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3Landau Institute for Theoretical Physics, Chernogolovka, Moscow District, Russia

Received: 20 March 1996

Abstract. We consider a quantum spin-1
2

Ising chain with
competing nearest and next-nearest neighbor interactions
in a transverse magnetic field, which is known to be
equivalent to the classical two-dimensional ANNNI
model. Within a perturbation theory for small transverse
field (corresponding to low temperatures in the classical
ANNNI model) we derive two effective Hamiltonians: the
free model describing free fermions on a fictitious lattice
that excludes particular heavy excitations of the original
system; and the complete model, which incorporates cre-
ation and annihilation of these fermions. Whereas the
former possesses only three phases (ferromagnetic, float-
ing and anti phase), the latter contains the full physics of
the 2d ANNNI model, including a paramagnetic phase
between the ferromagnetic and floating phase and a
Kosterlitz-Thouless transition. New analytic results are
derived for the free model, e.g. the excitation spectrum
that turns out to be non-trivial. Our effective Hamil-
tonians are defined on a restricted Hilbert space so that
exact diagonalization calculations can be done for much
larger system sizes. Results from extensive Lanczos calcu-
lations for system sizes up to ¸"32 are presented con-
firming the original predictions from Villain and Bak.

PACS: 05.30.Fk; 75.10.Jm; 75.40.Mg

I. Introduction

Frustrated Ising models in a transverse field have been
investigated for a long time [1]. The transverse field plays
the role of a tunable parameter by which one can induce
a so called ‘‘quantum phase transition’’ at zero temper-
ature that is driven by quantum fluctuation alone [2] (as
opposed to a conventional, thermally driven phase
transition). Frustration can be introduced via disorder, as
for example in the case of quantum Ising spin glasses that
have gained much interest quite recently [3]. However, it
can also be produced in a regular fashion as e.g. in the
anisotropic next nearest neighbor Ising model (ANNNI)

[4], where competing nearest and next-nearest neighbor
interactions are the origin of the richness of the phase
diagram. This is the model that we intend to re-investigate
in this paper. To be concrete, we consider the Hamil-
tonian, H, of a 1d spin-1

2
chain in a transverse magnetic

field, which consists of the two parts: the classical 1d
ANNNI model plus quantum fluctuations imposed by
transverse field:
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!"0 corresponds to a classical ANNNI model in which
J is supposed to be positive. pz and px are the Pauli
matrices:
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The most interesting region of this model is the region
around i"1/2. The classical part H

#-
has an infinite

ground state degeneracy at this point, separating the fer-
romagnetic (FM) region (i(1/2), where the ground-state
is given by ‘‘all-spins-up’’ or ‘‘all-spins-down’’, from the
anti-phase region (i'1/2), where the ground-state has
a period 4 with two down-spins following two up-spins.
After [6] S2T is a traditional notation for this anti-phase.
Switching on the quantum fluctuations via a nonvanish-
ing transverse field induces the presence of different
phases: fixing !;J and increasing i in the vicinity of 1/2,
one can distinguish

f FM (Spz
i
TO0);

f PM, i.e., paramagnetic phase (exponentially
decaying spatial spin-spin correlations, no long-range
order);

f FP, i.e., floating phase (algebraically decaying spa-
tial spin-spin correlations, accompanied with a modula-
tion continuously changed with i, no long-range order);

f S2T (Spz
i
pz
i`2

T(0, Spz
i
pz
i`4

T'0).



The FM-PM transition is well understood: It is within the
same universality class as the two-dimensional Ising
model or 1d unfrustrated Ising model in a transverse field
(see, e.g., [7, 8]).

Villain and Bak [9] in their seminal work on the
two-dimensional ANNNI model argued that the S2T-FP
transition is expected to be of the Prokovsky-Talapov
type [10] and that the FP-PM transition is expected to be
of the Kosterlitz-Thouless type [11]. Since this work is
based on various plausible but not rigorously proven
assumptions many attempts have been done to check
these predictions with Monte Carlo simulations or exact
diagonalization studies (for a review see [4]). However, for
principle reason that we also try to clarify in this paper,
such an endeavor turns out to be very difficult and fails to
provide the theory either with a conclusive support or
with a clear falsification.

A principal question of this work is how to catch the
essential physics in the vicinity of the FP—S2T and FP-PM
transitions. For doing this we present a regular expansion
of Hamiltonian (1) in powers !/J, which allows to
perform exact numerical diagonalization for longer
chains than it is possible to achieve by a straightforward
procedure.

The organization of the paper is as follows: In Sect. II
we recapitulate the free fermion picture of Villain and Bak
[9] before we present the above mentioned effective
Hamiltonian. Then in Sect. III we compare the analytical
predictions of this theory for finite systems with the results
of exact diagonalization studies and proceed to extract the
desired information about the critical behavior. Section
IV summarizes our results.

II. Free fermion picture

Near i"1/2 the elementary excitations can be distin-
guished as light and heavy. The main idea is to map the
initial Hamiltonian onto the states where the heavy exci-
tations are excluded from.

