusive phase separation 
of the number density, characterized by a conserved 
scalar order parameter ϕ — has been extended by an 
active chemical potential ∇μ λ ϕ= ( )active

2 that breaks the 
time-​reversal symmetry at leading order in the density 
gradient expansion69–73. To allow for circulating real-​
space particle currents in steady state, further terms 
that break the gradient structure of the active current 
have been added70 (see equations 11 and 12 in Table 1). 
The resulting active model B+ (AMB+) displays com-
plex dynamics such as microphase separation (bubbles 
of a finite length scale) and a reverse Ostwald process 
(increase of the number of small bubbles while bigger 
bubbles evaporate)70.

Active particles in fluids
Hydrodynamic interactions are fundamental for active 
particles immersed in a fluid, and determine their 
behaviour in various respects. On the one hand, they 
are an integral part of the propulsion system of most 
biological and synthetic microswimmers — without 

Table 1 | The governing equations of continuum models for dry active matter and active particles in fluids

Continuum model Governing equations Parameters

Dry active matter

Toner–Tu model59,60 
(dry polar flocks)

( )pp JJn v n∂ + + = 0 (6)t 0 passive∇ ⋅
χλ∂ + +…=−Γ +δ

δ
F⋅ ∇p p p( ) (7)p

pt
n

r
[ , ]

v0, propulsion speed; λ, coefficient of convective derivative; 
Jpassive, particle flux; χ, random noise vector ; F pn[ , ], free 
energy functional

Models of dry active 
nematics64,65

−( )QQ rr pp pp IIt S( , ) = (8)
d
1⊗

∂ =−Γ +Λδ
δ

FQ (9)Q
Qt
n

r
[ , ]

ζ∂ + + =∇ ⋅ ∇ ⋅( )Q Jn 0 (10)t passive

S, magnitude of order parameter ; F Qn[ , ], free energy 
functional; Λ, white noise tensor ; ζ , coefficient of active current

Scalar active  
model B+69,71,72

ϕ = − − ∕ −n n n n n(2 ) ( ) (11)H L H L

ϕ λ ϕ ξ ϕ ϕ χ∂ + − + + + =∇ ⋅ ∇ ∇ ∇ ∇ J( (( ) ) ( ) ) 0 (12)t
2 2

passive

nH, nl, densities of high- and low-​density coexisting phases;  
λ, χ , terms that break time-​reversal symmetry

Fluid equations

Incompressible 
Navier–Stokes 
equations

σρ ∂ + =− + +⋅ ∇ ∇ ∇ ⋅( )v v fPt

=∇ ⋅ v 0 (13)

f , force density ; σ σ σ σ= + +a r d, stress tensor ; σ a, active stress; 
σ r, reversible stress due to free energy functional; σ η= E2d , 
dissipative stress

Stokes equation σ− − =∇ ∇ ⋅ fP 0 (14) f , force density

Active particles in fluid

Polar active gel 
models1–3,176–181 λ λ+ +…= −Γ δ

δ
F⋅ ∇ ⋅p p p pD E( ) (15)p

pt 1 r
[ ]

∂ + + =∇ ⋅ p vn n[( ) ] 0 (16)t

Dt, convected co-​rotational time derivative; λ1, strength of 
advection from polarization; λ, flow alignment coefficient; F p[ ], 
free energy functional containing Frank elastic terms and terms 
controlling the order–disorder transition

Active nematic gel 
models1–3,88,182–185

∂ + = +ΓΩ⋅ ∇( )v Q S HE( , ) (17)t
H, variational derivative of the free energy ; Ω, vorticity tensor ; 
S describes competition between rotation and flow alignment

Generalized 
Navier–Stokes 
models181,186–191

= δ
δ
Ff (18)v
v
[ ]

σ ζ=− −( )⊗v v I (19)v
d

a 2

σ = Γ − Γ + Γ∇ ∇( )E2 ( ) (20)d
0 2

2
4

2 2

F v[ ], biquadratic Landau-​like free energy ; ζ , activity parameter ; 
σ d, generalized dissipative stress

Scalar active  
model H192,193

ϕ ϕ∂ + = Γ μ⋅ ∇ ∇v (21)t t
2

ϕ ϕ κ ϕ λ ϕ= + − +μ ∇ ∇a b ( ) (22)3 2 2

σ κ ϕ ϕ= − − ϕ( )̂ ∇ ⊗ ∇ ∇ I( ) ( ) (23)
d

( ) 2

ϕ, scalar order parameter ; μ, chemical potential; λ ϕ∇( )2, 
active contribution to μ; κ κ ζ κ= + ≠̂

P denotes pressure, ρn,  number and mass density , v velocity , Q r t( , ) nematic alignment tensor, p polarization or nematic director, I identity tensor, T  temperature, 
Γ Γ,t r translational and rotational mobility, and η viscosity ; = + ∕∇ ∇v vE ( ( ) ) 2T  is rate of strain tensor.
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hydrodynamic interactions, there is no propulsion4. On 
the other hand, hydrodynamics determines the behav-
iour of microswimmers at walls and in channels, as well 
as their collective behaviour. Microscale models provide 
insight into the underlying physical mechanism from the 
level of individual microswimmers up to the emergent 
collective behaviours on large length scales.

Universal features
The hydrodynamics of simple Newtonian fluids is gov-
erned by the Navier–Stokes equation (see equation 13 in 
Table 1). In the limit of low Reynolds numbers,

∕ ≪ρv L ηRe = 1 (3)0

(where L is a characteristic length, v0 a character
istic swim velocity, ρ the density of the fluid and η the 
dynamic viscosity), the Navier–Stokes equation reduces 
to the Stokes equation, for which inertial terms are neg-
ligible (equation 14 in Table 1). Characteristic values 
for microswimmers are body lengths ~L O(10 m)−6  and  
swimming velocities ~v O(10 ms )0

−6 −1 , hence, ≲Re 10−3  
for water. In this limit, hydrodynamics becomes time- 
independent, and the dynamics is reversible. This has the  
important consequence that a microswimmer with a  
time-reversible stroke cannot propel, a phenomenon 
known as the scallop theorem74.

The solution of the Stokes equation is determined by 
its Green’s function, the Oseen tensor





∕r rH

πηr
δ r r r r( ) = 1

8
+ , ( = ) (4)αβ α β α β,

2

Here, δ is the Kronecker delta. The flow field obtained 
from H for a point force is typically denoted a Stokeslet. 
It is important to note that the Stokeslet does not 
describe an autonomous microswimmer, because the 
swimmer must be force-​free and torque-​free. Instead, 
a swimmer usually consists of a motor, which propels 
the fluid, and a cargo, which is pushed or dragged for-
ward. Approximating these two components by point 
forces with opposite directions, and equal magnitude f0

,  
yields the dipole swimmer with the flow field of equa-
tion 24, where P f L= 0

 is the dipole strength (Box 1).  
The sign of P distinguishes a pusher (P > 0, motor in the 
back) from a puller (P < 0, motor in front), with equal 
flow lines but opposite flow directions4 (Box 1). The flow 
field of a microswimmer is typically more complex and 
comprises higher-​order multipoles75,76. However, in the 
far-​field limit (far away from the swimmer compared 
with its own size), the dipole contribution (equation 24) 
dominates.