We start with a conditional FM vacuum state, for
example, ..##### .. , then the excitation with an
isolated (!) spin, e.g., ..##!## .. costs the energy
4J(1!i) which is not small as iP1/2. However, the
excitation with two or more sequential spins rotated, e.g.,
..##!!## .. costs the energy 4J (1!2i) which
vanishes with i!1/2 . At the next step we can introduce
quasiparticles, which are the domain walls (DW’s) defined
on the dual lattice. The latter coincides in 1d with the
middles of the links. The energy of a single DW, i.e.,

..###

$8
D !!! .. , is determined by the classical part

of H:

e"2J (1!2i) . (4)

The DW’s which occupy the nearest sites of the dual
lattice repel each other with the cost of energy »"4Ji.
In general any state now is characterized by positions of
the DW’s on the dual lattice
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For convenience we set the coordinates on a dual lattice to
be integer numbers, 1, 2, ¸, while the sites of a real
lattice run half-integer numbers, say, 1/2, 2 , ¸!1/2.
The quantum part ofH plays a role of the kinetic energy
of quasiparticles. In fact, applying H

26
to the state with

a DW located at the site l, the spin from either its right or
its left is changed by sign, that means a shift of a DW by
one unit. Applying H

26
to the site with no DW’s surround-

ing it creates a couple of DW’s. Hermitian conjugation
corresponds to annihilation of those DW’s.

All the matrix elements described in terms of DW
variables on the dual lattice can be summarized in the
following Hamiltonian:
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where q’s are usual Pauli matrices and n(q)"(1!qz) /2.
A conditional vacuum is a state with no DW’s (qz

j
"1 or

n(q)
j
"0 in (6)), creation (annihilation) of a DW is realized

by q~ (q`). A standard derivation of Hamiltonian (6) and
transformation from spin-operators p’s to spin-operators
q’s is given in Appendix A.

A routine procedure of the Jordan-Wigner transformation
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allows to deal with fermionic variables. Below we shall use
the periodic boundary conditions, that means that the
¸#1-th site should be identified with the first. Hamil-
tonian (6) can be rewritten now as
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where k"+L
1
n
j
, a total number of DW’s. Evidently,

k should be even number on a cyclic chain that results in
exp(nk),1.

Assuming »<(e, !) one can obtain the effective
Hamiltonian,H(1)

%&&
, which reflects low energy properties of

H with the energy scale of order (e, !). Note, that the
»-term makes two DW’s energetically unfavorable if they
occupy the nearest sites. Simultaneously, terms
!(q`q`#q~q~) of (6) (or terms !(cscs#cc) of (7)) should
be excluded from the effective Hamiltonian, which now
reads in q-variables
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and in fermionic variables
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Fig. 1. The one particle excitation energy *E (Q) for the free model
from (13) versus the contracted wave vector Q · (1#k

F
/n)/2 for

different values of k
F
"nq/(1!q), with q the domain wall density

(which can be evaluated as a function of i and !/J via equation (15)).
k
F
"0 corresponds to the FM-phase, k

F
"n/2 corresponds to

q"1/3, and for k
F

between n/2 and n (q"1/2, i.e. S2T-phase) the
evolution is simply reversed

The constraint should be imposed on a possible wave
function: DW’s, or fermions, occupying the nearest sites,
are forbidden.

Let us try a wave function of the form
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where k should be even. We may search for the amplitudes
f ’s in a form of Bethe substitution:
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where MPN is a permutation of numbers M1, 2, 2, kN. Us-
ing the results of Appendix B we obtain a general expres-
sion for the eigenfunctions of Hamiltonian (7) in the
»PR limit
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The wave function (12) can be interpreted as a wave
function of a tight-binding fermion model on a fictitious
lattice. The coordinate of a fermion in a fictitious lattice
coincides with that one in a real lattice minus the number
of fermions situated from its left. We shall also use another
interpretation which will be convenient in numerical diag-
onalization. It is consistent with introducing two kind of
‘‘particles’’, A and B. A is composed of a DW (or fer-
mion) with a nearest empty site from its right attached.
B represents an empty site which has no a nearest DW
from its left. TheA—B representation will be discussed in
Sect. III in detail.

The ground state energy of any intermediate state on
the phase diagram between the FM and S2T boundaries
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is a function of k, the total amount of DW’s, which
characterizes modulation of a spin structure. Equation
(13) describes the ground-state energies of the FM struc-
ture (k"0, E

'4
"0) and of the S2T structure

(k"¸/2, E
'4
"¸e/2) as well. Both structures, FM and

S2T, can be unstable with respect to formation either
DW’s (k"2) or ‘‘holes’’ in a regular DW structure
(k"¸/2!2) [12]

For a finite cyclic chain we determine the boundaries
from equations:
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For an infinite chain we may introduce q"lim
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the concentration of DW’s, which may be varied from 0 to

1/2. The analogue of (13) in the limit ¸PO
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"nq/(1!q). Differentiating over q in (14) shows

how q changes with e/! [9]:
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The first excited states whose energies are numerically
calculated in Sect. III are non-trivial even in the frame-
work of the free fermionic approach (cf Eqs. (C.3) and
(C.4)). In Appendix C we derive Eq. (C.2) for the energy
*E(Q) as a function of the wavevector Q. Such a fermion-
hole excitation leaves the DW number unchanged. It
becomes gapless at certain Q’s when ¸PO. In this limit
the only non-zero contribution to *E(Q) is given by Eq.
(C.5):
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which is shown for k
F
(n/2 in Fig. 1. If k

F
'n/2 one has

to substitute n!k
F

for k
F
. The fermion-hole excitation

plot is symmetric when a momentum transfer, Q, changes
from 0 to 2k

F
(1#k

F
/n)~1. It formally differs of the results

predicted by Eqs. (C.3) and (C.4). These occur due to
a contribution of order 1/¸ in the first two terms in the
r.h.s. of Eq. (C.2). However, this contribution is still impor-
tant when the finite-size systems are analyzed.

This is noteworthy, that the contraction of the
wavevector, 2k

F
P2k

F
(1#k

F
/n)~1, when a fermion is

transfered from one Fermi-point to another, can be at-
tributed to strong ‘‘anti’’-correlated properties of our spin-
less ‘‘free’’ fermions, that forces for using a fictitious lattice
description.

599



As has been shown in [9] the FP should exhibit
a power-like decay of correlation functions, e.g.,

Spz
i
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TPr~ocos(nqr) (17)

with o"(1!q)2/2. This q-dependent o is also a result of
the fictitious lattice contraction which increases with q.
However, the FP cannot cover the whole range
0(q(1/2: within the free model it becomes unstable at
smaller q’s and transforms into the PM state through the
mechanism of the Kosterlitz-Thouless transition at
o"1/49, corresponding to a wavevector

q
PM~FP

"1!1/J2+0.292 (18)

In the complete model this estimate holds only approxim-
ately, with increasing accuracy for decreasing !/J.

Hamiltonian (6) allows to go beyond the first order in
! which has been discussed above. A non-trivial contribu-
tion in the second order in ! to perturbation theory
results in appearance the terms, which create (annihilate)
DW’s on next nearest sites. In fact, a couple of DW’s on
the sites, say, j and j#2, can be created as a two-step
process: First, if the high-energy excitation is virtually
created by q`

j
q`
j`1

, then a many-fold degenerated ground
state can be restored by q~

j`1
q`
j`2

. The second possibility is
in a sequential process: q`

j`1
q`
j`2

and q~
j`1

q`
j

. Perturba-
tion theory in the !2-order also extends the DW hopping
terms up to next nearest neighbors, but this extension is
out of relevance.

Thus, in addition to Hamiltonian (8) we obtain
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which can be also written in terms of fermions:
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We put c"2!2/» in (19)—(20) and HC denotes Hermitian
conjugate.

In spite of a smallness ofH (2)
%&&

as compared toH (1)
%&&

the
former significantly influences on the critical properties of
the FP: H (2)

%&&
forces the FM—FP transition to be of the

Ising type and transforms this, in fact, into the FM—PM.
This results in a gap opening in the PM phase. The
excitation spectrum in a low DW density limit behaves as
(k here is the wavevector)

J(e!2!cosk)2#(2csink)2 (21)

which remains of a single-minimum kind within a narrow
interval 2!(e(2!!2c2/!, then it develops in
a double-minimum curve. The gap value, in general, is
P!2

The situation on the FP!S2T boundary is different:
This state is characterized by a regular DW structure and
elementary excitations driven by H (2)

%&&
are the four -‘‘leg’’

dislocations, which must be irrelevant [13]. This ‘‘leg’’-
number can be easily illustrated in terms of the A and
B particles. The FM vacuum is unstable at the FM-PM
transition with respect to H(2)

%&&
which transforms

that vacuum state 2BBBB2 into the set of
2B2BAAB2B2 functions, that means p"2.

On the contrary, the S2T phase is described as the
2AAAA2 vacuum. According to the definition
when A (or DW) disappears, it creates a couple BB.
Hence, the elementary excitation due to H (2)

%&&
can be

represented as 2A2ABBBBA2A2, which is
irrelevant (p"4).

A fictitious lattice as it has been introduced in [9] is
better realized in the case of infinite chain with no periodic
boundary conditions imposed. The fictitious lattice sites
are enumerated as mJ "m!g (m) , where g(m)"+

i:n
n
i
is

the total number of fermions from the left of the m-th site
of a real lattice. For fermions on the fictitious lattice we
accept the notation cJ jI (cJ smJ ). H (1)

%&&
is formally unchanged:
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while H (2)
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(mJ #1)#cJ mJ #1cJ mJ P~
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(23)

where the operator P
`

(mJ ) (P
~

(mJ )) translates all the fer-
mions from the right of mJ by two sites to the right (left).

III. Exact diagonalization of finite systems

The starting point for our numerical investigation of the
ground-state properties of the ANNNI-model (1) is the
effective Hamiltonian H (1)

%&&
without creation/annihilation

of domain walls (8), which we call the free model and the
effective Hamiltonian H (1)

%&&
#H(2)

%&&
, which includes cre-

ation/annihilation of domain walls (19) and which we call
the complete model. The Hilbert space for these models
consists of all configurations of the original ANNNI-
model, which obey the constraint discussed in the last
section. This constraint reduces the dimension of the Hil-
bert space considerably so that much larger system sizes
can be diagonalized (even if one uses the translational and
spin flip symmetry of the original ANNNI Hamiltonian to
block diagonalize it first).

A. Methodology

We reformulate the constraint in such a way that it be-
comes suitable for a numerical implementation. The do-
main walls can be identified with particles being able to
hop to the left or right provided the constraint will not be
violated by this move (moreover at most one particle can
occupy a single site in the dual lattice). Since a domain
wall at bond j comes always with bond j#1 free of
domain walls we call this combined object an A-particle
situated at bond j. If no domain wall is at bond j we call it
a B-particle provided no other domain wall occurs at
bond j!1. In an obvious notation the following particle
configuration, domain wall (i.e. q-) configuration and spin
configuration (in the p

z
-representation) correspond to

each other

DAABBA2T"D101000102T"G
DCBBCCCCB2T
DBCCBBBBC2T

. (24)
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Table 1. Dimensionality of the reduced Hilbert space of our effective
Hamiltonians (second column) and the dimensionality of the orig-
inal Hilbert space (third column)