The dipole flow field has important consequences 
for the interaction of swimmers with walls4,75,77–79 and 
other swimmers. Inflow generates an effective attraction; 
outflow generates an effective repulsion. These interac-
tions act together with the flow-​induced torque, which 
aligns pushers with a wall, and thus pushers are attracted 
to walls. Flow-​induced interactions add to other inter-
actions: an effective attraction that emerges by propul-
sion, slow reorientation and steric interactions (which 
also exist for dry active matter). Thus, flow-​induced 

interactions are independent of whether the swimming 
type is pusher or puller16,80–82. In the case of pullers, the 
basic mechanism of wall interactions is arrival at the wall 
with the propulsion direction toward the wall, a slow 
reorientation determined by the rotational diffusion, 
during which the swimmer stays at the wall, and finally 
departure when the orientation points away from the 
wall. The hydrodynamic interactions increase the wall 
detention time83.

The hydrodynamic interactions also play an important 
role in the nematic arrangement of elongated and rod-​
like microswimmers84,85. When the aspect ratio exceeds 
about 5, the nematic phase of passive rods is stable for 
sufficiently high volume fractions. Such an arrangement 
of microswimmers is sensitive to slight perturbations, 
for instance by a sinusoidal reorientation wave. The flow 
field of pushers at the nodes of this wave enhances the 
perturbation, and thus destabilizes the nematic phase; 
conversely, the flow field of pullers at nodes reduces 
the perturbation and stabilizes the nematic phase. This 
hydrodynamic instability of the nematic phase of exten-
sile active systems lies at the heart of the intriguing 
dynamics of active nematics86–89.

Hydrodynamics can also lead to high-​speed and 
long-​range communication between freely swimming 
cells. For example, studies of the protist Spirostomum 
ambiguous suggest that long-​range vortex flows can be 
generated by fast cell contraction. These flows, in turn, 
trigger contraction of neighbouring cells and hence 
promote collective behaviour90.

Swimming in viscoelastic fluids
Microorganisms often move in complex environments, 
which are viscoelastic rather than Newtonian. Such 
environments break the time-​reversal symmetry of 
Newtonian fluids and allow for self-​propulsion even for 
a time-​symmetric internal motion, seemingly violating 
the scallop theorem91. Viscoelastic fluids are usually 
polymer solutions with a wide spectrum of properties, 
ranging from shear-​thinning to viscoelastic (character-
ized by storage and loss moduli), and, hence, can affect 
the swimming behaviour of individual microswim-
mers92,93 and their collective properties94. Theoretical 
studies reveal both reduced95,96 and enhanced97,98 swim 
speeds in viscoleastic media, with a transition from 
slow small-​amplitude swimming to fast large-​amplitude 
locomotion97.

Viscoelastic97,99 and shear-​thinning100 effects are typ-
ically small. However, some unexpected phenomena 
can appear, which are related to the complex nature of 
polymer solutions. Microstructured fluids generically 
phase-​separate near surfaces, which can lead to low-​
viscosity fluid layers. Models show that such layers pro-
mote slip and reduce viscous friction near the surface 
of the swimmer, which may increase swim speeds by 
orders of magnitude98. Experiments with Escherichia coli 
in concentrated polymer solutions indicate that peculi-
arities of flagellated locomotion do indeed arise from the 
fast-​rotating flagellum, leading to a lower local viscosity 
in its vicinity101. Detailed modelling and simulation of 
bacteria in dense polymer solutions, with explicit poly-
mers, reach similar conclusions; in particular, polymers 
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are depleted at the flagellum102. An increased swim speed 
with increasing polymer density is predicted, owing to 
both a non-​uniform distribution of polymers in the 
vicinity of the bacterium — which leads to an apparent 
slip — and the chirality of the bacterial flagellum102.

Mesoscale simulation techniques
To study mesocopic active-matter agents, various 
hydrodynamic simulation approaches have been devel-
oped. Prominent mesoscale simulation approaches are 
the lattice Boltzmann (LB) method103,104, dissipative 

particle dynamics (DPD)105 and the multiparticle colli-
sion dynamics (MPC) approach106,107. These approaches 
are essentially alternative ways of solving the Navier–
Stokes equation and its generalizations. The LB method 
yields an approximate solution of the Boltzmann equa-
tion, that is, a single-​particle phase-​space distribution 
function. An advantage of LB is that thermal fluctuations 
can be turned on and off as desired104. DPD and MPC 
are particle-​based approaches, for which the fluid is 
represented by point particles. DPD dynamics proceeds 
in an analogous way to traditional molecular dynamics 
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Box 1 | Microswimmer modelling across scales

Far-​field multipole expansion
The flow field u of a microswimmer is expanded in terms of multipoles (see 
the figure, panel a): force dipole (FD), source dipole (SD), force quadrupole 
(FQ) and so on4,75: = + + + …u r u r u r u r( ) ( ) ( ) ( )FD SD FQ , where r is position 
relative to the swimmer. The far field is determined by u r( )FD  (if ≠P 0), with
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where ̂e is the propulsion direction, P is the force dipole strength, and κSD 
accounts for the strength of the source dipole.

Coarse-​grained microswimmers
Details of flow fields can be captured by the squirmer model of a 
microswimmer, which comprises a spheroidal solid body with a prescribed 
surface slip velocity. For a sphere (see the figure, panel b), the surface 
velocity is4

θ β θ θ= + θ̂( )u eB sin sin cos (26)sq 1

where the first term accounts for the swim velocity v0, the second for  
the active stress (β< 0 pusher, β> 0 puller). Explicitly, ∕B v= 2 31 0 , and the 
multipole expansion yields P = –6πη v0 R

2β and κSD = –v0R3/2 for a sphere  
of radius R. Figure panel c shows a spheroidal pusher with β=− 3 in the 
laboratory frame (left) and body-​fixed frame (right).

Explicit propulsion mechanisms
We describe two such mechanisms. The first is resistive force theory136, 
in which hydrodynamic interactions are included as different friction 
coefficients ξ parallel and perpendicular to a rod-like section of a flagellum

ξ ξ= + ⊥ ⊥F v v (27)

where F is the force acting on the segment and v is its velocity. Figure 
panel d shows the time sequence of a sperm flagellum beat, from 
experiment (red) and resistive force theory (blue). Time increases  
from light to dark colours.

The other approach we discuss for modelling propulsion is to explicitly 
model the microswimmer and fluid. The complex flow patterns, including 
the near field, are resolved by microscopic models, as illustrated for a 
swimming Escherichia coli (see the figure, panel e). Coupling with walls leads 
to a particular alignment of the swimmer axis and swimming direction,  
as illustrated by the trajectory of the sperm head (see the figure, panel f).

Swimming near surfaces
The hydrodynamic interactions of a microswimmer with a wall can be 
described by its interaction with an image. The flow field for no-​slip 
boundary conditions is4,76
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This flow field leads to surface trapping. The counter-​rotation of cell body 
and flagellum bundle generates a rotlet dipole, which results in circular 
trajectories at surfaces with handedness depending on the slip length b,  
as illustrated in figure panel g for a slip surface (b=∞)112.

Figure: panel a adapted from ref.76, Springer Nature Limited. Panel c adapted from ref.128, CC-BY-3.00 (https://creativecommons.org/licenses/by/3.0/). Panel d 

adapted from ref.137, CC-BY-4.00 (https://creativecommons.org/licenses/by/4.0/). Panel e adapted from ref.112, CC-BY-3.00 (https://creativecommons.org/licenses/

by/3.0/). Panel f adapted with permission from ref.111, Elsevier. Panel g reprinted from ref.145, CC-BY-4.00 (https://creativecommons.org/licenses/by/4.0/).
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(MD) simulations, but with pairwise momentum-​
conserving stochastic and friction forces. By specific 
pairwise DPD particle interactions, compressibility of 
the fluid can be controlled. MPC consists of alternating 
streaming and collision steps, with a ballistic streaming 
motion and local momentum-​conserving stochastic 
interactions (collisions), such as by rotation of relative 
velocities107. Because of the point-​particle nature of the 
MPC particles, no fluid-​induced depletion occurs, and a 
rather continuous representation of the fluid is obtained. 
Other simulation approaches implicitly take hydrody-
namic interactions into account via a hydrodynamic ten-
sor, such as the Oseen tensor (equation 4)4, or moment 
expansion75,108,109 and mobilities110.

A microswimmer can be coupled with the fluid in 
various ways, depending on the nature of the micro
swimmer model and the desired extent of coarse-​
graining. Quite detailed models of, for example, sperm 
and E. coli cells yield swimming motion upon applying 
no-​slip boundary conditions on the flagella and cell 
body, combined with a momentum-​conserving pro-
pulsion mechanism, such as rotation of a flagellum 
combined with counter-​rotation of the cell body. This 
approach applies to microswimmers in an explicit111,112 
and implicit113–115 solvent.

Squirmers are a coarse-​grained representation of 
microswimmers, modelled as a colloid with prescribed 
fluid velocity at its surface (slip velocity vsq)116–119. This 
representation was originally designed for ciliated 
microswimmers, such as Paramecia119. Nowadays, it is 
considered to be a generic model for a broad class of 
microswimmers, ranging from diffusiophoretic parti-
cles5 to biological cells, and has been applied to study 
collective effects in bulk118,120–125, at surfaces108,120,126,127 and 
in narrow slits128,129. Typically, the slip velocity of a sphere 
is approximated by equation 26 in Box 1 (refs117,119,128). 
Extensions to prolate spheroidal microswimmers have 
been proposed126,130,131. The squirmer model has been 
applied with the boundary element method118, the LB 
approach120,125,127 and the MPC129,131 representation of 
the fluid.

A further level of coarse-​graining is to take only 
far-​field hydrodynamics into account, and represent a 
microswimmer as a force dipole, in which one particle is 
moving in the direction of the applied force and the total 
momentum is conserved by imposing the opposite force 
on the fluid132. Extensions to dumbbell-​type swimmers133 
or even more complex spherical134,135 and rod-​like81,134 
structures have been proposed. Such an approach allows 
for the study of a large number of microswimmers with 
minimal numerical effort. However, the near-​field is 
inadequately accounted for134, a deficit that is relevant 
for swimming behaviour near a surface, in thin slits or 
even the collective behaviour in dense systems.

Biological swimmers
Cell motility is essential for cellular activities such as 
search for food, reproduction, or escape from predators4. 
The spectrum of microswimmers is wide, including 
bacteria such as E. coli, protozoa such as dinoflagellates, 
algae such as Chlamydomonas reinhardtii, and spermato-
zoa. Unravelling the underlying propulsion mechanisms 

is essential to understand microswimmer behaviour, 
possibly to use them in medicine, ecology and technical 
applications, or to design biomimetics by transferring 
biological concepts to synthetic swimmers. Biological 
microswimmers, both prokaryotes and eukaryotes, 
exploit flagella for propulsion, although the structure of 
their flagella differs in different swimmers4,78,136. Bacteria 
typically use one or several rotating helical flagella for 
locomotion, whereas eukaryotes have flagella (or cilia) 
that beat in a wave-​like fashion137. Explicit modelling 
of these microswimmers must account for three com-
ponents: the cell body, the flagellum or several flagella, 
and the embedding fluid. Typically, such cells are con-
sidered as neutrally buoyant objects, with spherical, 
spheroidal or cylindrical cell body and an attached fla-
gellum or flagella. Both parts are either considered as 
solid bodies115,136,138,139 or composed of linked discrete 
points in a crane-​like fashion for eukaryotic111,140 or bac-
terial112,113,141–144 flagella. Bacterial flagella are described 
by traditional polymer models or the helical worm-​like 
chain model4. A bacterium is propelled by independ-
ent rotation of flagella via an applied torque. Assigning 
the opposite forces and torques to the cell body ensures 
force-​free and torque-​free swimming4. In any case, 
propulsion is due to frictional anisotropy of the thin 
flagellum4,78,139.

Simulations emphasize the importance of hydro
dynamic interactions for phenomena such as the syn-
chronization of bacteria flagella in the bundling process 
for E. coli141,144 or the beating of Chlamydomonas flagella. 
Moreover, they illustrate the complexity of the hydro-
dynamic flow field adjacent to a cell, which is impor-
tant for cell–cell scattering and interaction processes112. 
Interactions of microswimmers with surfaces are fun-
damental in many biological processes, such as biofilm 
formation and egg fertilization. As pointed out above, 
surface hydrodynamic interactions determine the swim-
mer orientation75 (Box 1). In the far-​field approximation, 
E. coli and sperm are pushers and orient preferentially 
parallel to a surface, whereas Chlamydomonas is a puller 
and correspondingly aligns perpendicular to surfaces. 
For bacteria, the rotation of the helical bundle and the 
counter-​rotation of the cell body lead to circular trajec-
tories with a handedness and circle radius depending 
on the surface slip length145,146 — clockwise trajectories 
arise under no-​slip147 boundary conditions and coun-
terclockwise trajectories for perfect-​slip boundary con-
ditions148. Simulations show that cells are sensitive to 
nanoscale changes in the surface slip length, although 
they themselves are significantly larger145.