L dim
H

2L dim
H
/2L

8 23 256 8.984375e-02
12 162 4096 3.955078e-02
16 1103 65536 1.683044e-02
20 7563 1048576 7.212639e-03
24 51842 16777216 3.090024e-03
28 355323 268435456 1.323681e-03
32 2435423 4294967296 5.670411e-04

Moving a domain wall from bond i to i$1 means moving
anA-particle from site i to i$1, which is only possible, if
at site i$1 is a B-particle.

q`
1
q~
2
DBA2T " DAB2T

q~
1
q`
2
DAB2T " DBA2T

(25)

Thus in the particle representation the above mentioned
constraint is already contained. Analogous remarks hold
for the creation/annihilation of domain walls described by
H (2)

%&&
: in the particle formulation that means that A-par-

ticles can be created in pairs in place of four consecutive
B-particles. For instance

q`
1
q`
3
DBBBB2T " DAA2T

q~
1

q~
3
DAA2T " DBBBB2T

(26)

Because of the periodic boundary conditions we have to
discriminate between the cases with and without a domain
wall at bond ¸. We denote the first group of states with
a prime, for instance (in the case of L"8):

DABBAAT@"D01000101T (27)

(note that in this notation the rightmost particle is always
anA-particle), whereas those without prime denote states
without domain wall between ¸ and 1, e.g.:

DABBAAT"D10001010T (28)

This state is simply a circular left shift of the primed state
in (27), in fact for each primed state there is a unique
unprimed state that can be obtained from the former via
a circular left shift. However, there are of course more
primed states than unprimed ones.

Thus we consider different primed and unprimed sub-
spaces characterized by the number of A-particles
(i.e. number of domain walls), which is conserved under
the action of H (1)

%&&
(note, however, that the latter mixes

states of the primed and unprimed subspaces by moving
domain walls to or from the bond ¸. The dimension of
these subspaces is simply given by the number of different
possibilities to distribute n

A
and n

A
!1 particles on

¸!n
A

and ¸!n
A
!1 sites, respectively.
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!1 B .

The dimension of the whole Hilbert space we are consider-
ing is

dimH
%&&
"1#

L@2
+

n
A
"1GA

¸!n
A

n
A
B#A

¸!n
A
!1

n
A
!1 BH (30)

which is a much smaller number than the dimension of the
original Hilbert space, which is 2L.

From Table 1 it becomes obvious that the storage
requirements for diagonalizing the effective Hamiltonian
is significantly smaller. This is still the case if one uses all
symmetries of the original ANNNI Hamiltonian to block-
diagonalize it first (by which can reduce the storage re-
quirement by roughly a factor 1/¸). Note that in the
FP-phase it is not a priori clear in which wave number

sector of the original Hilbert state the ground state is
situated. Hence all of them have to be considered, as has
been done in [15] for lattice site up to ¸"16. We were
able to diagonalize easily L"32 systems on workstations
with a reasonable RAM without reading or writing to the
hard disk.

In order to enumerate the states within the subspaces
efficiently we recur to a scheme that is frequently used in
the context of quantum spin chains confined to subspaces
ith constant magnetization [14]. Let us fix ¸ to be a mul-
tiple of 4 (so that the periodic boundary conditions are
fully compatible with the ground state in the anti-phase
S2T). Let tn

A
(n) be an unprimed state with n

A
A-particles:

tn
A
(n)"DA (p

1
2A (pn

A
)T"DB2B

hij
p
1
!1

AB2B

hij
p
2
!p

1
!1

A2

2T

(31)

where p
i
3M1, 2 , ¸!n

A
N denotes the position of the i-th

A-particle (counted from the left). Then the following
definition yields a one-to-one correspondence between
the possible configurations and a number n3M0, 2,
dimn

A
!1N :

n"
n
A

+
i/1
A
p
i
!1

i B with A
i!1

i B"0 . (32)

The same definition is used for primed and unprimed
states, which we denote by t@n

A
(n) and t@n

A
(n), respectively.

The Lanczos routine we use to calculate the ground state
and first excited state generates the Hamiltonian each
time it is needed, for this reason we need to know how the
various hopping, creation and annihilation operators act
upon the basis states we have chosen. This can either be
done by a hashing technique, which is used frequently for
arbitrary quantum spin chains, or by explicitly calculating
the number of the transformed state if possible. Fortu-
nately in our case the latter is straightforward, and in
Appendix D we list all relevant formulas that we need to
generate the non-zero matrix elements forH (1)

%&&
andH (2)

%&&
.

With the help of nowadays standard Lanczos routines
we calculated the ground state and the first excited state of
systems of size up to L"32. The effective Hamiltonians
we derived are expected to be good approximations to the
original ANNNI model for small values of !/J. We con-
fined ourselves to the values !/J"0.05, 0.1, 0.2 and 0.5,
where we calculated all physical quantities of interest for
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Fig. 2. Results of exact diagonalization of the original ANNNI
model (1)—(2) for ¸"16 and various values of !/J: Expectation
value of the quantity E

#-!44
/J#(1!i) ¸ defined in the text

i-values in intervals of 5·10~4. We performed extensive
checks of our code by comparing our numerical estimates
for the ground state energy and the gap with the exactly
known values for the free model (8). We also compared
our results obtained for H (1)

%&&
#H (2)

%&&
at small values of

!/J with those for the original ANNNI model and found
no significant deviations.