Bacterial suspensions show an intriguing chaotic  
state of collective motion called active turbulence149. Simu
lations of the collective behaviour of spherical squirmers  
exhibit cluster formation in thin films with no-slip 
boundary conditions (quasi-2D geometries)129. However, 
no phase separation is obtained as for ABPs7,129. The  
formation of small clusters for spherical squirmers, rather 
than the appearance of MIPS, is attributed to changes 
in the orientational dynamics by interference of the 
flow fields of the individual squirmers129,150. In contrast,  
spheroidal squirmers exhibit phase separation and 
swarming even for rather small activities129. Hence, 
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shape and hydrodynamics together govern the structure 
formation of active matter.

Artificial active matter
In the past decades, various artificial active agents 
(motors) have been synthesized, which have sizes 
ranging from tens of nanometres to micrometres and 
which exploit diverse propulsion mechanisms5,151,152. 
Common strategies are based on the slippage of fluid 
at the surface of the solid particle due to phoretic effects 
such as diffusiophoresis, involving concentration gra-
dients; thermophoresis, involving thermal gradients; 
and electrophoresis by inhomogeneities in charge dis-
tributions of electrolytes5,151–158. Modelling of artificial 
active matter aims at a quantitative understanding of 
the underlying propulsion mechanisms and the design 
of strategies for practical and technological applications, 
such as targeted drug delivery.

In general, phoretic effects appear by molecular inter-
actions of a solute with the solid particle (motor). Surface 
reactions generate inhomogeneous concentration fields 
of reactant and product species near the motor, leading 
to concentration gradients over the particle surface. These 
gradients cause a slippage between the fluid and the par-
ticle via diffusiophoresis and induce propulsion of the  
particle in the fluid. Motion is directed by controlling  
the surface reaction, for instance in an asymmetric reac-
tion process on the surface of a Janus particle5,151,159. The 
theoretical description of the active process requires 
solving the diffusion equation for the concentration of 
the solute, the hydrodynamic transport problem and the  
solid-body equations of motion of the particle. If advec-
tion of the solute is neglected, the fluid–chemical transport 
problem is decoupled and the solute diffusion equation can 
be solved first. This solution can be exploited in the fluid 
problem to compute the swimming speed and the flow 
field156. The assumption that advection can be neglected 
applies at small Péclet numbers — defined here as the 
ratio of diffusion to advection timescales — as occurs at 
small activities, at small particle sizes or at large solute dif-
fusion. By contrast, solute advection becomes important 
for large Péclet numbers and larger particles160, and signif-
icantly impacts the solute velocity156. An adequate account 
of the interactions of the various components involved 
in phoresis successfully describes the salient features of 
artificial active particles in solution, such as swimming 
velocity and surface effects, as are seen for Janus particles  
hovering over or swimming parallel to a surface5,161.

Response to external fields
Biological microswimmers respond to many external 
fields by redirecting their motion, in order to locate a 
target or avoid unfavourable environmental conditions. 
This directed motion is called taxis. Prominent exam-
ples are chemotaxis (in response to chemical gradi-
ents), phototaxis (light), gravitaxis (graviational fields), 
magnetotaxis (magnetic fields) and rheotaxis (flow 
fields). Chemotaxis is used by sperm to find the egg, 
phototaxis by Chlamydomonas algae to swim toward 
the light, and rheotaxis by sperm and bacteria to move 
upstream in flow162–165. Modelling and simulation have 
been used to understand these phenomena. For example, 

one mechanism of sperm chemotaxis is the response 
to changes in the chemoattractant concentration by 
adjusting the trajectory curvature with a time delay166. 
It is important to note that chemotaxis and phototaxis 
in biological systems often rely on internal biochemical 
signalling processes167,168.

Redirection of motion in external fields also exists 
for artificial microswimmers. The mechanisms are  
usually different, and rely more on direct physical effects. 
Examples are gravitaxis of chiral (in 2D) L-​shaped micro
swimmers, which can balance the hydrodynamic and  
gravitational torques that arise from shape asymme-
try by swimming against gravity169; collective gravi-
taxis of bottom-​heavy swimmers that form convective 
swirls in films of finite thickness170; and phototaxis 
of thermophoretic colloids, which reduce the activity of 
neighbouring colloids by casting a shadow on them171.

Continuum models for active motion in fluids
To investigate phenomena occurring at large time
scales and length scales, hydrodynamic theories based 
on conserved quantities (slow variables) and broken 
continuous symmetries (order parameters) have been 
developed, which describe a broad class of systems172. 
We discuss a few continuum models of wet active matter, 
that is, suspensions of active particles with momentum 
conservation.

Wet active liquid crystals. Of particular interest are sus-
pensions of active rod-​like or elongated objects (such as 
swimming organisms, cytoskeleton or tissues) embedded 
in a momentum-​conserving solvent and generating active 
stresses1–3,173–175. The term active gel is also used in the 
context of the cytoskeleton and tissues, referring to their 
viscoelastic nature173,174. Slow variables are the number 
density rn t( , ) of active particles and the total momentum 
density v rρ t( , ) of the suspension with mass density ρ.

Polar active gels consist of particles distinguishing 
front from rear and are characterized by a polarization 
field p r t( , ) corresponding to the vectorial orientation 
of active particles. The equations of motion for active 
gels are derived on the basis of symmetry176,177 or irre-
versible thermodynamics173,174,178, or by coarse-​graining a 
microscopic theory179,180. The earliest phenomenological 
description of wet polar gels2,176 extends the Toner–Tu 
model of dry active matter (equation 7), with terms 
that couple the orientation p to the flow, (equation 15 
in Table 1). The fluid velocity obeys the incompressi-
ble Navier–Stokes equations (equation 13), with passive 
(viscous, elastic and interface) and active contribu-
tions to the stress tensor σ ; the active contributions are 
responsible for a spontaneous shear flow without an 
external stress. The assumption that every swimmer (or 
molecular motor) exerts an active dipolar force on the 
solvent (or filament network) yields, to leading order in 
a gradient expansion, an active stress


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where d is the dimension, I  the unit tensor and ζ  the 
activity strength, that is, ζ > 0 for extensile particles 
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(pushers) and ζ < 0 for contractile particles (pullers). Note 
that σ a in equation 5 has nematic symmetry, →p p− ,  
and active stress with purely polar symmetry arises first  
in terms containing gradients of p (refs179,181). The con
centration n of active particles evolves through the  
continuity equation 16.

Active gels of apolar (or head–tail symmetric) par-
ticles, called wet active nematics, are described by the 
nematic alignment tensor field Q introduced in equa
tion 8 in Table 1, where p now denotes the nematic 
director. The evolution of Q in active nematics at 
constant concentration n is governed by the nemato
dynamic equation 17 (refs88,182–185) accompanied by the 
incompressible Navier–Stokes equation (equation 13), 
with an active contribution σ Qζ=−a  to the total stress 
tensor σ ; compare with equation 5. Note that dynami-
cal equations for active nematics can be obtained from 
those of polar active gels by interpreting p as nematic 
director and dropping terms that violate the invariance 
of the nematic.

Generalized Navier–Stokes equations. Two-​fluid mod-
els consist of equations for the fluid velocity v, the con-
centration n and the order parameter characterizing the 
active constituents, such as the polarization p. For dense 
suspensions (with constant n) it is possible to write v in 
terms of p or vice versa (to eliminate one of the vec-
tor fields), leading to simpler one-fluid descriptions of 
the system181. The generalized Navier–Stokes equations 
(GNSE) provide a class of minimal, single-vector-field 
models for active fluids such as dense microbial suspen-
sions (v written in terms of p, known as the bacterial 
flow model)186 or sole passive solvent driven by active 
components (p written in terms of v, known as the  
solvent flow model)187.

In the bacterial flow model, v denotes the velocity 
of the active subcomponents, and GNSE is an exten-
sion of the Toner–Tu model, consisting of the Navier–
Stokes equations plus a biquadratic Landau velocity 
potential vF[ ] (see equations 13 and 18 in Table 1), an 
active nematic stress contribution via equation 19, and 
higher-​order terms in the Fourier expansion of the stress 
tensor according to equation 20 with Γ < 00 , Γ > 02  and 
Γ = 04  needed to account for nonlocal interactions and to 
reproduce local polar order observed in mesoscale 
turbulence186,188,189.

The solvent dynamics in the presence of active com-
ponents can be described by GNSE without a velocity 
potential or the active stress but with additional higher-​
order stresses. These higher-​order terms are given by 
equation 20 with Γ , Γ > 00 4  and Γ < 02 . They account for 
non-​Newtonian effects187 and originate from active stress 
with purely polar symmetry181. Solvent flow models have 
been used to study the rheology of active fluids190 and 
active turbulence181,191.

Active model H. Active gel models and GNSE con-
sider the alignment interactions between active par-
ticles, either explicitly or implicitly. By contrast, the 
active model H (AMH) describes scalar active matter 
(p Q= = 0) and is an extension of the active model B (see 
equations 11 and 12 in Table 1), intended to account for 

the momentum-conserving solvent192,193. The dynamics 
of the order-parameter field rϕ t( , ) obeys the diffusive 
equations of active model B69,193, with an additional 
advective term ∇⋅v ϕ that couples ϕ to the velocity v of 
the fluid, whose dynamics is governed by the Navier–
Stokes equations (equation 13). The governing equa-
tions of the model are given in equations 21 and 22. The 
violation of the thermodynamic relation between stress 
σ  and chemical potential μ leads to an active contribu-
tion to the deviatoric stress (equation 23); at interfaces, 
the polarization is large ( ∇~p ϕ) and equation 5 justifies 
equation 23. The active stress contribution is positive 
for extensile and negative for contractile swimmers; in 
the latter case, it results in an unusual arrested MIPS192.

Cells and tissues
Living matter is active matter on all scales: on the protein 
scale with molecular ATP-​consuming machines such as 
motor proteins, ATPase pumps and protein factories 
(the ribosome); on the cellular scale with cell shape 
transformation, polarization, migration and division; 
and on the multicellular scale with growing biofilms and 
tissues, tumours and developing organs.

Cytoskeletal filaments and molecular motors
The ubiquitous microscopic origin of activity in living 
matter is the biochemical force generation via energy-​
consuming polymerization and depolymerization of 
cytoskeleton filaments (actin and microtubules) and the 
collective action of molecular motors.

Force generation during polymerization of actin fil-
aments and microtubules is based on a ratchet mecha
nism (Box 2). As the filament polymerizes against a target  
— for instance, when pushing against the plasma mem-
brane during the formation of filopodia or lamellipodia  
— thermal fluctuations of the target allow for the occa-
sional ATP-​dependent insertion of a new subunit, even  
when an external force opposes the motion of the  
target194,195. Asymmetric ATP-​dependent polymeriza-
tion and depolymerization rates at the two ends of cyto
skeletal filaments also lead to their effective forward 
motion, a process called treadmilling196,197 (Box 2). Both 
processes are far from equilibrium and are at the heart 
of cell motility.

Force generation by molecular motors198 has its origin 
in the massive, ATP-​dependent conformational changes 
that occur on spatial scales from the atomic to the mole
cular level and timescales up to milliseconds. Elucidating 
the underlying molecular processes can in principle be 
done using all-​atom MD simulations. The study of the 
long-​timescale dynamics instead requires efficient sam-
pling techniques and coarse-​grained approaches cou-
pled with all-​atom MD simulations, termed multiscale 
MD simulations199,200 (note that stability requirements 
demand time steps of the order of femtoseconds).

To understand the collective behaviour of whole 
ensembles of molecular motors and their interaction 
with the filament network of the cytoskeleton and the 
membrane, the number of degrees of freedom must be 
greatly reduced. Discrete kinetic and stochastic models 
for individual motors (Box 2) predict the mean velocity 
and other observables as a function of variables including 
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Box 2 | Models for cytoskeletal filaments and motors

Treadmilling filaments
Subunits are added at the plus end of the filament with rate va; a protein  
can bind to an empty subunit with rate ωa and detach with rate ωd; a  
subunit is removed at the minus end with rate vd

(e) if it does not carry a protein 
and rate vd

(o) if it does (see the figure, panel a). The model is formulated as a 
master equation for the filament length and occupation of the minus end.

Force generation by polymerization of microtubules or actin filaments
This model (see the figure, panel b) applies the Brownian ratchet principle 
for polymerization-​based force generation (pushing). Thermal fluctuations 
of the cargo allow the occasional insertion (with rate kon) of a new subunit 
(of size δ), even when an external force Fext opposes the motion of the 
cargo. Subunits detach with a constant rate koff.

Molecular motors
Two-​headed molecular motors (see the figure, panel c) can have hand-​
over-hand (left schematic) or inchworm (right schematic) stepping patterns. 
Mathematically, the stepping of molecular motors can be described using 
master equations for the position and the state of the motor.

Actomyosin as an active gel
Myosin motors pull on actin filaments, which are also linked by passive 
cross-​linkers (see the figure, panel d; cross-​linkers not shown). Filament 
polymerization and depolymerization processes have rates kp and kd.