B. Results

In order to check the quality of the free fermion descrip-
tion we first calculated the ground states of the original
ANNNI model (1)—(2) for a modest system size (up to
L"20). The ‘‘classical’’ energy of a state

E
#-!44

"StDH
#-
DtT (33)

which is E
#-!44

"!J (+
i
S
i
S
i`1

!i+
i
S
i
S
i`2

) for an
eigenstate of the pz

i
operators contains the information on

the average number of domain walls (or A-particles) in
the state t, if this last does allow neither 2CBC2 , nor
2BCB2 to appear. With such a constraint imposed on
a state with exactly n

A
3M0, 2, 4, 2 , ¸/2N domain walls,

each of them costing an energy e"!(4i!2)J with
respect to the FM state, we have

E
#-!44

/J#(1!i)¸"n
A

· (4i!2) (34)

Thus the comparison of the l.h.s. which we call DE, with
the set of straight lines provides a measure of the average
number of A-particles plus an indication of the appro-
priateness of the free fermion concept in this context. In
Fig. 2 we show the result for various values of ! and we
see that the smaller ! the better the agreement of various
parts of the DE-curves. Furthermore, for increasing ! the
ground state is more a superposition of various particle
eigenstates in the vicinity of the FM-PM transition.

Now we turn our attention to the effective Hamil-
tonians. The average number of domain walls, simply
given by Sn

A
T"StD+

i
q`
i

q~
i

DtT is calculated for t’s of
the ground state and of the first excited state of the
complete model (8)#(19). For ! not too large one ob-
serves well defined regions with constant value for n

A
in

the ground state and the first excited state. See Fig. 3 for
an example. The number of A-particles increases mono-
tonically (in steps of 2) for increasing i. The points where
the particle number jumps are of special interest. The
particle number of the first excited state Sn

A
T
1

jumps first
abruptly (approaching the transition points from either
side) and then it changes roles with the ground state. As
a consequence the gap (i.e. the energy difference between
ground state and first excited state) gets very small here.

Note that in the FM-phase the gap does not vanish
exponentially with system size for the effective Hamil-
tonians, because in the particle representation the two
degenerated states with all spins up or all spins down are
represented as one state. Therefore the gap closes in the
infinite system only at the FM-PM transition. On the
other hand the gap stays zero (or exponentially small for
finite sizes) throughout the S2T phase also for the effective
Hamiltonians: The 4-fold degeneracy there is only re-
duced by a factor two via the elimination of the spin-flip

symmetry and a degeneracy between corresponding
primed and unprimed states is left.

As a significant difference of the complete model with
respect to the free model we note that at the special
i-values, where the particle number changes and which
can be calculated exactly via the formula (13), the gap of
the free model (8) closes completely, i.e. *E&3%%n

A
Pn

A
$2"0. In

the complete model the gap-value on the boundary, say,
n
A
Pn

A
#2, can be easily estimated if we confine our

consideration with these two competing states only, that
results in

*En
A
Pn

A
#2"2Stn

A
#2 DH(2)

%&&
Dtn

A
T (35)

These special gap-values increase with ! because of the
!-dependent H(2)

%&&
. In particular more pronounced is the

gap increasing for the lower i-values. In this range the
boundary n

A
Pn

A
#2 cannot be considered as well iso-

lated from other ‘‘neighboring’’ states, i.e., n
A
!2, n

A
#4,

etc. This observation will turn out as a hint for the exist-
ence of the PM-FP transition. For higher values of !/J
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Fig. 3. Results of exact diagonalization of the complete model
(8)#(19). Shown are the results for the expectation value of the
particle number in the ground state and the first excited state
together with the gap *E. It is ¸"24 and !/J"1/20

Fig. 4. The same as in Fig. 3 but with !/J"1/5

the resulting picture is therefore slightly different: the
transitions smear out and Sn

A
T (i) and *E become

smoother as can be seen in Fig. 4.
Let us interpret this picture cum grano salis: One might

tentatively locate the FM-PM transition (for !/J"1/5)
roughly at i+0.41, where the gap should approach zero
like *E\1/¸ (since the transition is expected to be in the
Ising universality class, where l"z"1). Between
i"0.41 and let us say i+0.48 the average particle
number increases from zero to 8 (for ¸"24), but the
individual transitions observable in Fig. 3 melt together to
form a rugged plateau. Only when n

A
gets larger than

some value (whose significance we will clarify later) the
gaps at the individual transitions try to close again. With
increasing system size these gaps (for i larger than rough-
ly 0.48) melt together, too, but in the limit ¸PO they will
form a curve *(i)"0 in this region, which is simply the
gapless floating phase with a quasi-long range, i.e., alge-
braically decaying spin correlations.

It is obvious that in order to observe this scenario in its
pure form one has to go to enormous system sizes, which

is not feasible yet. Nevertheless we can clearly demon-
strate the qualitative difference between the PM phase
and the FP phase by explicitly studying the spin correla-
tions in both regions of the phase diagram for intermedi-
ate system sizes.

The spin correlation function is defined via

C(r)"StDpz
i
pz
i`r

DtT

"

L@2
+

n
A
"0

$*.n
A

+
n/0

t2n
A
(n) ·

1

¸

L
+
i/1

S
i
[tn

A
(n)]

S
i`r

[tn
A
(n)]#primed states. (36)

Here S
M
[tn

A
(n)] (S

M
"S

1
, 2, S

L
) means the spin configura-

tion that is equivalent to the state number n with n
A

par-
ticles (since there are always two of them we choose the
one with the first spin up S

1
"#1). Of course we have to

initialize such a mapping in our program once, afterwards
this table can be used whenever correlations have to be
calculated.