Cell motility models
Schematics are given in the figure, panel e. In the G-​actin transport model, 
graded protrusions of the F-​actin cytoskeleton are caused by G-actin 
transport to the leading edge of the cell. In the vesicle transport model, 
the rate of protrusion at the leading edge is controlled by delivery of new 
cell membrane through microtubule-​assisted vesicle transport. In the 
RAC/RHO model, the RHO GTPases RAC and RHO regulate protrusion 
(RAC) and contraction (RHO) within the cell. In the actomyosin contraction 
model, myosin binds to and contracts the actin cytoskeleton, creating 
cytoskeletal flows that redistribute the bound myosin.

Cell crawling on substrates
The primary physical mechanisms for substrate-​based cellular motion are 
actin polymerization, substrate adhesion, and contraction by molecular 
motors (see the figure, panel f). A minimal phase-​field model involves a 
phase field that describes the deformable and moveable shape of the cell, 
and a field for the local average orientation of the actin network. The 
constitutive equations account for the pushing force exerted by the actin 
on the cell boundary, the actin polarization dynamics (essentially localized 
at the cell boundary), conservation of cell area, active stresses that account 
for actomyosin contraction, and increased motion at the rear of the cell, 
which suppresses the polarization and explicitly breaks reflection 
symmetry222,223.

Figure: panel a adapted with permission from ref.197, IOP. Panel b adapted with permission from ref.195, Elsevier. Panel c adapted with permission from ref.202, Elsevier. Panel d 

adapted from ref.173, Springer Nature Limited. Panel e adapted with permission from ref.221, Elsevier. Panel f adapted from ref.223, Springer Nature Limited.
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imposed load force and ATP concentration201,202. The 
effects of the attachment of opposing motors to one cargo 
are described by a tug-of-war model203. Many motors on 
a single track can lead to molecular motor traffic jams 
and are described by asymmetric exclusion process  
models204 that are void of any mechano-​chemistry.

Particle-​based models for cytoskeleton filaments 
and networks of crosslinked filaments are based on the 
worm-​like chain model of semiflexible polymers205–207. 
Computational studies of elastic and collective proper-
ties of semiflexible filaments are commonly based on 
a discretization of the filament into a finite number of 
segments and subsequent simulation of the Langevin 
dynamics. Such simulations are difficult to perform for 
microtubules because they are nearly incompressible in 
the longitudinal direction, necessitating the use of con-
strained Langevin dynamics (with fixed segment length), 
and are extremely stiff, necessitating an extremely small 
time step in the presence of noise — and thus noise is 
often neglected. Specific active aspects of microtubule 
dynamics comprise their length regulation197,208 and the 
spindle dynamics during mitosis209,210.

The addition of molecular motors to filament net-
works (for example, adding myosin to actin networks) 
generates forces that drive the network far from equilib-
rium and can markedly alter its stiffness, amplify stress 
or lead to network contractility. These effects were 
studied in an extensible worm-​like chain model for 
semiflexible polymer in which force dipoles were intro-
duced into the network at neighbouring crosslinks211,212 
(Box 2). On large length and timescales, polymerizing 
and depolymerizing (treadmilling) actin filaments inter-
connected by active myosin motors and passive cross-​
linkers — so-​called actomyosin — can be understood 
as an active gel for which continuum models have been 
developed173,174,213,214. From this perspective, actomyosin 
is an active nematic liquid described by appropriately 
modified Navier–Stokes equations: the central quan-
tity is the stress tensor, which depends on the velocity 
gradient, the orientational field of the filaments, and an 
active stress generated by the motors and actin polymer-
ization. Because cytoskeletal filaments can act as tracks 
to motors and in turn motors can move filaments, the 
active stress is coupled to the orientational field. Within 
this active hydrodynamics framework, cell locomotion, 
cellular shape changes and many experimental situations 
have been successfully discussed173,174.

There are several powerful software packages for sim-
ulations of biological environments and particle-​based 
modelling of active systems215 (see the list and short 
description in Supplementary Table 1).

Cell motility models
The central molecular machinery that enables eukary-
otic cells to move spontaneously is the actin cytoskele-
ton, which is responsible for cellular shape changes, such 
as the formation of thin membrane-​bound protrusions. 
Thus, in addition to a mathematical representation of the 
actomyosin machinery, cell motility models must involve 
a representation of the cell membrane and a description 
of adhesion and force transmission to a substrate or a 
3D environment196,216–219. In the paradigmatic model of 

cells crawling on substrates, migration is divided into 
discrete steps: protrusion based on actin growth and 
polymerization force; formation of new adhesions at 
the front; release and recycling of adhesions at the rear; 
and, finally, actin–myosin-​powered contraction of the 
cytoplasm, resulting in forward translocation of the cell 
body218 (Box 2). In a model that relies primarily on actin 
treadmilling and diffusing actin nucleators, cell crawl-
ing is driven by actin polymerization waves without 
motors220.

The main technical challenges for continuum mod-
elling of cell migration are the presence of a moving 
boundary and the nonlinear and nonlocal coupling of 
cytoskeletal dynamics to a moving and deformable mem-
brane. Three different continuum-​modelling approaches 
for cell motility on substrates are common217,220–224. These 
are sharp-​interface models, in which the interface is rep-
resented by a curve that moves with some velocity, level-​
set methods and diffuse-​interface models. In the latter 
two descriptions, a phase field distinguishes the two 
phases (the interior and the exterior of the cell); either 
the position of the membrane is determined by the zero 
contour of the phase field, or there is a gradual variation 
of the different physical quantities across the interface225. 
Phase-​field models have also been used for multicellular 
systems226,227, for example for collective cell migration228 
(reviewed elsewhere229) and tissues230,231 (Box 3).

Alternatively, microscopic models with explicit mem-
brane and self-​propelled (pulling or pushing) filaments 
can be used232,233. These approaches incorporate fluctu-
ations of the internal structure, persistent and random-​
walk-like motion and shape changes in response to 
external conditions.

Tissues
Tissues are aggregates of adherent cells, sometimes 
organized in layers (such as epithelia). Tissues can 
actively generate internal tension via cell proliferation 
and death, for instance during growth, making them 
viscoelasto-​plastic materials234. Tissues also generate 
active stress by cellular force generation, for instance 
during muscle contraction. The technical challenge for 
a continuum formulation of volumetric growth in soft 
elastic tissues is the persistent change of the equilibrium 
configurations against which small deformations must 
be defined235.