First we take a look at the structure function since this
directly relates to the particle number n

A
discussed above.

We define it as follows: via

f
q
(i)"

1

¸2
+
i,j

cos (q(i!j))StDpz
i
pz
j
DtT (37)

for q"n/¸ (n"0, 1, 2, ¸!1) so that

C(r)"+
q

cos (qr) f
q

(38)

In Fig. 5 we show the result for f
q
(i) for !/J"1/20 in

comparative plots for the free and the complete model.
For fixed wave number q the structure function f

q
(i) is

simply a step function for the free model, the plateaus
located at the i-intervals with constant particle number
n
A
. For fixed i the wave number q

.!9
with the maximum

amplitude fq
.!9

(i)'f
q
(i) for qOq

.!9
is related to the

particle number n
A

via

q
.!9

"n
A
/2¸ (39)

(note that n
A

is a good quantum number in the free
model). For small !/J we observe that the steps get
rounded, but nothing dramatic (for these system sizes)
happens. If we increase !/J, as is done in Fig. 6, the
neighboring plateaus begin to mix (to melt, see above).
They also shift their location to larger values of i. How-
ever, these changes seem to become less significant as soon
as q

.!9
is larger than 1/4. Actually, as stated in the last

section in Eq. (18), the theoretical estimate for this rel-
evance-threshold is q"0.292'1/4 for the free model and
approximately this value for the complete model for small
!/J.

This statement finds its strongest support by looking at
the spin correlation function (36), shown in Fig. 7 and 8 for
¸"32, directly. For the free model of finite size ¸ with
periodic boundary conditions one would according to (17)
expect that

G(r)"acos (rnq
.!9

) ·Mr~o!(¸!r)~oN with

o"
1

2
(1!q

.!9
)2, (40)
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Fig. 5. Comparison of the structure function f
q
(i), Eq. (37), for the free and the complete model. It is L"24 and !/J"1/20. Note the different

scale on the y-axis in the plot for q"7/12

where a is a fit parameter and q
.!9

has to be determined
from the structure function. In order to resolve the cor-
relations over as large as possible distances we took here
the largest possible system sizes. For ¸"32, however, we

had to confine ourselves to a smaller number of parameter
values. In the case !/J"1/20, in which the differences
between the complete and the free model are not too large,
we took simply the middle of the plateaus of the structure
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Fig. 6. The same as in Fig. 5 but with !/J"1/5

function, wehreas for !/J we took the location of the
maxima of f

q
(i) shown in Fig. 9.

What is shown in Fig. 7 and 8 is a comparative plot of
C(r) and G(r) with a"J&

r
C2(r)/&

r
GI 2(r), GI (r)"G(r)/a.

We observe that for q
.!9

'1/4 the free model correlation
function G(r) fits C(r) in an excellent way. For q

.!9
41/4,

however, one recognizes significant differences between
G(r) and C (r), most dramatic for the smallest wave

605



Fig. 7. Comparison of the correlation
function C(r), Eq. (36), of the complete
model with G (r) given in (40). It is L"32
and !/J"1/20

numbers, which mean closest to the FM-PM transition of
the complete model. The q

.!9
"1/12 and q

.!9
"1/6

curves for !/J"154 definitely decay faster than algebraic.
We obtained an excellent fit (shown in Fig. 10 for the
q
.!9

"1/16 curve by a superposition of an exponentially
damped q"0 and q"1/16 oscillation:

Ci"0.4085;!/J"5 (r)"(1!a#acos (rn/16))

· (e~r@m#e~(32~r)@m) (41)

with a"0.21 and m"3.6. For us this is ample evidence
that for fixed !/J one enters first a paramegentic phase
with exponentially decaying correlations by increasing
i from rthe FM-phase. Only when q

.!9
gets larger then

the above mentioned value, one enters the FP-phase,
which for the free model extends over the whole region
between the S2T and FM phses.

IV. Summary

Below we summarize a few important points of this work.
f Instead of the original 1d ANNNI model in a trans-

verse field we consider a reduced model which we show to
be a very reasonable modification when the competition
parameter Di!1/2D as well as the quantum parameter
!/J are small.

f The effective HamiltonianH (1)
%&&
#H (2)

%&&
is most eas-

ily visualized with theA!B particle representation. The
latter has been adapted to the periodical boundary condi-
tions and efficiently used in numerical calculations.

f Analytical calculations here were done not for re-
discovering after [9] the essential physics, accompanying
the scheme of phase transitions FM-PM-FP-S2T in infi-
nitely long chains. Most analytical results are derived for
further applications in a numerical scheme.
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Fig. 8. The same as in Fig. 7 but with
!/J"1/5

Fig. 9. Structure function f
q
(i), Eq. (37), for the complete model in

the case L"32 and !/J"1/5

Fig. 10. Fit of (41) to the correlation function C (r) for i"0.4085,
the maximum of the f

q/1@12
curve shown in Fig. 9. It is L"32 and

!/J"1/5. The fit parameters are a"0.21, m"3.6
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f The exact numerical diagonalization technique
(Lanczos algorithm) was used on the restricted basis
states, all of them have been enumerated, as well as all the
non-zero matrix elements generated by Hamiltonian of
the complete model were stored. Along this line we per-
form calculations for systems of size up to L"32 with
standard work-stations.

f The set of Figs. 5—10 convincingly illustrates a dif-
ferent origin of the critical behavior at larger and smaller
i’s. Most likely, the PM-FP transition takes place close to
or even at a modulation q given by the theory of the
standard Kosterlitz-Thouless-like transition.

This work has been performed within the Sonderforschungsbereich
(SFB) 341 Köln-Aachen-Jülich. G.U. thanks the Institut f. Theoreti-
sche Physik of the University of Köln for its kind hospitality and
H.R. thanks S. Dasgupta for numerous fruitful discussions and
numerical experiments on the ANNNI-model.

Appendix A

We treat qz
j

as a domain wall operator, defined on the
lattice site j of the dual lattice. It takes two values, $1:
#1 (!1) signals of absence (presence) of a domain wall.
Mathematically, this can be expressed by

qz
j
"pz

j~1@2
pz
j`1@2

. (A.1)

Because of the periodic boundary conditions we also
define

qz
1
"pz

1@2
pz
3@2

and qz
L
"pz

1@2
pz
L~1@2

. (A.2)

Also evidently, that

qz
j
qz
j`1

"pz
j~1@2

pz
j`3@2

. (A.3)

For x-components we accept the following definitions:

px
j`1@2

"qx
j
qx
j`1

(A.4)

and

px
1@2

"qx
1
qx
L

and px
L~1@2

"qx
L~1

qx
L
. (A.5)

With using (A.1), (A.3) and (A.4) we can easily obtain the
form of (6) from (1).

This transformation set allows to calculate the correla-
tion functions in terms of q’s, for example:

Spz
rÇ~1@2

pz
rÈ`1@2

T"T
rÈ<

j/rÇ

qz
jU (A.6)

Appendix B

In Eq. (10) m’s are supposed to be arranged in order,
satisfying the following constraints: m

1
(m

2
!1,

m
2
(m

3
!1, 2, m

k~1
(m

k
!1, m

k
(m

1
#¸!1. We

transfer these constraints on the amplitudes f :

f (2 , m, m#12)"0 (B.1)

f (1, 2 , ¸)"0. (B.2)

In spite of the irregular 1%¸ hopping term in (9) the eigen
amplitudes f satisfy the regular equations:

(E!ke) f (m
1
, m

2
, 2, m

k
)

"!! +
a"$1

( f (m
1
#a, m

2
, 2, m

k
)

f (m
1
, m

2
#a, 2 , m

k
)#2#f (m

1
, m

2
, 2 , m

k
#a)).

(B.3)

Using a Bethe substitution for f’s (see (8)) we obtain

E"ke!2!
k
+
j/1

cos q
j
. (B.4)

Equations (B.1) and (B.2) yield

m
2ij2

eiq
j
#m

2ji2
eiq

i
"0 (B.5)

and

m
i2j

ei (q
i
`Lq

j
)#m

j2i
ei (q

j
`Lq

i
)"0, (B.6)

respectively. In turn, from (B.5) and (B.6) one can arrive to

q
i
!q

j
"

2n
¸!k

n
ij (B.7)

where n
ij

are integer numbers. Additional equations
imposed on q’s may be obtained from (B.3) at
m"1. Formally, it is equivalent to f (0, m

2
, 2, m

k
)"

f (m
2
, 2, m

k
, ¸ ) , that is

m
ijs2t

"m
js2ti

eiLq
i

(B.8)

which after a simple algebra results in

q
i
"

nn0$$
i

¸!k
!

1

¸!k

k
+
j/1

q
j
, (B.9)

[n0$$N, the set of odd integer numbers.
The content of this Appendix may be summarized in

this last (B.9) and the form of the the eigenfunctions (12).

Appendix C

For the ground state of k DW’s the set Mn0$$N in (B.9)
counts all the equidistant odd numbers from !k#1 to
k!1. Let us take away one number from that set, say,
n0$$
~

"2l
~
!1, with !k/2#1(l

~
(k/2!1, and add

another number n0$$
`

"2l
`
!1, with l

`
'k/2. With this

definition +n0$$
i

"2(l
`
!l

~
) and after summation in

both parts of (B.9) we get

Q"+
i

q
i
"

2n (l
`
!l

~
)

¸

(C.1)

The wavevectors in (B.9) are now determined and the
energy of such an excitation counted from the ground
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state energy takes a form:

*E(Q)"!2+
i

cos q
i
!E

'4

"!2
k@2
+

l/~k@2`1

cos
(2l!1)n!Q

¸!k

!2cos
(2l

`
!1)n!Q

¸!k
#2cos

(2l
~
!1)n!Q

¸!k

#2
k@2
+

l/~k@2`1

cos
n(2l!1)

¸!k

"2A1!cos
Q

¸!kB sin
nk

¸!kNsin
n

¸!k

!2sin
Q

¸!k Csin
n (2l

`
!1)

¸!k
!sin

n (2l
~
!1)

¸!k D
!2cos

Q

¸!kCcos
n (2l

`
!1)

¸!k
!cos

n (2l
~
!1)

¸!k D (C.2)

Using (C.2) we can analyze the lower lying excitations

1. n0$$
~

"k!1, n0$$
`

"k#1NQ"2n/¸.

The excitation energy with a vanishing momentum trans-
fer Q in the ¸PO limit reads in the leading order in 1/¸
(this contribution comes from the last term of the r.h.s. of
(C.2)):

*E(Q)+
4n

¸!k
sin

nk

¸!k
"2*q sin

nk

¸!k
(C.3)

where *q is a q spacing (cf (B.7))
2. n0$$

~
"!k#1, n0$$

`
"k#1NQ"2nk/¸.