Particle-​based models for tissue growth represent 
cells as spheres that continuously deform into dumbbells 
until division occurs236,237 (Box 3). The particles repre-
senting cells can adhere to each other, maintain volume 
exclusion, exert an active growth pressure on their sur-
rounding, expand in size until they reach a size check-
point, divide on reaching this checkpoint size, undergo 
apoptosis, exert random forces on neighbouring cells, 
regulate to their homeostatic state via cell division and 
apoptosis in a confined volume, and comply with force 
balance and momentum conservation. Both Langevin 
dynamics236 and DPD236,237 have been employed as con-
stitutive dynamics. Simulations show that stress-​induced 
growth inhibition is responsible for the transition from 
exponential to sub-​exponential growth experimentally 
observed in tumour spheroids, and lack of nutrients 
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determines the size of the necrotic core but not the size 
of the tumour236. Moreover, cell division and apoptosis 
also lead to a fluidization of the tissue237–239 as further 
analysed in a continuum theory described below.

Alternative lattice-​based models for tissue growth 
and morphogenesis have also been used extensively. The 
cellular Potts model (CPM)240–242 defines the cell shape 
with the help of discrete variables assigned to each site 
of a regular lattice (Box 3). An energy function regulates 
features such as cell volume, cell surface area and cell 
adhesion. The CPM has been applied to development243 
and vasculogenesis244, and also to cell migration245 and 
cell shape dynamics on micropatterned surfaces246,247. 

Another lattice model is the confluent tissue vertex or 
Voronoi model248–251, in which confluent monolayers 
are represented as a polygonal tiling of space and each 
polygon corresponds to a cell (Box 3). The CPM252 and 
Voronoi253 models have been used to study the jamming 
transition in tissues254.

Continuum models for tissue mechanics have a long 
tradition in the field of biomechanics and biomedical 
engineering255. A major challenge in continuum models 
for tissue growth is the coupling between growth rate 
and local stress, which is modelled by a dependence  
of the growth-​rate tensor on the stress tensor235,256,257.  
A simple low-​dimensional example is the mathematical 

Box 3 | Models for tissue growth

Cellular Potts model
Individual cells are represented by a connected set of lattice unit cells (see 
the figure, panel a). In the figure, membrane sites of cell α are indicated by 
a darker shade, and the immediate neighbourhood of the cell is indicated 
by a dashed line. Elementary retraction and protrusion events directly 
involve a single lattice site (see the figure, panel b), but within a fixed range 
of an elementary event, the regulatory factors are increased or decreased 
(indicated in the figure by + and –). The cell configurations evolve 
stochastically by updating lattice unit cells with probabilities derived from 
a ‘Hamiltonian’ that takes into account cell contractility, cell–cell adhesion 
and cytoskeletal remodelling.

Vertex model for confluent monolayers
The confluent monolayer is represented by a polygonal tiling, in which 
each polygon corresponds to a cell. Polygons are updated in two ways  
(see the figure, panel c). One is to move the cell vertices according to 
deterministic equations of motion η ∕ =x Ft td ( ) di i, where xi is the position of 
vertex i, Fi is the force on it (left-​hand schematic). Fi comprises contributions 
from the cell membrane tension pointing in the directions α̂ui  and α̂vi , 
and from the cortical tension pointing in the direction α̂pi

, as indicated in 

the left-​hand schematic. The cells also update according to graph-​
changing rules, such as cell neighbour exchange (upper right schematic)  
or division (lower right schematic). The dynamics is thus a combination of 
relaxation to mechanical equilibrium and changes in tissue connectivity.

Particle-​based model for tissue growt
The tissue is described by an ensemble of interacting cells, in which each 
cell is represented by a dumbbell (see the figure, panel d). The dumbbells 
can increase the distance between spheres, representing growth, and  
split into two spheres, representing division (right hand schematic).  
These behaviours can be simulated with dissipative particle dynamics 
simulations. In addition, propulsion and repulsive or attractive forces 
can be taken into account by conservative interactions.

Multicellular phase-field models
The shape of cell i is defined by a phase field ϕ x( )

i
 that ranges from 0 to 1. 

Dynamics are defined by a set of equations analogous to the phase-field 
description of single-​cell migration. The repulsion of two cells i and j  
involves the product ϕ ϕx x( ) ( )

i j
, which is non-zero only where the two phase 

fields overlap (see the figure, panel e).

Figure: panels a and b adapted with permission from ref.247, APS. Panel c adapted with permission from ref.249, Elsevier. Panel d adapted with permission from ref.63, 
PNAS, and ref.236, IOP. Panel e adapted with permission from ref.229, IOP.
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model of non-​uniform growth in a monolayer258, which 
incorporates a mechanical feedback mechanism via an 
explicit dependence of the local tissue growth rate on the 
degree of local compression (or stretching). In another 
approach, 3D tissues were considered as elastic media, 
and it was shown that the coupling of cell division and 
cell death to the local stresses effectively leads to viscoe-
lastic behaviour with a relaxation time set by the rate of 
cell division63.

Finally, various continuum models for tumour 
growth are based on the theory of mixtures259 (reviewed 
elsewhere260). Because tissue growth in a living organ-
ism requires nutrition supply and oxygen, a blood vessel 
network should be included. To this end, hybrid models 
describe the tumour mass with a continuum model and 
the dynamically changing vascularization with a discrete 
pipe network261,262. Simulations show that the incorpo-
ration of a blood vessel network leads to a character-
istic compartmentalization of the tumour into several 
regions that differ in vessel density, vessel diameter and 
level of necrosis.

Animal groups
Many animals, including swarms of insects, fish 
schools, bird flocks, herds of game and human crowds,  
engage in collective migration. The models of dry active  

matter (Fig. 2), in particular the Vicsek model and its 
extensions44, capture prototypical aspects of the collec-
tive behaviour of such animal groups. Despite sharing 
some universal features, the observed motion patterns 
differ substantially among animal groups. These dif-
ferences arise from differences in the nature of inter-
actions between individuals and require adaptation of 
basic models. Important characteristics include social 
behaviour mediated by chemical, acoustic or optical 
signals. Chemical signalling comprises non-reciprocal  
attractive–repulsive interactions, which lead to spe-
cific actions such as pursuit–escape behaviour263–265. 
Particular attention has been paid to modelling vision-​
based interactions, for which the emerging motion  
patterns depend on the field of view266–268.

The mechanisms underlying the collective behav-
iour of animal groups can be studied through several 
strategies. In a phenomenological top-​down approach, 
(physical) interactions are deduced from observa-
tions268,269. Alternatively, in a bottom-​up approach, the 
effect of complex information processing strategies of 
individual agents, such as delayed signal processing, 
is studied270–272. Collective behaviour can even emerge 
from a purely probabilistic model that considers intrin-
sic motivation and maximization of future options via 
processing of sensed information, without any a priori 

Box 4 | Computational methods for simulating active matter

Molecular dynamics (MD)
Standard approach to solve Newton’s equations of motion. For active 
matter, energy input and a thermostat are required to drive the system 
out of equilibrium and to allow for a stationary state for long times.

Brownian dynamics (BD) and Langevin dynamics (LD)
Particle dynamics is described by (overdamped) Newtonian equations of 
motion with noise and active forces.