All the terms in the r.h.s. of (B.7) contribute in the leading
order in 1/¸. This excitation occurs at the energy

*E(Q)+2*qA1!
k

¸B
2

sin
nk

¸!k
(C.4)

which differs from (C.3).
3. For not a special value of Q a leading contribution,
O(1), comes from the last term of the r.h.s. of (C.2)). To
leading order it can be written as:

*E(Q)"4sin x sin(x#2nl
~
/(¸!k)), x"

Q¸

2(¸!k)
.

(C.5)

We used (C.1) to obtain the form of (C.5). Then in order to
select the lowest energy values at fixed Q we consider
following inequalities:

f x(k
F
"nk/(¸!k). The possible range of l

~
’s be-

comes¸Q/(2n)!k/2(l
~
(k/2. The minimum of (C.5) is

reached at the lower limit, that results in *E(Q)"
4sinx sin(k

F
!x)

f k
F
(x(n!k

F
. Now a possible range of l

~
’s is

!k/2(l
~
(k/2. Two extreme possibilities should be

checked, one arrives to the form *E(Q)"4sinx sin
(x!k

F
), another results in *E(Q)"4sinx sin (k

F
#x).

The former realizes the minimum at k
F
(x(n/2, the

latter is correct at n/2(x(n!k
F
.

f n!k
F
(x(n"!k/2(l

~
(¸!3k/2!¸Q/

(2n). A true minimum corresponds to *E (Q)"4sin-
x sin (!x!k

F
)

Appendix D

In this Appendix we list the formulas that determine the
action of various hopping, creation and annihilation oper-
ators on states tn

A
(n) and t@n

A
(n@). First remember the

definition of our notation (31). In what follows the num-
bers n and n@ are always given by

n"
n
A

+
j/1
A
p
j
!1

j B and n@"
n
A
!1

+
j/1

A
p
j
!1

j B , (D.1)

First we consider the hopping term occurring in (8):

Hopping to the right q~
i

q`
i`1

The matrix elements of the operator +L
i/1

q~
i

q`
i`1

in the
particle representation is non-zero whenever it is possible
to move an A-particle to the right. This means there has
to be a j3M1, 2, n

A
N in such a way that p

j`1
'p

j
#1,

compare with (25). We have to take special care of the case
i"¸!1 or ¸ (i.e. hopping to or from the periodic
boundary), when an unprimed state transforms into
a primed state and vice versa.

i3M1, 2, ¸!2N, i.e. pn
A
(¸!n

A

tn
A
(n)"D2A(p

j
)B2T"tn

A
(m)"D2BA(p

j
#1)2T

m"n#A
p
j
!1

j!1 B (D.2)

The same for a primed state tn
A
@(n@).

i"¸!1, i.e. pn
A
"¸!n

A
:

tn
A
(n)"DB2AT"t@n

A
(m@)"D2BAT@

m@"
n
A
!1

+
j/1

A
p
j
!2

j B (D.3)

i"¸, i.e. all primed states:

t@n
A
(n)"DB2AT@"tn

A
(m)"DA2BT

m"

n
A
!1

+
j/1

A
p
j
!1

j#1 B (D.4)

Hopping to the left q`
i

q~
i`1

i3M1, 2, ¸!2N, i.e. pn
A
(¸!n

A
:

tn
A
(n)"D2BA(p

j
)2T"tn

A
(m)"D2A(p

j
!1)B2T

m"n!A
p
j
!1

j!1 B (D.5)
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The same for a primed state t@n
A
(n@).

i"¸, i.e. p
1
"1:

tn
A
(n)"DA2BT"t@n

A
(m@)"DB2AT@

m@"
n
A

+
j/2
A
p
j
!1

j!1 B (D.6)

i"¸!1, i.e. all primed states:

t@n
A
(n@)"D2BAT@"tn

A
(m)"DB2AT

m"A
¸!n

A
!1

n B#
n
A
!1

+
j/1
A
p
j
j B (D.7)

Next we consider the creation and annihilation operators
occurring in the complete model via (19). Again we have to
take special care of the cases in which a domain wall at the
bond linking site 1 and site ¸ is created or annihilated.

Creation of domain walls q`
i
q`
i`2

The non-zero matrix elements of the operator
+L

i/1
q`
i

q`
i`2

have to be determined via the rule (26). Let us
denote with p

y
a position between two successive A-par-

ticles at positions p
x
and p

x`1
(with p

x`1
!p

x
74) where

a new pair of A-particles can be created.

p
y
3M1, 2, n

A
!3N:
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x
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x
)A (p

y
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p
j
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j#2 B (D.8)

The same for a primed state t@n
A
(n@) with n

A
replaced by

n
A
!1 in the last sum.

p
y
"¸!n

A
!2:

tn
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(n)"DBA(p

1
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)BBBT
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Annihilation of domain walls q~
i
q~
i`2

Now let there be two successive A-particles at position
p
x

and p
x`1

"p
x
#1, so that they can be annihilated by

q~
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i`2

for some suitably chosen i.
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The same for a primed state t@n
A
(n@) with n

A
replaced by

n
A
!1 in the last sum.
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p
x
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A
for a primed state:
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In order to determine the non-zero matrix elements for
creation/annihilation it is thus necessary to scan the whole
particle configuration corresponding to t (n) and to re-
cord the allowed values for x, y and p

x
and p

y
. An alterna-

tive technique would be to try to store the (very sparse)
matrix for H (2)

%&&
. However, as in most cases, not the com-

putational speed but the storage requirement is the limit-
ing factor for the maximum possible system size.
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