Kinetic Monte Carlo (KMC)
A series of Monte Carlo steps is performed for the configurational 
variables. The acceptance probability can be obtained from importance 
sampling with the energy difference between original and attempted new 
state, for example. Usually applied to lattice tissue-​growth models such as 
the cellular Potts model.

Lattice Boltzmann (LB)
Mesoscale hydrodynamics approach, based on propagating velocity 
distribution functions on lattices. The standard version does not include 
thermal fluctuations and is therefore well-​suited for larger 
microswimmers.

Dissipative particle dynamics (DPD)
Particle-​based mesoscale hydrodynamics approach, which generalizes 
MD by including noise and pairwise friction forces. Multiphase flows  
are readily incorporated as direct conservative interactions between 
different particle species. Active particles are coupled to the fluid by 
non-conservative forces.

Multiparticle collision dynamics (MPC)
Particle-​based mesoscale hydrodynamics approach that uses an ensemble 
of point particles for the fluid with multiparticle collisions in a regular 
lattice of collision boxes. Naturally includes thermal fluctuations. Avoids 
depletion interactions between active solutes and is therefore well-​suited 
for active systems with small characteristic length scales.

Boundary integral method (BIM)
Hydrodynamic interactions are integrated out by the use of Green’s 
functions of the Stokes equation, in favour of forces between boundary 

elements of walls and embedded active particles. Active systems are 
modelled by non-​conservative boundary forces.

Direct numerical simulation (DNS)
Solution of the Navier–Stokes equations on a lattice by finite-​element  
or finite-​volume methods, in which all spatial scales are resolved in the 
computational mesh. Coupling to active particles is achieved through 
boundary conditions.

Coloured noise
The effect of active fluids on embedded passive particles is different from 
thermal fluctuations, owing to finite persistence times, which can be 
captured by memory kernels or active noise.

Cellular Potts model
Lattice-​based model for the dynamics of cell populations and tissues  
(in 2D and 3D). Useful when the intercellular interactions are determined  
by the shape and size of individual cells and the contact area between 
neighbouring cells. Individual cells are represented by multiple connected 
lattice sites, which are updated stochastically via KMC.

Vertex model
Discrete model in continuum 2D space for the dynamics of confluent cell 
monolayers. Useful when the intercellular interactions are determined by 
the shape and size of individual cells and the contact area between 
neighbouring cells. The confluent monolayer is represented as a 
polygonal tiling in which each polygon corresponds to a cell. Polygons are 
updated by moving their vertices according to deterministic equations of 
motion and a set of graph-​changing rules.

Phase-​field model
Continuum model to describe the dynamics of individual cells and cell 
populations. Useful to describe actin-​driven cell migration and shape 
transformations. Individual cells are represented by a phase field that 
interacts with other fields such as the local actin polarization. Tissues are 
described by multiple phase fields, each corresponding to a cell. The 
interaction between neighbouring cells is determined by the overlap of 
their phase fields, and the spatiotemporal evolution is defined by partial 
differential equations.
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specification of social forces or individual interaction 
rules271,273.

Living active agents travelling together have devel-
oped efficient decision-​making mechanisms during 
evolution for behaviours such as searching, foraging and 
escaping. For instance, quorum sensing — the ability of 
individuals to coordinate their activities according to 
the local population density — facilitates information 
transfer267,274,275. Although such cooperative interactions 
are powerful tools to reach collective decisions276, in 
some cases only a few individuals possess the required 
knowledge about the migration route, location of food 
sources or other goal277. Accordingly, numerical models 
have been applied to the mechanisms of effective leader-
ship in biological systems and the impact of the density 
of informed individuals and their communications on 
information transfer in animal groups278–280. A realistic 
description of collective human motion is crucial to 
prevent crowd disasters281–283.

Outlook
Many powerful computational models for active matter, 
particle-​based or field-​theoretical, have been developed 
in the recent years (see a list of computational methods 
for active matter in Box 4). These models have revealed 
much about the non-​equilibrium behaviour of active 
systems. Yet many challenges remain.

The statistical-​physics description of active systems 
needs to be extended in several directions, including the 
incorporation of an activity-​dependent noise to account 
for the stochastic nature of active forces, and the gener-
alization of field-​theoretical models to systems far from 
equilibrium. Current field theories are based on a linear 
expansion of fluxes in terms of forces and can therefore 
in principle describe only systems close to equilibrium; 
however, biological systems are typically far from equili
brium, and as yet there is no comprehensive continuum 
theory for such systems.

So far, the investigation of the collective behaviour 
of self-​propelled particles has been limited to relatively 
simple systems. However, we expect that many surprises 
will be found when different ingredients of systems are 
combined. These ingredients include interactions, such 
as shape and hydrodynamics; complex environments, 
such as viscoelastic fluids and intricate confining 

geometries; external fields, such as gravity and turbu-
lent flows; mixtures of active and passive particles; and 
information exchange by vision-​like interactions.

Many models for cell motility have been used in stud-
ies of migration on 2D substrates. However, many cells 
in living organisms move in 3D environments, such as 
the extracellular matrix (ECM), and there is a lack of 
continuum models for motility in 3D. Initial studies have 
focused on rigidity sensing and subsequent polarization 
of the cell toward stiffer ECM284. Furthermore, to migrate 
in 3D environments, cells can move in ways other than 
adhesion-​based lamellipodial propulsion, in particular 
via blebbing motility, which is based on the formation of 
blebs at the leading edge (blebs emerge when the plasma 
membrane of a cell delaminates locally from its actin 
cortex, leading to pressure-​driven protrusions, followed 
by membrane re-​attachment)285. The first modelling 
studies of blebbing-​induced migration in 2D286 and of 
amoeboid migration in 3D287 still crucially depend on 
protrusions adhering to a substrate.

Finally, signalling is a very important aspect of cell 
motility, tissue growth, the development of bacterial 
colonies and the collective motion of animal herds, but 
has been neglected in most computational models for 
active matter. One challenge is to model the interplay of 
biochemistry and mechanics on a single-​cell level288–290. 
Another challenge is modelling the reaction of flocks, 
schools and herds to external factors such as food, smell 
or light. Quantitative models for tissue growth, morpho-
genesis, biofilm formation, wound healing, or cancer  
growth and metastasis need to include biochemical 
signalling coupled to mechanical stress. Similarly, real-
istic models for human groups, car or pedestrian traf-
fic need to take into account heterogeneous behaviour 
and varying reactions of individuals to external cues; 
doing so also asks for the investigation of a putative  
leader role.

An overarching challenge for the whole field is the dis-
tinction between the generic and specific properties and 
behaviour of an active-​matter system. In other words, the 
question is what properties are universal and shared by a 
large class of systems, and when specific mechanisms of 
propulsion or interactions dominate the behaviour.
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